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Abstract—We study in this paper the theory and applications
of a nonlinear control technique, i.e., the so-called composite non-
linear feedback control, for a class of linear systems with actuator
nonlinearities. It consists of a linear feedback law and a nonlinear
feedback law without any switching element. The linear feedback
part is designed to yield a closed-loop system with a small damping
ratio for a quick response, while at the same time not exceeding
the actuator limits for the desired command input levels. The non-
linear feedback law is used to increase the damping ratio of the
closed-loop system as the system output approaches the target ref-
erence to reduce the overshoot caused by the linear part. It is shown
that the proposed technique is capable of beating the well-known
time-optimal control in the asymptotic tracking situations. The ap-
plication of such a new technique to an actual hard disk drive servo
system shows that it outperforms the conventional method by more
than 30%. The technique can be applied to design servo systems
that deal with “point-and-shoot” fast targeting.

Index Terms—Actuator saturation, control applications, hard
disk drives, nonlinear control, servo systems.

I. INTRODUCTION

E VERY physical system in our life has nonlinearities and
very little can be done to overcome them. Many practical

systems are sufficiently nonlinear so that important features of
their performance may be completely overlooked if they are an-
alyzed and designed through linear techniques (see, e.g., [12]).
For example, in the computer hard disk drive (HDD) servo sys-
tems, major nonlinearities are friction, high frequency mechan-
ical resonance and actuator saturation nonlinearities. Among all
these, the actuator saturation could be the most significant non-
linearity in designing an HDD servo system. When the actuator
is saturated, the performance of the control system designed will
seriously deteriorate.

Traditionally, when dealing with “point-and-shoot” fast-tar-
geting for systems with actuator saturation, one would naturally
think of using the well known time optimal control (TOC)
(known also as the bang-bang control), which uses maximum
acceleration and maximum deceleration for a predetermined
time period. Unfortunately, it is well known that the classical
TOC is not robust with respect to the system uncertainties
and measurement noises. It can hardly be used in any real
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situation. As such, Workman [21] proposed a modification of
this technique, i.e., the so-called proximate time-optimal servo-
mechanism (PTOS), to overcome such a drawback. The PTOS
essentially uses maximum acceleration where it is practical to
do so. When the error is small, it switches to a linear control
law. The overall performance, i.e., the tracking time, is thus
discounted. However, it is fairly robust with respect to system
uncertainties and noises.

TOC is surely time-optimal for a point-to-point target
tracking. However, in most practical situations, it is more
appropriate to consider asymptotic tracking instead, i.e., to
track the system within a certain neighborhood of the target
reference before the system output essentially settles down to
the desired point. We will show later by a simple example that
the TOC is not time-optimal at all in the asymptotic tracking
situation. This observation motivates us to search for a better
technique. Inspired by a recent work of Linet al. [17], which
was introduced to improve the tracking performance under
state feedback laws for a class of second order systems subject
to actuator saturation, we have developed in this paper a
nonlinear control technique, the so-called composite nonlinear
feedback (CNF) control, to a more general class of systems
with measurement feedback.

Since the initiation of CNF in [17] for second order systems,
there has been efforts to generalize it to more general systems.
For example, Turneret al. [19] extended the results of [17] to
higher order and multiple input systems. This extension was
made under a restrictive assumption on the system that excludes
many systems including those originally considered in [17]. The
restrictiveness of the assumption of [19] will be discussed later
in details. Also, as in [17], only state feedback is considered in
[19].

The CNF control consists of a linear feedback law and a non-
linear feedback law without any switching element. The linear
feedback part is designed to yield a closed-loop system with
a small damping ratio for a quick response, while at the same
time not exceeding the actuator limits for the desired command
input levels. The nonlinear feedback law is used to increase the
damping ratio of the closed-loop system as the system output
approaches the target reference to reduce the overshoot caused
by the linear part.

We will show by an example that such a technique could
yield a better performance compared to that of the time-optimal
control in asymptotic tracking. It is noted that the new control
scheme can be utilized to design servo systems that deal with
asymptotic target tracking or “point-and-shoot” fast targeting. In

0018-9286/03$17.00 © 2003 IEEE



428 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 3, MARCH 2003

this paper, we will apply the technique to design a servo system
for a hard disk drive. Actual implementation results will be pre-
sented and compared with those obtained from the conventional
approach. Again, one will see that there is a big improvement in
the new design.

The paper is organized as follows. In Section II, the theory
of the composite nonlinear feedback control is developed.
Three different cases, i.e., the state feedback, the full order
measurement feedback, and the reduced-order measurement
cases, are considered with all detailed derivations and proofs.
In Section III, we show by an example that the proposed CNF
control could yield a better performance compared to that of
the time-optimal control. The application of the CNF technique
to an actual HDD servo system will be presented in Section IV.
Both simulation and implementation results will also be given
and compared with those of the conventional PTOS approach.
The results show that the CNF control improves the perfor-
mance by more than 30%. Finally, we draw some concluding
remarks and open problems in Section V.

II. COMPOSITENONLINEAR FEEDBACK CONTROL

We present in this section the CNF control technique for the
following three different situations: 1) the state feedback case,
2) the full order measurement feedback case, and 3) the reduced-
order measurement feedback case. We will present rigorous and
complete proofs for all results derived. More specifically, we
consider a linear system with an amplitude-constrained actu-
ator characterized by

(1)

where , , and are, respectively, the
state, control input, measurement output and controlled output
of . , , and are appropriate dimensional constant
matrices, and sat: represents the actuator saturation de-
fined as

(2)

with being the saturation level of the input. The following
assumptions on the system matrices are required:

1) is stabilizable;
2) is detectable;
3) is invertible and has no zeros at .

The objective here is to design a CNF control law that will
cause the output to track a step input rapidly without experi-
encing large overshoot and without the adverse actuator satu-
ration effects. This will be done through the design of a linear
feedback law with a small closed-loop damping ratio and a non-
linear feedback law through an appropriate Lyapunov function
to cause the closed-loop system to be highly damped as system
output approaches the command input to reduce the overshoot.
As mentioned earlier, we separate the CNF controller design
into three distinct situations: 1) the state feedback case, 2) the
full-order measurement feedback case, and 3) the reduced-order
measurement feedback case.

A. State Feedback Case

In this section, we follow the idea of the work of Linet al.[17]
to develop a composite nonlinear feedback control technique for
the case when all the states of the plantare measurable, i.e.,

. We have the following step-by-step design procedure.
Step S.1: Design a linear feedback law

(3)

where is a step command input and is chosen such that
1) is an asymptotically stable matrix, and 2) the
closed-loop system has certain desired
properties, e.g., having a small damping ratio. We note that
such an can be designed using methods such as theand

optimization approaches, as well as the robust and perfect
tracking technique given in [2]. Furthermore,is a scalar and
is given by

(4)

and is a step command input. Here, we note thatis well
defined because is stable, and the triple is
invertible and has no invariant zeros at .

Step S.2: Next, we compute

(5)

and

(6)

Note that the definitions of , and would become trans-
parent later in our derivation in (12) and (13). Given a posi-
tive–definite matrix , solve the following Lyapunov
equation:

(7)

for . Note that such a exists since is asymp-
totically stable. Then, the nonlinear feedback control law
is given by

(8)

where is any nonpositive function locally Lipschitz in,
which is used to change the system closed-loop damping ratio
as the output approaches the step command input. The choices
of and will be discussed later.

Step S.3:The linear and nonlinear feedback laws derived in
the previous steps are now combined to form a CNF controller

(9)

The following theorem shows that the closed-loop system
comprising the given plant in (1) with and the CNF con-
trol law of (9) is asymptotically stable. It also determines the
magnitude of that can be tracked by such a control law without
exceeding the control limit.

Theorem 1: Consider the given system in (1), the linear con-
trol law of (3) and the composite nonlinear feedback control law
of (9). For any , let be the largest positive scalar
satisfying the following condition:

(10)
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Then, the linear control law of (3) is capable of driving the
system controlled output to track asymptotically a step
command input , provided that the initial state and satisfy

(11)

Furthermore, for any nonpositive function , locally
Lipschitz in , the composite nonlinear feedback law in (9)
is capable of driving the system controlled output to
track asymptotically the step command input of amplitude,
provided that the initial state and satisfy (11).

Proof: Let . It is simple to verify that the linear
control law of (3) can be rewritten as

Hence, for all and, provided that ,
and the closed-loop system is linear and is given

by

(12)

Noting that

(13)

the closed-loop system in (12) can then be simplified as

(14)

Similarly, the closed-loop system comprising the given plant in
(1) and the CNF control law of (9) can be expressed as

(15)

where

(16)

Clearly, for the given satisfying (11), we have
. We note that (15) is reduced to (14) if . Thus,

we can prove the results, respectively, under the linear control
and the composite nonlinear feedback control in one shot. The
rest of the proof follows pretty closely to those for the second
order systems given in [17].

Next, we define a Lyapunov function , and eval-
uate the derivative of along the trajectories of the closed-loop
system in (15), i.e.,

(17)

Note that for all

(18)

We next calculate for three different values of saturation
function.

Case 1) If , then
and, thus

(19)

Case 2) If , and by construction
, we have

(20)

which implies that and hence

Case 3) Finally, if , we have

(21)

implying and hence .
In conclusion, we have shown that

(22)

which implies that is an invariant set of the closed-loop
system in (15). Noting that , all trajectories of (15)
starting from inside will converge to the origin. This, in turn,
indicates that, for all initial states and the step command input
of amplitude that satisfy (11)

(23)

Therefore

(24)

This completes the proof of Theorem 1.
The following remarks are in order.
Remark 1: Theorem 1 shows that the additional nonlinear

feedback control law , as given by (8), does not affect the
ability of the closed-loop system to track the command input.
Any command input that can be asymptotically tracked by the
linear feedback law of (3) can also be asymptotically tracked by
the CNF control law in (9). However, this additional term in
the CNF control law can be used to improve the performance of
the overall closed-loop system. This is the key property of the
CNF control technique.

Remark 2: Note that for the case when , any step
command of amplitude can be asymptotically tracked, pro-
vided that

(25)

Note that is the parameter given earlier in the definition of
in (10). Clearly, the trackable amplitudes of reference inputs by
the linear feedback control law can be increased by increasing

and/or decreasing through the choice of .
Lastly, we note that Turneret al. [19] have recently extended

the idea of [17] to systems with multiple control inputs and mul-
tiple controlled outputs. Again, their result is only applicable to
the state feedback case. Assuming that the dynamic equation of
the given system is transformed into the following form:

(26)
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where is nonsingular, Turneret al. [19] have solved the
problem under a rather strange condition, i.e., is non-
singular. Such a condition cannot be guaranteed for a simple
double-integrator system considered later in Section III

(27)

In order to overcome such a difficulty, the authors then suggest
to perturb the elements of to ensure nonsingularity. We note
that such a perturbation will not only introduce numerical insta-
bility to the problem, but also produce high gain in the control
input and bias in the steady–state. It is our belief that the non-
singularity of is not necessary.

B. Full-Order Measurement Feedback Case

The assumption that all the states ofare measurable is, in
general, not practical. For example, in HDD servo systems that
we are going to study in Section IV, the velocity of the actuator
is generally not measurable. Thus, it is important to develop
a technique that uses only measurement information. In what
follows, we proceed to develop a CNF control system design
using only measurement feedback. We first focus on the full
order measurement feedback case, in which the dynamical order
of the controller is equal to the order of the given system.

Step F.1: We first construct a linear full order measurement
feedback control law:

(28)

where is the reference input and is the state of the
controller. As usual, and are gain matrices and are designed
such that and are asymptotically stable and the
resulting closed-loop system has the desired properties. Finally,

, and are as defined in (4)–(6).
Step F.2: Given a positive–definite matrix , solve

the Lyapunov equation

(29)

for . As in the state feedback case, the linear control
law of (28) obtained in the above step is to be combined with a
nonlinear control law to form the following CNF controller:

(30)

where is a nonpositive scalar function, locally Lipschitz
in , and is to be chosen to improve the performance of the
closed-loop system.

It turns out that, for the measurement feedback case, the
choice of , the nonpositive scalar function, is not totally
free. It is subject to certain constraints. We have the following
theorem.

Theorem 2: Consider the given system in (1), the linear
measurement feedback control law of (28), and the composite
nonlinear measurement feedback control law of (30). Given a
positive–definite matrix with

(31)

let be the solution to the Lyapunov equation

(32)

Note that such a exists as are asymptotically stable,
and, for any , let be the largest positive scalar such
that for all

(33)

the following property holds:

(34)

Then, the linear measurement feedback control law in (28) will
drive the system controlled output to track asymptotically
a step command input of amplitudefrom an initial state ,
provided that , and satisfy

(35)

Furthermore, there exists a scalar such that for any non-
positive function , locally Lipschitz in and

, the CNF control law of (30) will drive the system controlled
output to track asymptotically the step command input of
amplitude from an initial state , provided that , and

satisfy (35).
Proof: For simplicity, we drop and in

throughout the proof of this theorem. Let and
. The linear control law of (28) can be written as

(36)

Hence, for all states

(37)

and for any satisfying

(38)

we have

(39)

Thus, for all and satisfying the condition as given in (37),
the closed-loop system comprising the given plant and the linear
control law of (28) can be rewritten as

(40)

Similarly, the closed-loop system with the CNF control law of
(30) can be expressed as

(41)
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where

(42)

Clearly, for the given and satisfying (35), we have

(43)

We note that (40) and (41) are identical when . Again,
the results of Theorem 2 for both the linear and the nonlinear
feedback case can be proved in one shot.

Next, we define a Lyapunov function

(44)

and evaluate the derivative of along the trajectories of the
closed-loop system in (41), i.e.,

(45)

Note that for all

(46)

Again, as done in the state feedback case, let us find the above
derivative of for three different cases.

Case 1) If

(47)
then

(48)

which implies

(49)

where

(50)

(51)

Noting (31), i.e., , and
is locally Lipschitz, it is clear that there exists

a such that for any scalar function satisfying
we have and, hence, .

Case 2) If

(52)

then for the trajectories inside

(53)

which implies that

(54)

Next, let us express

(55)

for an appropriate positive piecewise continuous
function , bounded by 1 for all . In this case,
the derivative of becomes

(56)

where

(57)

(58)

Again, noting (31), it can be shown that there exists a
such that for any satisfying

we have and, hence, .
Case 3) Similarly, for the case when

(59)
we can show that there exists a such that for
any satisfying , we have
for all the trajectories in .

Finally, let . Then, we have
for any nonpositive scalar function satisfying

,

(60)

Thus, is an invariant set of the closed-loop
system in (41), and all trajectories starting from
will remain inside and asymptotically converge to
the origin. This, in turn, indicates that, for the ini-
tial state of the given system , the initial state of
the controller , and step command input that
satisfy (35)

(61)

and, hence

(62)

This completes the proof of Theorem 2.
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C. Reduced-Order Measurement Feedback Case

For the given system in (1), it is clear that there arestates
of the system measurable if is of maximal rank. Thus, in
general, it is not necessary to estimate these measurable states in
measurement feedback laws. As such, we will design a dynamic
controller that has a dynamical order less than that of the given
plant. We now proceed to construct such a control law under the
CNF control framework.

For simplicity of presentation, we assume thatis already
in the form

(63)

Then, the system in (1) can be rewritten as

(64)

where the original state is partitioned into two parts, and
with . Thus, we will only need to estimate in the

reduced order measurement feedback design. Next, we let
be chosen such that i) is asymptotically stable, and
ii) has desired properties, and let be
chosen such that is asymptotically stable. Here,
we note that it was shown [1] that is detectable if and
only if is detectable. Thus, there exists a stabilizing.
Again, such and can be designed using an appropriate
control technique. We then partition in conformity with
and

(65)

Also, let , and be as given in (4)–(6). The reduced-order
CNF controller is given by

(66)

and

(67)

where is a nonpositive scalar function locally Lipschitz
in subject to certain constraints to be discussed later.

Next, given a positive–definite matrix , let
be the solution to the Lyapunov equation

(68)

Given another positive–define matrix
with

(69)

let be the solution to the Lyapunov equation

(70)

Note that such and exist as and are
asymptotically stable. For any , let be the largest
positive scalar such that for all

(71)

the following property holds:

(72)

We have the following theorem.
Theorem 3: Consider the given system in (1). Then, there

exists a scalar such that for any nonpositive function
, locally Lipschitz in and , the reduced-

order CNF law given by (66) and (67) will drive the system
controlled output to track asymptotically the step command
input of amplitude from an initial state , provided that ,

and satisfy

(73)

Proof: Let and .
Then, the closed-loop system comprising the given plant in (1)
and the reduced-order CNF control law of (66) and (67) can be
expressed as

(74)
where

(75)

The rest of the proof follows along similar lines to the reasoning
given in the full order measurement feedback case.

D. Selecting and the Nonlinear Gain

The freedom to choose the function is used to tune the
control laws so as to improve the performance of the closed-loop
system as the controlled outputapproaches the set point. Since
the main purpose of adding the nonlinear part to the CNF con-
trollers is to speed up the settling time, or equivalently to con-
tribute a significant value to the control input when the tracking
error, , is small. The nonlinear part, in general, will be
in action when the control signal is far away from its satura-
tion level and, thus, it will not cause the control input to hit its
limits. Under such a circumstance, it is straightforward to verify
that the closed-loop system comprising the given plant in (1) and
the three different types of control law can be expressed as

(76)

We note that the additional term does not affect the
stability of the estimators. It is now clear that eigenvalues of
the closed-loop system in (76) can be changed by the function



CHEN et al.: COMPOSITE NONLINEAR FEEDBACK CONTROL 433

Fig. 1. Interpretation of the nonlinear function�(r; y).

. In what follows, we proceed to interpret the closed-loop
system of (76) using the classical feedback control concept as
given in Fig. 1, where the auxiliary system is defined
as

(77)

has the following interesting properties.
Theorem 4: The auxiliary system defined in (77) is

stable and invertible with a relative degree equal to 1, and is of
minimum phase with stable invariant zeros.

Proof: First of all, it is obvious to see that is stable
since is a stable matrix. Next, since and ,
we have

(78)

which implies that is invertible and has a relative degree
equal to 1 (or an infinite zero of order 1). Furthermore,
has invariant zeros, as it is a single-input–single-output
system.

The last property of , i.e., the invariant zeros of
are stable and, hence, it is of minimum phase, can

be shown by using the well-known classical root-locus theory.
Observing the block diagram in Fig. 1, it follows from the
classical feedback control theory (see, e.g., [6]) that the poles
of the closed-loop system of (76), which are of course the func-
tions of the tuning parameter, will start from the open-loop
poles, i.e., the eigenvalues of , when , and end
up at the open-loop zeros (including the zero at the infinity) as

. It then follows from the proof of Theorem 1 that the
closed-loop system will remain asymptotically stable for any
nonpositive , which implies that all the invariant zeros of the
open-loop system, i.e., , must be stable. This completes
the proof of Theorem 4.

It is now clear from Theorem 4 and its proof that the invariant
zeros of play an important role in selecting the poles
of the closed-loop system of (76). The poles of the closed-loop
system approach the locations of the invariant zeros of
as becomes larger and larger. We would like to note that there
is freedom in pre-selecting the locations of these invariant zeros.
This can actually be done by selecting an appropriate in
(7). In general, we should select the invariant zeros of ,
which are corresponding to the closed-loop poles for larger,
such that the dominated ones have a large damping ratio, which
in turn will yield a smaller overshoot. The following procedure
can be used as a guideline for the selection of such a.

1) Given the pair and the desired locations
of the invariant zeros of , we follow the result

of [4] on finite and infinite zero assignment to obtain
an appropriate matrix such that the resulting

has the desired relative degree and
invariant zeros.

2) Solve for a . In general, the
solution is nonunique as there are elements
in available for selection. However, if the solution does
not exist, we go back to the previous step to reselect the
invariant zeros.

3) Calculate using (7) and check if is positive definite.
If is not positive definite, we go back to the previous
step to choose another solution ofor go to the first step
to reselect the invariant zeros.

Generally, the aforementioned procedure would yield a de-
sired result. The selection of the nonlinear function is
relatively simple once the desired invariant zeros of
are obtained. We usually chooseas a function of the tracking
error, i.e., , which in most practical situations is known and
available for feedback. The following choice of, an exponen-
tial function, is modified from the one suggested in [17]:

(79)

where and is a tuning parameter. This function
changes from 0 to as the tracking error approaches

zero. At the initial stage, when the controlled outputis far
away from the final set point, closes
to 1, which implies that is small and the effect of the
nonlinear part on the overall system is very limited. When the
controlled output approaches the set point,

closes to zero and , and the nonlinear control
law will become effective. In general, the parametershould
be chosen such that the poles of are in
the desired locations, e.g., the dominated poles should have a
large damping ratio. Finally, we note that the choice of
is nonunique. Any smooth function would work so long as it has
similar properties of that given in (79).

III. B EATING THE TIME OPTIMAL CONTROL

Can we design a control system that would beat the perfor-
mance of the TOC? Obviously, the answer to this question is
no if it is required to have a precise point-to-point tracking, i.e.,
to track a target reference precisely from a given initial point.
However, surprisingly, the answer would be yes if we consider
an asymptotic tracking situation, i.e., if we consider the settling
time to be the total time that the controlled system output takes
to get from its initial position to reach a predetermined neigh-
borhood of the target reference before the system output settles
down to the desired point. The reason that we are interested in
this issue is that asymptotic tracking is widely used in almost all
practical situations.

In what follows, we will show the above observation in an
example. Let us consider a system characterized a double inte-
grator, i.e.,

(80)
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Fig. 2. Responses and control signals of the TOC and CNF control.

where as usual is the state, is the input, and and are, re-
spectively, the measurement and controlled outputs. Moreover,
we assume that

(81)

Let the initial state and the target reference .
Then, it is simple to compute that the minimum time required
for the controlled output to reach precisely the target reference
under the TOC is exactly 2 s. Let us now consider an asymptotic
tracking situation instead. As is commonly accepted in the lit-
erature (see, e.g., [6]), we define the settling time to be the total
time that it takes for the control outputto enter the 1 region
of the target reference. The following control law, obtained from
the CNF control technique, would give a faster settling time than
that of the TOC:

(82)

Fig. 2 shows the resulting controlled output responses and the
control signals of the TOC and the CNF control. The resulting
output response of the CNF control has an overshoot less than
1%. However, if we zoom in on the output responses (see Fig. 3),
we will see that the CNF control clearly has a faster settling
time than that of the TOC when it enters the target region, i.e.,

. It can be computed that the CNF control
has a settling time of 1.8453 s whereas the TOC has a settling
time of 1.8586 s. Although the difference is not much, since we
have not tried to optimize the solution of the CNF control, it
is, however, significant enough to address one interesting issue:

Fig. 3. Controlled output responses around the target reference.

Fig. 4. A typical HDD with a VCM actuator.

there are control laws that can achieve a faster settling time than
that of the TOC in asymptotic tracking situations. It can also be
shown that, no matter how small the target region is, say
for any small , we can always find a suitable control law
that beats the TOC in settling time. Nonetheless, we believe that
it would be interesting to carry out some further studies in this
subject.

IV. A N APPLICATION

In this section, we apply the theory of CNF control to design
a reduced order control law for an HDD servo system. The two
main functions of the head positioning servomechanism in disk
drives are track seeking and track following. Track seeking
moves the read/write (R/W) head from the present track to a
specified destination track in minimum time using a bounded
control effort. Track following maintains the head as close as
possible to the destination track center while information is
being read from or written to the disk. Fig. 4 shows a typical
hard disk drive with a voice-coil motor (VCM) actuator servo
system. On the surface of a disk, there are thousands of data
tracks. A magnetic head is supported by a suspension and a
carriage, and it is suspended several micro inches above the
disk surface. The VCM actuator initiates the carriage and
moves the head on a desired track.

Current hard disk drives use a combination of classical con-
trol techniques, such as proximate time optimal control tech-
nique in the tracking seeking stage, and lead-lag compensators
or PID compensators in the track following stage, plus some
notch filters to reduce the effects of high frequency resonant
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Fig. 5. Frequency response of the HDD.

modes (see, e.g., [6]–[8], [10], [13], [14], [22], and references
cited therein). These classical methods can no longer meet the
demand for hard disk drives of higher performance. Thus, many
control approaches have been tried, such as the linear quadratic
Gaussian (LQG) with loop transfer recovery (LTR) approach
(see, e.g., [9] and [20]), control approach (see, e.g., [2],
[3], [11], [15], and [16]), and adaptive control (see, e.g., [18]
and [21]), and so on. Although much work has been done to
date, more studies need to be conducted to achieve better perfor-
mance. In what follows, we proceed to design a complete servo
system for a commercially available hard disk drive, namely, a
Maxtor HDD (Model 51536U3). We will present the model of
the HDD first and then utilize the CNF approach to design an
appropriate control law. The simulation and actual implementa-
tion results will be also given and compared with those of the
conventional PTOS approach.

A. Modeling of the HDD

The mechanical part of the plant, that is, the controlled object,
consists of the VCM, the carriage, the suspension, and the heads.
The controlled variable is the relative head position. The control
input is a voltage to a current amplifier for the VCM and the
measurement output is the head position in tracks. The fre-
quency response characteristics of the HDD servo system from

to is shown as a solid line in Fig. 5. It is quite conven-
tional to approximate the dynamics of the VCM actuator by a
second-order state–space model as

(83)

where is the state vector with and are the
position (in m) and the velocity of the R/W head (inm/s),
is the actuator input (in volts) and is bounded as ,
and is the acceleration constant, with being
the torque constant and being the moment of inertia of the

actuator mass. Thus, the transfer function fromto of the
VCM model can be written as

(84)

The response characteristics shows that the servo system has
many mechanical resonance modes over 2 kHz. In general, it
is difficult to model these high frequency flexible modes ex-
actly. However, if we consider only the dominant resonance fre-
quency, a more realistic model for the VCM actuator can be rep-
resented as follows:

(85)

where corresponds to the resonance frequency andbe the
associated damping coefficient. To design and implement the
proposed controller, an actual HDD was taken and the model
was identified through frequency response test (see Fig. 5).
Using these measured data from the actual system and the
algorithm of [5], we obtained a fourth-order model for the
actuator

(86)
where the output is in micrometer and the input is in V with

V. This model will be used throughout the rest of this
paper.

B. HDD Servo System Design

The HDD servomechanism model considered is a double in-
tegrator with the dominant resonance mode as shown in (86).
However, in the design stage, we consider only the double inte-
grator model, i.e.,

(87)

The measurement output and the controlled output for this
system turn out to be identical, i.e., . It is simple to verify
that the three conditions for the CNF design are fully satisfied.
We now carry on to design a CNF controller for this system.
For this particular application, the design procedure can be
simplified as follows.

1) Find a state feedback gain matrixusing an appropriate
method such that is asymptotically stable and the
overall closed-loop system has a quick rising time with its
resulting control input not exceeding the saturation level.

2) Compute , , , and .
3) Choose an appropriate matrix and solve (29) for

. In fact, for a second order system, it is simple to observe
from the proof of Theorem 4 that for any choice of, the
poles of the closed-loop system will always approach to
two negative real scalars with one moving toward .

4) Select the function as in (79) with an appropriatesuch
that the resulting closed-loop system has small overshoot
in the time domain response.
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Fig. 6. Simulation result: normalized responses under the CNF control.

Using the robust and perfect tracking design technique given
in [2], we obtain the following parameterized state feedback
gain for the HDD system:

(88)

The eigenvalues of the closed-loop system matrix
are placed at . We note that such a gain
with , and is roughly corresponding to
the normal working frequency of the HDD. The nonlinear part
of the CNF control law is selected as follows:

(89)

To implement the control law to the actual system for which the
velocity is not measurable, we use a reduced order CNF control
law with . The complete CNF control is then given
by

(90)

and

(91)

where

(92)

and

(93)

Fig. 7. Simulation result: normalized responses under the PTOS control.

Note that these parametersand can be adjusted accordingly
with respect to the amplitude of the target reference. After few
iterations, we find that and can roughly be approximated,
respectively, as

m
m

(94)

and

m
m

(95)

To compare our design with the conventional PTOS ap-
proach, we follow the procedure given in [21] to find an
implementable PTOS controller for the given HDD plant. The
PTOS control law is given by

(96)

where and the function is defined as

for

for
(97)

The values of various parameters were found to make the re-
sulting closed-loop system implementable up to a seek length
of 300 m. These are given by , ,

, and m. A velocity
estimator with an estimator pole placed at4000 is used both
simulation and implementation.
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Fig. 8. Experimental result: responses under CNF and PTOS control forSL =

1 �m.

C. Simulation and Implementation Results

Our simulation is carried out using Simulink and the results
for various seek lengths (SL) using the proposed CNF and the
PTOS controllers are respectively shown in Figs. 6 and 7. Both
control laws are also implemented on the actual HDD system
using a sampling frequency of 10 kHz. The R/W head position
was measured using a laser Doppler vibrometer. The implemen-
tation results for , 100 and 300 m are, respectively,
shown in Figs. 8–10. For an easy comparison, the results are
summarized in Table I. We note that we have included the im-
plementation result for 50 m in Table I. The detailed
graphics for this case are omitted as they are almost identical to
those for 100 m. Also, note that the settling time in HDD
servo systems is traditionally defined as the total time that take
the R/W head to reach the0.05 m of the target reference. The
HDD can start reading or writing data within5 of the track
width. The results clearly show that the proposed CNF control
out perform the conventional PTOS by more than 30% in set-
tling time.

V. CONCLUDING REMARKS

We have studied in this paper the theory and an application
of a new nonlinear control technique, the composite nonlinear
feedback control, for a class of linear systems with actuator non-
linearities. The simulation and implementation results show that
the new technique has out performed the conventional method
by more than 30%. Furthermore, it has also been shown by an

Fig. 9. Experimental result: responses under CNF and PTOS control forSL =

100 �m.

Fig. 10. Experimental result: responses under CNF and PTOS control for
SL = 300 �m.
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TABLE I
SETTLING TIME AND PERCENTAGE OFIMPROVEMENT FROM

SIMULATION AND EXPERIMENTAL RESULTS

example that the CNF control is capable of beating the well
known time-optimal control (or bang-bang control) in asymp-
totic tracking. As mentioned earlier, it would be interesting, al-
though it is pretty hard, to carry out a systematic study on how
to derive a time-optimal control law in the asymptotic tracking
situations. Another direction of future research is to extend our
results to systems with multiple control inputs and multiple con-
trolled output with measurement feedback.
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