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Linear systems toolkit in Matlab :
structural decompositions and their applications
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Abstract: This paper presents a brief description of the software toolbox, linear systems toolkit, developed in Matlab

environment. The toolkit contans 66 m-functions, including structural decompositions of linear autonomous  systems,

unforced/unsensed systems, proper systems, and singular systems, along with their applicatons to system factorizations,

sensor/actuator selection, H-two and H-infinity control, and disturbance decoupling problems.
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1 Introduction

The state space representation of linear multivanable
systems is fundamental to the analysis and design of
dynamical systems. Modem control theory relies heavily on
the state space representation of dynamical systems, which
facilitates characterization of the inherent properties of
dynamucal systenis. Since the introduction of the concept of
the state, the study of linear systems in the state space
representation itself has emerged as an ever active research
area, covering a wide range of topics from the basic notions
of stability, controllability, observability, redundancy and
minimality to more intricate properties of finite and infinite
zero structures, invertibility, and geometric subspaces. A
the
development of modem control theory. The demanding

deeper understanding of linear systerns facilitates

expectations from modern control theory impose an ever
ncreasing demand for the understanding and utilization of
subtler properties of linear systemns.

Structural properties play an important role in our
understanding  of  linear

representation . The structural canonical form representation

systerns  in  the state space
of linear systems not orly reveals the structural properties
but also facilitates the design of feedback laws that meet
various control objectives. In particular, it decomposes the
system into various subsystems. These subsystems, along
with the interconnections that exist among them, clearly
show the structural properties of the system. The simplicity

of the subsystems and their explicit interconnections with
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each other lead us to a deeper insight into how feedback
control would take effect on the system, and thus to the
explicit construction of feedback laws that meet our design
specifications . The search for structural canonical forms and
their applications in feedback design for various performance
specifications has been an active area of research for a long
time. The effectiveness of the structural decomposition
approach has also been extensively explored in nonlinear
systems and control theory in the recent past.

In this article, we present a MATLAB toolkit, linear
systemns toolkit, for realizing various structural decomposi-
tion technques recently reported in a monograph by Chen,
Lin and Shamash [1]. The toolkit [2], which has been
built upon the earlier versions [3,4],1is able to efficiently
compute the structural decompositions of autonomous
systems, unforced/unsensed systems, proper systerns, and
singular systems, along with their properties, such as finite
and infinite zero structures, invertibility structures and
The

decomposition techniques to system factorizations, structural

geometric  subspaces. applications  of  these
assignments via sensor or actuator selection, and H, and
He control are also included. It is now used extensively in
the educaton and research of control theory. Its rich
collection of linear algebra functions are immediately useful
to the control engineer and system analyst. Its easy-to-use
environment allows the problems and solutions to be
expressed in familiar mathematical notation.

The detailed algonthms and proofs of the functons

reported in the toolkit can be found m the monograph of
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Chen, Lin and Shamash [ 1], and the beta version of this
toolkit 1s the
htep: //linearsysternskit . net or http://hdd. ece. nus. edu.

currently  available on website  at
sg/ ~ bmchen. Readers who have our earlier versions
[3,4] of the software realization of the special coordinate
basis of Sannuti and Saberi [6] are strongly encouraged to
update to the new toolkit. The special coordinate basis,
implemented in the new toolkit, is based on a numerically
stable algorithm recently reported in Chu, Liu and Tan
[5], together with an enhanced procedure reported in
[1].

The paper is organized as follows. Section 2 provides the
detailed list of m-functions in the
describes some key functions of the toolkit, while Section 4

toolkit. Section 3

demonstrates some m — functions with numerical examples.

Finally, Section 5 draws a brief conclusion to the paper.

2 Contents of tookit

We list in this section the detaled contents of the
toolkit. We note that some m-functions in the toolkit are
mteractive,, which require users to enter desired parameters
during execution . Others are implemented in a way that can
retum results either in a symbolic or numerical form.

The cument vermsion of the toolkit consists of the
following m-functions:

A) Decompositions of autonomous systems.

1) ssd: continuous-time stability structural decomposi-
ton;

2) dssd; discrete-time stability structural decomposition;

3) jcf:Jordan canonical form;

4) 1rjd: real Jordan decomposition.

B) Decompositions of unforced and unsensed
systems.

1) osd: observability structural decomposition;

2) obvidx: observability index;

3) bdosd:block diagonal observable structural decompo-
sition;

4) csd: controllability structural decomposition;

5) ctridx: controllability index;

6) bdesd: block diagonal controllable structural decom-
position .

C) Decompositions & structural properties of
proper system.

1) scbraw:raw decomposition without integration chains;

2) scb: decomposition of a continuous-time system;

3) dscb: decomposition of a discrete-time systern;

4) kef: Kronecker canonical form for system matrices ;
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5) morseidx: Morse indices;

6) blkz:blocking zeros;

7) invz:invariant zero structure;

8) infz:infinite zero structure;

9) 1_invt:left invertibility structure;

10) r_invt: right invertibility structure;

11) normrank: normal rank;

12) v_ star: veakly unobservable subspace;

13) v_ minus:stable weakly unobservable subspace;

14) v_ plus: unstabl weakly unobservable subspace;

15) s_ star;strongly controllable subspace;

16) s_ minus: stable strongly controllable subspace;

17) s_ plus: unstable weakly unobservable subspace;

18) r_ star: strongly controllable weakly unobservable
subspace;

19) n_star; distributionally weakly unobservable subspace;

20) s_ lambda: geometric subspace S; ;

21) v_ lambda: geometric subspace Vj;

D) Operations of vector subspaces.

1) ssorder: ordering of vector subspaces;

2) ssintsec: intersection of vector subspaces;

3) ssadd:addition of vector subspaces.

E) Decompositions and properties of descriptor
systems.

1) ea_ds:decomposition of a matrix pair (E,A4);

2) sd_ ds: decomposition for descriptor systems;

3) invz_ ds: descriptor system invariant zero structure;

4) infz_ ds: descriptor system infinite zero structure;

5) 1_invt_ds: descriptor system left invertibility struc-
ture;

6) r_invt_ ds: descriptor system right invertibility struc-
ture.

F) System factorizations.

1) mpfact: continuous minimum-phase/all-pass factoriza-
tion;

2) iofact: continuous-time inner-outer factorization;

3) gcfact: continuous generalized cascade factorization;;

4) dmpfact: discrete minimum-phase/all-pass factoriza-
non;

5) diofact: discrete-time inner-outer factorization.

G) Structural assignment via sensor/actuator
selection.

1) sa_sen:structural assignment via sensor selection;

2) sa_act:structural assignment via actuator selection.

H) Asymptotic time-scale and eigenstructure
assignment.

[) atea:continuous-time ATEA;
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2) gm2star: infimum for continuous-time H,control;

3) h2care:solution to continuous-time HyARE;

4) h2state:solution to continuous-time H,control;

5) gm8star: infimum for continuous-time H,, control;

6) h8care:solution to continuous-time H, ARE;

7) h8state: solution to continuous-time Ho, control;

8) addps: solution to continuous disturbance decoupling;

9) datea: discrete-time ATEA;

10) dare:solution to general discrete-time ARE;

11) dgm2star: infimum for discrete-time H, control;

12) h2dare:solution to discrete-time H, ARE;

13) dh2state: solution to discrete-time H, control;

14) dgm8star: infimum for discrete-time H,, control;

15) h8dare: solution to discrete-time H,, ARE;

16) dh8state: solution to discrete-time He control;

17) daddps: solution to discrete-time disturbance decou-
phng.

1) Disturbance decoupling with static output
feedback.

1) ddpecm: solution to disturbance decoupling problem
with static output feedback (DDPCM) ;

2) rosys4ddp: irreducible reduced-order system that can
be used to solve DDPCM.

3 Descriptions of key m-functions

We briefly describe some key m-functions of the toolkit.
In particular, we will present the well-known real Jordan
so-called
observability structural decomposition for unforced systems,

decomposition for autonomous  systems, a
a block diagonal controllable structural decomposition for
unsensed systems, the special coordinate basis, Morse
invariance indices and weakly unobservable geometric
subspace for proper systems, a structural decomposition
technique for singular systems, the inner-outer system
factorization, structural assignments through sensor or
actuator the  asymptotic
elgenstructure assignment, the computation of the best
achievable disturbance attenuation level in Hy, control, and

selection, time-scale  and

the solution to the problem of disturbance decoupling
through static output feedback.
RJD Real Jordan decomposition.
[J,T] = RID(A)
generates a transformation that transforms a square matrix

into its real Jordan canonical form,i.e.,

Ji

Ji
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where each block J;,¢ = 1,2,---, %, has the following
form:

A1
Ji = Al
Ai.
or
AT
Ji= AT
A;
and A; is a real eigenvalue and
A = [ Hi wi]
- W M

contains a pair of complex eigenvalues y; + jw;.

OSD  Observability structural decomposition.

[At, Ct, Ts, To,uom,Qidx] = OSD(A, C)
returns an observability structural decomposition for the
matrix pair (A, C), i.e.,

Ay * 0 0 7
0 % I 0
A= rtars = | 0T 0 )
0 = (R
L O * 0O * 0 -
0 1 0 = 0 0
Ct = To™'CTs = | : : : : S,
o 0 0 - 1 0
P
nom: = n — >, ki, Oidx: = {ky ky, -k,

-

We note that nom is the number of unobservable modes
and the set Oidx is the observability index of (€, A).

BDCSD Block diagonal controllable structural decom-
position.

[A¢t,Be,Ts, Tiks] = BDCSD(A, B)

transforms a controllable pair (A, B) into the block diago-
nal controllable structureal decomposition form,1.¢.,

A, 0o - 0
1 0 4, - 0
At = TS_ ATS = . . : s

Lo o A,
"B1 * *
0O B *

Bt = Ts”'BT, = | . : :
L0 0 B,
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|
kS = 3klvk25“.’kk)'s

where 4; and B;,i = 1,2,---, k, are in the form of

2 B s ()

SCB  Special coordinate basis of contionuous-time sys-

A =

tem.
[As,Bt, Ct,Dt,Gms,Gmo,Gmi,dim]
= SCB(A4,B,C,D)
decomposes a continuous-time system into the standard
SCB form with state subspaces x, being separated into
stable, marginally stable and unstable parts, and x; being
decomposed into chains of integrators.

At =Gms™'A Gms = As + ByCy

Aw  LapCy 0 L.Cy
0 Awp 0 LyaCy
Tl Ea LaC Aw LaCy
BjEy Byky ByEs Ay
Bo,
e o co cul.
Bog
Bt =Gms™'B Gmi = (B, B.]
By, 0 O
By, O O
T B 0 B
Bog By O
Co
Ct =Gmo™'C Gms = [ ]
C,
Coa Cop Coc  Cog
=l 0 0 0 Cq |,
0 c, 0 0
I, 00
Dt =CGmo™'DCmi =D, =| 0 0 0
0 0 O
and
dim = [n.;,n?,,nz,nb,nc,nd},
where

¥*
Ag = Ada + BaEag + LaaCuy,s
for some constant matrices Lgy and E gy of appropriate di-

mensions , and

Ay = b:lkdiag{Aql,qu,"',Aqmd} ,
By = blkdiag{Bql,qu,“',BqM} )
Cd = blkdxag{ C‘/l . Cq,,a"', Cq d} ,

with (Aq_ By, Cq,) being defined as
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0 I1,._
A[i. = |: ! ]:| ’
: 0 0
0
BCI, = [1] ’
¢, = 11,0,-,0].
MORSEIDX Morse invariance indices of proper sys-

tems .
[11,12,13,14] = MORSEIDX (4, B,C,D)
returns Morse structural invariance list:
[1 = zero dynamics matrix in Jordan form;
I2 = right invertibility structure;
13 = left invertbility structure;
[4 = infinite zero structure .
V_STAR Weakly unobservable geometric subspace.
V = V-STAR(A,B,C,D)
computes a matrix whose columns span the geometric
subspace V7 .

SD_DS Stuctural decomposition of continuous-time
descriptor systern.

[ Es,As,Bs,Cs,Ds, Ez, Psi, Psc, Psd, Psr, Gme,

Gms, Gmo,iGmi,dim| =SD_DS (E,A,B,C,D)
generates the structural decomposition of a descriptor
system. The state x are decomposed as

%= lo; 20wy wp owg agll

The quadruple (Es, As, Bs, Cs,Ds) has the same transfer
function as that of the onginal system. Ez, Psi, Psc, Psd and
Psr are some matrices or vectors whose elements are either
polynomials or rational functions of s. In particular,

Psc x + Psd 2 = Psr x,.
See [2] for detail.
IOFACT

systems .

[nner-outer factorization of continuous-time

[ Ai,Bi, Ci, Di, Ao, Bo, Co, Do
=10FACT (A, B, C,D)
computes an inner-outer factorization for a stable proper
transfer function maerix G(s) with a realization (A, B, C,
D), in which both [ BT DT] and [ € D] are assumed to
be of full rank. The inner~outer factorization is given as
G(s) = G(s)G,(s),
where
G;(s) = Ci(sI — A1)"'Bi + Di
1s an inner, and
G,(s) = C,(sI — Ao) 'Bo + Do
IS an outer.
SA SEN Stuctural assignment via sensor selection.
C = SA_SEN(A,B)
For a given unsensed system (A, B), the function
returns a measurement output matrix € such that the
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resulting system  characterized by (A,B,C) has the
pre-specified desired structural properties.

ATEA  Asymptotic time-scale and eigenstructure as-
signment .

F = ATEA(A, B, C, D[ ,option])
produces a state feedback law u = Fx using the asymptotic
ume-scale structure and eigenstructure assignment design
method for a continuous-time system .

Users have the ‘option’ to choose the result either in a
numerical or in a symbolic form parameterized by a tuning
parameter ‘epsilon’ . The latter is particularly useful in
solving control problems, such as Hyand He sub-optimal
control as well as disturbance decoupling problem.

GMS8STAR Infimum or optimal value for continuous
H-infinity control.

gms8 = GM8STAR (A4,B,C,D,E)
calculates the infimum or the best achievable performance
of the He suboptimal control problem for the plant,
% = Ax + Bu + Fw,
h = Cx + Du,
under all possible stabilizing state feedbacks.

DDPCM  Disturbance decoupling with static output
feedback.

K = DDPCM(A,B,E,C1,D1,C2,D2,D22)
computes a solution to the disturbance decoupling problem
with a constant (static) measurement output feedback
forthe following systern:

% = Ax + Bu + Fw,
y = Clx + Dlw,
h = C2x + D2u + D2w,

when the solution exists. Otherwise , the program will retum
an empty matrix for K.

4 Numerical examples

In this section, we ilustrate a few key m-functions of
Linear Systerns Toolkit with several numerical examples.
Some are straightforward. Others requires reference to the
monograph [2] for detailed information.

Example 4.1 (JCF)
given by

Consider a Hilbert matrix A
1 1”2
172 1/3
173 1/4
174 1/5 1/6 1/7 1/8
75 176 1/7 1/8 1/9
The m-funcdon [ J, T] = JCF(A) returns the Jordan form
of A with
J = blkdiagi{3.2879 x 107, 3.0590 x 1074,

1.1407 x 1072,2.0853 x 107',1.5671},

1/3
174
1/5

1/4
1/5
1/6

1/5
1/6

A = 1/7].
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-0.0002 -0.0472 -0.2142 0.6019 -0.7679
0.1167  0.4327  0.7241 -0.2759 - 0.4458
T=|-05062 -0.6674 0.1205 -0.4249 -0.3216|.
0.7672 -0.2330 -0.3096 -0.44390 -0.2534
-0.3762  0.5576 -0.5652 -0.4290 - 0.2098

The computing error is given by

(77" AT - Dy = 4.0773 x 107
‘We note that it is hard to obtain a diagonal form for a
Hilbert matrix. This example shows that our m-function
JCF is capable of handling some rather ill-conditioned

matrices.
Example 4.2 (R]JD)  Consider another constant
matrix
T3 2 10 0 4 4 47
2 2 3 1 0 2 1
-1 0 -2 -1 0 -1 0
A= 2 0 4 4 -2 1 _2|
3 2 10 2 3 4 2
-1 -2 -4 0O -2 -1 -2
-3 -2 -8 -1 -2 -4 -2-
(1

The m-function [ J, T] = RJD(A) returns a real Jordan
form of A with

1 0 0 0 0 0 07
011 0 0 0 0
0 01 0 0 00
J=(0 0 O 11 1 0.
0 00 -1 1 0 1
0 0O 0 0 11
-0 0 0 00 -1 1-

The tramsformation matrix T is omitted here.
Example 4.3 (OSD)
system characterized by a matrix pair (A, C) with

Consider an unforecd linear

0 2 -1 1 2 2]
2 8 3 2 9 1
Lo -4 -2 -6 -5 —13 -2
2 8 4 3 10 3|
-1 -6 -1 -1 -7 0
L1 5 11 5 04
010010
¢= [1 31 1 3 0]'

The function [ A¢, Ct, Ts, To, uom, Qidx] = osd (A, C)
returns the following results:

r—1 -2 0 -2 0 07

0 -1 1 0 0 0

0 30 -2 0 0

At = ,
0 0 0 01 0

0 30 -4 01

-0 50 -1 0 O-
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= [0 L0000 To = [2 9], uom =1, oidx = [2 3],
000100 0 1
0.5 -1.50 —0.50 0.75 - 0.75 0.757 There 1s one unobservable model at — 1, and the observabil-
050 050 050 025 —0.05 025 M indexof (A,C) s given by {2,3f. _
i Example 4.4(BDCSD)  Consider an unsensed linear
Ts = - 0.00 -0.00 2.00 -1.00 -0.00 -1.00 . system characterized by (A, B) with A as given in (1) and
-0.50 -1.50 -1.50 1.25  0.75  0.25 5 [1 01 0 1 0 I]T
0.50 0.5 -0.50 -0.25 0.25 -0.25 “to1 01 0 1 0"~
L 000 0.00 -1.00 -0.00 0.00 1.004 The m-function [ At, Bt, Ts, Ti, ks] = BDCSD (A, B)
and returns
0 1 0 0 0 0 0] [0 0. 1688
0 O 1 0 0 0 0 0 - 0.0998
0 o0 0 | 0 0 0 0 -0.0836
At =| 0 O 0 0 1 0 0|, Bt =0 -0.2141],
0 O 0 0 0 1 0 0 -0.4276
-4 16 -28 280 —-17 6 0 1 0.0365
-0 0 0 0 o o 1/ LO [.000 -
[ 97.5852 —211.6782 208.9166 -92.5697 15.7616  1.0000 - 0.3006]
2.2539 — 15.0155 29.3963 - 22.6347 5.8731 0.1269 - 0.0000
- 10.5077 33.5232 - 42.7771 28.0155 -9.2539 1.0000 0.0000 L0000 0
Ts = | —34.0310 61.5542 - 50.7926 11.7616 1.8731 0.1269 0.4658 |, T: = [0.1269 1] ,
47.0465 - 107.1085 113.6162 - 58.0620 13.0155 1.0000 - 0.1503
— 38.5387 77.5852 - 78.0930 39.5542 - 10.1424 0.1260 - 0.1652
L — 57.5542 140.3778 - 159.8856 88.4428 —21.8886 1.0000 0. 4658
and
ks = [6 1].
Example 4.5(SCB) Consider a continuous-time proper system characterized by (A, B, C, D) with
1 2 1 4 2 0 0
- -2 -l -6 -2 -4 33 1 7 4 0 0
A = 0 -1 0 -1 -1/, B = 1 O,C:55211 6],0:[00].
4 3 1 7 3 3 1
-3 -3 -1 -6 -3 -2 -1
The m-function [ As, Bt, Ct, D¢, Gms, Gmo, Gmi,dim ] =sub (A4, B, C, D) retums the following results:
- 1.0000 0 0.1291 0 0.4518 00
0 1.0000 - 2.9439 0 -1.4720 00
00000 00
As = 0 0 0.5000 0 0.2500,Bt:00,Ct:[ ],Dt:[ ],
00100 00
- 1.2910 1.0190 -4.5000 -2 -4.7500 01
1.0328 - 0.9058 3.8000 2 4.5000 10
0.7746 0 0.6 0 0
- 0.5164 - 0.5661 0.6 -1 -2
0 , 0.5 0
Gms = 0 0.6794 1 0 0.5|, Gmo = [1.5 1], sz:[ 0 ) ],
- 0.2582 -0.1132 -0.2. 1 1.5
0.2582 0.4529 -0.8 -1 -1
and varant zeros at 1 and — 1, respectively, and has a left
dm=1[1 0 1 1 1 1] invertibility index {1}, a right invertibility index {1/ and

It is straightforward to verify that the system has two in-

infinite zero structure |1} . Thus, the system is neither left
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nor right invertible .
Using the m-functions V_ STAR and V_ MINUS, we
can obtain the weakly unobservable subspace V™ and stable
weakly unobservable subsepace V™ of the given system,
which are respectively given by
0.0129 0.0421
- 0.7000 0.3978
0.6515 0.1578
0.0356 - 0.5977
0.2902 0.6766

— (0.8608
0.3077
0.3494 |,
0.2037

- 0.0289

and
0.0375

- 0.6016
0.0000
0.5642

- 0.5642

0.7737
- 0.4879
0. 0000
- 0.2858
0.2858

V-

5 Conclusion

In the paper, we have presented the contents and
descriptions of the software toolbox Linear Systems Toolkit
[2]. The package is an effective tool for identifying
structural properties of linear systems and it can be used for
many applications. We are currently expending the toolkit.
More features are being added to the toolkit. Interested
readers might access to the most up-to-date information
about the toolkit through the website http://linearsystem-
skit. net or http://hdd. ece. nus. edu. sg/ ~ bmchen.
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