IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 3, MARCH 2003 427

Composite Nonlinear Feedback Control for
Linear Systems With Input Saturation:
Theory and an Application

Ben M. Chen Senior Member, IEEETong H. Lee, Kemao Peng, and V. Venkataramanan

Abstract—We study in this paper the theory and applications situation. As such, Workman [21] proposed a modification of
of a nonlinear control technique, i.e., the so-called composite non- this technique, i.e., the so-called proximate time-optimal servo-
linear feedback control, for a class of linear systems with actuator e chanism (PTOS), to overcome such a drawback. The PTOS
nonlinearities. It consists of a linear feedback law and a nonlinear . . . e .
feedback law without any switching element. The linear feedback essentially uses max'mlum accel_eratlpn where it !S practical to
partis designed to yield a closed-loop system with a small damping do s0. When the error is small, it switches to a linear control
ratio for a quick response, while at the same time not exceeding law. The overall performance, i.e., the tracking time, is thus

the actuator limits for the desired command input levels. The non- - discounted. However, it is fairly robust with respect to system
linear feedback law is used to increase the damping ratio of the uncertainties and noises

closed-loop system as the system output approaches the target ref- . . . . .
erence to reduce the overshoot caused by the linear part. Itis shown TOC is surely time-optimal for a point-to-point target

that the proposed technique is capable of beating the well-known tracking. However, in most practical situations, it is more
time-optimal control in the asymptotic tracking situations. The ap- appropriate to consider asymptotic tracking instead, i.e., to
plication ofsuchar]ewtechniqueto an actual_hard disk drive servo track the system within a certain neighborhood of the target
system shows that it outperforms the conventional method by more yafarence before the system output essentially settles down to
than 30%. The technique can be applied to design servo systems . . - .
that deal with “point-and-shoot” fast targeting. the deswgd p0|nt_. We WI!| show Iatgr by a simple e>§ample _that
the TOC is not time-optimal at all in the asymptotic tracking
situation. This observation motivates us to search for a better
technique. Inspired by a recent work of Lét al. [17], which
was introduced to improve the tracking performance under
I. INTRODUCTION state feedback laws for a class of second order systems subject
lp actuator saturation, we have developed in this paper a
|onlinear control technique, the so-called composite nonlinear

very little can be done to overcome them. Many practic dback (CNF ol t | cl ; ‘
systems are sufficiently nonlinear so that important features gfapac ( ) control, to a more general class of systems
ith measurement feedback.

their performance may be completely overlooked if they are aff. ) N .
P Y P yov ! y Since the initiation of CNF in [17] for second order systems,

alyzed and designed through linear techniques (see, e.g., [1 é has b forts lize it t | svst
For example, in the computer hard disk drive (HDD) servo sys- re nhas been etlorts o generalize it to more general Systems.
or example, Turneet al. [19] extended the results of [17] to

tems, major nonlinearities are friction, high frequency mechah: S ; .
ﬁher order and multiple input systems. This extension was

ical resonance and actuator saturation nonlinearities. Among q q ict " th tem that exclud
these, the actuator saturation could be the most significant ngpEde underarestrictive assumption on the system that exciudes
ny systems including those originally considered in [17]. The

linearity in designing an HDD servo system. When the actuatgP"y' s : . ;
is saturated, the performance of the control system designed >$trictiveness of the assumption of [19] will be discussed later
seriously déteriorate In details. Also, as in [17], only state feedback is considered in
Traditionally, when dealing with “point-and-shoot” fast-tarIl?I]r'1 CNF ol ists of feedback | d

geting for systems with actuator saturation, one would naturallx e control consists ot afinear feedback law and a non-
think of using the well known time optimal control (TOC)I ear feedback_ law V\_”thOUt any switching element. The "”ef”

(known also as the bang-bang control), which uses maximJﬁ?dbaCk part_ IS deslgned to Y'eld a closed—loqp system with
acceleration and maximum deceleration for a predetermin%cfma"tdamp'rég railr? forta c![wcllf rgtsgontshe, (\;vh|[e zt the samg
time period. Unfortunately, it is well known that the classicatl'me not exceeding the actuator imits for the desired comman

TOC is not robust with respect to the system uncertaintiddPut levels. The nonlinear feedback law is used to increase the

and measurement noises. It can hardly be used in any rgngping rattio of the closed-loop system as the system output
approaches the target reference to reduce the overshoot caused

by the linear part.
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this paper, we will apply the technique to design a servo systein State Feedback Case
for a hard disk drive. Actual implementation results will be pre- |, this section. we follow the idea of the work of Lanal.[17]

sented and compared with those obtained from the conventiopaheyelop a composite nonlinear feedback control technique for
approach. Again, one will see that there is a big improvementyfy, case when all the states of the plEnare measurable, i.e.,

the new desiqn- _ _ y = x. We have the following step-by-step design procedure.
The paper is organized as follows. In Section Il, the theory Step S.1Design a linear feedback law

of the composite nonlinear feedback control is developed.
Three different cases, i.e., the state feedback, the full order ur, = Fo + Gr 3)

measurement feedback, and the reduced-order measureMi@re - is a step command input and is chosen such that

cases, are considered with all detailed derivations and proofs. 4 + BF is an asymptotically stable matrix, and 2) the
In Section I, we show by an example that the proposed C'\g?osed-loop syster@y(sI — A — BF)~'B has certain desired
control could yield a better performance compared to that gf

. ) L ) Boperties, e.g., having a small damping ratio. We note that
the time-optimal control. The application of the CNF technlquguch anF” can be designed using methods such asihand

to an actual HDD servo system will be presented in Section IX,OO optimization approaches, as well as the robust and perfect

Both simulation and implementation results will also be givefPacking technique given in [2]. Furthermoi@, is a scalar and
and compared with those of the conventional PTOS approa@given by

The results show that the CNF control improves the perfor-
mance by more than 30%. Finally, we draw some concluding G=— [02(A + BF)—lB] -1 (4)

remarks and open problems in Section V. . .
andr is a step command input. Here, we note thats well

defined becausd + BF is stable, and the tripled, B, Cs) is

o _ _ invertible and has no invariant zerossat= 0.
We present in this section the CNF control technique for the step S.2Next, we compute

following three different situations: 1) the state feedback case,

2) the full order measurement feedback case, and 3) the reduced- H:= [1 - F(A+ BF)_lB] G (®)
order measurement feedback case. We will present rigorous apg

complete proofs for all results derived. More specifically, we

consider a linear systel with an amplitude-constrained actu- r.:= G.r:= —(A+ BF)"'BGr. (6)
ator characterized by

Il. CoOMPOSITENONLINEAR FEEDBACK CONTROL

Note that the definitions aff, G, andz. would become trans-

& = Az + Bsat(u), z(0)=z¢ parent later in our derivation in (12) and (13). Given a posi-
{ y=Cix (1) tive—definite matrixi¥ € R"*", solve the following Lyapunov
h = Cox equation:
wherez € R", u € R, y € R? andh € R are, respectively, the (A+BF)P+P(A+ BF) = -W )

state, control input, measurement output and controlled outgyf p ~ . Note that such @ exists sinced + BF is asymp-

of X\ A, B, Cy andC, are appropriate dimensional constanjtically stable. Then, the nonlinear feedback controldawt)
matrices, and saR — R represents the actuator saturation dgs given by

fined as
un = p(r,y)B'P(x — x.) (8)

t = i max s 2 . B H H H H
sat(u) = sgn(u) min {u ful} @ wherep(r, y) is any nonpositive function locally Lipschitz in

with ., being the saturation level of the input. The followingVhich is used to change the system closed-loop damping ratio
assumptions on the system matrices are required: as the output approaches the step command input. The choices
1) (A, B) is stabilizable; of W andp(r,y) will be discussed later.

. . Step S.3he linear and nonlinear feedback laws derived in
2) (4,Ch) is detectable; the previous steps are now combined to form a CNF controller
3) (A, B, Cs) is invertible and has no zeros ait= 0. P P

The objective here is to design a CNF control law that will — «=ur +uy = Fz + Gr+ p(r,y)B'P(z — z.). (9)
cause the output to track a step input rapidly without experi- The following theorem shows that the closed-loop system

encing large overshoot and without the adverse actuator saéanprising the given plant in (1) with = = and the CNF con-

ration effects. This will be done through the design of a Iineqx'rc)' law of (9) is asymptotically stable. It also determines the

feedback law with a small closed-loop damping ratio and a nol‘?fagnitude of that can be tracked by such a control law without

linear feedback law through an appropriate Lyapunov f””Cti%'(ceeding the control limit
to cause the closed-loop system to be highly damped as SYSt®Hhaorem 1: Consider the given system in (1), the linear con-

output approaches the command input to reduce the overshgaf. .y of (3) and the composite nonlinear feedback control law

As mentioned earlier, we separate the CNF controller desi P(g)_ Forany € (0, 1), letcs > 0 be the largest positive scalar
into three distinct situations: 1) the state feedback case, 2) isfying the foIIOV\;ing condition:
r

full-order measurement feedback case, and 3) the reduced-orde ,
measurement feedback case. [Fa| < umax(1=0) Ve Xs:= {93137 Pz < 05}~ (10)
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Then, the linear control law of (3) is capable of driving th&Ve next calculatel” for three different values of saturation
system controlled output(t) to track asymptotically a step function.

command input, provided that the initial state, andr satisfy Case 1) WFi+Hr+uy| < tmax, themw = uy = pB'Pi

Fo == (20 — 0) € X, |[Hr| < Stmax. 11) and, thus
Furthermore, for any nonpositive functiop(r,y), locally V= —#'Wi+2p¥ PBB'PE < —#'Wi. (19)
Lipschitz in y, the composite nonlinear feedback law in (9) case 2) IfFi + Hr + uxy > wmax, and by construction
is capable of driving the system controlled outpi(tt) to |F& + Hr| < tmax, We have
track asymptotically the step command input of amplituge
provided that the initial state, andr satisfy (11). 0 < w=tmax — FZ — Hr <uy = pB'Pi  (20)

Proof: Leti = z — .. Itis simple to verify that the linear

: hich implies thati’ PB < 0 and henceV =
control law of (3) can be rewritten as which Imples thate < 7 andnhence

—&'Wiz + 22’ PBw < —3'Wi.

ur(t) =Fi(t)+ [1 - F(A+ BF)‘lB] Gr Case 3) Finally, ifFz + Hr + uy < —umax, We have
=Fi(t) + Hr. pB'PE =un <w=—tmax — F&E—Hr <0  (21)
Hence, for alli € X5 and, provided that 7| < dumax, |F T+ implying &/ PB > 0 and hencd’ < —#'W.

Hr| < umax and the closed-loop system is linear and is given |, conclusion, we have shown that
by .
. V<—#Wi ieXs (22)
2= (A+ BF)i + Az, + BHr. (12) S ) ) )
which implies thatXs is an invariant set of the closed-loop
Noting that system in (15). Noting thatV > 0, all trajectories of (15)
Az, + BHr ={B[1 - F(A+ BF) 'B|G starting from |nS|d@(_§ yv_ﬂl converge to the origin. This, in turn,
. indicates that, for all initial states) and the step command input
—A(A+BF)™'BG}r of amplituder that satisfy (11)
={[l - BF(A+ BF)"'|BG

li t) = .. 23

—~A(A+ BF)™'BG}r Jim () =2 (23)
={I - BF(A+ BF)™! Therefore

—A(A+ BF)™'} BGr lim h(t) = Coae = —Co(A+ BF)'BGr=r.  (24)
=0 13 o

(13) This completes the proof of Theorem 1.
the closed-loop system in (12) can then be simplified as The following remarks are in order.

i = (A+BF)i. (14) Remark 1: Theorem 1 shows that the additional nonlinear

feedback control lawy, as given by (8), does not affect the
Similarly, the closed-loop system comprising the given plant gbility of the closed-loop system to track the command input.
(1) and the CNF control law of (9) can be expressed as Any command input that can be asymptoatically tracked by the
linear feedback law of (3) can also be asymptotically tracked by

T=(A+ BF)i+ Buw (15) the CNF control law in (9). However, this additional tetryy in
where the CNF control law can be used to improve the performance of
the overall closed-loop system. This is the key property of the
w=sat(Fz+ Hr +un)— Fz — Hr. (16) ' CNF control technique.

Remark 2: Note that for the case whery = 0, any step

Clearly, for the givenc, satisfying (11), we havé, = (xzo — . .
z.) € Xs. We note that (15) is reduced to (14)if= 0. Thus, cpqlrzg"n{ahr;: of amplitude can be asymptotically tracked, pro-

we can prove the results, respectively, under the linear cont!d
and the composite nonlinear feedback control in one shot. The Ir| < [c(;(G;PGB)_l]

rest of the proof follows pretty closely to those for the second ) ) o o
order systems given in [17]. Note that:s is the parameter given earlier in the definition’of

Next, we define a Lyapunov functioii = 3’ P, and eval- in (10). Clearly, the trackable amplitudes of reference inputs by
uate the derivative of along the trajectories of the closed-looghe linear feedback control law can be increased by increasing

12 ’ |HT| S 0 Umax- (25)

system in (15), i.e., 6 and/or decreasing’, PG . through the choice off/.
o ) Lastly, we note that Turneat al.[19] have recently extended
V =i Pi+i'Pi the idea of [17] to systems with multiple control inputs and mul-
=i'(A+ BF) Pi + i’ P(A + BF)i + 2&' PBw tiple controlled outputs. Again, their result is only applicable to
— _ #Wi+ 2 PBuw. 17) the state feedback case. Assuming that the dynamic equation of

the given system is transformed into the following form:
Note that for all

. A11 Alg X 0
i€ Xy ={i:7Pi < cs) = |FF| < umax(1 = 6).  (18) &= [Am Aml v+ [3} sat(u) (26)
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where B is nonsingular, Turneet al. [19] have solved the let ) > 0 be the solution to the Lyapunov equation
problem under a rather strange condition, i4;; is non-

singular. Such a condition cannot be guaranteed for a simple (A+KO)'Q+Q(A+KC) =W (32)
double-integrator system considered later in Section Il Note that such & exists asi + K C; are asymptotically stable,
. 0 1 0 and, for any € (0,1), letcs be the largest positive scalar such
T = {0 0} T+ L] sat(u). (27) that for all

In order to overcome such a difficulty, the authors then sugge(sgi) € Xrs
to perturb the elements dff;; to ensure nonsingularity. We note

that such a perturbation will not only introduce numerical insta- _ (
bility to the problem, but also produce high gain in the control

input and bias in the steady—state. It is our belief that the n
singularity of A1, is not necessary.

DT Ao e
e following property holds:
[F F](f) < Uax (1 — 6). (34)

v

B. Full-Order Measurement Feedback Case

The assumption that all the states’ofire measurable is, in Then, the linear measurement feedback control law in (28) will
general, not practical. For example, in HDD servo systems thgfve the system controlled outphtt) to track asymptotically
we are going to Study in Section 1V, the V8|0City of the aCtuatq step command input of amp”tud»drom an initial statery,
is generally not measurable. Thus, it is important to develqpovided thatrg, z,0 = 2.,(0) andr satisfy
a technique that uses only measurement information. In what
follows, we proceed to develop a CNF control system design |Hr| < 6 - tmaxs ( To = Te ) € Xrs. (35)
using only measurement feedback. We first focus on the full Zvo — To
order measurement feedback case, in which the dynamical orglgfthermore, there exists a scatér> 0 such that for any non-
of the controller is equal to the order of the given system.  positive functionp(r, ), locally Lipschitz iny and |p(r, y)| <

Step F.1 We first construct a linear full order measuremeng+ the CNF control law of (30) will drive the system controlled

feedback control law: outputh(t) to track asymptotically the step command input of
i, = (A+ KCy)z, — Ky + Bsat(ur) amplituder from an initial stater,, provided thatzq, z,0 and
S {uL = F(zy —2.) + Hr (28) satisfy (35).

Proof: For simplicity, we dropr and A in p(r,y)
wherer is the reference input and, € R” is the state of the throughout the proof of this theorem. L&t = z — z. and
controller. As usualf” andK are gain matrices and are designeg, = z, — 2. The linear control law of (28) can be written as
suchthatA+ B F andA+ K C, are asymptotically stable and the .
resulting closed-loop system has the desired properties. Finally,z, = (A + KC1)#, ur=[F F] < & ) + Hr. (36)
G, H andz, are as defined in (4)—(6). T

Step F.2Given a positive—definite matri¥” € R"*", solve Hence, for all states
the Lyapunov equation -
< ) € Xps =

xr
(A+ BFYP + P(A+ BF) = -W (29)

ISh IS}

7o
Pd for anyr satisfying

i ) ) ‘ < Umax(1 —8)  (37)
for P > 0. As in the state feedback case, the linear contrg
law of (28) obtained in the above step is to be combined with a |Hr| < 6 - tmax (38)

nonlinear control law to form the following CNF controller:

we have
iy, = (A+ KCh)x, — Ky + Bsat(u) (30) .
u:F(x”_;pﬁ)—l—Hr—i—p(r,y)B’P(x”—xe) |UL|:‘[F F]<1~'v>+H’r
wherep(r, ) is a nonpositive scalar function, locally Lipschitz <lir F ( i > b H = (39)
in y, and is to be chosen to improve the performance of the - Ty e

closed-loop system. Thus, for allz andz, satisfying the condition as given in (37),

It_turns out that, for the _measurement f?edb_aCk case, fe closed-loop system comprising the given plant and the linear
choice ofp(r, y), the nonpositive scalar function, is not tOta”ycontrol law of (28) can be rewritten as

free. It is subject to certain constraints. We have the following

theorem. z\ |A+BF BF z
. . . . L = N . (40)
Theorem 2:Consider the given system in (1), the linear Ty 0 A+ KCy T

measurement feedback control law of (28), and the composdgnijarly, the closed-loop system with the CNF control law of
nonlinear measurement feedback control law of (30). G|ven(§o) can be expressed as

positive—definite matri¥¥,, € R™*™ with )
i\ _[A+BF BF i Bl wy
Wo > F'B'PW™'PBF (31) )51 o a+ko|\& )oY
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where

w=sat|iF FI(

T

> + Hr+p[B'P B'P] (i)}

-tr r1( ]

v

Ty
) — Hr. (42)
Clearly, for the given:, andz, satisfying (35), we have

(20 <

We note that (40) and (41) are identical when= 0. Again,

(43)

the results of Theorem 2 for both the linear and the nonlinear

feedback case can be proved in one shot.
Next, we define a Lyapunov function

()15 e ()

and evaluate the derivative &f along the trajectories of the
closed-loop system in (41), i.e.,

!
s -W PBF] /[ & y
V_<§7U> {F,B,P _WQ:|<jv>+2xPBw. (45)

Note that for all

z
<5:”> € Xps =

(44)

v

r ()] < w01 a0

431

then for the trajectories insid¥ g

‘[F F]<§v>+Hr < Ugnax (53)
which implies that
O<w<p[B'P B’P](g;). (54)
Next, let us express
w=qp[B'P B’P](i) (55)

for an appropriate positive piecewise continuous
function ¢(¢), bounded by 1 for alt. In this case,
the derivative of” becomes

(&Y W PB(F + qpB'P)] ( i
“\i&,) |(F+qpBP)BP -Wo
+ 2qp3’' PBB' Pz

Ly

~ / ~
T, -W 0 T,
()1 ]G 0
where
i, =i — W 'PB(F + qpB'P)z, (57)
Wq, =Wg — (F + qpB'P)B'PW™*
x PB(F + qpB'P). (58)

Again, as done in the state feedback case, let us find the above

derivative ofV for three different cases.

Casel) If
(F F] (? ) +Hr+p[BP BP] <§ )‘ < U
v v (47)
then
w=p[B'P B/P](f) (48)

which implies
SN EAY -
T\ 1, (F+pB'P)B'P
+2p3' PBB'Px

()

!/
s\ [-w o0 i
() 1 ] (5) @
where
& =& — W 'PB(F + pB'P)i, (50)
Wqo =Wq — (F + pB'P)B'PW !
x PB(F + pB'P). (51)

Noting (31), i.e.,Wy > F'B'PW~'PBF, and

p(r,y) islocally Lipschitz, itis clear that there exists

ap} > 0 such that for any scalar function satisfying

Ip(r,y)| < pt we havel, > 0 and, hence}’ < 0.
Case 2) If

(F F] (; )+Hr+p[B’P B'P] (; ) > e (52)

v

Again, noting (31), it can be shown that there exists a
p5 such that for any(r, y) satisfying|p(r, y)| < p3
we havelg, > 0 and, hencey < 0.

Case 3) Similarly, for the case when

[F F] <§ ) +Hr+p[B'P B'P] <; ) < —Umax

v v (59)
we can show that there exist® > 0 such that for
anyp(r, y) satisfying|p(r, y)| < p3, we havel” < 0
for all the trajectories inX gs.

Finally, letp* = min{pj, p3, p5}. Then, we have
for any nonpositive scalar functigrir, y) satisfying
lo(r )l < p,

v<o o v(])exm, (60)

Thus, X s is an invariant set of the closed-loop
systemin (41), and all trajectories starting frafiz-s
will remain inside and asymptotically converge to
the origin. This, in turn, indicates that, for the ini-
tial state of the given systemy, the initial state of
the controllerz,o, and step command inputthat

satisfy (35)

tli)n;o (1) =0 tli,I?o z(t) = T, (61)
and, hence
tli)rgo h(t) = tli)n;o Cox(t) = Coxe = 7. (62)

This completes the proof of Theorem 2.
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C. Reduced-Order Measurement Feedback Case Note that suct? andQ i existasA+ BF andAss+KrAq - are
For the given system in (L), it is clear that there arstates @symptotically stable. For anfy € (0,1), letcs be the largest

of the system measurabled, is of maximal rank. Thus, in POSitive scalar such that for all

general, itis not necessary to estimate these measurable stat iiBn . <\ TP 0

measurement feedback laws. As such, we will design adynanZiS”%U> € Xpgs = { <:vv> : <:vv> [ 0 QR]

controller that has a dynamical order less than that of the give

plant. We now proceed to construct such a control law under the ( T > < 65} (71)

CNF control framework.
For simplicity of presentation, we assume thatis already the following property holds:

v

in the form
Ci =1, 0]. (63) ‘[F 1] <;> < tmax(1 = 0). (72)
Then, the system in (1) can be rewritten as We have the following theorem.
. Theorem 3: Consider the given system in (1). Then, there
T _ A11 A12 I B1 . % L. .
<i2> = [A21 A2J <x2> + {BJ sat(u) exists a scalap >0 su.ch that for any nonpositive function
p(r,y), locally Lipschitz iny and|p(r,y)| < p*, the reduced-
y=1[I, 0] (‘h) (64) order CNF law given by (66) and (67) will drive the system
T2 controlled outpuk(¢) to track asymptotically the step command
h=0C, <$1> - (5“10) input of amplituder from an initial stater,, provided that:,
T2 T20 T,0 andr satisfy
where the original state is partitioned into two parts;; and ( )
o With y = z1. Thus, we will only need to estimats, in the <xuo _‘1020__1‘}(3“0) € Xps, |Hr| <6 - tmax-  (73)

reduced order measurement feedback design. Next, wg let
be chosen such that B + BF' is asymptotically stable, and Proof: Letz = ¢ — z., andz, = z, — 2 — Kgz1.

i) Co(sI — A— BF)~!B has desired properties, and I;; be  Then, the closed-loop system comprising the given plant in (1)
chosen such thaty, + Kr A, is asymptotically stable. Here, and the reduced-order CNF control law of (66) and (67) can be
we note that it was shown [1] thatl»», A;5) is detectable if and expressed as

onlyif (A, Cy) is detectable. Thus, there exists a stabilizifig. i A+ BF BF & B
Again, suchF' and K can be designed using an appropriate (; ) = [ 0 Aoy & K2 A } <5J ) + [0 } w
control technique. We then partitiafi in conformity with z; 22 R Y (74)
andz; where

F=[F F]. (65) w:sat{[F F2]<;>+Hr+p(r,y)B/P
Also, letG, H andz. be as given in (4)—(6). The reduced-order 0 N -
CNF controller is given by X |:Jj + (,j )} } —[F Fy] (;E ) — Hr. (75)

iy = (Ag2 + Kpdiz)ty + (Bz + KpBi)sat(u) The rest of the proof follows along similar lines to the reasoning
+ [A21 + KrAi — (A + KRAH)KR} y (66) given in the full order measurement feedback case.

and D. Selecting¥ and the Nonlinear Gaip(r, y)
u=F K yK > - xe} + Hr The freedom to choose the functipfr, y) is used to tune the
Tv = BRY control laws so as to improve the performance of the closed-loop

/ Y system as the controlled outpuapproaches the set point. Since
+o(r,y)B'P [(a:u - KRy> a xe} (67) the main purpose of adding the nonlinear part to the CNF con-
trollers is to speed up the settling time, or equivalently to con-

tribute a significant value to the control input when the tracking
error,r — h, is small. The nonlinear part, in general, will be

in action when the control signal is far away from its satura-
tion level and, thus, it will not cause the control input to hit its

wherep(r, y) is a nonpositive scalar function locally Lipschit
in y subject to certain constraints to be discussed later.

Next, given a positive—definite matri¥’ € R™*", letP > 0
be the solution to the Lyapunov equation

(A+BF)'P+P(A+ BF)=-W. (68) limits. Under such a circumstance, it is straightforward to verify
Given another positive-define matri¥y € R(—»)x(n—p) that the closed-loop system comprising the given plantin (1) and
with the three different types of control law can be expressed as
i = (A+ BF)i + p(r,y)BB' Pi. (76)

Wgr > FyB'PW™'PBF, (69)
We note that the additional term(r,y) does not affect the

stability of the estimators. It is now clear that eigenvalues of
(Aga + KrA12) Qr + Qr(Ass + KrAi2) = —Wgx. (70) the closed-loop system in (76) can be changed by the function

let Qr > 0 be the solution to the Lyapunov equation
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0o OUTPUT of [4] on finite and infinite zero assignment to obtain
—P Gaux(s) an appropriate matrixC,., such that the resulting
(Aaux, Baux; Caux) has the desired relative degree and
invariant zeros.
2) SolveC,.x = B'P foraP = P’ > 0. In general, the
Fig. 1. Interpretation of the nonlinear functiptr, v). solution is nonunique as there atén + 1)/2 elements
in P available for selection. However, if the solution does

p(r,y). Inwhat follows, we proceed to interpret the closed-loop not exist, we go back to the previous step to reselect the

; - i iant zeros.
system of (76) using the classical feedback control concept as invarian . S . -
given in Fig. 1, where the auxiliary syste@,.x(s) is defined 3) Calcolatel using (7) arrd_checkl I positive defrnrte.
If W is not positive definite, we go back to the previous

as step to choose another solution/®br go to the first step
Gaux(8) :=Claux (I — Agux) " Baux to reselect the invariant zeros.
.=B'P(s] — A— BF)"'B. an . Generally, the aforementioned procedure WOU!d yield_ a de-
sired result. The selection of the nonlinear functjgn, y) is
Gaux(s) has the following interesting properties. relatively simple once the desired invariant zerosfi«(s)

Theorem 4: The auxiliary systent?,(s) defined in (77) is &re obtained. We usually choos@s a function of the tracking
stable and invertible with a relative degree equal to 1, and is@fOr. i-€.7 — A, which in most practical situations is known and
minimum phase witm — 1 stable invariant zeros. available for feedback. The following choice @fan exponen-

Proof: Firstofall, itis obvious to see thé, .. (s) is stable tial function, is modified from the one suggested in [17]:

sinceA + BF is a stable matrix. Next, sind@ > 0 andB # 0,
we have 7 p(r,h) = - (6_|l_(h_h°)/(7’_h°)‘ - 6_1> (79)

1—e!
Coux Bax = B'PB > 0 (78) Whereho = h(0) andg > Ois atuning parameter. This function
p(r, h) changes from 0O te-5 as the tracking error approaches
zero. At the initial stage, when the controlled outpuis far
which implies that7 ..« (s) is invertible and has a relative degreeaway from the final set pointl — (h — ho)/(r — ho)| closes
equal to 1 (or an infinite zero of order 1). Furthermdkg,.(s) to 1, which implies thap(r, ) is small and the effect of the
hasn — 1 invariant zeros, as it is a single-input—single-outputonlinear part on the overall system is very limited. When the
system. controlled output: approaches the set poifit,— (h— hg)/(r —
The last property ofG..x(s), i.e., the invariant zeros of hg)| closes to zero ang(r, h) ~ —(, and the nonlinear control
Gaux(s) are stable and, hence, it is of minimum phase, cdaw will become effective. In general, the parameteshould
be shown by using the well-known classical root-locus theorye chosen such that the poles 4f+ BF — SBB’P are in
Observing the block diagram in Fig. 1, it follows from thehe desired locations, e.g., the dominated poles should have a
classical feedback control theory (see, e.g., [6]) that the polesge damping ratio. Finally, we note that the choice@f, k)
of the closed-loop system of (76), which are of course the funis-nonunique. Any smooth function would work so long as it has
tions of the tuning parameter, will start from the open-loop similar properties of that given in (79).
poles, i.e., the eigenvalues df+ BF, whenp = 0, and end
up at the open-loop zeros (including the zero at the infinity) as [ll. BEATING THE TIME OPTIMAL CONTROL
|p| — oo. It then follows from the proof of Theorem 1 that the

closed-loop system will remain asymptotically stable for an Can we design a control system that would beat the perfor-
00p system will ! ympt Wy Mhance of the TOC? Obviously, the answer to this question is
nonpositivep, which implies that all the invariant zeros of the

. . no if it is required to have a precise point-to-point tracking, i.e.,
open-loop system, i.6ux (), Must be stable. This completeﬁo track a target reference precisely from a given initial point.

the proof of Theorem 4. However, surprisingly, the answer would be yes if we consider

zelrtoli g?év cIe(a; fr?a:n ;?ﬁ(;:egti:tn;jo'lt; i‘:]rgz];ézzfqthfr:gva:lzrgn asymptotic tracking situation, i.e., if we consider the settling
aux($) P1ay P 9 PO'€3ime to be the total time that the controlled system output takes

of the closed-loop system of (76). The poles of the closed-lo%) get from its initial position to reach a predetermined neigh-

system approach the locations of the mvarlent zerds,t(s) borhood of the target reference before the system output settles
as|p| becomes larger and larger. We would like to note that the(ﬁ%wn to the desired point. The reason that we are interested in
is freedom in pre-selecting the locations of these invariant zer

This can actually be done by selecting an appropiféite 0 in Wis issue is that asymptotic tracking is widely used in almost all

. . practical situations.
\(IZBNJE g?;g;?lr’evsveoihd?ﬁIdtzilheeactlzge'g\_/gc')antégﬁ%ﬁ%’ ; In what follows, we will show the above observation in an
P 9 P poies e e>ﬁlmple. Let us consider a system characterized a double inte-
such that the dominated ones have a large damping ratio, Wh'Crator ie
in turn will yield a smaller overshoot. The following procedureq B

can be used as a guideline for the selection of sudh a . 0 1 0
T = z+ | sat(u) y=ux

1) Given the pair(A,ux, Baux) and the desired locations 0 0
of the invariant zeros of,.x(s), we follow the result h=[1 0]z (80)
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where as usuat is the statey is the input, and, andh are, re-

spectively, the measurement and controlled outputs. MOr€oVg e are control laws that can achieve a faster settling time than

we assume that that of the TOC in asymptotic tracking situations. It can also be
sat(u) = sgn(u) - min{1, |u[}. (81) Shown that, no matter how small the target region is, Isaye
for any smalle > 0, we can always find a suitable control law
Let the initial stater(0) = 0 and the target referenee= 1. that beats the TOC in settling time. Nonetheless, we believe that

Then, it is simple to compute that the minimum time requireid would be interesting to carry out some further studies in this
for the controlled output to reach precisely the target referensgbject.

under the TOC is exactly 2 s. Let us now consider an asymptotic

tracking situation instead. As is commonly accepted in the lit- IV. AN APPLICATION
erature (see, e.g., [6]), we define the settling time to be the totalI thi i v the th f CNF control to desi
time that it takes for the control outpluto enter thet1% region n his section, we apply the theory o controfto gesign

of the target reference. The following control law, obtained frofd re_duced _order control law for_a_ln HDD Seno SySte”_‘- The t\.NO
the CNF control technique, would give a faster settling time th ain functions of the head positioning servomechanism in disk

) rives are track seeking and track following. Track seeking

that of the TOC: .
moves the read/write (R/W) head from the present track to a
u=[-65 —1]z+ 6.5 — (e_ll_h| —0.367 88) specified destination track in minimum time using a bounded

{ control effort. Track following maintains the head as close as
x [1.4481 10.8609] (a: - [OD . (82) possible to the destination track center while information is
being read from or written to the disk. Fig. 4 shows a typical
Fig. 2 shows the resulting controlled output responses and thard disk drive with a voice-coil motor (VCM) actuator servo
control signals of the TOC and the CNF control. The resultirgystem. On the surface of a disk, there are thousands of data
output response of the CNF control has an overshoot less thiatks. A magnetic head is supported by a suspension and a
1%. However, if we zoom in on the output responses (see Fig. 8yriage, and it is suspended several micro inches above the
we will see that the CNF control clearly has a faster settlimdjsk surface. The VCM actuator initiates the carriage and
time than that of the TOC when it enters the target region, i.enoves the head on a desired track.
0.99 < h < 1.01. It can be computed that the CNF control Current hard disk drives use a combination of classical con-
has a settling time of 1.8453 s whereas the TOC has a settltng techniques, such as proximate time optimal control tech-
time of 1.8586 s. Although the difference is not much, since weque in the tracking seeking stage, and lead-lag compensators
have not tried to optimize the solution of the CNF control, ibr PID compensators in the track following stage, plus some
is, however, significant enough to address one interesting issnetch filters to reduce the effects of high frequency resonant
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actuator mass. Thus, the transfer function frerto y of the
VCM model can be written as

G”l(s) = —. (84)

g2

Magnitude (dB)

The response characteristics shows that the servo system has
SR S many mechanical resonance modes over 2 kHz. In general, it
Frequ;gcymz) 10 is difficult to quel these_ high frequency _flexible modes ex-

actly. However, if we consider only the dominant resonance fre-
quency, a more realistic model for the VCM actuator can be rep-
resented as follows:

=)

: Go(s) = = “n (85)
o -200 : wS) = — _
2 5 Y s2 \ 8% + 2Cwy, s + w?
a 400
~600 wherew,, corresponds to the resonance frequency@hbd the
800 - - associated damping coefficient. To design and implement the
0 Froquancy () ° proposed controller, an actual HDD was taken and the model
was identified through frequency response test (see Fig. 5).
Fig. 5. Frequency response of the HDD. Using these measured data from the actual system and the

algorithm of [5], we obtained a fourth-order model for the

modes (see, e.qg., [6]-[8], [10], [13], [14], [22], and referencdituator

cited therein). These classical methods can no longer meet the 6.4013 x 107 2 467 x 108

demand for hard disk drives of higher performance. Thus, mafi;(s) = 3 < 7 9513 x 10%s £ 2.467 108)
control approaches have been tried, such as the linear quadratic 5 874 2013 > 10%s + 2. % (86)

Gaussian (LQG) with loop transfer recovery (LTR) approacfjhere the output is in micrometer and the input is in V with

(see, e.g., [9] and [20))H . control approach (see, e.g., [2].,,  — 3v. This model will be used throughout the rest of this
[3], [11], [15], and [16]), and adaptive control (see, e.g., [18f1aper.

and [21]), and so on. Although much work has been done to
date, more studies need to be conducted to achieve better peréor
mance. In what follows, we proceed to design a complete servo
system for a commercially available hard disk drive, namely, a The HDD servomechanism model considered is a double in-
Maxtor HDD (Model 51536U3). We will present the model ofégrator with the dominant resonance mode as shown in (86).
the HDD first and then utilize the CNF approach to design diowever, in the design stage, we consider only the double inte-
appropriate control law. The simulation and actual implement@tator model, i.e.,

tion results will be also given and compared with those of the

conventional PTOS approach. <y> = {0 1} (y) + { 0 107} u. (87)

HDD Servo System Design

v 0 0 v 6.4013 x

A. Modeling of the HDD The measurement output and the controlled output for this

The mechanical part of the plant, that is, the controlled objesystem turn out to be identical, i.é.= y. It is simple to verify
consists of the VCM, the carriage, the suspension, and the hedldgt the three conditions for the CNF design are fully satisfied.
The controlled variable is the relative head position. The contidle now carry on to design a CNF controller for this system.
input« is a voltage to a current amplifier for the VCM and thd~or this particular application, the design procedure can be
measurement output is the head position in tracks. The fre-simplified as follows.

quency response characteristics of the HDD servo system from1) Find a state feedback gain matfixusing an appropriate

u to y is shown as a solid line in Fig. 5. It is quite conven- method such thal + BF is asymptotically stable and the
tional to approximate the dynamics of the VCM actuator by a  overall closed-loop system has a quick rising time with its
second-order state—space model as resulting control input not exceeding the saturation level.
2) ComputeGs,., z., H, andG.
P [0 1] . [0] u 83) 3) Choose an appropriate mat#iX and solve (29) fo® >
0 0 0. Infact, for a second order system, itis simple to observe
from the proof of Theorem 4 that for any choicel®f, the
wherez = [y o] is the state vector witly andv are the poles of the closed-loop system will always approach to
position (inum) and the velocity of the R/W head (inm/s),« two negative real scalars with one moving towareb.
is the actuator input (in volts) and is bounded@3)| < umax: 4) Selectthe functiop as in (79) with an appropriatésuch
ande = K;/J, is the acceleration constant, wii; being that the resulting closed-loop system has small overshoot

the torque constant and, being the moment of inertia of the in the time domain response.
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Fig. 6. Simulation result: normalized responses under the CNF control.  Fig. 7. Simulation result: normalized responses under the PTOS control.

_ Using the robust and perfect tracking design technique givRpyte that these parametetgnds can be adjusted accordingly
in [2], we obtain the following parameterized state feedbagii respect to the amplitude of the target reference. After few
gain F'(¢) for the HDD system: iterations, we find thaty ande can roughly be approximated,

1 42 f2 4 respectively, as
Fe) =~ hmx10 [ i Wfq - @y P ’
. X 10 e2 e
. ) 0.0594r + 1.0805, 1 < r20 um
The eigenvalues of the closed-loop system matrix BF (<) e(r) =3 0.0019r + 2.2062. 20 < 1 < 300 m (94)
are placed at—( +j+/1 — (2)2n f /e. We note that such a gain ’ -

with ¢ = 0.3, f = 350 ande = 1 is roughly corresponding to and
the normal working frequency of the HDD. The nonlinear part 0.05157 + 1.0756, 1< r < 20 um
of the CNF control law is selected as follows: r)=

1.5642, 20 <r<300um- (9
—_15 —|1=y/r| _
pr,y) = —1.58200 (e 0'3679)' (89) To compare our design with the conventional PTOS ap-
To implement the control law to the actual system for which tH&oach, we follow the procedure given in [21] to find an
velocity is not measurable, we use a reduced order CNF contf§plementable PTOS controller for the given HDD plant. The
law with K z = —4000. The complete CNF control is then givenP TOS control law is given by

by k —
. 7 7 up = Umax * sat M (96)
Ty = —4000z, — 1.6 x 10"y + 6.4013 x 10‘sat(u) (90) Umax
and wheree = r — y and the functiory(e) is defined as
U = Koy + (K1 +4000K2)y — K17 ‘o %67 for |e| < ye
+o(r,y) [ﬁng + (4000%3 — K1)y + le} (91) <= sgn(e) [\/2umaxaa|e| - “‘,‘C‘;"] , forlel >y, -
where ) ©7)
9 _s The values of various parameters were found to make the re-
—0.0755 —2.0613 x 10 : :
Kl=—— Kg=——— (92) sulting closed-loop system implementable up to a seek length
€ € of 300.:m. These are given by = 6.4013 x 107, k; = 0.0178,
and

ky =2.997 x 107%, a = 0.62 andy, = 168.32 um. A velocity

(©3) estimator with an estimator pole placed-a000 is used both

5.7257 x 10~°
- - simulation and implementation.

9

K3 =
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Fig.8. Experimental result: responses under CNF and PTOS contblfer  Fig. 9. Experimental result: responses under CNF and PTOS contlfer

1 pm. 100 pem.

C. Simulation and Implementation Results

Our simulation is carried out using Simulink and the results
for various seek lengths (SL) using the proposed CNF and the .|
PTOS controllers are respectively shown in Figs. 6 and 7. Both
control laws are also implemented on the actual HDD system §m

using a sampling frequency of 10 kHz. The R/W head position §
was measured using a laser Doppler vibrometer. The implemen-§ *=r
tation results folSL = 1, 100 and 30Qum are, respectively,
shown in Figs. 8-10. For an easy comparison, the results are '
summarized in Table I. We note that we have included the im-
plementation result foBL. = 50 ym in Table I. The detailed
graphics for this case are omitted as they are almost identical tc

Solid line: CNF

Dashed line: PTOS

those foriSL = 100um. Also, note that the settling time in HDD %

4
Time (milliseconds)
T

servo systems is traditionally defined as the total time that take  ®
the R/W head to reach the0.05.m of the target reference. The 25
HDD can start reading or writing data withia5% of the track 2
width. The results clearly show that the proposed CNF control
out perform the conventional PTOS by more than 30% in set-
tling time.

Input signal to VCM (Votts)

V. CONCLUDING REMARKS

We have studied in this paper the theory and an application .|
of a new nonlinear control technique, the composite nonlinear

Solid line: CNF

Dashed line: PTOS

feedback control, for a class of linear systems with actuator non-
linearities. The simulation and implementation results show that

the new technique has out perforr_ned the conventional methag 1o Experimental result: responses under CNF and PTOS
by more than 30%. Furthermore, it has also been shown by &n = 300 gm.

Time (milliseconds)

control for
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TABLE | [15] B. K. Kim, W. K. Chung, H. S. Lee, H. T. Choi, I. H. Suh, and Y. H.
SETTLING TIME AND PERCENTAGE OFIMPROVEMENT FROM Chang, “Robust time optimal controller design for hard disk drives,”
SIMULATION AND EXPERIMENTAL RESULTS IEEE Trans. Magn.vol. 35, pp. 3598-3607, Sept. 1999.
[16] Y. Li and M. Tomizuka, “Two degree-of-freedom control with adaptive
SEEK SETTLING TIME (ms) robust control for hard disk servo systemiZEE Trans. Mechatron.
LENGTH Simulation Implementation vol. 4, pp. 17-24, Mar. 1999.
(pm) PTOS CNF PTOS CNF [17] Z. Lin, M. Pachter, and S. Banda, “Toward improvement of tracking
1 375 1.0 —_ 1.2 performance — nonlinear feedback for linear systertrg,”J. Control|
50 545 3.7 65 45 vol. 70, pp. 1-11, 1998. _ _
100 545 37 6.5 a5 [18] J: Mc_Corm|ck aqd R. Horowitz, “A direct adaptive control _scheme for
300 565 44 6.7 53 disk file servos,” inProc. 1993 Amer. Control ConfSan Francisco, CA,
- - - - 1993, pp. 346-351.
[19] M. C. Turner, I. Postlethwaite, and D. J. Walker, “Nonlinear tracking
SEEK OVERALL control for multivariable constrained input linear systenist” J. Con-
LENGTH _ IMPROVEMENT (%) trol, vol. 73, pp. 1160-1172, 2000.
(pm) Simulation Implementation [20] S. Weerasooriya and D. T. Phan, “Discrete-time LQG/LTR design and
1 74 — modeling of a disk drive actuator tracking servo systelBEE Trans.
50 32 31 Ind. Electron, vol. 42, pp. 240-247, June 1995.
100 32 31 [21] M. L. Workman, “Adaptive proximate time optimal servomechanisms,”
300 29 21 Ph.D. dissertation, Stanford Univ., Stanford, CA, 1987.

[22] T.Yamaguchi, Y. Soyama, H. Hosokawa, K. Tsuneta, and H. Hirai, “Im-
provement of settling response of disk drive head positioning servo using
mode switching control with initial value compensatiotEEE Trans.

example that the CNF control is capable of beating the well  Magn, vol. 32, pp. 1767-1772, May 1996.

known time-optimal control (or bang-bang control) in asymp-

totic tracking. As mentioned earlier, it would be interesting, al-

though it is pretty hard, to carry out a systematic study on how
to derive a time-optimal control law in the asymptotic tracking
situations. Another direction of future research is to extend o
results to systems with multiple control inputs and multiple co
trolled output with measurement feedback.
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