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Abstract

We study in this paper the problem of robust and perfect tracking for discrete-time linear multivariable systems. By robust and
perfect tracking, we mean the ability of a controller to track a given reference signal with arbitrarily small settling time in the face of
external disturbances and initial conditions. A set of necessary and su$cient conditions under which the proposed problem is solvable
is obtained and, under these conditions, constructive algorithms are given that yield the required solutions. As is general to
discrete-time systems, the solvability conditions to the above problem are quite restrictive. To relax these conditions, we propose an
almost perfect tracking scheme, which is capable of tracking references precisely after certain initial steps. � 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction to the problem

The problem of robust and perfect tracking (RPT) is to
design a controller such that the resulting closed-loop
system is asymptotically stable and the controlled output
perfectly tracks a given reference signal in the presence of
any initial conditions and external disturbances. By ro-
bust and perfect tracking, we mean the ability of a con-
troller to track a given reference signal with arbitrarily
small settling time in the face of external disturbances
and initial conditions. The subject of continuous-time
systems has been fully examined in a recent work by Liu,
Chen, and Lin (2001). The main objective of this paper is
to study such a problem for discrete-time systems. To be
more speci"c, we present in this paper the robust and
perfect tracking problem for the following discrete-time
system,

� : �
x(k#1)"Ax(k)#Bu(k)#Ew(k), x(0)"x

�
,

y(k)"C
�
x(k)#D

�
w(k),

h(k)"C
�
x(k)#D

�
u(k)#D

��
w(k),

(1)

where x3�� is the state, u3�� is the control input,w3�q

is the external disturbance, y3�p is the measurement
output, and h3�l is the output to be controlled. We also
assume that the pair (A,B) is stabilizable and the pair
(A,C

�
) is detectable. For future references, we de"ne

�
�
and �

�
to be the subsystems characterized by the

matrix quadruples (A,B,C
�
,D

�
) and (A,E,C

�
,D

�
), re-

spectively. Given the external disturbance w3l
�
,

p3[1,R], and any reference signal vector r3�l, the
RPT problem for the discrete-time system (1) is to "nd
a parameterized dynamic measurement feedback control
law of the following form:

v(k#1)"A
���

(�)v(k)#B
���

(�)y(k)#G(�)r(k),

u(k)"C
���

(�)v(k)#D
���

(�)y(k)#H(�)r(k),
(2)

such that when (2) is applied to (1):

(i) There exists an �H'0 such that the resulting closed-
loop system with r"0 and w"0 is asymptotically
stable for all �3(0, �H]; and

(ii) Let h(k, �) be the closed-loop controlled output re-
sponse and let e(k, �) be the resulting tracking error,
i.e., e(k, �) :"h(k, �)!r(k). Then, for any x

�
3��,

��e��
�
P0 as �P0.

In this paper, we will derive a set of necessary and
su$cient conditions under which the proposed robust

0005-1098/02/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
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and perfect tracking problem has a solution, and under
these conditions, develop algorithms for the construction
of feedback laws that solve the proposed problem. It
turns out that the solvability conditions for the above
proposed RPT problem are quite restrictive compared to
its counterpart in the continuous-time case (see Liu et al.,
2001). In particular, the discrete-time problem has a quite
restrictive constraint on the in"nite zero structure of the
given system, while the in"nite zero structure can be
arbitrary in its continuous-time counterpart. To relax
these conditions, we will introduce a modi"ed problem,
which can be solved for a much larger class of discrete-
time systems. This modi"ed formulation will yield inter-
nally stabilizing control laws that are capable of tracking
reference signals with some delays. If we know the refer-
ence signal a few steps ahead, the modi"ed tracking
control scheme will then track the reference precisely
after certain steps, provided that the given plant satis"es
a new set of more relaxed conditions. We note that this is
a unique feature of the discrete-time problem. It is im-
possible to achieve such a performance for continuous-
time systems.
Throughout this paper, the following notation will be

used: X� denotes the pseudo inverse of X; �U, �� and
�� are, respectively, the open unit disc, the unit circle
and the set of complex numbers outside the unit circle on
the complex plane; Ker(X) is the kernel ofX; Im(X) is the
image of X; Given a linear system �

H
characterized by

a matrix quadruple (A,B,C,D), we de"ne (see e.g., Chen,
2000):

(i) VU(�
H
) is the maximal subspace of �� for which

there exists an F such thatVU is (A#BF)-invariant
and is contained in Ker(C#DF), and the eigen-
values of (A#BF) �VU are contained in �U.

(ii) SU(�
H
) is the minimal subspace of �� for which

there exists a K such thatSU is (A#KC)-invariant
and contains Im(B#KD), and the eigenvalues of the
map which is induced by (A#KC) on the factor
space ��/SU are contained in �U.

2. Solvability conditions and solutions

The following theorem gives a set of necessary and
su$cient conditions under which the proposed RPT
problem is solvable for the given plant (1). We will show
the su$ciency of these conditions by explicitly construct-
ing the required control laws.

Theorem 1. Consider the given system (1) with its external
disturbance w3l

�
, p3[1,R], and its initial condition

x(0)"x
�
. Then, for any reference signal r(k), the proposed

robust and perfect problem is solvable by the control law of
(2) if and only if the following conditions are satisxed:
(1) (A,B) is stabilizable and (A,C

�
) is detectable;

(2)D
��

#D
�
SD

�
"0,whereS"!(D�

�
D

�
)�D�

�
D

��
D�

�
(D

�
D�

�
)�;

(3) �
�

is right invertible and of minimum phase
with no inxnite zeros; and (4) Ker(C

�
#D

�
SC

�
)

MC��
�

�Im(D
�
)� :"�� � C

�
�3Im(D

�
)�.

Proof. We "rst show that Conditions 1}4 in the theorem
are necessary. Let us consider the case when r(k),0.
Then, the proposed robust and perfect tracking problem
reduces to the perfect regulation problem. We can refor-
mulate the perfect regulation problem for the given sys-
tem (1) as the well studied almost disturbance decoupling
problem for the following system:

x(k#1)"Ax(k)#Bu(k)#[E I]w� (k), x(0)"0,

y(k)"C
�
x(k)#[D

�
0]w� (k),

h(k)"C
�
x(k)#D

�
u(k)#[D

��
0]w� (k).

(3)

For easy reference, we let �I
�

be characterized
(A, [E I],C

�
, [D

�
0]). Following the results of the dis-

crete-time almost disturbance decoupling problem (see
Chen, 2000), we can show that if the almost disturbance
decoupling problem for the above system is solvable, we
have: (i) (A,B) is stabilizable and (A,C

�
) is detectable;

(ii)D
��

#D
�
SD

�
"0,where S"!(D�

�
D

�
)�D�

�
D

��
D�

�
(D

�
D�

�
)�;

(iii) Im([E#BSD
�

I])LVU(�
�
)#BKer(D

�
); (iv)

Ker(C
�
#D

�
SC

�
)MSU(�I

�
)�C��

�
�Im(D

�
)�; and "nally

(v) SU(�I
�
)LVU(�

�
).

Next, it is easy to see that SU(�I
�
)"�� and hence

Condition (v) implies thatVU(�
�
)"��, or equivalently,

�
�
is right invertible with no in"nite zeros and no invari-

ant zeros in ��. Furthermore, Condition (iv) reduces to
the condition Ker(C

�
#D

�
SC

�
)MC��

�
�Im(D

�
)�. Thus,

it remains to be shown that if the proposed RPT problem
is solvable, the subsystem �

�
must be of minimum phase.

In what follows, we proceed to show such a fact:
First, we note that the second condition, i.e.,

D
��

#D
�
SD

�
"0, implies that if we apply a pre-output

feedback law, u(k)"Sy(k), to System (1), the resulting
new system will have a zero direct feed-through term
from w to h. Hence, without loss of any generality, we
hereafter assume that D

��
"0 throughout the rest of the

paper.
Next, we show that if the robust and perfect tracking

problem is solvable for general nonzero reference r(k),
�
�
must be of minimum phase, i.e., �

�
cannot have any

invariant zeros on the unit circle. In fact, this condition
must hold even for the case when w"0 and x

�
"0,

i.e., for the robust and perfect tracking of the following
system:

x(k#1)"Ax(k)#Bu(k),

y(k)"C
�
x(k),

e(k)"C
�
x(k)#D

�
u(k)!r(k)"h(k)!r(k).

(4)

Now, if we treat r as an external disturbance, then the
above problem is again equivalent to the well-known

294 B. M. Chen et al. / Automatica 38 (2002) 293}299
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almost disturbance decoupling problem with measure-
ment feedback and with internal stability for the follow-
ing system:

x(k#1)"Ax(k)#Bu(k),

y� (k)"�
C

�
x(k)

r(k) �,
e(k)"C

�
x (k)#D

�
u(k)!r(k).

(5)

Without loss of generality, we assume that the quadruple
(A,B,C

�
,D

�
) has been transformed into the form of the

special coordinate basis of Sannuti and Saberi (1987) (see
also Chen, 2000), i.e., we have

x"�
x�
�

x�
�

x
�
�, h"h

�
, r"r

�
, e"e

�
"h

�
!r

�
, (6)

u"�
u
�

u
�
�

and

x�
�
(k#1)"A�

��
x�
�
(k)#B�

��
h
�
(k), (7)

x�
�
(k#1)"A�

��
x�
�
(k)#B�

��
h
�
(k), (8)

x
�
(k#1)"A

��
x
�
(k)#B

��
h
�
(k)#B

�
[E�

��
x�
�
(k)

#E�
��

x�
�
(k)]#B

�
u
�
(k), (9)

e
�
(k)"C�

����
x�
�
(k)#C�

����
x�
�
(k)#C

����
x
�
(k)

#u
�
(k)!r

�
(k), (10)

where 	(A�
��
) and 	(A�

��
) are, respectively, the invariant

zeros of (A,B,C
�
,D

�
) in �� and ��, and (A

��
,B

�
) is

controllable. In order to bring the subsystem from u to
e into the standard form of the special coordinate basis,
we need to change h

�
in (7)}(9) to e

�
#r

�
, i.e.,

x�
�
(k#1)"A�

��
x�
�
(k)#B�

��
e
�
(k)#B�

��
r
�
(k), (11)

x�
�
(k#1)"A�

��
x�
�
(k)#B�

��
e
�
(k)#B�

��
r
�
(k), (12)

x
�
(k#1)"A

��
x
�
(k)#B

��
e
�
(k)

#B
�
[E�

��
x�
�
(k)#E�

��
x�
�
(k)]

#B
�
u
�
(k)#B

��
r
�
(k). (13)

It is easy to see that the subsystem from the controlled
input, i.e., (u�

�
u�
�
)�, to the error output, i.e., e

�
, is now in

the standard form of the special coordinate basis. It then
follows from the result of Chen (2000) (i.e., Proposition
12.2.1) that if the almost disturbance decoupling problem
with measurement feedback and with internal stability
for system (5) is solvable, there must exist a nonzero
vector 
 such that 
�(	I!A�

��
)"0 and 
�B�

��
"0,

which implies that the matrix pair (A�
��
,B�

��
) is not com-

pletely controllable. Following the property of the special
coordinate basis (see Chen, 2000), the uncontrollability of

(A�
��
,B�

��
) implies the unstabilizability of the pair (A,B),

which is obviously a contradiction. Hence, x�
�
must be

nonexistent and �
�
must be of minimum phase. This

proves the necessary part.
We note that for the case when D

�
"0, the direct

feedthrough term D
��
must be a zero matrix as well, and

the last condition, i.e., Condition (iv), of Theorem 1 re-
duces to Ker(C

�
)MKer(C

�
).

We will show the su$ciency of those conditions in
Theorem 1 by explicitly constructing controllers which
solve the proposed robust and perfect tracking problem
under Conditions 1}4 of Theorem 1. This will be done in
the next subsections. It turns out that the control laws,
which solve the robust and perfect tracking for the given
plant (1) under the solvability of Theorem 1, need not be
parameterized by any tuning parameter. Thus, (2) can be
replaced by

v(k#1)"A
���

v(k)#B
���

y(k)#Gr(k),

u(k)"C
���

v(k)#D
���

y(k)#Hr(k)
(14)

and furthermore, the resulting tracking error e(k) can be
made identically zero for all k*0.

2.1. Solutions to state feedback case

When all states of the plant are measured for feedback,
i.e., C

�
"I and D

�
"0, the problem can be solved by

a static control law. In fact, the conditions in Theorem
1 are reduced to: (i) (A,B) is stabilizable; (ii) D

��
"0; and

(iii) �
�
is right invertible and of minimum phase with no

in"nite zeros. We construct in this subsection a state
feedback control law,

u"Fx#Hr (15)

which solves the robust and perfect tracking (RPT) prob-
lem for (1) under the above conditions.

Step S.1: This step is to transform the subsystem from
u to h of the given system (1) into the special coordinate
basis, i.e., to "nd nonsingular state, input and output
transformations �

	
, �



and �

�
to put it into the struc-

tural form (see Chen, 2000, for details), i.e.,

���
	
(A!B

�
C

���
)�

	
"�

A�
��

0

B
�
E�

��
A

��
�, (16)

���
	

B�


"���

	
[B

�
B
�
]�



"�

B�
��

0

B
��

B
�
�, (17)

���
�

D
�
�



"[I

��
0], (18)

���
�

C
�
�

	
"���

�
C

���
�

	
"[C�

����
C

����
], (19)

where 	(A�
��
) are the invariant zeros of (A,B,C

�
,D

�
) and

(A
��
,B

�
) is controllable.

Step S.2: Choose an appropriate F
�
such that

A�
��

"A
��

!B
�
F
�
is stable.

B. M. Chen et al. / Automatica 38 (2002) 293}299 295
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Step S.3: Finally, we let

F"!�

�

C�
����

C
����

E�
��

F
�
����

	
and H"�


�
I

0����
�
.

(20)

Theorem 2. Consider the discrete-time system (1) with any
external disturbance w(k) and any initial condition x(0).
Assume that all its states are measured for feedback. If
D

��
"0 and �

�
is stabilizable, right invertible and of

minimum phase with no inxnite zeros, then, for any refer-
ence signal r(k), the proposed robust and perfect tracking
is solved by the control law of (15) with F and H as given
in (20).

Proof. It follows from some simple calculations. �

2.2. Solutions to measurement feedback case

Without loss of generality, we assume throughout this
subsection that matrix D

��
"0. It turns out that, for

discrete-time systems, the full order observer based con-
trol law is not capable of achieving the robust and perfect
tracking performance, because there is a delay of one step
in the observer itself. Thus, we will focus on the construc-
tion of a reduced order measurement feedback control
law to solve the RPT problem. For simplicity of pre-
sentation, we assume that matrices C

�
and D

�
have

already been transformed into the following forms:

C
�
"�

0 C
����

I� 0 � and D
�
"�

D
���
0 �, (21)

where D
���

is of full row rank. We "rst partition the
following system:

x(k#1)"Ax(k)#Bu(k)#[E I
�
]w� (k),

y(k)"C
�
x(k)#[D

�
0]w� (k)

(22)

in conformity with the structures of C
�
and D

�
in (21),

i.e.,

�
�(x

�
)

�(x
�
)�"�

A
��

A
��

A
��

A
��
��

x
�

x
�
�

#�
B
�

B
�
�u#�

E
�

I� 0

E
�

0 I
����

w� , (23)

�
y
�

y
�
�"�

0 C
����

I� 0 ��
x
�

x
�
�#�

D
���

0 0

0 0 0�w� ,
where �(x

�
)"x

�
(k#1) and �(x

�
)"x

�
(k#1). Obvious-

ly, y
�
"x

�
is directly available and hence need not be

estimated. Next, let �
�	

be characterized by

(A
	
,E

	
,C

	
,D

	
)

"�A��
, [E

�
0 I

���], �
C

����
A

��
�, �

D
���

0 0

E
�

I� 0��.
(24)

It is straightforward to verify that �
�	
is right invertible

with no "nite and in"nite zeros. Moreover, (A
	
,C

	
) is

detectable if and only if (A,C
�
) is detectable. We are

ready to present the following algorithm.
Step R.1: For the given system (1), we again assume

that all the state variables of (1) are measurable and then
follow Steps S.1}S.3 of the algorithm of the previous
subsection to construct gain matrices F and H. We also
partition F in conformity with x

�
and x

�
of (23) as

follows:

F"[F
�

F
�
]. (25)

Step R.2: Let K
	
be an appropriate dimensional con-

stant matrix such that the eigenvalues of

A
	
#K

	
C

	
"A

��
#[K

	�
K

	�
]�

C
����

A
��
� (26)

are all in ��. This can be done because (A
	
,C

	
) is

detectable.
Step R.3: Let G"(B

�
#K

	�
B
�
)H, and

G
	
"[!K

	�
, A

��
#K

	�
A

��
!(A

	
#K

	
C

	
)K

	�
],

(27)

A
���

"A
	
#B

�
F

�
#K

	
C

	
#K

	�
B
�
F
�
,

B
���

"G
	
#(B

�
#K

	�
B
�
)[0, F

�
!F

�
K

	�
],

C
���

"F
�
,

D
���

"[0, F
�
!F

�
K

	�
]. (28)

Step R.4: Finally, we obtain the following reduced
order measurement feedback control law:

v(k#1)"A
���

v(k)#B
���

y(k)#Gr(k),

u(k)"C
���

v(k)#D
���

y(k)#Hr(k). (29)

Theorem 3. Consider the given system (1) with any external
disturbance w(k) and any initial condition x(0). If Condi-
tions 1}4 of Theorem 1 are satisxed, then, for any reference
signal r(k), the proposed RPT is solved by the reduced order
measurement feedback control laws of (29).

Proof. Due to space limitation, the proof is omitted (see
Chen, 2000 for details).

The su$ciency of Theorem 1 is obvious now in view of
the result of Theorem 3. The proof of Theorem 1 is thus
completed. �

296 B. M. Chen et al. / Automatica 38 (2002) 293}299
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3. An almost perfect tracking problem

As has been seen in the previous section, the solvability
conditions for the robust and perfect tracking problem
are generally too strong. We introduce now a modi"ed
problem, the almost perfect tracking problem, which can
be solved for a much larger class of discrete-time systems
with any in"nite zero structure. This modi"ed formula-
tion will yield internally stabilizing control laws that are
capable of tracking reference signal r(k) with some delays.
If we know the reference signal a few steps ahead, the
modi"ed tracking control scheme will then track the
reference precisely after certain steps.
For simplicity, we consider in this section the discrete-

time system (1) without external disturbances, i.e.,

� : �
x(k#1)"Ax(k)#Bu(k), x(0)"x

�
,

y(k)"C
�
x(k),

h(k)"C
�
x(k)#D

�
u(k).

(30)

Let us "rst consider the case that the reference r(k)3�l to
be tracked is a known vector sequence, which implies
that r(k#d), 0)d)�d , is known for some integer
�d*0. This is a quite reasonable assumption in most
practical situations when one wants to track references
such as step functions, ramp functions and sinusoidal
functions. We will later deal with the case when
r(k#d), d'0, is unknown. We are ready to formally
de"ne the almost perfect tracking problem. Given the
discrete-time system (30) with initial condition x(0)"x

�
and the reference r(k) with r(k#d), 0)d)�d , being
known for a nonnegative integer �d , the (�d ,��

) almost
perfect tracking problem, where �

�
is another non-

negative integer, is to "nd a dynamic measurement feed-
back control law of the following form:

v(k#1)"A
���

v(k)#B
���

y(k)

#G
�
r(k)#2#G�d

r(k#�d),

u(k)"C
���

v(k)#D
���

y(k)

#H
�
r(k)#2#H�d

r(k#�d) (31)

such that when (31) is applied to (30), (1) the resulting
closed-loop system is internally stable; and (2) for any
initial condition x

�
3��, the resulting tracking error

e(k),0 or h(k),r(k), for all k*�
�
.

Theorem 4. Consider the discrete-time plant (30) with
x(0)"x

�
, and with (i) (A,B) being stabilizable and (A,C

�
)

being observable; and (ii) �
�
being right invertible and of

minimum phase. Let the inxnite zero structure of �
�
be

given as S�



(�

�
)"�q

�
,2, q

��
�, with q

�
)2)q

��
, and

let the controllability index of (A�,C�
�
) be C"�k

�
,2, kp�,

with k
�
)2)kp . Then, the (�d ,��

) almost perfect track-
ing problem is solvable for any reference with �d"q

��
and

�
�
"q

��
#kp!1.

Proof. We prove this theorem by explicitly constructing
the required control law. Let us "rst construct the special
coordinate basis of �

�
. It follows from Sannuti and

Saberi (1987) (see also Chen, 2000) that there exist non-
singular state, output and input transformations �

	
, �

�
and �



, which will take �

�
into the standard format of the

special coordinate basis, i.e.,

x"�
	
x� , h"�

�
hI , u"�



u� , r"�

�
r� , (32)

x� "�
x�
�

x
�

x
�
�, hI "�

h
�

h
�
�, u� "�

u
�

u
�

u
�
�, r� "�

r
�
r
�
�,

x
�
"�

x
�



x
��
�, x

�
"�

x
��



x
���
�, h

�
"�

h
�



h
��
�,

r
�
"�

r
�



r
��
�, u

�
"�

u
�



u
��
�

and

�(x�
�
)"A�

��
x�
�

#B�
��

h
�
#¸�

��
h
�
, (33)

�(x
�
)"A

��
x
�
#B

��
h
�
#¸

��
h
�
#B

�
E�

��
x�
�

#B
�
u
�
, (34)

h
�
"C�

����
x�
�

#C
����

x
�
#C

����
x
�
#u

�
, u

�
3��� (35)

and for each i"1,2,m
�
, x

�
3��� and

�(x
�
)"A

��
x
�
#¸

��
h
�
#¸

��
h
�

#B
���u�#E�

��
x�
�

#E
��
x
�
#

��

�
	��

E
�	
x
	�, (36)

h
�
"C

��
x
�
"x

��
, h

�
"C

�
x
�
, (37)

where �(�)"�(k#1), the triple (A
��
,B

��
,C

��
) has the

special structure as given in (2.4.16) of Chen (2000). Fur-
thermore, ¸

��
has the following special format:

¸
��

"[¸
��

¸
��

2 ¸
����

0 2 0]

with its last row always being identically zero. Next, we
partition ¸

��
and ¸

��
, i"1,2,m

�
, as follows:

¸
��

"�
¸

����



¸
�����

�, ¸
��

"�
¸

����



¸
�����
� (38)
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

and de"ne a new controlled output

hI
�
(k)"�

h
�
(k)

h
�
(k#q

�
)!

��
�
	��

[¸
���	

¸
���	
]hI (k#q

�
!j)




h
��
(k#q

��
)!

���

�
	��

[¸
����	

¸
����	

]hI (k#q
��

!j)�.
(39)

Then, it is straightforward to verify that y�
�
can be ex-

pressed as

hI
�
(k)"C[

�
x� (k)#D[

�
u� (k) (40)

with

C[
�
"�

C�
����

C
����

C
����

E�
��

E
��

E
��
� (41)

and

D[
�
"�

I
��

0 0

0 I
��

0�,
where

E�
��

"�
E�
��



E�
���
�, E

��
"�

E
��



E
���
�, E

��
"�

E
��

2 E
���


 � 


E
���

2 E
����

�.
(42)

Let AI "���
	

A�
	
and BI "���

	
B�



, and let �[

�
be charac-

terized by (AI ,BI ,C[
�
,D[

�
). It is simple to show that the

auxiliary system �[
�
is right invertible and of minimum

phase with no in"nite zeros.
We "rst assume that C

�
"I and follow Steps S.1}S.3

of the previous section to obtain a state feedback control
law

u� (k)"FI x� (k)#HI r�
�
(k), (43)

where

r�
�
(k)"�

r
�
(k)

r
�
(k#q

�
)!

��
�
	��

[¸
���	

¸
���	
]r� (k#q

�
!j)




r
��
(k#q

��
)!

���

�
	��

[¸
����	

¸
����	

]r� (k#q
��

!j)�
(44)

which has the following properties: (i) AI #BI FI is asymp-
totically stable, and (ii) the resulting hI

�
(k)"r�

�
(k). This

implies that the actual controlled output h is capable of
precisely tracking the given reference r(k) after q

��
steps.

Rewriting (43), we obtain

u(k)"�


u� (k)"�



[FI x� (k)#HI r�

�
(k)]

"�


[FI x� (k)#HI ¸

�
r� (k)#HI ¸

�
r� (k#1)

#2#HI ¸
��

r� (k#q
��
)] (45)

for some ¸
�
,¸

�
,2,¸

��
. Let F"�



FI ���

	
, and

H
	
"�



HI ¸

	
���
�
, for j"0,1,2,m

�
. We have

u(k)"Fx(k)#H
�
r(k)#H

�
r(k#1)

#2#H
��

r(k#q
��
). (46)

Next, we proceed to construct a reduced order measure-
ment feedback controller. We follow Steps R.1}R.3 of the
previous section to obtain matrices B

�
, B

�
, F

�
, F

�
and

gain matrices A
���

, B
���

, C
���

and D
���

as given in (28).
Note that the pair (A,C

�
) is observable and (A�,C�

�
) has

a controllability index �k
�
,2, kp�, it is easy to show that

(A
	
,C

	
) is also observable and the controllability index

of (A�
	
,C�

	
) is given by �k

�
!1,2, kp!1�. It follows

from Theorem 2.3.1 of Chen (2000) that there exists
a gain matrix K

	
such that A

	
#K

	
C

	
has all its eigen-

values at the origin and

(A
	
#K

	
C

	
)
p��,0. (47)

We thus choose such a K
	
in constructing gain matrices

A
���

, B
���

, C
���

and D
���

. The reduced order measure-
ment feedback law is then given by

v(k#1)"A
���

v(k)#B
���

y(k)#
��

�
	��

G
	
r(k#j),

u(k)"C
���

v(k)#D
���

y(k)#
��

�
	��

H
	
r(k#j), (48)

where G
	
"(B

�
#K

	
B
�
)H

	
, i"0,1,2,m

�
. Let

x
�
(k)"x

�
(k)!v(k)#K

	
x
�
(k). It is straightforward to

verify that the closed-loop system comprising the given
system (30) and the reduced order measurement feedback
control law of (48) can be rewritten as follows:

x
�
(k#1)"(A

	
#K

	
C

	
)x

�
(k), (49)

x(k#1)"(A#BF)x(k)!BF
�
x
�
(k)#

��

�
	��

BH
	
r(k#j),

(50)

h(k)"(C
�
#D

�
F)x(k)!D

�
F
�
x
�
(k)#

��

�
	��

D
�
H

	
r(k#j).

(51)

Thus, it is easy to see that the closed-loop system is
asymptotically stable as A#BF and A

	
#K

	
C

	
have

eigenvalues inside the unit circle. Clearly, for any initial
condition, (49) implies that x

�
(k)"0 for all k*kp!1.

Hence, for k*kp!1, (50) and (51) reduce to

x(k#1)"(A#BF)x(k)#
��

�
	��

BH
	
r(k#j),

h(k)"(C
�
#D

�
F)x(k)#

��

�
	��

D
�
H

	
r(k#j) (52)
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which are precisely the same as the closed-loop dynamics
under the state feedback law. If we treat x(kp!1) as
a new initial condition to (52), it will take another
q
��
steps for h to precisely track the reference r. Thus, we

have h(k)"r(k) for all k*q
��

#kp!1. Hence, the
(�d ,��

) almost perfect tracking problem is solved by the
control law (31) with �d"q

��
and �

�
"q

��
#kp!1.

Remark 5. Consider the given plant (30) which has all
properties as stated in Theorem 4. Then, the (�d ,��

)
almost perfect tracking problem is solvable by a full
order measurement feedback controller of the form (31)
with �d"q

��
and �

�
"q

��
#kp . It can be shown that

the required solution is given by

v(k#1)"A
���

v(k)#
��

�
	��

BH
	
r(k#j)!Ky(k),

u(k)"Fv(k)#
��

�
	��

H
	
r(k#j), (53)

where A
���

"A#BF#KC
�
,K being chosen such that

(A#KC
�
)
p��"0.

Remark 6. For simplicity, we consider �
�
to be a single

output system with a relative degree q
�
. Clearly, if the

reference r(k#d) is unknown for all d'0, then the full
order output feedback controller (53) with r(k#�) being
replaced by r(k) will be capable of tracking the reference
with a delay of q

�
steps after q

�
#kp initial steps. Sim-

ilarly, under the same situation, the reduced order output
feedback controller (48) with r(k#�) being replaced by
r(k) will track the reference with a delay of q

�
steps after

q
�
#kp!1 initial steps.

4. Conclusions

We have studied the problem of robust and perfect
tracking for discrete-time linear time-invariant multivari-
able systems. A set of necessary and su$cient conditions
under which the proposed problem is solvable is ob-
tained and, under these conditions, constructive algo-
rithms are given that yield required solutions. We have
also proposed in this paper an almost perfect tracking
scheme, which can track references precisely after certain
initial steps.
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