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Abstract

A systematic method is developed for determining an output matrix C for a given matrix pair (A; B) such that the resulting linear system
characterized by the matrix triple (A; B; C) has the pre-speci2ed system structural properties, such as the 2nite and in2nite zero structure
and the invertibility structures. Since the matrix C describes the locations of the sensors, the procedure of choosing C is often referred
to as sensor selection. The method developed in this paper for sensor selection can be applied to the dual problem of actuator selection,
where, for a given matrix pair (A; C), a matrix B is to be determined such that the resulting matrix triple (A; B; C) has the pre-speci2ed
structural properties.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and problem statement

As it is well known in the literature, the structural prop-
erties of linear systems, such as the 2nite and in2nite zero
structures and the invertibility structures, have played very
important roles in many linear systems and control areas
(see e.g., robust and H∞ control, Chen, 2000; H2 optimal
control, Saberi, Sannuti, & Chen 1995; and control with sat-
uration, Lin, 1998). We believe that one of the major di<-
culties in applying the useful multivariable control synthesis
techniques, e.g., such as H2 and H∞ control techniques, to
actual design is the inadequate study of the linkage between
control performance and design implementation involving
hardware selection, e.g., appropriate sensors suitable for
robustness and performance. This linkage provides a foun-
dation upon which trade-o>s can be incorporated at the
preliminary design stage. Thus, one can introduce careful
control design considerations into the overall engineering
design process in an early stage. This is what motivated the
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work to be reported in this paper. Our objective is to study
the Fexibility in assigning structural properties to a given
linear system, and to identify sets of sensors which would
yield desirable structural properties.
It is appropriate to trace a short history of the develop-

ment of the techniques related to structural assignments of
linear systems. To the best of our knowledge, most results
in the open literature are related to invariant zero or trans-
mission zero (i.e., 2nite zero structure) assignments (see for
example, Emami-Naeini & Dooren, 1982; Karcanias, Laios,
& Ginnakopoulos, 1988; Kouvaritakis & MacFarlane, 1976;
Patel, 1978; Vardulakis, 1980; Syrmos & Lewis, 1993). We
note that all the results reported in the literature so far, in-
cluding the ones mentioned above, deal solely with the as-
signments of the 2nite zeros. The in2nite zero structure and
other structures such as invertibility structures of the result-
ing system are either 2xed or of not much concern. Only
recently had Chen and Zheng (1995) proposed a technique,
which is capable of assigning both 2nite and in2nite zero
structures simultaneously. However, up to date, to the best
of our knowledge, there still does not exist any method that
deals with the assignment of complete system structures,
including 2nite and in2nite zero structures and invertibil-
ity structures. We propose in this paper a technique which
is capable of assigning all these structural properties. More
speci2cally, we consider a linear system characterized by
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the following state space equation:

ẋ = Ax + Bu; (1)

where x∈Rn is the state and u∈Rm is the control input.
The problem of structural assignments or sensor selection is
to 2nd a measurement output,

y = Cx; (2)

such that the resulting system characterized by the matrix
triple (A; B; C) would have the pre-speci2ed desired struc-
tural properties, including 2nite and in2nite zero structures
and invertibility structures. We note that this technique can
be applied to solve the dual problem of actuator selection,
i.e., to 2nd a matrix B provided that matrices A and C
are given such that the resulting system again characterized
by the triple (A; B; C) would have the pre-speci2ed desired
structural properties.
Throughout the paper, X ′ denotes the transpose of X , and

Ik denotes the identity matrix of dimension k × k. With a
slight abuse of notation, Ik with k6 0 is treated as an empty
matrix. Also, ? denotes some constant matrix which is of
less interest in the context. A set of complex scalars, W,
is said to be self-conjugate if, for any w∈W, its complex
conjugate Ow∈W.

2. Background materials

In this section, we recall two structural decomposition
techniques of linear systems, i.e., the controllability struc-
tural decomposition for a matrix pair (A; B), which was
discovered by Luenberger (1967) and Brunovsky (1970),
and the special coordinate basis decomposition for a matrix
triple (A; B; C), which was introduced by Sannuti and Saberi
(1987). Both decompositions will be instrumental and ex-
tensively used in the development of the results reported in
the coming sections.

Theorem 2.1 (CSD). Consider a pair of constant matrices
(A; B) with A∈Rn×n and B∈Rn×m. Assume that B is of full
rank. Then, there exist non-singular state and input trans-
formations Ts and Ti such that (Ã; B̃) := (T−1

s ATs; T−1
s BTi)

has the following form:





A0 0 0 · · · 0 0

0 0 Ik1−1 · · · 0 0

? ? ? · · · ? ?

...
...

...
. . .

...
...

0 0 0 · · · 0 Ikm−1

? ? ? · · · ? ?



;




0 · · · 0

0 · · · 0

1 · · · 0

...
. . .

...

0 · · · 0

0 · · · 1







;

(3)

where ki ¿ 0, i = 1; : : : ; m, A0 is of dimension n0 := n −∑m
i=1 ki and its eigenvalues are the uncontrollable modes of

the pair (A; B). Moreover, the set of integers, C(A; B) :=
{n0; k1; : : : ; km}, is referred to as the controllability index
of (A; B).

Next, consider a linear system � characterized by
(A; B; C) with a transfer function, H (s) =C(sI −A)−1B, or
in the state space form,

ẋ = Ax + Bu; y = Cx; (4)

where x∈Rn, u∈Rm and y∈Rp are the state, the input
and the output, respectively. Without loss of generality, we
assume that both B and C are of full rank.

Theorem 2.2 (SCB). Consider the linear system � of (4).
There exist (i) coordinate free non-negative integers na, nb,
nc, nd, md6m and qi; i = 1; : : : ; md, and (ii) non-singular
state, output and input transformations�s,�0 and�i which
take � into a special coordinate basis that displays explic-
itly both the 6nite and in6nite zero structures of �. The
special coordinate basis is described by

x = �sx̃; y = �0ỹ; u= �iũ; (5)

x̃ =




xa

xb

xc

xd


 ; xd =




x1

x2

...

xmd




; ỹ =

(
yd

yb

)
;

yd =




y1

y2

...

ymd




; ũ=

(
ud

uc

)
; ud =




u1

u2

...

umd




;

ẋa = Aaaxa + Ladyd + Labyb; (6)

ẋb = Abbxb + Lbdyd; yb = Cbxb; (7)

ẋc = Accxc + BcEcbxb + Lcdyd + BcEcaxa + Bcuc (8)

and for each i = 1; : : : ; md,

ẋi = Aqixi + Lidyd + Bqi
ui + Eiaxa + Eibxb + Eicxc +

md∑
j=1

Eijxj


 ; (9)

yi = Cqixi; yd = Cdxd: (10)

Here the states xa; xb; xc and xd are, respectively, of dimen-
sions na; nb; nc and nd =

∑md
i=1 qi, while xi is of dimension

qi for each i=1; : : : ; md. The control vectors ud and uc are,
respectively, of dimensions md and mc =m−md while the
output vectors yd and yb are, respectively, of dimensions
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pd = md and pb = p − pd. The matrices Aqi ; Bqi and Cqi
have the following form:

Aqi =

[
0 Iqi−1

0 0

]
; Bqi =

[
0

1

]
;

Cqi = [1; 0; : : : ; 0]: (11)

Assuming that xi, i = 1; 2; : : : ; md, are arranged such that
qi6 qi+1, the matrix Lid has the particular form

Lid =
[
Li1 Li2 · · · Lii−1 0 · · · 0

]
: (12)

The last row of each Lid is identically zero. Moreover,
(Acc; Bc) is controllable and (Abb; Cb) is observable.

We can rewrite the special coordinate basis of the triple
(A; B; C) given by Theorem 2.2 in a more compact form

Ã= �−1
s A�s =




Aaa LabCb 0 LadCd

0 Abb 0 LbdCd

BcEca BcEcb Acc LcdCd

BdEda BdEdb BdEdc Add


 (13)

and

B̃= �−1
s B�i =




0 0

0 0

0 Bc

Bd 0


 ;

C̃ = �−1
0 C�s =

[
0 0 0 Cd

0 Cb 0 0

]
; (14)

where

Add = A∗
dd + BdEdd + LddCd;

= blkdiag{Aq1 ; : : : ; Aqmd
}+ BdEdd + LddCd (15)

and all the sub-matrices A∗
dd; Bd; Eda; Edb and Edd are de2ned

in an obvious way.
In what follows, we state some important properties of the

special coordinate basis which are pertinent to our present
work. The proofs of these properties can be found in Chen
(2000).

Property 2.1. � is observable (detectable) if and only if the
pair (Aobs; Cobs) is observable (detectable), where

Aobs :=

[
Aaa 0

BcEca Acc

]
; Cobs := [Eda Edc]: (16)

Also, de2ne

Acon :=

[
Aaa LabCb

0 Abb

]
; Bcon :=

[
Lad

Lbd

]
: (17)

Similarly, � is controllable (stabilizable) if and only if the
pair (Acon ; Bcon) is controllable (stabilizable).

The invariant zeros of a system � characterized by
(A; B; C) can be de2ned via the Smith canonical form of the
(Rosenbrock) system matrix of � (see e.g., Rosenbrock,
1970; MacFarlane & Karcanias, 1976). The special coor-
dinate basis of Theorem 2.2 shows explicitly the invariant
zeros of �.

Property 2.2. Invariant zeros of � are the eigenvalues of
Aaa.

In order to display various multiplicities of invariant ze-
ros, let Xa be a non-singular transformation matrix such that
Aaa can be transformed into a Jordan canonical form, i.e.,

X−1
a AaaXa = J = blkdiag{J1; J2; : : : ; Jk}; (18)

where Ji, i = 1; 2; : : : ; k, are some ni × ni Jordan blocks:

Ji = diag{!i; !i; : : : ; !i}+
[
0 Ini−1

0 0

]
: (19)

For any given !∈ "(Aaa), let there be #! Jordan blocks of Aaa

associated with !. Let n!;1; n!;2; : : : ; n!;#! be the dimensions
of these Jordan blocks. Then we say ! is an invariant zero of
� with multiplicity structure S?

! (�) (see also Saberi, Chen,
& Sannuti, 1991),

S?
! (�) = {n!;1; n!;2; : : : ; n!;#!}: (20)

The geometric multiplicity of ! is then simply given by
#!, and the algebraic multiplicity of ! is given by

∑#!
i=1 n!; i.

Here we should note that the invariant zeros together with
their structures of � are related to the structural invariant
indices list I1(�) of Morse (1973).
The special coordinate basis can also reveal the in2nite

zero structure of �. We note that the in2nite zero structure
of � can be de2ned either in association with root-locus
theory or as Smith–McMillan zeros of the transfer function
at in2nity. For the sake of simplicity, we only consider the
in2nite zeros from the point of view of Smith–McMillan
theory here. To de2ne the zero structure of H (s) at in2nity,
one can use the familiar Smith–McMillan description of the
zero structure at 2nite frequencies of a general not necessar-
ily square but strictly proper transfer function matrix H (s).
Namely, a rational matrix H (s) possesses an in2nite zero
of order k when H (1=z) has a 2nite zero of precisely that
order at z = 0 (see e.g., Rosenbrock, 1970). The number of
zeros at in2nity together with their orders indeed de2ne an
in2nite zero structure. Owens (1978) related the orders of
the in2nite zeros of the root-loci of a square system with
a non-singular transfer function matrix to C∗ structural in-
variant indices list I4 of Morse (1973). The special coordi-
nate basis of Theorem 2.2 explicitly shows the in2nite zero
structure of �.
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Property 2.3. The in2nite zero structure of � is given by

S?
∞(�) = {q1; q2; : : : ; qmd}: (21)

That is, each qi corresponds to an in2nite zero of � of order
qi. Note that for a single-input–single-output system �, we
have S?

∞(�) = {q1}, where q1 is the relative degree of the
given system �.

The special coordinate basis can also exhibit the invert-
ibility structure of a given system �. The formal de2nitions
of right invertibility and left invertibility of a linear system
can be found in Moylan (1977). Basically, for the usual case
when B and C are of maximal rank, the system � or equiv-
alently H (s) is said to be left invertible if there exists a ra-
tional matrix function, say L(s), such that L(s)H (s)= Im. �
or H (s) is said to be right invertible if there exists a ratio-
nal matrix function, say R(s), such that H (s)R(s) = Ip. �
is invertible if it is both left and right invertible, and � is
degenerate if it is neither left nor right invertible.

Property 2.4. System � is right invertible if and only if xb
(and hence yb) are non-existent, left invertible if and only if
xc (and hence uc) are non-existent, and invertible if and only
if both xb and xc are non-existent. Moreover, � is degenerate
if and only if both xb and xc are present.

The special coordinate basis can also be modi2ed to ob-
tain the structural invariant indices listsI2 andI3 of Morse
(1973) of the given system �. In order to display I2(�),
we let Xc and Xi be non-singular matrices such that the con-
trollable pair (Acc; Bc) is transformed into the controllability
structural decomposition (see Theorem 2.1), i.e.,

X−1
c AccXc =




0 I‘1−1 · · · 0 0

? ? · · · ? ?

...
...

. . .
...

...

0 0 · · · 0 I‘mc−1

? ? · · · ? ?



;

X−1
c BcXi =




0 · · · 0

1 · · · 0

...
. . .

...

0 · · · 0

0 · · · 1



; (22)

where ?s denote constant scalars or row vectors. Then we
have

I2(�) = {‘1; : : : ; ‘mc}; (23)

which is also called the controllability index of (Acc; Bc).
Similarly, we have

I3(�) = {)1; : : : ; )pb}; (24)

where {)1; : : : ; )pb} is the controllability index of the con-
trollable pair (A′

bb; C
′
b).

3. Structural assignments of linear systems

Having familiarized with all the structural properties of
linear systems, i.e., the 2nite zero and in2nite zero structures
as well as the invertibility structures, we are now ready to
present the main results of this paper. We 2rst have the
following theorem.

Theorem 3.1. Consider the linear system (1). Assume that
B is of full column rank, the controllability index of (A; B)
is given byC(A; B)={n0; k1; : : : ; km}, and the uncontrollable
modes of (A; B), if any, are given by *= {u1; : : : ; un0}. Let
+2 := {‘1; ‘2; : : : ; ‘mc} ⊂ C∗= : {k1; k2; : : : ; km}; (25)

C∗\+2 : ={!1; !2; : : : ; !md};

md = m− mc; !16!26 · · ·6!md; (26)

+4 := {q1; q2; : : : ; qmd}; qi6!i; i = 1; 2; : : : ; md: (27)

Moreover, we let a set of complex scalars

+1 =- ∪ *1 := {z1; : : : ; zs1} ∪ *1; (28)

where - is self-conjugate and so is *1 ⊂ *. For simplicity,
we assume that the entries of *2 = * \ *1 are distinct.
Furthermore, s1 is chosen such that

s16 n−
mc∑
i=1

‘i −
md∑
i=1

qi − n0: (29)

Finally, let

+3 := {)1; )2; : : : ; )pb} (30)

be a set of positive integers with )16 )26 · · ·6 )pb ,
which satisfy the following constraint:

s1 + n0 +
pb∑
i=1

)i +
mc∑
i=1

‘i +
md∑
i=1

qi = n: (31)

Then, there exists a non-empty set  ⊂ R(md+pb)×n such
that for any C ∈ , the resulting system characterized by
the matrix triple (A; B; C) has the following properties: its
invariant zeros are given by +1, and their invariant indices
I2=+2,I3=+3 andI4=+4, or equivalently, the in6nite
zero structure of the triple (A; B; C) is given by +4, and its
invertibility structures are, respectively, given by +2 and
+3. Fig. 1 summarizes in a graphical form the above general
structural assignment.
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Fig. 1. Graphical summary of the general structural assignment.

Proof. We will give a constructive proof that would yield a
desired set  . We 2rst introduce the following key lemma,
which is crucial to the proof of Theorem 3.1.

Lemma 3.1. Consider a linear system �̃ characterized by
a matrix triple (Ã; B̃; C̃). We assume that it is already in
the form of the special coordinate basis of Theorem 2.2 or
in the compact form of (13) and (14). Let

SA :=




Aaa Mab 0 Mad

0 Abb 0 LbdCd

BcEca BcEcb Acc Mcd

BdEda BdEdb BdEdc Add


 ; (32)

where Mab, Mad and Mcd are arbitrary matrices of appro-
priate dimensions. Then, the triple ( SA; B̃; C̃) has the same
structural invariant indices I1; I2; I3 and I4 as those
of �̃.

Proof. It is omitted due to space limitation.
Now, we are ready to give a proof to Theorem 3.1. It

follows from Theorem 2.1 that there exist non-singular
state and input transformations T0 and Ti such that the
transformed pair,

(A1; B1) := (T−1
0 AT0; T−1

0 BTi); (33)

is in the CSD form of (3) with its controllability index being
as C(A; B)={n0; k1; : : : ; km}. In view of the properties of the
special coordinate basis, it is simple to see that each input
channel in B1 could either be assigned to the state variables
associated with xc or xd of the resulting system. However, if
we assign a particular input channel to be a member of xc of
the desired system, we will have to assign the whole block
associated with this particular channel to it. This is because
of the following reasons: (1) the whole block is completely
controllable by the input channel, and (2) both dynamics of

xa and xb cannot be controlled by input channels associated
with xc. On the other hand, there is no such a constraint
for the structure associated with xd, i.e., the in2nite zero
structure.
Let +2 and +4 be given, respectively, as in (25) and (27),

and let nc =
∑mc

i=1 ‘i and nd =
∑md

i=1 qi. It is simple to verify
that there exist permutation transformations P1 and Pi1 such
that

A2 = P−1
1 A1P1 =




A0 0 0

Bc ·? Acc Bc ·?
B̃d ·? B̃d ·? A∗


 ;

B2 = P−1
1 B1Pi1 =




0 0

Bc 0

0 B̃d


 ; (34)

where

Acc :=




0 I‘1−1 : : : 0 0

? ? : : : ? ?

...
...

. . .
...

...

0 0 : : : 0 I‘mc−1

? ? : : : ? ?



;

Bc =




0 : : : 0

1 : : : 0

...
. . .

...

0 : : : 0

0 : : : 1




(35)
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and

A∗ :=




0 I!1−q1−1 0 0 : : : 0 0 0 0

0 0 1 0 : : : 0 0 0 0

0 0 0 Iq1−1 : : : 0 0 0 0

? ? ? ? : : : ? ? ? ?

...
...

...
...

. . .
...

...
...

...

0 0 0 0 : : : 0 I!md−qmd−1 0 0

0 0 0 0 : : : 0 0 1 0

0 0 0 0 : : : 0 0 0 Iqmd−1

? ? ? ? : : : ? ? ? ?




; B̃d =




0 : : : 0

0 : : : 0

0 : : : 0

1 : : : 0

...
. . .

...

0 : : : 0

0 : : : 0

0 : : : 0

0 : : : 1




: (36)

Next, it is simple to see that there exists another pair of
permutation matrices P2 and Pi2 such that the transformed
pair (A3; B3) := (P−1

2 A2P2; P−1
2 B2Pi2) has the following

form:

A3 =




A0 0 0 0

0 A∗
ab 0 ?

Bc ·? Bc ·? Acc Bc ·?
Bd ·? Bd ·? Bd ·? A∗

dd + Bd ·?


 ;

B3 =




0 0

0 0

0 Bc

Bd 0


 ; (37)

where

A∗
dd =




0 Iq1−1 : : : 0 0

0 0 : : : 0 0

...
...

. . .
...

...

0 0 : : : 0 Iqmd−1

0 0 : : : 0 0



;

Bd =




0 : : : 0

1 : : : 0

...
. . .

...

0 : : : 0

0 : : : 1




(38)

and

A∗
ab =




0 I!1−q1−1 : : : 0 0

0 0 : : : 0 0

...
...

. . .
...

...

0 0 : : : 0 I!md−qmd−1

0 0 : : : 0 0



: (39)

Let us de2ne

Cd =



1 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


 ; (40)

which is in conformity with the structures of A∗
dd and Bd in

(38), and we further de2ne

C3 = [ 0 0 0 Cd ]; (41)

which is in conformity with structures of A3 and B3 in (37).
Following the proof of Lemma 3.1, we can show that there
exists a non-singular state transformation T3 such that

A4 = T−1
3 A3T3 =




Aab 0 LabdCd

Bc ·? Acc LcdCd

Bd ·? Bd ·? A∗
dd + Bd ·?


 ;

B4 = T−1
3 B3 =




0 0

0 Bc

Bd 0


 (42)

and

C4 = C3T3 = C3 = [ 0 0 Cd ]; (43)
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where

Aab =

[
A0 0

0 A∗
ab

]
; Labd =

[
0

L∗
abd

]
: (44)

In view of the properties of the special coordinate basis, it
is simple to see that the triple (A4; B4; C4) is in the form
of the SCB with its structural invariant indices I2 = +2

and I4 =+4, I3 being empty and its invariant zeros being
"(Aab).
Next, we de2ne a new output matrix,

SC4 := C4 + [Kc 0 0 ] = [Kc 0 Cd ]; (45)

where Kc = [Kc1 Kc2] is partitioned in conformity with
Aab and Labd in (44) with Kc1 being an arbitrary matrix
with appropriate dimension and Kc2 being chosen such that
- ⊂ "(A∗

ab − L∗
abdKc2), and the remaining eigenvalues of

A∗
ab−L∗

abdKc2 are real and distinct. Moreover, these remain-
ing eigenvalues of A∗

ab − L∗
abdKc2 are distinct from the en-

tries of *2. This can be done because the pair (A∗
ab; L

∗
abd) is

completely controllable. Using the result of Chen, Saberi,
and Sannuti (1992), we can show that there exists a state
transformation T4 such that

A5 = T−1
4 A4T4

=



Aab − LabdKc 0 L̃abdCd

Bc ·? Acc LcdCd

Bd ·? Bd ·? Add + Bd ·?


 ;

B5 = T−1
4 B4 =




0 0

0 Bc

Bd 0


 (46)

and

C5 := SC4T4 = [ 0 0 Cd ]: (47)

Again, the triple (A5; B5; C5) is in the form of SCB and
has the same structural indices I2, I3 and I4 as the triple
(A4; B4; C4). Moreover, its invariant zeros are given by the
eigenvalues of matrix Aab − LabdKc, in which matrix Aab −
LabdKc can be rewritten as

Aab − LabdKc =

[
A0 0

−L∗
abdKc1 A∗

ab − L∗
abdKc2

]
: (48)

We next 2nd a transformation Tab such that Aab − LabdKc is
transformed into the following form:

Ãab = T−1
ab (Aab − LabdKc)Tab =

[
Aaa Mab

0 Abb

]
; (49)

where "(Aaa) = +1 = *1 ∪ - with - being given in (28),
and Abb being a diagonal matrix. Let

T5 =



Tab 0 0

0 I 0

0 0 I


 : (50)

Then, we have

A6 = T−1
5 A5T5

=




Aaa Mab 0 LadCd

0 Abb 0 LbdCd

Bc ·? Bc ·? Acc LcdCd

Bd ·? Bd ·? Bd ·? Add + Bd ·?


 ;

B6 = T−1
5 B5 =




0 0

0 0

0 Bc

Bd 0


 (51)

and

C6 := C5T5 = [0 0 0 Cd]: (52)

The remaining task is to assign the structural invariant
indicesI3 to coincide with the given set +3={)1; : : : ; )pb},
which can be done by choosing the following output matrix:

C̃6 =

[
0 0 0 Cd

0 Cb 0 0

]

with

Cb =



Cb1 · · · 0

...
. . .

...

0 · · · Cbpb


 ; (53)

where Cbi, i = 1; : : : ; pb, is a 1 × )i vector with all its en-
tries being nonzero. Utilizing the result of Lemma 3.1 one
more time, we can show that the triple characterized by
(A6; B6; C̃6) has its invariant zeros at "(Aaa), and its struc-
tural invariant indices I2 =+2, I3 =+3 and I4 =+4, re-
spectively. Let p= md + pb. We 2nally obtain the desired
set,

 =

{
�0

[
0 0 0 Cd

0 Cb 0 0

]
(T0P1P2T3T4T5)−1

∣∣∣∣∣
�0 ∈Rp×p is non-singular

}
: (54)

This completes the proof of Theorem 3.1.
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Remark 3.1. We have the following interesting special
cases:

1. If +2 and +3 are chosen to be empty sets, and +4 =
{1; 1; : : : ; 1}, the result of Theorem 3.1 will yield a square
invertible system (A; B; C) with m in2nite zeros of or-
der one. This is corresponding to the result reported in
Syrmos (1993).

2. If +2 and +3 are chosen to be empty sets, and +4 is ap-
propriately selected, then the result of Theorem 3.1 will
yield again a square invertible system (A; B; C) with ap-
propriate 2nite and in2nite zero structures. Such a result
was reported earlier in Chen and Zheng (1995).

3. If +2 is set to be empty, then the resulting system will
be left invertible. Similarly, if +3 is set to be empty, the
resulting system will be right invertible.

Remark 3.2. It was shown in Chen and Zheng (1995) that
the set  is complete for single-input–single-output sys-
tems. In general, we should note that  is not necessarily
complete.

Remark 3.3. We note that if the entries of *2 are not dis-
tinct, then the assignment of +3 will be slightly more com-
plicated. We would have to utilize the technique of the real
Jordan canonical form (see e.g., Chen, 2000) to assign +3

in accordance with the real Jordan block structure of the
part of A0 assigned to +3. We leave this as an exercise to
interested readers.

4. Conclusions

We have proposed a systematic method for constructing
a family of output matrices for a given matrix pair (A; B).
Any matrix C from this family will result in a linear system
(A; B; C) that has the pre-speci2ed structural properties. This
method is also applicable to the dual problem of actuator
selection, in which the pair (A; C) is given and the input
matrix B is constructed such that the resulting linear system
(A; B; C) has the pre-speci2ed desired structural properties.
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