914 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 7, JULY 2003

An Output Feedback{,, Controller Design for
Linear Systems Subject to Sensor Nonlinearities

Yong-Yan Cag Senior Member, IEEEZongli Lin, and Ben M. ChenSenior Member, IEEE

Abstract—in this paper, the output feedback H., controller tems subject to sensor nonlinearity. In particular, we will focus
design problem is addressed for linear systems subject to sensorgn the output feedbadk.., controller design for linear systems

nonlinearity. First, the existence condition of an output feedback . : . - .
controller is derived for systems with sensor sector nonlinearity. A with sensor sector nonlinearity. We will present an LMI condi

design method for the output feedbackM .. controller is proposed tion under which the system with sensor sector nonlinearities is
using a linear-matrix inequality (LMI) based approach. Theresult ., stabilizable. A design method for the globally stabilizing
is then applied to the design of a regional output feedback output feedback{., control laws will be proposed by an LMI

controller for the systems subject to sensor saturation. An LMI op- . . .
timization based approach is proposed to computing the feedback optimization based approach. These results will then be applied

matrices of the regional output feedbackH., controller. At last  to design the regiond(., controller for linear systems subject
a numerical example is presented to show the effectiveness of theto sensor saturation. Our method was motivated by [3], where

results. an explicit controller computing formulation was proposed for
Index Terms—Linear systems, sector nonlinearity, sensor satu- linear systems based on the LMI optimization approach.
ration, Ho control, £; gain. We note that output feedback control in the context of
linear systems subject to actuator saturation has already
|. INTRODUCTION been addressed by several authors. In particular, Kapila and

, Haddad [9] considered the fixed-structure controller design
I N FEEDBACK control systems, feedback device nor}iroblem. Nguyen and Jabbari [15] studied the output feedback

linearities, including actuator and sensor saturation, aMgfSturbance attenuation problem for linear systems subject to
frequently. They can severely degrade the closed-loop SyStggfuator amplitude and rate saturation using LMI approach.

ple rfo:jmlance and some‘urgles e;]/eq makefar|1 otr:jelrmse Sta}%%pite the impression of its duality with actuator saturation

c Ofﬁ_ i oopd syst;em unsta i e hT € I1Ssue o cfc:cse d-booi ZVSFSHH the similar effects on a given closed-loop system as those of
sta !|ty and periormance in the presence o eedback deVIL&ator saturation, sensor saturation is fundamentally different
nonlinearities thus carries a great deal of practical mportanq.gom actuator saturation. For example, for a system subject to

While in practice it is desirable to choose actuators and SeNSQRuator saturation, the feedback gain is a design variable. Thus,

that are large enough so that they operate in their linear regiolQ)q,al given set of initial conditions, there is a possibility of
cheaper actuators and sensors can be used

b isf v handled it their Satura&'gé\gning the feedback gain such that saturation is completely
can h? satisfactorily ?n ed. has b dd di avoided. For a system subject to sensor saturation, the output
While actuator nonlinearity has been addressed in muglly s fixed. Hence, if the sensor saturation occurs for

detail, (see, for example, [1], [13], [S] and the references,q initial conditions of the system, this saturation cannot be

therein), few results are available that deal with the sensQlided by any control design

nonlinearity. Among these few results, observability of a linear This paper is organized as follows. Problem formulation and

system subject to sensor saturation was studied in deta"p'l%liminarieswillbegivenin Section I1. Stability anth gain of

[12]. _A dis_continu_ous dead beat contr_oller was const_ruct(?ﬁe output feedback control systems with sensor sector nonlin-
for smgle—|nput—smgle—out!out ,(SISO) I|near' systems ',n, tharities will be analyzed in Section Ill. The design method for
presence of output saturation in [11].. A semiglobal stablhzmg dynamic output feedback.. control law will be proposed
linear output feedback controller design method was proposgdsaction Iv. In Section V, this design approach will be ap-

forl theh.SISO linear sys'hems sm;]bjegt t:) ser'1$o.r sat;lratlon n %éﬂi'ed to linear systems subject to sensor saturation such that the
q nt ﬁ paper, we IWI duse t elcw.c € ccrjltgnop t fe‘“ly, to & closed-loop system has a prespecified regiaghadain. A nu-

ress the Issues related to analysis and design for linear Serical example will be given in Section VI to illustrate the de-

sign method. The paper will be concluded in Section VII.
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A+ALT > 0. Note thatA+ exists if and only ifA has lin- where

early dependent rows. Also note that, for a givén4 is not

unique but throughout the paper, any choice is acceptable. In

the sequel, if not explicitly stated, matrices are assumed to have A BC }
0

B
|

compatible dimensions. The notatidfi > (>, <, <)0 is used
to denote a symmetric positive definite (positive semidefinite,

: 2 \ e . : ~ BD,
negative definite, negative semidefinite, respectively) matrix. B = B
and0 denote the identity matrix and zero matrix of compatible ‘B C—|—-BD D
dimensions. B, = |t c 21}
! | BcDa
[l. PROBLEM STATEMENT AND PRELIMINARIES C1= [C1 Di12C.]
Consider a linear system with sensor saturation C? = D12Dc
c=[C 0]
T = Ar + Biw + Bu (1) D11:D11+D12DCD21~
#=Ciz+ Dnw + Dizu @ Lemma 1: [8] Let matricesB € R"*™ C € RP*", and
y =9(Cx) + Daw () @ = QT € R™*" be given and suppose thatk(B) = m <

) ) n andrank(C) = p < n. Then, there exists a matri€ €
wherez € R" is the state vector, € R™ the control input . mxp g ch that

vector,z € RY the controlled output vectoy, € R? the mea-
sured output vectory € R” the disturbance input vector; and BGC + (BGCO)T +Q <0
w e £2[07 OO), and A, 317 B./ 017 C, D117 Dqs and Do are if and Only if
real-valued matrices of appropriate dimensions. Also assume
that(4, B, C) is stabilizable and detectable. The functipre BLQB*T <0 CTtQC™TT <.
[K1, K3], for some diagonal matricds; > 0 andK> > 0 with
Ky > K, denotes the standard vector-valued sector nonlin-
earity defined as follows [10].
Definition 1: A memoryless nonlinearity) : R? — RP? is In this section, we analyze the closed-loop stability and the
said to satisfy a sector condition if L5 gain for the system (8)—(10) by applying the multivariable
circle criterion. We first present the following result on global
(W(v) — K10)T(4p(v) — Kov) <0 Yo € RP (4) asymptotic stability.
Lemma 2: For the system (8)—(10) wit(¢) = 0, suppose

I1l. STABILITY AND L3-GAIN ANALYSIS

for some diagonal real matricés,, K, € RP*?, whereK = thatp x p diagonal matriced(; and K> are given such that
K, — K, is a positive-definite symmetric matrix. In this caseK = K, — K is positive definite and that matriA + BK,C
we say that) belongs to the sectgK, K>]. is Hurwitz. If there exists a matri¥’ > 0 satisfying
The problem considered in this paper can be described as f Z—A + BELC)TP + P(A+ BK,C) (KC + BTP)T
lows. KC+ BTP —21 <0
Problem 1: For a given system (1)—(3) ancha> 0, find a
dynamic output feedback control law of the form (11)
] then, system (8)—(10) in the absencewis globally asymptot-
Ze = Acte + Bey, zc(0) = 0 () ically stable at the origin for amy € [K1, K»].
u=C.x.+ D.y (6) Proof: Decompose the nonlinear functiof(v) into a

linear and a nonlinear part as
such that, for any € [K, K3], the closed-loop system is glob-

ally asymptotically stable at the origin and tBe gain from the $(v) = Ps(v) + K1v (12)
disturbance inputv(t) to the performance output(t) is less where the nonlinearity, belongs to the seb, given by
than or equal toy, i.e.,
Oy = {ths 1 RY — RP : (45(v))" (45 (v) — Kv) < 0}. (13)
T T
/ |z(t)]]? dt < ~* / ||lw(t)]|? dt Then, (8) withw = 0 can be rewritten as
0 Jo . S
2(0)=0  VYwe L0,T) VT >0. (7) @ = (A+ BK.C)Z + Bips(v).

Select a Lyapunov function ds(t) = 7 (t)Px(t). By (11),
Under the feedback law (5)—(6), the closed-loop system cgja, haye the first equation shown at the bottom of the next page,
be written as which implies that the system (8)—(10) is globally asymptoti-

P SR ~ cally stable at the origin for any € [K1, K>]. [ |
e %a::l— Biw + Bq/i (8) Lemma 3: For the system (8)—(10), suppose that p diag-
z = C1@ + Dyyw + Cath(v) (9)  onal matrices<; andK. are given such thak = K, — K is

v=_CF (10) positive definite and and that matrik+ BK; C is Hurwitz. If
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there exists a matri¥ > 0 satisfying (14) at the bottom of the IV. H., CONTROL DESIGN
page. Then, for any € [K, K>], system (8)—(10) is globally

asymptotically stable at the origin and thg gain fromuw 10 2 feedback controller of the form (5)-(6) exists such that the

is less than or equal tg. )
Proof: First note that the matrix inequality (14) implies;dosed'IOOp system (8)~(10) in the absenceuofs globally

(11). Hence if (14) holds, then the system (8)—(10) with= asymptotically stable.at the origin fpr amgye [K;, K>]. Then,

0 is globally asymptotically stable at the origin for agly ¢ &N controlier design method will be proposed. .

[K1, Ko Theorem 4: The system (1)—(3) is globally asymptotically
Decompose the nonlinear functiai(v) into a linear and a stabilizable by an output feedback control law of the form

nonlinear part as in (12), the system (8)—(10) can be rewritt€p)—(6) if there exist matriceX > 0 andY” > 0 that satisfy the

First, we will derive a condition under which an output

as following matrix inequalities:
& = Agii + Brw + Bip.(v) BL(AI)((C});ﬁz)B” BL(K;;X)T} <0 (5
z=C1% + Djyw + é2’¢s(v) -
o YA+ ATY - 207K \K,C <0 (16)
HERE
whered, = A + BK;C andC; = C; + C,K,C. Define a I Y|=—7

Lyapunov function ad/(z) = #7 Pz. Then, we have the last

. Proof: Feedback controller (5)—(6) such that the
equation at the bottom of the page, where

closed-loop system (8)—(10) is globally asymptotically stable at

z(t) the origin for anyy) € [K, K»] if there exists a matrix> > 0
)= | w(t) satisfying
¥s(v(t)) (A+BEK,CYTP+ P(A+BK.\C) (KO+BTP)T] _,
By (14) and Schur complement, we further have KC+BTP —21 <
ZOI =7 lw@)* +V <0 VE#£0. (18)
Integrating both sides of the above inequality and noting thisWhat follows, we will prove that (18) holds if and only if (15),
V(0) = 0, V(2(T)) > 0, we have (16), and (17) hold for som& > 0 andY > 0.
. i _T We first note that
/ l|2(t)||2dt < 72/ ||lw(t)||?) dt Yw € L3[0,T] (A+BK.C) B A+BD.K,C BC. BD.
0 0 P Zl=1 BEC A. B
VT > 0. KC 0o -I
[ = A+ BFC

(A+ BK,0)"P + P(A+ BK,C))i 4 227 PBep,(v)
<iT((A+ BKl(J)TP + P(A+ BE1C))i + 28T PBips(v) — 2(3)5 ()T (4hs(v) — Kv)

} [(A + BK.C)TP + P(A+ BK.C) (KC+ BTP)T} [ i }
¥ (v) KC+ BTP —2I ¥s(v)

(A+BK,C)TP+ P(A+ BK,C) PB; (Ci+CK,C)T (KC+BTP)T

BTP —2I DT, 0
Ci + CK,C Du -1 Cy <0 (14)
KC+ BTP 0 cT —2I

_ ATP 4+ PAg+CTCy PBi+CTDyy (KC+ BTP+CFCy)T
=) = lw®I?+V =¢" | BfP+DLC,  DiDu -~*1 DGy 3
KC+ BTP+CTCy CIDy, —21 + CTCy
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where of the formulation ofX andY in (21), we can prove that > 0
T A 0 0 is equivalent to (17) [7], [4]. [ |
A=l 0 o0 o0 The above derivation procedure is similar to that of [7], [8],
KC 0 —J [4]. Similarly, if the solution(X > 0,Y > 0) of the LMIs (15),
- B 0 (16) and (17) satisfies the rank condition
B=1|0 I ne = rank(l — XY) <n
- 00 then, amth-order controller can be constructed. Seléct 0
F= IB)C S;C] andN such thatVU N7 =Y — X! and define
S 5_[P O Y N
o=|"e 9 (ﬂ. P‘[O 1} P‘[NT U}
. - ) Then, a stabilizing output feedback controller can be con-
Then, the matrix inequality (18) can be rewritten as structed by solving the LMI (19) fof".
Q+ (ﬁ[}ﬁé)T + PBEC <0 (19) We note here that the matrix inequality (15) is equivalent to
where BX(AX + XAT + XCTKKCX)BT <0

STA A - P 0 which is stronger than the stabilizability condition(ef, B) [2].
Q=A"P+PA - P= {0 I] ' In what follows, we will present an approach to explicitly
computing theH, control law through the variable linearizing
change approach of [3].
(PB)*Q(PB)*T <0 CTHQCTLT <o. (20) Theorem 5: Given a system (1)—(3) and a constant> 0,
there exists an output feedback controller (5)—(6) such that, for

anyy € [Ki, K»], the closed-loop system (8)—(10) is globally

By Lemma 1, (19) holds if and only if

It is easy to see that

(PB)L _ [Bi 0 0] p-1 asymptotically stable at the origin and thie gain fromw to z
10 o0 I is less than or equal tg if there exist matricest > 0,V >
GTL 1 0 —CTKy 0,4, B,_C andD of appropriate dimensions such that the LMIs
shown in (22) at the bottom of the page, and as follows, hold:
Partition P and P~! as
Y N X M {X I} >0 (23)
P:[NT U} PlZ[MT V} (1) rr

wherex represents blocks that are readily inferred by symmetry.
where0 < X € R"*" and0 <Y € R"*". Then, we have  syppose thatX,Y, 4, B,C, D) is a feasible solution of the

YA+ ATY ATN (KO)T LMIs (22) and (23). Then, the system matrices of the desired
Q= NTA 0 0 output feedback controller (5)—(6) can be computed by
L KO o p.c.l [1 o] [D ¢ 1[I Kicx]™
piQpr! B. A.|T|YB N| |B A-vAX|[0 MT
[AX + XAT  AM (KCX)T 24)
= MT AT 0 (KCM)T where M € R"*"™ and N € R"*" are two matrices
| KCX KCM —2I satisfying
(PBY*Q(PB)*" MNT = I — XY. (25)
BY(AX + XAT)B'T BY(KCX)T _
= KCOXBLT 97 Proof: By Lemma 3, the closed-loop system (8)—(10) is
C‘TLQ_C*“T globally asympto_tically sta_ble atthe o_rigin and zt_@ga_in isless
. - than or equal te if there exists amatri® > 0 satisfying (26),
=YA+A'Y —2C" K1 K»C. shown atthe bottom of the nextpage. Partit®and P! as
This implies that the two matrix inequalities in (20) are equiv- p_ Y N p-1_ X M
alent to (15) and (16), respectively. On the other hand, because “|NT U T |\MT vV
 AX 4+ BC+ (¥ x * * *
A+ AT + CTK,\DTBT YA+ BKC + (%) * % *
Bl + D3, D" B” BTY + D3, B” -1 * * | <0 (22)
C1 + D12C Ci+ D12 DK, C D1y + D12DDyy - =1 *
KCX + DTBT KC + BT 0 DTDL, 21
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whereX > 0 andY > 0. Then, we have Let ¢; stand for theith row of the matrixC. We define the

symmetric polyhedron
XY +MNT =1, MY + VNT =0 y poly

XN+MUZO,MTN+VU:I L(é7vmax):{a~7€Rn+nc :|&i:i'|§vi,max; ’52172717}

Define the linearizing change of the control variables as followH: control v does not saturate for all = 1,2,...,p, that is

D G 0 0 I o0l[D. C. x € L_(C,_vmax), then the n_onl.lnear dynamics (8) admits the
= + following linear representation:

B A 0 YAX YB N||B. A.
[1 chx} 27 i=(A+ BO)Z + Bw. (34)
0 M7
and Note that the saturation functier(v) can be written as a sector
X I 7Y nonlinearity described by (4) with; = 0 andK, = I. Thatis,
Q1= [MT 0] Q2 = 0 NT] . o € [0, I]. Hence, global asymptotic stability of the closed-loop
3 system subject to sensor saturation can be analyzed by the re-
Itis not difficult to see that’Q: = Q- and sults of Section IV. By Theorem 4, it is easy to see that the ex-
B D istence of the globally stabilizing output feedback controller re-
P=Q{PQ,=Q]P 'Qs= I Y} (28)  quires the open-loop system to be asymptotically stable A.e.,

- - = is a Hurwitz matrix. In what follows, we will design a regional
AX +BC A+ BDKlC] (29) stabilizing controller based on the approach developed in the

L A YA+ BK,C previous section for general systems. In our regional control de-

T B, By + BD:D } sign, we do not require the saturation function to belong to a
2 |YB1+ (YBD. + NB.)Dx sector| K1, K»] globally and thusk; does not have to be 0.

QI(A+ BK.C)Q, =

_ [ B1+BDDy, 30 To analyze the regiondl, gain, we also assume that the dis-
" |YB:1 4+ BDx (30)  turbancew € W, where
QB = BBD} ,CQ, =[CX (O] (31) W = {w € £5[0,00) : w"Rw < 1}

(él + égKlé)Ql = [Cl + Dmé Ci + D12DK10]. (32) for someR > 0.

L L For the regional analysis of the linear system subject to sensor
Premultiplying and postmultiplying (26) biag(QT, 1, 1.1)  satyration, we first present the following definitions.
anddiag(Q1, I, 1, I), respectively, and using (28)—(32), we can pefinition 2: Consider the closed-loop system subject to
find that (26) and” > 0 hold if and only if (22) and (23) hold, ¢onsor saturation (8)=(10) and (33). A setRit*" is said

respectively. ® o be invariant if all the trajectorieg(t, zo, w) starting from
within it will remain in it regardless ofv € M. An ellipsoid
V. REGIONAL H ., DESIGN FORSENSORSATURATION QP,p)={z:V(%)= TP < p} is invariant ifV < 0 for

In this section, we will consider the regior#il, controller allw € W andalli: € 9Q(P, p), the boundary of}(P, p).
design for the systems with sensor saturation. That is, we asDefinition 3: For a given seX ., C R"*"<, the system sub-

sume that in system (1)—(3) ject to sensor saturation (8)—(10) and (33) is said to have a re-
gional £, gain less than or equal tpin X, for somey > 0 if

P(Cx) = o(Cx) (33) X isinvariant, i.e.x(t) € X, forallt € [0, 0), and
whereo( ) is the standard vector-valued saturation function,r T
defined as follows: / [l2(8)[|Pdt < ’72/ lw(®)[|?dt #(0) =0

0 0
_ | o2(v2) .
owv)=1]""" We can then prove the following theorem.

Theorem 6:Given a system subject to sensor saturation
(1)-(2) and (33), a dynamic feedback control law (5)—(6) and
with o;(v;) = sign(v;) min{v; max, [vi|}. Here,v; max denotes a constanty > 0, the ellipsoidQ(P, p) is invariant and the
theith element of the vectar,,,., the saturation level. regional £, gain fromw to z is less than or equal to if

op(vp)

(A+ BK,O)TP 4+ P(A+ BK,C) PB; (C1+CyK,C)T (KC+ BTP)T

BTP —2T DY, 0
Ch + Co K1 C Dy 7 s <0 (26)

KC+BTp 0 cT —2I
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there exist two positive diagonal matricés,, Ko € RP*P Note that the constraint
with K1 < I,K, > I and a constany > 0 such that -
(36) and (37), shown at the bottom of the page, hold, and Q(P, p) C L(K1C, Vimax)

Q(P,p) - L(Klé7 vmax)7 ie., |k1151:ﬁ| < Vi, max for all

& e QPp),i = 1,2,...,p, wherek;; denotes theith Is equivalent to

diagonal element ok’ . - LT o 20F max F1ics
Proof: First we establish the set invariance. That is, fdF1i¢i(F/p) 76 < Vi nax [ keyse T ] 20,
V(z) = #7 P, we will show that L i=1.2.....p (38)
r __ onT Aa ». . . . . .
V =2i" P(A% + Biw + Bo(v)) <0 With the predesigned dynamic control law (5)—(6) and the given
vz € OQ(P, p), w”Rw < 1. H,, performance index, we can then present the following

) ) optimization problem to estimate the invariant 8¢, p) with
Following the procedure in the proof of Lemma 2, we can showgiven ., gain~y

that for each € Q(P, p)
. L . . max Q(P, p)
V = 23" P((A + BK,C)i + Byw + Bo,(v)) P>0.p
[:5 r [(A+BK1(7)TP+P(A+BK1(:*) «
< 5 | BT . . . . .
KC+B*P -2 Similar to Section 1V, with the gived; and K>, the stabi-
lizing output feedback controller can be directly computed by
the variable linearizing change approach.
Theorem 7:Given a system subject to sensor saturation
whereo, (v) = o(v) — Kyv. Note that (1)—(3) and (33), anda > 0, if, for two given positive diagonal
T S TS el ST 1o~ T matricesK, Ko € RP*P with K1 < I,Ks > I, there exist
20 PBiw < x_i§1R~ B_lllixT—i_fU Fw constantp > 0,7 > 0 and matricesX > 0,Y > 0,4,B,C
<n~ & PBiR™ By Pi+n and D of compatible dimensions satisfying (22), (23), and (39)

we obtain the third equation at the bottom of the page. ItfoIIOV\?'shOWn atthe bottom of the next page, and

s.t. matrix inequalities (36), (37), (38).

Os

Os

x [“’ } +2iTPBw

from (36) and Schur complement, that forale Q(P, p) \ {0} %(v;{nm) kiiciX ki
andw”Rw < 1, ki Xcl X I >0, 1=1,2,...,p
V< —%:ETP;% . s (40)

then, there exists a dynamic output feedback controller of the
Observing that on the boundary Qf P, p), 7 PZ = p, hence form (5)—(6) such that the regionék gain fromw to z is less
V < 0. It follows thatQ(P, p) is an invariant set. On the otherthan or equal tey in the regionQ(P, p), where
hand, following the procedure in the proof of Lemma 3, it is

easy to see that if (37) holds then the inequality (35) holas. P= []\Ef/T ]g} (41)
It is easy to check that under the condition of Theorem 6,
V' <0,vz € Q(P, p) \ {0}, in the absence of disturbance. Thigor any matricesV andU satisfying decomposition
implies that (8)—(10) withv = 0 is asymptotically stable at the
origin with Q(P, p) contained in the domain of attraction. NUINT =y —x—1 (42)
(A+ BK:C)'P+ P(A+ BK:C)+ 1P PBy (KC+B"P)"]
BfpP —nR 0 <0 (36)
KC+ BTP 0 —2I |
(A+BK10)TE+P<A+BK10) PB; (Ol —I—QQKlC)T (KO+BTP>T_
BTP —2T DT, 0
Oy + G, C Diy I Ch <0 37
KC + BTP 0 cr —21 i

SH

o KC+BTP _o1 UJ 0

< {g}r {(A+BK16~’)TP+P(A+BK16~’)+771P31R1l§1TP x ] [
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4

Suppose thatX,Y, A, B,C, D) is a feasible solution of the
LMIs (22), (23), (39), and (40). Then, the system matrices ¢ °
the output feedback controller (5)—(6) can be computed by (24 ?f

Proof: By the linearizing change of variables (27), we find> '
that (36) and (37) are equivalent to (39) and (22), respectivel °f
Changing variable as shown in (28)—(32), we have -1t

10 12
CP~1CT = CQl(Q{PQl)—l(CQl)T |
=lcx cp'icx . _
By (38), we have _
; (Uzzmax) k1ic; X ke B
k2., P~tel <o? r T .
PR1iCi ¢ —U’L',max<:> kliXCi X I 20/ 10 12
kyick I Y
i=1,2,...,p. (43) Fig. 1. Output responses with sensor saturation. (a) Proposed controller.

(b) CentralH ., controller.

This means the constraifX(P, p) C E(Kl(:ﬁ Umax) Can be )
written as LMI (40). Then, by Theorem 6, we can prove the” = 0-1. 2 = I, K1 = 0.91, K> = I, we obtain the fol-
result. m lowing controller by Theorem 7:
It is easy to see that a different decomposition (42) will lead - 00047 0.0014 19213 —0.8306
to a different invariant se®( P, p), but its projection on state : ) T e
—4.6671  0.0048 6.6572 —3.7604

, e, withz, = 0, ellipsoid Q(Y, p) is the same. A typical = 3
solution of (42) SN — R i )’(p_)l ypical A= o126 —0.0000 —0.0364 0.0038 | <1
' [ 0.0280 —0.0000 —0.0405 0.0231

r—1.3735 —0.5297
B - 701.9195 442.7050

The following state equations describe the longitudinal dy-"¢ — | —1.4853 —0.6303
namics of the F-8 aircraft: L —3.5543 —2.0714

[0.8523 0.0711 —101.1930 —43.0930

VI. A NUMERICAL EXAMPLE

—-0.8 —0.006  —12 0 Ce= 100053 00001 —05264  0.4506
. 0 —0.014 —16.64 —32.2 s
=11 0.0001 1.5 o |7 D.=0
L _0"’ 0 - 0.0163  0.0010 0.0001 —0.0000
5 _ | 00010 13081 00003 00014 |
193 L0 = | 0.0001  0.0003 0.0000 0.0000
_ 00605 0y L —0.0000 0.0014 0.0000 0.0000
0'36 00° 8 g - 01936 0.0004 —0.5490 0.3814

v | 00004 00000 —0.0033 0.0042
y:[o 00 1]:6 ~ | —0.5490 —0.0033 5.4277 —2.9348

00 -1 1 [ 03814  0.0042 —2.9348 3.1918
z=[0 0 0 1z+[0 1]u.

Fig. 1 shows the output responses with sensor saturation under
the controller proposed in this paper and the centfa) con-
This example is borrowed from [16]. The disturbangesatis- troller as obtained by the MATLAB command hinfric with the
fying ||w||2 < 1 is added to study thé, performance under specification ofy = 0.5. In this simulation,
output feedback control. We assume that the sensors are subject

to saturation withy; ax = 1 fori = 1,2. Withy = 0.5,p = wy = sin(t)  wy = cos(t)
AX + BC+ (x) + 1X * - -
A+ AT+ CTK\DTBT + 21 YA+ BK\C+ (x)+ 1Y * | <o (39)
BT + DL DT BT BTY + DL, BT —nR  *

KCX + DTBT KC + BT 0 =21
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and the initial condition is Yong-Yan Cao(SM'02) was born in 1968 in Hunan,
China. He received the B.E. and M.Sc. degrees in
electrical engineering from Wuhan University of
Science and Technology, Wuhan, China, in 1990,
and 1993, respectively, and the Ph.D. degree in
industrial automation from Zhejiang University,
Hangzhou, China, in 1996.

From 1996 to 1997, he was a Post-Doctoral Re-

zo = [-4.7991 —3.5246 2.0517 3.1592]7

which is a random vector generated by the MATLAB. Fig. 1(

shows that the closed-loop system under the standarcton- \ / searcher with the Institute of Industrial Process Con-
troller loses stability in the presence of sensor saturation. This ﬂOI‘ Zheji‘v{;lg_l_Jniversity, CEina- From 1_997hto 1998,

: : f e was a Visiting Research Associate in the Depart-
because the sensor saturation was not taken into account mn]igﬁt of Mechanical Engineering, The University of Hong Kong, Hong Kong.

control design. From 1998 to 1999, he held an Associate Professor position at Zhejiang Univer-
sity. He then spent one and a half year at the Department of Measurement and
Control, Duisburg University, Duisberg, Germany as an Alexander von Hum-
boldt Research Fellow. Since May 2000, he has been with the Department of
Electrical and Computer Engineering, University of Virginia, Charlottesville as
a Research Scientist. He has published more than 50 papers in journals and con-
ferences, such as IEEERANSACTION ON AUTOMATIC CONTROL, Automatica
In this paper, we analyzed the stability and e gain for andSystems and Control Lettetsis current research interests include robust
linear systems with sensor nonlinearities based on the circle &rigl nonlinear control, constrained control, time-delay systems, sampled-data
. . Systems and fuzzy control.
terion theory. A globally stabilizing output feedback controller py. cao also has been active both in his own research and in his service as a
design approach was proposed using the LMI based approaebiewer for many journals and conferences. He currently serves as an Associate
The results were then applied to the systems with sensor Satlﬁcéitpr on the Conference Editorial Board of the IEEE Control Systems Society.
tion nonlinearities. A regional stabilizing output feedback con-
troller design method was proposed such that the closed-lgop ]

systems has a given regional gain.

VII. CONCLUSION

Zongli Lin received the B.S. degree in mathematics
and computer science from Xiamen University,
Xiamen, China, in 1983, the M. Eng. degree in
automatic control from Chinese Academy of Space
Technology, Beijing, China, in 1989, and the Ph.D.
degree in electrical and computer engineering from
Washington State University, Pullman, in 1994.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering
at University of Virginia, Charlottesville. Previously,
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