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Abstract

In this paper, we present a design procedure of composite nonlinear feedback control for general multivariable systems
with actuator saturation. We consider both the state feedback case and the measurement feedback case without imposing
any restrictive assumption on the given systems. The composite nonlinear feedback control consists of a linear feedback law
and a nonlinear feedback law without any switching element. The linear feedback part is designed to yield a closed-loop
system with faster rise time, while at the same time not exceeding the actuator limits for the desired command input levels.
The nonlinear feedback law is used to reduce overshoot and undershoot caused by the linear part. As such, a highly desired
tracking performance with faster settling time and smaller overshoot can be obtained. The result is illustrated by a numerical
example, which shows that the proposed design method yields a very satisfactory performance.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and problem formulation the actuator is saturated, the performance of the control
system designed will seriously deteriorate. As such,
Every physical system in our real life has nonlin- the topic of nonlinear control for saturated linear sys-
earities and very little can be done to overcome them. tems has attracted considerable attentions in the past
Many practical systems are sufficiently nonlinear so (see e.g[6,7,10,12,13,1610 name a few).
that important features of their performance may be Inspired by a work of Lin et al[9], which was in-
completely overlooked if they are analyzed and de- troduced to improve the tracking performance under
signed through linear techniques (see €8&}). When state feedback laws for a class of second-order SISO
systems subject to actuator saturation, Chen d8hl.
) have recently extended the so-called composite non-
* Corresponding author. Tel.: +6568742289; . .
fax: +65 67791103 linear feedback (CNF) control technique to general
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of Chen et al.[3] has been successfully applied to

design an HDD servo system. It has also been demon-

strated in[3] that the CNF design is capable of beat-
ing the time-optimal control in asymptotically track-
ing situations. The extension of the result[8f to

MIMO systems under state feedback was reported in
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required: (i)(A, B) is stabilizable; (ii))(A, Cy) is de-
tectable; and (iiiYA, B, Co, D7) isright invertible and
has no invariant zeros at=0. It is well understood in
the literature that these assumptions are standard and
necessary.

The paper is organized as follows: Section 2 deals

[15]. However, the extension was made under a pretty with the theory of the CNF control for the state feed-

odd assumption, which will be discussed later.

back case, whereas Section 3 deals with the detailed

In this paper, we present a design procedure of the development of the CNF design with the full order

CNF control for improving tracking performance of

general multivariable systems with actuator saturation.
Generally, the CNF control consists of a linear feed-
back law and a nonlinear feedback law without any
switching element. The linear feedback part is de-
signed to yield a closed-loop system with faster rise

measurement feedback and the reduced order mea-
surement cases. We will address the issue on the se-
lection of some key design parameters in Section 4.
The proposed technique will then be illustrated by a
numerical example in Section 5. Some concluding re-
marks will be drawn in Section 6.

time, while at the same time not exceeding the actu-
ator limits for the desired command input levels. The

nonlinear feedback law is used to reduce overshoot
and undershoot caused by the linear part. More specifi-
cally, we consider a multivariable linear syst&mwith

an amplitude-constrained actuator characterized by

x(0) = xo,

2. The state feedback case

We first proceed to develop a composite nonlinear
feedback control technique for the case when all the
state variables of the plaatof (1) are measurable, i.e.,

y = x. The design will be done in three steps, which
is a natural extension of the results of Chen ef3L.
We have the following step-by-step design procedure.

StepS1: Design a linear feedback law

X = Ax + Bsalu),
y = Cux,

h = Cox + Dpsalu), 1)

wherex € R", u € R™, y € R andh € R* are, re-
spectively, the state, control input, measurement out-
put and controlled output of the given systemA, B,

C1 andC» are appropriate dimensional constant ma-
trices, and the saturation function is defined by

uL = Fx + Gr, 3)

wherer € R! contains a set of step references. The
state feedback gain matrix € R™*" is chosen such

safu1)

saluy) that the closed-loop system matwx+ B F is asymp-
salu)=| . , totically stable and the resulting closed-loop system

: transfer matrix, i.e.,Do + (Co2 + DoF)(s] — A —

salum) BF)™1B, has certain desired properties, e.g., having a

salu;) = sign(u;) min((u; |, u;), @) small dominating damping ratio in each channel. We
whereii; is the maximum amplitude of théh control ~ note that such afr can be worked out using some
channel. The objective of this paper is to design an ap- Well-studied methods such as the LQR,, and H>
propriate control law for (1) using the CNF approach OPptimization approaches (see, e[d,2,11). Further-
such that the resulting controlled output will track More,Gis anm x [ constant matrix and is given by
some desired step references as fast and as smooth

as possible. We will address the CNF control sys- G : =Gp(GoGp)
tem design for the given system (1) for three differ-

ent situations, namely, the state feedback case, the fullwith Gg : =Dy — (C2 + D2F)(A + BF)~1B. Here
order measurement feedback case and the reduced orwe note that botlGg andG are well defined because
der measurement feedback case. For tracking purpose A+ B F is stable, andA, B, C», D») is rightinvertible
the following assumptions on the given system are and has no invariant zeros at= 0, which implies

(4)
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(A4 BF, B, C+ DyF, D) is right invertible and has
no invariant zeros at=0 (see e.g., Theorem 3.8.1 of
[4]).

StepS2: Next, we compute

H:=[I — F(A+ BF)"'BIG (5)
and
xe:=Ger :=— (A+ BF) 'BGr. (6)

Note that the definitions dfl, Ge and xe would be-
come transparent later in our derivation. Given a pos-
itive definite matrixW € R"*", solve the following
Lyapunov equation:

(A+BF)P+P(A+ BF)=—W, )

for P > 0. Such aP exists sinceA + BF is asymp-
totically stable. Then, the nonlinear feedback control
law uy is given by

un = p(r, y)B'P(x — xe), (8)
where

P1 0
p(r,y) =diagips, ..., put = | : N C))

0 P
andp;=p;(r, y),i=1,2, ..., m, are respectively some

nonpositive functions, uniformly bounded and locally
Lipschitz iny, which are used to change the closed-
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The following theorem shows that the closed-loop sys-
tem comprising the given plant in (1) and the CNF
control law of (10) is asymptotically stable. It also de-
termines the magnitudes of the step functionsfinat
can be tracked by such a control law without exceed-
ing the control limit.

Theorem 2.1. Consider the given system () with

y = x, which satisfies assumptiorf§ and (i), the
linear control law of(3) and the composite nonlinear
feedback control law of10). For any ¢ € (0, 1), let

c¢; >0 be the largest positive scalar such that for all
x € X5, where

X5 1 ={x : x'Px<c,}, (12)
the following property holds
|Fix|<(1—0)i;, i=1...,m. (13)

Then the linear control law 0of(3) is capable of driv-
ing the system controlled outplitr) to track asymp-
totically a set of step referenceise., r, provided that
the initial statexg andr satisfy

Yo :=(x0—xe) € Xs, |H;r|<du;,
i=1...,m. (14)
Furthermore for any nonpositive function(r, y), uni-
formly bounded and locally Lipschitz in the compos-

loop system damping ratios as the outputs approachite nonlinear feedback law ifL0)is capable ofdriving
the targets. The choice of these nonlinear functions the system controlled outpié(r) to track asymptoti-

andW will be discussed in Section 4.

StepS3: The linear and nonlinear feedback laws
derived in the previous steps are now combined to
form a CNF controller:

u=u +un=Fx+ Gr+ p(r,y)B'P(x — xe).
(10)

This completes the design of the CNF controller for
the state feedback case.

For further development, we partitioB € R"*",
F e R™" andH € R"™* as follows:

B=[B1 B 1,
Fq Hq

F = 3 N H == : (11)
F’n Hm

cally the step command input of amplituderovided
that the initial statexp and r satisfy(14).

Proof. Let us first define a new state variable=
x — xe. It is simple to verify that the linear feedback
control law of (3) can be rewritten as

uL(t) = FX(t) + [ — F(A+ BF)"'B|Gr (15)

=FX(t) + Hr, (16)
and hence for allx € Xs and, provided that
|H; r|<ou;, i =1,...,m, the closed-loop system is
linear and is given by

¥=(A+ BF)Y + Axe+ BHr. (17)
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Noting that Case2: All input channels are exceeding their upper
limits. In this case, we have
Axe+ BHr ={B[I — F(A+ BF) 'B]G

— A(A + BF) 'BG)r F;X + Hir + p; B/PX > u;,

—{[/ — BF(A+ BF)"YBG i=1...,m. (25)
— A(A + BF) 'BG)r For all x € X;, which implies (23) holds, andsatis-
—{I—BF(A+BF)™! fying (14), we have
—A(A+BF)"2BGr=0, (18) Fi+Hr<a;, i=1...,m, (26)
the closed-loop system in (17) can then be simplified gnd thus
as wi = salF;¥ + Hyr + p; B|P%) — Fii — Hyr
i=(A+ BF). (19) —ii; — Fii — Hir >0 @7)

Similarly, the closed-loop system comprising the given and

plant in (1) and the CNF control law of (10) can be p;B;PX>u; — (F;x + H;r)>0

expressed as = B{P)E =%'PB;<0. (28)
%=(A+ BF)i + Buw, (20)  Hence,
m

where V=—¥Wi+2) ¥PBb< — ¥ Wi (29)
w=salF% + Hr +un) — FX — Hr. (21) i=1

Case3: All input channels are exceeding their lower
Clearly, for the givenxo satisfying (14), we havég = limits. For this case, we have
(xo — xe) € Xs. We note that (20) is reduced to (19)
if p(r,y):O. Fii+Hir+piB{Pi<—ﬁi, i=1...,m. (30)

, e
Nlextt, Wti dedﬁng at!_yagl;nolv funtc;]tld?_.x It-"x.and ¢ For all x € X, which implies (23) holds, and satis-
evaluate the derivative df along the trajectories o fying (14), we have

the closed-loop system in (20), i.e.,

. ., . Fix+Hir>—u;, i=1,...,m, (31)
V=xPi+i'Px
— (A + BF)P% + ¥ P(A + BF)% + 2i' PBw and thus
= — XWX+ 2x'PBw. (22) w; = salFiX + Hir + p;B{ PX) — F;X — H;r
= —u; — F;x — Hir<0 32
Note that for all i e A (32)
~ o and
X eXs={x:%Pi<c,} Bpic i Fr o H <0
= |FE<A—i, i=1..m (23) PiZTES 4T (jx““ i)
= B;PX=Xx"PB; >0. (33)
In the remainder of this proof, we adopt similar lines of H
reasoning as those of Turner et[d/5] by considering ence,
the following different scenarios. For simplicity, we m
. . . ~ ~ ~/ ~ ~
drop the dependent variables of the nonlinear function V = —%'Wi + ZZX PBiw; < — X' WX. (34)
p in the rest of this proof. i=1

) ) Case4: Some control channels are saturated and
Casel1: All input channels are unsaturated. It is  some are unsaturated. In view of Cases 1-3, itis simple
obvious that we have to note that for those unsaturated channels, we have

V=—%Wi+2¢PBpB' Pi< —i'WXk. (24) %' PB;w; = p;¥' PB; B/P% <0, (35)



Y. He et al. / Systems & Control Letters 54 (2005) 455—-469

459

and those input channels whose signals exceed theirwhereB is nonsingular, Turner et gl15] have solved

upper limits, we have

w; >0, ¥ PB;<0= ¥ PB;w; <0, (36)

the problem in a rather strange condition, i.841
is nonsingular. It was suggested|itb] to add some
small perturbations td 1 if it is singular. Recently, it

and finally for those channels whose signals exceed N@s been pointed out by Turner and Postlethwaué

their lower limits,

w; <0, X'PB;>0= x'PB;w; <0. (37)
Thus, for this case, again we have
m
V=-%Wi+2) ¥PBw<—iWKk (38)
i=1
In conclusion, we have shown that
V< —iWE, XeXs, (39)

which implies thaiX; is an invariant set of the closed-
loop system in (20). Noting that > 0, all trajectories
of (20) starting from insideX; will converge to the
origin. This, in turn, indicates that, for all initial state
xo and the step command inputhat satisfy (14), we
have

lim x(1) = xe, (40)
—00
which implies
lim u(@®)=F lim x(t) + Gr
11— 00 11— 00
+ lim pB'P[x(t) — x¢]
11— 00
— Fxe+ Gr, (41)

sincep(r, y) is uniformly bounded. Hence,

Lmoo h(t) =C> t[)moo x(t) + Do sat[t[)mOo u(t)]

= Coxe+ Da2(Fxe+ Gr)

= (C2+ D2F)xe + D2Gr

= —(C2+ D2F)(A+ BF)™!

x BGr + DaGr

=[Ds — (Co+ D2F)(A + BF) BIGr

=GoGp(GoGy) tr=r. (42)
This completes the proof of Theorem 2.1[]

Lastly, assuming that the dynamic equation of the
given system is transformed into the following form:

A1n A 0
|:A21 Azz] o [3} salu),

(43)

for the case when the system is stabilizable Briglof

full rank, there exists nonsingular state transformation
that would convert the given system to the form of (43)
with A11 being nonsingular. Nonetheless, it is obvious
from our development that such a transformation is
totally unnecessary. We further note that our approach
to the CNF design is much more elegant compared
to that given in[15], and it carries over nicely to the
measurement feedback cases in the following section.

3. The measurement feedback cases

The assumption that all the state variables of the
given systen® are measurable is, in general, not prac-
tical. For example, in HDD servo systems (489,
the velocity of the actuator is usually hard to be mea-
sured. As such, in this section, we proceed to develop
CNF design using only measurement information.

3.1. Full order measurement feedback case

We first deal with the full order measurement feed-
back case, in which the dynamical order of the con-
troller is exactly the same as that of the given plant.
The following is a step—by—step procedure for the CNF
design using full order measurement feedback.

StepF1: We first construct a linear full order mea-
surement feedback control law,

Xy =(A+ KC1)xy — Ky + Bsaluy),

u, = F(xy — xe) + Hr, (44)

wherer is the set of step reference signals apds the
state of the controller. As usud, F are gain matrices
and are chosen such that + KC1) and (A + BF)
are asymptotically stable and the resulting closed-loop
system has desired properties. FinaByH andx. are
as defined in (4)—(6).

StepF2: Given a positive definite matri¥p €
R"*", solve the Lyapunov equation

(A+ BF) P+ P(A+ BF)=—Wp (45)
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for P> 0. As in the state feedback case, the linear Furthermore there exist positive scalarp; >0,

control law of (44) obtained in the above step is to
be combined with a nonlinear control law to form the
following CNF controller

xv = (A+ KC1)xy — Ky + B salu),
u=F(xy—xe) + Hr + p(r, ) B'P(xy — xe), (46)
where p(r, y) is as given in (9) with all its diagonal

i =1,...m, such that for any nonpositive functions
p;(r,y), i =1,...,m, locally Lipschitz iny and
lp;(r, I<pf,i=1,...,m, the CNF control law of
(46) will drive the system controlled outpuit(r) to
track asymptotically the reference from an initial
xo, provided thatxg, xyo andr satisfy(51).

elements being respectively a nonpositive function, lo- Proof. For simplicity, we again dropandy in p(r, y)

cally Lipschitz iny, which are to be chosen to improve
the performance of the closed-loop system.

throughout the proof of this theorem. Lét= x — xe
andxy = xy — x. The linear feedback control law of

It turns out that, for the measurement feedback case, (44) can be written as

the choice ofp;(r, y), i = 1,..., m, the nonpositive

scalar functions, are not totally free. They are subject Xv=(A+ KCpiy,

to certain constraints. We have the following result.

Theorem 3.1. Consider the given system(ih), which
satisfies the standard assumptidi)s<(iii), the full or-
der linear measurement feedback control law(44)

and the composite nonlinear measurement feedback

control law of (46). Given a positive define matrix
Wg € R™" with

Wq> F'B'PWSPBF, (47)
let O > 0 be the solution to the Lyapunov equation
(A+KC1)'Q+ QA+ KCy)=— (48)

Note that such @ exists asA+ K C1 is asymptotically
stable For any ¢ € (0, 1), let ¢5 > 0 be the largest
positive scalar such that for all

() ={()- G 18 2] )

< ca}, (49)
the following property holds:
'[F F]( >‘<(1 i, i=1,...,m. (50)

Then the linear measurement feedback control law in
(46) will drive the system’s controlled outpiét) to
track asymptotically a set of step references, r,
from an initial statexg, provided thatxg, xyo = xy(0)
andr satisfy

X0 — X -
077 ) eXrs and |H;r|<di;,
Xv0 — X0

i=1....m (51)

L=I[F F]( >+Hr (52)
Xv
Hence, for all
(Xv> EXF(; = ‘ i ()NC )
<@A-%a;, i=1...,m, (53)
and for anyr satisfying
|Hir|<ou;, i=1,...,m, (54)

each channel of_, sayu ;, has the following prop-
erty

uL ;= ‘[F F](;V>+H r

<‘[Fi E](;V)'+|Hi’”|<ﬁi-

Thus, for allx andxy satisfying the condition as given
in (53), the closed-loop system comprising the given
plant and the linear control law of (44) can be rewritten

as
i\ _[A+BF  BF i
i) L 0 A+kCi\&)°

Similarly, the closed-loop system with the CNF con-
trol law of (46) can be expressed as

(2)-[*" 2kl (3)
(8]

(55)

(56)

(57)
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where and
w:sat[[F F](% >+Hr v (% —We PB(F +pB'P)
Xy %) | (F+pB'PYB'P —Wq
+ p[B'P B'P] ()f )} x <x )+2)Z’PBpB’P)E
Xy Xy
x ¢\ [-wp O ¢
—[F F](~ )——Hr. 58 x P . X
fy 58) Sla )| o Swel\& ) (65)
Clearly, forxg andx,g satisfying (51), we have where
(3?0 ) € Xes. (59)  &=%— WylPB(F +pB'P)i, (66)
Xv0
and

wherexg = x(0) and xyo = xy(0). We note that (56)
and (57) are identical whep = 0. Again, the results WQ =Wq—(F+ pB/p)’B’pwgl

of Theorem 3.1 for both the linear and the nonlinear % PB(F + pB'P). (67)
feedback cases can be proved in one shot.
Next, we define a Lyapunov function: Noting (47), i.e.,Wq > F/B’PW,;lPBF, and p; is
Oy . locally Lipschitz, it is clear that there exist positive
—(* p0 X 60 scalarg?, > 0,i=1, ..., m, such that for any nonpos-
v=|(: 0 - (60) > i1 _ Ay
Xv 0\ itive scalar function satisfying; | < p},i=1,...,m,

we haveWg > 0 and hence’ <0.
Case2: All input channels are exceeding their upper
limits. In such a situation, we have for a1, . .., m,

and evaluate the derivative ®falong the trajectories
of the closed-loop system in (57), i.e.,

. X —Wp PBF]| (% _
V=1 . ) +2¢PBuw. 7
(%)[F’B/P _WQ}(’CV) v [F; Fi]<)f >+H,-r+pi[B,fP B/P]
(61) R
X -

Note that for all X <);V> 2. (68)
<§V> € Xps = ‘[Fi F;] (§V>‘ For all the trajectories insid¥gs,

<@A-%u;, i=1...,m. %

SE=0m, i=hoome 02y F,-](;‘V)+Hir <ij, (69)

Again, as done in the full state feedback case, let us
find the above derivative d&f for four different cases. e have fori =1, ..., m,

Casel: All input channels are unsaturated. For this
case, we have

0<w;<p;[B/P B/P] (;‘ ) (70)
~ ~ \
X X
F, F1\. |+Hr+p[BP BP]|-.
‘[ P <XV> rtpilB il (W)‘ Next, let us express
<it;, i=1...,m, (63)
, x
which implies w; = qip;[ B{ P BiP](xv)’ (71)
w; = p; [B/P B/P] (f) (64) for some appropriate positive continuous func-
v tion ¢;(tr) bounded by 1 for allt. In this case, the
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derivative ofV becomes such that for any scalar function satisfying| < p; 3,
) =\ —We PB(F + qpB'P) i=1,...,m, the correspondinfy <O.
V=1; (F+qpB'PYB'P —W Case4: Some control channels are saturated and
v . Q some are unsaturated. Following the similar arguments
% (f ) + 2%’ PBqpB' P as those in Cases 1-3, we can express that fer
v 1,....m
A / A
S R [ N :
Xy _WQ+ Xy w; = qipi [B;P B;P] <£ ) (80)
v
where
. for some appropriate positive continuous function
g =diadiqa, ... gm}, (73) gi (t) bounded by 1 for alt, and show that there exist
Ry =%— WslPB(F +qpB P)iy (74) positive scalarg;,>0,i=1,..., m, §uch that for
any scalar function satisfying, | <p;4,i=1,...,m,
and the corresponding’ <O0.
WQ+ = Wo— (F + qu/P)/B/PW';l Finally, we letp’ =m|n{_g;ﬁl, Pio Pz p%}. The_n,
PB(F +qpB'P) (75) we have for any nonpositive scalar functippsatis-
X . : .
ap fying |p;l <pf,i=1...,m

Again, noting (47), i.e.Wq> F'B'PW'PBF, and

p; is locally Lipschitz, it is clear that there exist pos- v <0, Vv <32 ) € Xgs. (81)
itive scaIarSp;‘j2 >0,i=1,...,m, such that for any
i isfvi I<o¥,,i=1,... . . .
scalaerunctlon satlsfylng?l ISpigi=1....m we Thus, Xgs is an invariant set of the closed-loop sys-
haveWg, >0 and hence/ <0. . . tem in (57), and all trajectories starting fro¥g;s will
~ Case3: Allinput channels are exceeding their lower  emain inside and asymptotically converge to the ori-
limits. In this case, we have far=1,...,m, gin. This, in turn, indicates that, for the initial state of
7 ) the given systemxg, the initial state of the controller
[F, F;] <iv) + Hir + p; [ B{P B]P] xvo, and step command inputthat satisfy (51)
x (’E ) < — ;. (76) lim (@) =0 and lim x(¢) = xe, (82)
Xy t—00 t—00
For all the trajectories insidXrs, and then it follows from (42) that the controlled output
; h(t) converges asymptotically to the target reference
'[Fi Fi] (; ) + Hir| <i, 77) r. This completes the proof of Theorem 3.1.]
\"
we have fori =1, ....m, 3.2. Reduced order measurement feedback case
, , X ‘ For the given system in (1), it is clear that there are
pi[B;P B;P] <iv> Swi<0. (78) p state variables of the system, which are measurable

if C1 is of maximal rank. Thus, in general, it is not
necessary to estimate these measurable state variables
z in measurement feedback laws. As such, we will pro-
w; =qip; [B{P B/P] (;C ) (79) ceed in this subsection to design a dynamic controller
Y that has a dynamical order less than that of the given
for some appropriate positive continuous function plant. For simplicity of presentation, we assume that
qi () bounded by 1 for alt. Following the similar C1 is already in the form
arguments as in the previous case, we can show that
there exist positive scalarp;3>0,i =1,...,m, Ci=[I, O] (83)

Next, let us express
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Then, the system in (1) can be rewritten as

()=[a 221G

A11
A1

A1z
A2

X1
X2

X1
X2

B1 _ ([ X10
+ |:BZ:| salu), xo= <x20> ,
y=11, 0] (i;)

h=Cs (i;) + Dysatu), (84)
where the original stateis partitioned into two parts,

x1 andxz with y = x1. Thus, we will only need to es-
timatexz in the reduced order measurement feedback
design. Next, we Ieff be chosen such that @+ BF

is asymptotically stable, and ({2 + D2 F) (s — A —
BF)™1B + D, has desired properties, and kg be
chosen such thatz2 + KrA12 is asymptotically sta-
ble. Here we note that it can be shown thag,, A12)

is detectable if and only ifA, C1) is detectable. Thus,
there exists a stabilizingr. Again, such- andKRr can

be designed using an appropriate control technique.
We then partitiori in conformity with x1 andx>:

F=[F F]. (85)
We further partitionF, as follows:
Fo1
= : (86)
FZ,m

Also, let G, H and xe be as given in (4)—(6). The
reduced order CNF controller is given by

Xy = (A2 + KrA12)xy + (B2 + KrB1) salu)
+ [A21+ KrA11 — (A22 + KrA12) KRy (87)

and
y /
=F — H . V)B'P
u [(XV_KRy> xe] + Hr + p(r, )

)2}

xy — KRy
wherep(r, y) is as given in (9).
Next, given a positive definite matriWp € R"*",
let P > 0 be the solution to the Lyapunov equation

(88)

(A+ BF) P+ P(A+ BF) = —Wp. (89)
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Given another positive definite matridVg €
R®=P)x(n=p) \vith

Wr> F3B'PW5'PBF>, (90)

let Or > O be the solution to the Lyapunov equation
(A22+ KrA12) OrR + OR(A22 + KRA12)
=—Wr. (92)

Note that suchP and Qg exist asA + BF andAz» +
KRrA12 are asymptotically stable. For aye (0, 1),
let ¢, be the largest positive scalar such that for all

X
<XV> € XRs

=G G) T8 Sl ()=

T xy )\ xy 0 Or xv\57
(92)

the following property holds:

’[Fi F2,i]<iv)‘

<ui1-9), i=1....m. (93)

We have the following theorem.

Theorem 3.2. Consider the given system(ih), which
satisfies the usual assumptio(is-(iii). Then there
exist positive scalarg; >0,i =1,...,m, such that
for any nonpositive functiow;(r,y), i =1,...,m,
locally Lipschitz iny; and|p; (r, y)| < p;, the reduced
order CNF law given by(87) and (88) will drive the
system controlled outpui(z) to asymptotically track
the reference r from an initial statey, provided that

X0, Xxyo andr satisfy
X0 — X
0 e ) c xRa’

(xVo — x20 — Krx10
i=1...,m.

|Hil"|<5ﬁi, (94)

Proof. Letx =x —xe andxy =xy —x2 — Krx1. Then,
the closed-loop system comprising the given plant in
(1) and the reduced order CNF control law of (87) and
(88) can be expressed as

)=
dt

i A+ BF BF;
0 A2+ KrA12

)L

X
0

Xv

Xy

(95)
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where

w:sat{[F 23 (; >+Hr+p(r, y)B'P
Vv

L@ ()

The rest of the proof follows along similar lines to the
reasoning given in the full order measurement feed-
back case. [J

4. Selecting design parameterg(r, y) and W

The freedom to choose the functipier, y) is used
to tune the control laws so as to improve the perfor-

mance of the closed-loop system as the controlled out-
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0 OUTPUT
Gaux(s) >

|
=
Y

Fig. 1. Interpretation of the nonlinear functigrr, y).

To examine the behavior of the closed-loop system
(97) more explicitly, we define an auxiliary system
G aux(s) characterized by

Gaux(s) : =Caux(s1 — Aaux)ilBaux
:=B'P(s] —A— BF) 1B. (99)
Obviously, Gaux(s) is stable. The closed-loop system

(97) can then be cast under the framework of the mul-
tivariable root locus theory as shown Fkig. 1 (we

puth approaches the set point. Since the main purposehereafter drop the dependent variablespdbr sim-

of adding the nonlinear part to the CNF controllers is
to speed up the settling time, or equivalently to con-
tribute a significant value to the control input when the
tracking errory — h, is small. In general, we choose

the nonlinear part to be in action when the control sig-
nal is far away from its saturation level, and thus it
will not cause the control input to hit its limits. Under

such a circumstance, it is straightforward to verify that
the closed-loop system comprising the given plant in
(1) and the three different types of control law can be

expressed as
X =(A+ BF)iZ + Bp(r, y)B'Pi. (97)

We note that the additional terp(r, y) does not af-
fect the stability of the estimators. It is now clear that

plicity). We note that

CauxBauxz B/PB > O (100)

which impliesGaux(s) is a square, invertible and uni-
form rank system withm infinite zeros of order 1 and
with n — m invariant zeros. Noting that

det(s] — Aaux — Baux- p - Caux)

I1—A B
—de . det S aux auxi| ’
) |: Caux p~t

it is clear that for any eigenvalue of the closed-loop
system (97), i.es € A(A+ BF + BpB'P),

I1—-A B
det|* awe maxl =o.
|: Caux P !

(101)

(102)

eigenvalues of the closed-loop system in (97) can be Thus, when all diagonal elements pf i.e., p;, i =

changed by the functiop(r, y). There are different

1,2, ..., m, approach to-oo, the closed-loop eigen-

types of nonlinear gains that have been suggested invalues of (97) approach to the zerosafux(s) includ-

the literature (see e.g[3,9,15). Assuming that is
available, we follow the work of3] to propose the
following nonlinear gains:

p;(r.h) = _ﬁi |e % 1@ —=rll _ g=oillh(0)—r] I,

i=1...,m

(98)

which starts from 0 and gradually increases to a fi-
nal gain of —B;|1 — e %"=l as h approaches
to the target reference o; is used to determine the
speed of change ip;. Thus, one could properly select
scalar gaing; andf;, i =1, ..., m, to yield a desired
performance.

ing the invariant zeros afAaux, Baux, Caux) @nd those

at infinity. Since it was shown that the closed-loop sys-
tem remains stable for apywhose diagonal elements
are nonpositive, the invariant zeros Gfux(s) has to

be stable. HenceG 5ux(s) is of minimum phase.

It should be noted that there is freedom in pre-
selecting the locations of these invariant zeros by se-
lecting an appropriaté/in (7). In general, we should
select the invariant zeros @f,ux(s), which are cor-
responding to the closed-loop poles of (97) for large
|pl, such that the dominated ones have a large damp-
ing ratio, which in turn will generally yield a smaller
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overshoot. The following procedure for selecting an
appropriatéVV is adopted from that reported [B]:

1. Given the paifAaux, Baux) and the desired loca-
tions of the invariant zeros ofiaux(s), we fol-
low the result reported in Chapter 9 ¢f] on
finite and infinite zero assignment to obtain an
appropriate matrixCayx such that the resulting
(Aaux Bauxs Caux) has the desired relative degree
and invariant zeros.

. SolveCaux= B'P for a P = P’ > 0. In general,
the solution is nonunique as there af@ + 1)/2
elements inP available for selection. However,
if the solution does not exist, we go back to the
previous step to re-select the invariant zeros.

. Calculatew using (7) and check ¥V is positive
definite. If W is not positive definite, we go back
to the previous step to choose another solution of
P or go to the first step to re-select the invariant
zeros.

Another method for selectingV is based on a trial
and error approach by limiting the choice ¥f to

a diagonal matrix and adjusting its diagonal weights
through simulation. The software package for realiz-
ing the CNF design reported [B] was implemented
based on such an approach. Generally, it will also yield
a satisfactory result. We will illustrate such a design
approach in the numerical example in the following
section.

5. An illustrative example

We consider a two-input and two-output system
characterized by (1) with

-0 1 0 -1 -1 0
o 0 1 1 1 0
|0 0o 0o 0o -10
=11 2 2 —2 -1 -2
1 2 2 2 2 3
|1 -2 -2 -2 -2 -2
-1 -1 06
11 0
B— é 11  xo= 8_5 (103)
0 -1 0
Lo 1 0
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and
11000
Cl:cz:[o 0011

0
ol
00
D2=|:0 Oi|.

The maximum amplitudes of both control channels are
given byii; = up = 1. The target references are

- (4).

Our aim is to design appropriate CNF controllers with
full state feedback, full order measurement feedback
and reduced order measurement feedback, which
would control the controlled output of the system to
track the command reference as fast as possible and
as smoothly as possible. Following the procedures
given in the previous sections and with appropriate
selections of design parameters, we have obtained the
following CNF control laws. We note that the state
feedback gairf is carried out by carefully examining
the structural properties of the given system using the
techniques reported if#] whereas the full order and
reduced order observer gain matrices are computed
using theH> optimization technique given if11].

(104)

(105)

1. Full state CNF controller:

u=Fx+ Gr+ p(r, y) Fa(x — xe), (106)
where

F_—1—1—3—2 2 2

1 2 2 0 -1 -3}|’

2 0

-2

The gain matrixFy, is given by
Fn=B'P=

025 375 475 250 025 -1.75
—-175 —-375 -—-275 025 900 1Q75 |’

whereP is the solution of the Lyapunov equation
(7) with W = 1. Finally,

Xe=[2 -1 1 -1 0 of

and

p(r9 y)=diag{Pl(”, h)v ,02(1", h)}v (107)
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Fig. 2. Simulation result for the full state CNF case.

Time (seconds)

Fig. 3. Simulation result for the full statél, linear feedback case.
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Fig. 4. Simulation result for the full order measurement CNF case.
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Fig. 5. Simulation result for the reduced order measurement CNF case.
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where —1.4088 13335
Ko 10 x | ~11589 01610
p1(r, ) = —2.8/e” MOl _g=lhO=rl|  (108) cmp —1.4815 24787 |’
0.1749 —1.2475
and 99.0046 —87.7874
741569 —126217
po(r, h) = —1.7|e”1MO=rl _ g=IhO=rl) = (109) KrR=1 984364 —1609248

—13.1539 868591
2. Full order measurement CNF controller:
andF, H, xe, F, are the same as those given in the

ty=(A+ KCyxv — Ky + B satu), previous two cases wherepg, y) is identical to
u=F(xy—xe)+ Hr that given in the full order measurement feedback
+ p(r, y) Fn(xy — xe), (110) case.

whereF, Fy, xe are as given in the state feedback  Using SMULINK in MATLAB, we obtain a set of sim-
case, ulation results for the system with the CNF controllers
in Figs. 2 4 and5. The initial conditions for the dy-
_657959 é;Lg _g599551357 namics of both full and reduced order_ controllers are
: set to zero. The results are very satisfactory for all
K= 925836 733967 , = [1 1} three cases. Note that the settling times for the full
—27.4805 385006 11 order and reduced order measurement feedback cases
_23?445 5721 _632025?3279 are slightly longer compared to those of the full state
) feedback case. For comparison, we includé&ig. 3

and p(r, y) is slightly adjusted from that of (107) the simulation result of a carefully tuned state feed-

with p4(r, h) being modified as back linear control law using aH, optimization ap-
proach. Obviously, the CNF controller has a better

p1(r, h) = —2.5|e”1MO=rll _ g=IhO=rll = (1171) performance compared to that of a best tuned linear
controller.

3. Reduced order measurement CNF controller:

Xy = Acmptv + Kcmpy + BempSatu) (112) 6. Conclusions
and We have extended the newly developed composite
nonlinear feedback (CNF) tracking control technique
u=Fr |:<)); _K ) - xe} + Hr to general multivariable linear systems with input sat-
v RY urations. The problem is solved for both the state feed-
+ p(r, y) Fn [(y ) _ xe] . (113) back case and the measurement feedback case. The
xv — KRy CNF control law consists of two parts, a linear compo-
Where nent and a nonlinear component. The former is usually
chosen to give fast rise time while the latter is added
Acmp= to smooth out the transient peaks or overshoots when
—900046 61086 028960 877874 the controlled output is approaching the target refer-
_76.6569 307676 438893 101217 ence. We note that the hardest part in designing a CNF
—06.9364 —317442 1286806 1634248 |’ controller is perhaps the selection of the parameters,
11.1539 373526 —495065 —88.859 o; and f3;, in the nonlinear function. However, with
1 -1 the software realization of the design method, such
1 0 a problem can be easily overcome. Interested readers
Bemp=1|1 _o5 |- might contact us for a beta version of a toolkit imple-

0 1 mented in MTLAB for the CNF design.
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