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We consider in this paper the robust and perfect tracking (RPT) problem for multivariable linear systems with external
disturbances. The problem is to design a proper controller such that the resulting overall closed-loop system is asymp-
totically stable and the controlled output almost perfectly tracks a given reference signal with an arbitrarily fast settling
time in the face of external disturbances and initial conditions. The contributionof this paper is two-fold: (1) We derive a
set of necessary and su� cient conditions under which the RPT problem is solvable; and (2) Under these solvability
conditions, we develop algorithms for constructing state and output feedback laws, explicitly parameterized in ", that
solve the RPT problem. In our construction of feedback laws, we propose a controller structure which enables us to
design a tracking controller without introducing additional integrators regardless of what type the system is.

1. Introduction to the Problem

The tracking problem is one of the most common

and important issues in designing a control system.

Most results in the literature focus on only issues associ-

ated with asymptotic tracking problems, in which track-

ing errors are made to tend to zero as time progresses
towards in® nity. However, there are many cases, espe-

cially in many practical situations, for which one can

design a control system that would yield a much better

performance, e.g. faster settling time and smaller over-

shoot, without additional costs. Being motivated by

our experience in designing control systems for gyro-
stabilized mirror and hard disk drive systems (see,

Goh et al. 1999, Siew et al. 1999), we propose in this

paper a so-called robust and perfect tracking (RPT)

problem, which is to design a controller for a given

linear time-invariant system such that the resulting
closed-loop system is asymptotically stable and the con-

trolled output almost perfectly tracks a given reference

signal in the presence of any initial conditions and exter-

nal disturbances. By almost perfect tracking we mean

the ability of a controller to track a given reference sig-
nal with arbitrarily fast settling time in the face of exter-

nal disturbances and initial conditions. We also note

that the robustness referred to in this paper is with

respect to the external disturbance. More speci® cally,

we consider in this paper the following multivariable

linear time-invariant system

S :
_x ˆ Ax ‡ Bu ‡ Ew; x…0† ˆ x0

y ˆ C1x ‡ D1w

h ˆ C2x ‡ D2u ‡ D22w

8
<

: …1†

where x 2 R n is the state, u 2 R m is the control input,

w 2 R q is the external disturbance, y 2 R p is the meas-

urement output, and h 2 R l is the output to be

controlled. We also assume that the pair …A; B† is stabi-
lizable and …A; C1† is detectable. For future references,

we de® ne SP and SQ to be the subsystems characterized

by the matrix quadruples …A; B; C2; D2† and

…A; E; C1; D1†; respectively. Given the external disturb-

ance w 2 Lp, p 2 ‰1; 1†, and any reference signal vector,
r 2 R l with r, _r, . . ., r…µ¡1†, µ ¶ 1, being available for

feedback, and r…µ† being either a vector of delta func-

tions or in Lp, the robust and perfect tracking (RPT)

problem for the system (1) is to ® nd a parameterized

dynamic measurement and reference feedback control
law of the

_v ˆAcmp…"†v ‡ Bcmp…"†y ‡ G0…"†r

‡ ¢ ¢ ¢ ‡ Gµ¡1…"†r…µ¡1†

u ˆCcmp…"†v ‡ Dcmp…"†y ‡ H0…"†r

‡ ¢ ¢ ¢ ‡ Hµ¡1…"†r…µ¡1†

9
>>>>>>>=

>>>>>>>;

…2†

such that when (2) is applied to (1), we have:

(1) There exists an "¤ > 0 such that the resulting

closed-loop system with r ˆ 0 and w ˆ 0 is

asymptotically stable for all " 2 …0; "¤Š; and

(2) Let h…t; "† be the closed-loop controlled output

response and let e…t; "† :ˆ h…t; "† ¡ r…t†. Then, for

any initial condition of the state, x0 2 R n

Jp…x0; w; r; "† :ˆ kekp µ ¬" jx0j ‡ kwkp ‡ kr…k†kp

± ²
…3†

where ¬ is a positive scalar independent of ".

Various aspects of the robust and perfect regulation
problem were heavily investigated by many researchers

in the 1970s and early 1980s. The perfect regulation

problem via state feedback was studied by

Kwakernaak and Sivan (1972), Francis (1979), Kimura
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(1981) and Scherzinger and Davison (1985), and was

completely solved by Lin et al. (1996) (see also Lin

1999). The solution to the problem of perfect regulation

via measurement output feedback for general linear

systems has only been reported recently by Chen et al.
(2000). The problem of almost perfect tracking via state

feedback was formulated and solved for square inverti-

ble linear systems by Lawrence and Rugh (1991). The

robust servo mechanism problem with perfect control

was formulated by Davison and his co-workers (see,

e.g. Davison and Chow (1977), which mainly dealt
with state feedback case, and Davison and Scherzinger

(1987) and the references therein). A detailed description

of and comparison among these problems are omitted

due to the limitation of space.

More recently, Saberi et al. (1997) formulated the
problem of generalized output regulation, in which the

disturbance and command signal to be tracked are mod-

elled as the trajectories of a reference model. The refer-

ence model is driven by a reference input r (see, e.g. (4.1)

of Saberi et al., 1997). Under the condition that certain
linear matrix equalities are solvable, the problem can be

formulated and solved as a robust control problem, in

which certain operator norm of the transfer matrix from

the reference input to the tracking error is made small.

Although such a formulation leads to a straightforward

solution, it can guarantee the tracking error, e, to have a

small modi® ed Lp-norm only when r is in some Lq func-
tional spaces. The modi® ed Lp-norm of e introduced in

Saberi et al. (1997) is de® ned as

kekp;‰T ;1† :ˆ
…1

T

jejpdt

³ ´1=p

…4†

where T represents a certain waiting period which
should be long enough to ensure that the eŒect of initial

condition becomes small enough (less than some pre-set

level). In other words, the formulation of generalized

output regulation does not capture the transient per-

formance of the closed-loop system. We would like to
note that our formulation is capable of tracking refer-

ences with any initial condition with arbitrarily fast

settling time. It does not require such a waiting period

for the initial condition to die out. As it will be seen

shortly, our results do not involve solving linear matrix
equalities either.

In this paper, we derive a set of necessary and su� -

cient conditions under which the proposed robust and

perfect tracking problem has a solution, and under these

conditions, develop algorithms for the construction of

parameterized feedback laws that solve the proposed
problem. Our algorithm for obtaining the state feedback

gain matrix F…"† utilizes the concept of asymptotic time-

scale and eigenstructure assignment (ATEA) procedure.

The concept of ATEA design procedure was originally

conceived in Saberi and Sannuti (1989) and was used to

solve many control problems, including H1 optimal

control problems (Chen, 1998), loop transfer recovery

(Saberi et al. 1993) and H2 optimal control problems

(Saberi et al. 1995). However, unlike the previous appli-

cations where the observer gain matrices are constructed

dually, our constructions of observer gain matrices, both

for full order and reduced order measurement feedback

cases, are totally diŒerent from the procedure for their

state feedback counterpart.

The outline of this paper is as follows. In }2, we

recall some background materials in linear system

theory, which would be instrumental to our current

development. Section 3 presents our main results, i.e.

the solvability conditions as well as solutions to the pro-

posed robust and perfect tracking problem. We will con-

struct three types of parameterized solutions: the state

feedback law, the full order measurement and reference

feedback controller, i.e. it has a dynamical order equal

to n, and the reduced order one whose dynamical order

is less than n. As a by-product, we will show in }4 that

the main results of the paper can be extended to track

more general type of references. Finally, conclusions are

drawn in }5.

Throughout this paper, the following notation will

be used: X 0 denotes the transpose of matrix X ; Xy

denotes the Moore± Penrose (pseudo) inverse of X ; I

denotes an identity matrix with appropriate dimensions;

R is the set of all real numbers; C is the set of all com-

plex numbers; C ¡, C 0 and C ‡ are respectively the open

left-half complex plane, the imaginary axis and the open

right-half complex plane; r…µ†…t† is the µ-th order deriva-

tive of r…t†; jxj denotes the Euclidean norm of the vector

x; k ¢ kp denotes the Lp-norm with 1 µ p µ 1; Lp is the

set of all time domain functions whose Lp-norms are

® nite; Ker …X† is the kernel of X ; Im …X† is the image

of X ; C¡1fX g :ˆ fx j Cx 2 Xg, where X is a vector

space and C is a constant matrix. ¶…X† is the set of

eigenvalues of a real square matrix X ; and ® nally

¼max…X† denotes the maximum singular value of matrix

X . We also introduce the following geometric subspaces:

(1) V‡…S¤† is the maximal subspace of R n for which

there exists an appropriate dimensional constant

matrix F such that V‡ is …A ‡ BF†-invariant and

is contained in Ker…C ‡ DF†, and the eigen-

values of …A ‡ BF†jV‡ are contained in C ‡.

(2) S‡…S¤† is the minimal subspace of R n for which

there exists an appropriate dimensional constant

matrix K such that S‡ is …A ‡ KC†-invariant and

contains Im…B ‡ KD†, and the eigenvalues of the

map which is induced by …A ‡ KC† on the factor

space R n=S‡ are contained in C ‡.
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We note that these geometric subspaces are related to

the Lp-almost controlled invariant subspaces introduced

in Willems (1981).

2. Background materials

We recall in this section the special coordinate basis
of linear time-invariant systems introduced by Sannuti

and Saberi (1987) and Saberi and Sannuti (1990). Such a

special coordinate basis is instrumental to the develop-

ment of our results. Consider a linear time-invariant

system S¤ characterized by the quadruple …A; B; C; D†
or in the state space form

_x ˆ Ax ‡ Bu

y ˆ Cx ‡ Du

9
=

; …5†

where x 2 R n; u 2 R m and y 2 R p are the state, the input

and the output of S¤. It is simple to verify that there
exist non-singular transformations U and V such that

UDV ˆ Im0
0

0 0

µ ¶
…6†

where m0 is the rank of matrix D. Thus, without loss of

generality, it is assumed that the matrix D has the form
given on the right hand side of (6). One can now rewrite

the system of (5) as

_x ˆ A x ‡ B0 B1‰ Š
u0

u1

Á !

y0

y1

Á !
ˆ

C0

C1

" #
x ‡

Im0
0

0 0

" #
u0

u1

Á !

9
>>>>>=

>>>>>;

…7†

where the matrices B0, B1, C0 and C1 have appropriate

dimensions. For simplicity, we will focus in this sec-

tion the special coordinate basis for the case when

…A; B; C; D† is right invertible and has no invariant
zeros in C ‡, as this will be good enough for the devel-

opment of our results in this paper. We have the follow-

ing theorem.

Theorem 1: Given the linear system S¤ of (5), which is

right invertible and has no invariant zeros in C ‡, there
exist:

(1) Coordinate free non-negative integers n¡
a , n0

a,

nc,nd , md µ m ¡ m0 and qi, i ˆ 1, . . . , md , and

(2) Non-singular state, output and input transforma-

tions Gs, Go and Gi which take the given S¤ into a

special coordinate basis that displays explicitly

both the ® nite and in® nite zero structures of S¤.

The special coordinate basis is described by the set of

equations

x ˆ Gs ~x; y ˆ Go~y; u ˆ Gi ~u …8†

~x ˆ

xa

xc

xd

0

BBB@

1

CCCA; xa ˆ
x¡

a

x0
a

Á !

; xd ˆ

x1

x2

..

.

xmd

0

BBBBBBB@

1

CCCCCCCA

…9†

~y ˆ
y0

yd

Á !

; yd ˆ

y1

y2

..

.

ymd

0

BBBBBBB@

1

CCCCCCCA

; ~u ˆ

u0

ud

uc

0

BBB@

1

CCCA; ud ˆ

u1

u2

..

.

umd

0

BBBBBBB@

1

CCCCCCCA

…10†

and

_x¡
a ˆ A¡

aax¡
a ‡ B¡

0ay0 ‡ L¡
adyd …11†

_x0
a ˆ A0

aax0
a ‡ B0

0ay0 ‡ L0
ad yd …12†

_xc ˆ Accxc ‡ B0cy0 ‡ Lcdyd ‡ Bc E¡
cax¡

a ‡ E0
cax0

a

£ ¤

‡ Bcuc …13†

y0 ˆ C0cxc ‡ C¡
0ax

¡
a ‡ C0

0ax
0
a ‡ C0dxd ‡ u0 …14†

and for each i ˆ 1, . . . , md

_xi ˆ Aqi
xi ‡ Li0y0 ‡ Lidyd

‡ Bqi
ui ‡ Eiaxa ‡ Eicxc ‡

Xmd

jˆ1

Eijxj

" #
…15†

yi ˆ Cqi
xi; yd ˆ Cdxd …16†

Here the states x¡
a , x0

a, xc and xd are respectively of

dimensions n¡
a , n0

a, nc and nd ˆ
Pmd

iˆ1 qi, while xi is of
dimension qi for each i ˆ 1, . . . , md . The control vectors

u0, ud and uc are respectively of dimensions m0, md and

mc ˆ m ¡ m0 ¡ md while the output vectors y0 and yd are

respectively of dimensions p0 ˆ m0 and pd ˆ md . The

matrices Aqi
, Bqi

and Cqi
have the form

Aqi
ˆ 0 Iqi ¡1

0 0

µ ¶
; Bqi

ˆ 0

1

µ ¶
; Cqi

ˆ ‰1; 0; . . . ; 0Š

…17†

Moreover, we have ¶…A¡
aa† « C ¡ and ¶…A0

aa† « C 0. Also,

the pair …Acc,Bc† is controllable.

We can rewrite the special coordinate basis of

…A; B; C; D† given by Theorem 1 in a more compact

form
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~A ˆ G¡1
s …A ¡ B0C0†Gs

ˆ

A¡
aa 0 0 L¡

ad Cd

0 A0
aa 0 L0

ad Cd

BcE
¡
ca BcE

0
ca Acc LcdCd

BdE¡
da BdE0

da BdEdc Add

2

6666664

3

7777775

…18†

~B ˆ G¡1
s B0 B1‰ ŠGi ˆ

B¡
0a 0 0

B0
0a 0 0

B0c 0 Bc

B0d Bd 0

2

6666664

3

7777775

~D ˆ G¡1
o DGi ˆ

Im0
0 0

0 0 0

" #

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

…19†

~C ˆ G¡1
o

C0

C1

" #

Gs ˆ
C¡

0a C0
0a C0c C0d

0 0 0 Cd

" #
…20†

In what follows, we state some important properties

of the above special coordinate basis which are pertinent

to our present work and will be used throughout this
paper. The proofs of these properties can be found in

Chen (1998).

Property 1:

(1) S¤ is stabilizable if and only if the pair
…A0

aa, ‰ B0
0a L0

ad
Š† is controllable.

(2) Invariant zeros of S¤ are the eigenvalues of Aaa,

which are the unions of the eigenvalues of A¡
aa and

A0
aa. S¤ is said to be minimum phase if all its

invariant zeros are in C ¡. Thus, for minimum

phase S¤, we have n0
a ˆ 0.

(3) S¤ has m0 ˆ rank …D† in® nite zeros of order 0.

The in® nite zero structure (of order greater than

0) of S¤ is given by S?
1…S¤† ˆ fq1,q2,. . .,qmd

g, i.e.
each qi corresponds to an in® nite zero of S¤ of

order qi.

3. Solvability conditions and solutions to RPT problem

We are now ready to present our main results. We

will ® rst derive a set of necessary and su� cient con-

ditions under which the proposed robust and perfect

tracking (RPT) problem is solvable for the given plant
(1). In fact, we will show the su� ciency of these con-

ditions by explicitly constructing two types of pa-

rameterized control laws: one is of full order, i.e. its

dynamical order is equal to n, the order of the plant,

and the other is of reduced order, i.e., its dynamical

order is less than n.

We have the following theorem.

Theorem 2: Consider the given system (1) with its
external disturbance w 2 Lp, p 2 ‰1,1†, and its initial

condition x…0† ˆ x0. Then, for any reference signal

r…t†, which has all its i-th order derivatives,

i ˆ 0,1,. . .,µ ¡ 1, µ ¶ 1, being available for feedback

and r…µ†…t† being either a vector of delta functions or in
Lp, the proposed robust and perfect tracking (RPT)

problem is solvable by the control law of (2) if and only

if the following conditions are satis® ed:

(1) …A; B† is stabilizable and …A; C1† is detectable;

(2) D22 ‡ D2SD1 ˆ 0, where S ˆ ¡…D 0
2D2†yD 0

2D22£
D 0

1…D1D 0
1†y;

(3) SP, i.e., …A,B,C2,D2†, is right invertible and of

minimum phase;

(4) Ker…C2 ‡ D2SC1† ¼ C¡1
1 fIm…D1†g.

Proof: We ® rst show that Conditions 1 to 4 in the-

orem 2 are necessary. Let us consider the case when

x0 ˆ 0 and r…t† ² 0, which of course has all its deriva-

tives of any order being available. It is simple to see

that the proposed robust and perfect tracking problem

is reduced to the well-known almost disturbance de-
coupling problem with measurement feedback for the

given system (1) with x0 ˆ 0 (see Willems 1981, 1982,

for the original formulation of this problem).

Next, let us consider the case when r…t† ² 0 and

w…t† ² 0. Our proposed problem is then reduced to the
perfect regulation problem with measurement feedback.

Following the results of Chen et al. (2000) (see also Lin

1999 for the state feedback case), we can reformulate the

perfect regulation problem for the system of (1) with

w ˆ 0 again as an almost disturbance decoupling prob-
lem for the following auxiliary system

_x ˆ Ax ‡ Bu ‡ Iŵ; x…0† ˆ 0

y ˆ C1x

h ˆ C2x ‡ D2u

9
>>>=

>>>;
…21†

where ŵ is a delta function. In order to solve the pro-

posed RPT problem for the given system (1) with r ˆ 0,

we will have to solve simultaneously the almost disturb-

ance decoupling problem for (1) with x0 ˆ 0, and the
almost disturbance decoupling problem for (21), by

using a single and same control law. Clearly, this is

equivalent to solving the almost disturbance decoupling

problem for the system
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_x ˆ Ax ‡ Bu ‡ E I‰ Š ~w; x…0† ˆ 0

y ˆ C1x ‡ D1 0‰ Š ~w

h ˆ C2x ‡ D2u ‡ ‰D22 0Š ~w

9
>>>=

>>>;
…22†

which has the same control input u and the same meas-

urement output y as those of the original system S in (1).

For easy reference, we let ~SQ be the subsystem charac-

terized by …A; E I‰ Š; C1; D1 0‰ Š†. Following the re-

sults of the well-known almost disturbance decoupling
problem (see e.g. Chen 1998, Weiland and Willems 1989,

and references therein), we can show that if the almost

disturbance decoupling problem for the above system is

solvable, then the following conditions hold:

(1) …A; B† is stabilizable and …A; C1† is detectable;

(2) D22 ‡ D2SD1 ˆ 0, where S ˆ ¡…D0
2D2†yD0

2D22£
D0

1…D1D0
1†y;

(3) Im… E ‡ BSD1 I‰ Š† « S‡…SP†;

(4) Ker…C2 ‡ D2SC1† ¼ V‡…~SQ†.

Clearly, item (3) above implies that S‡…SP† ˆ R n, which
implies that SP is right invertible without invariant zeros

in C ‡. Due to the special form of ~SQ, it is simple to show

that V‡…~SQ† ˆ C¡1
1 fIm…D1†g. Hence, items (3) and (4)

are respectively equivalent to: (i) SP is right invertible

without invariant zeros in C ‡; and (ii)

Ker…C2 ‡ D2SC1† ¼ C¡1
1 fIm…D1†g. Thus, it remains to

show that if the proposed RPT problem is solvable, the

subsystem SP must be of minimum phase. In what fol-

lows, we proceed to show such a fact.

First, we note that second condition, i.e.

D22 ‡ D2SD1 ˆ 0, implies that if we apply a pre-output
feedback law u ˆ Sy; to the system (1), the resulting new

system will have a direct feedthrough term from w to h

equal to 0. Hence, without loss of any generality, we

hereafter assume that matrix D22 ˆ 0 throughout the

rest of the proof.
Next, we show that if the robust and perfect tracking

problem is solvable for general non-zero reference r…t†,
SP must be of minimum phase, i.e. SP cannot have any

invariant zeros on the imaginary axis. In fact, this con-

dition must hold even for the case when w ˆ 0 and

x0 ˆ 0, i.e. for the robust and perfect tracking of the
following system

_x ˆ Ax ‡ Bu

y ˆ C1x

e ˆ C2x ‡ D2u ¡ r ˆ h ¡ r

9
>>>=

>>>;
…23†

Now, if we treat r as an external disturbance, then the

above problem is again equivalent to the well-known

almost disturbance decoupling problem with measure-

ment feedback and with internal stability for the system

_x ˆ Ax ‡ Bu

~y ˆ

C1x

r

..

.

r…µ¡1†

0

BBBBBBB@

1

CCCCCCCA

e ˆ C2x ‡ D2u ¡ r

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

…24†

Without loss of generality, we assume that the quad-

ruple …A; B; C2; D2† has been transformed into the

form of the special coordinate basis of Theorem 1, i.e.

we have

x ˆ

x¡
a

x0
a

xc

xd

0

BBBBBB@

1

CCCCCCA
; h ˆ

h0

hd

Á !

; r ˆ
r0

rd

Á !

e ˆ
e0

ed

Á !
ˆ

h0 ¡ r0

hd ¡ rd

Á !

; u ˆ

u0

ud

uc

0

BBB@

1

CCCA

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

…25†

xd ˆ

x1

x2

..

.

xmd

0

BBBBBBB@

1

CCCCCCCA

; xi ˆ

xi1

xi2

..

.

xiqi

0

BBBBBBB@

1

CCCCCCCA

; hd ˆ

h1

h2

..

.

hmd

0

BBBBBBB@

1

CCCCCCCA

rd ˆ

r1

r2

..

.

rmd

0

BBBBBBB@

1

CCCCCCCA

; ud ˆ

u1

u2

..

.

umd

0

BBBBBBB@

1

CCCCCCCA

9
>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>;

…26†

and

_x¡
a ˆ A¡

aax¡
a ‡ B¡

0ah0 ‡ L¡
adhd …27†

_x0
a ˆ A0

aax0
a ‡ B0

0ah0 ‡ L0
adhd …28†

_xc ˆ Accxc ‡ B0ch0 ‡ Lcd hd ‡ Bc E¡
cax¡

a ‡ E0
cax0

a

£ ¤
‡ Bcuc

…29†

e0 ˆ C¡
2;0ax

¡
a ‡ C0

2;0ax
0
a ‡ C2;0cxc ‡ C2;0dxd ‡ u0 ¡ r0 …30†
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and for each i ˆ 1; . . . ; md ,

_xi ˆ Aqi
xi ‡ Li0h0 ‡ Lidhd

‡ Bqi
ui ‡ Eiaxa ‡ Eicxc ‡

Xmd

jˆ1

Eijxj

" #

…31†

hi ˆ Cqi
xi ˆ xi1; hd ˆ Cdxd …32†

and ® nally,

ei ˆ hi ¡ ri ˆ Cqi
xi ¡ ri; ed ˆ hd ¡ rd ˆ Cdxd ¡ rd

…33†

Let us de® ne a set of new state variables, i.e. for

i ˆ 1; 2; . . . ; md , we de® ne

·xi :ˆ

xi1

xi2

..

.

xiqi

0

BBBBBB@

1

CCCCCCA
¡

ri

_ri

..

.

r
…qi¡1†
i

0

BBBBBB@

1

CCCCCCA
…34†

if µ ¶ qi, or

·xi :ˆ

xi1

..

.

xiq

xiq‡1

..

.

xiqi

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

¡

ri

..

.

r
…µ¡1†
i

0

..

.

0

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

…35†

if µ < qi. Then, we have

ei ˆ Cqi
·xi; ed ˆ Cd ·xd …36†

_x¡
a ˆ A¡

aax¡
a ‡ B¡

0ae0 ‡ L¡
ad ed ‡ B¡

0a L¡
ad‰ Šr …37†

_x0
a ˆ A0

aax0
a ‡ B0

0ae0 ‡ L0
ad ed ‡ ‰ B0

0a L0
ad Šr …38†

_xc ˆ Accxc ‡ B0ce0 ‡ Lcd ed ‡ Bc‰E¡
cax

¡
a ‡ E0

cax
0
aŠ

‡ Bcuc ‡ B0c Lcd‰ Šr …39†

e0 ˆ C¡
2;0ax

¡
a ‡ C0

2;0ax0
a ‡ C2;0cxc ‡ C2;0d ·xd

‡ u0 ¡ r0 ‡ C¤
2;0drd …40†

for an appropriate dimensional matrix C¤
2;0d , and for

i ˆ 1; 2; . . . ; md

_·xi ˆ Aqi
·xi ‡ Li0e0 ‡ Lided

‡ Bqi
ui ‡ Eiaxa ‡ Eicxc ‡

Xmd

jˆ1

Eij ·xj

" #
‡ Eqi

r

..

.

r…µ¡1†

0

BBB@

1

CCCA

…41†

for an appropriate dimensional matrix Eqi
. Note that the

disturbances r0 and rd in (40) can be washed out by the

pre-output feedback

u0 ˆ ~u0 ‡ r0 ¡ C¤
2;0drd …42†

Moreover, the subsystem from the controlled input, i.e.

u 0
0 u 0

d u 0
c

¡ ¢ 0
, to the error output, i.e. e 0

0 ed

¡ ¢ 0
, is now in

the standard form of the special coordinate basis of

Theorem 1. It then follows from the result of Chen
(1998) (i.e. Proposition 7.2.1) that if the almost disturb-

ance decoupling problem with measurement feedback

and with internal stability for the system (24) is solvable,

there must exist a non-zero vector v such that

vH…¶I ¡ A0
aa† ˆ 0 and vH

B0
0a L0

ad

£ ¤
ˆ 0 …43†

which implies that …A0
aa; B0

0a L0
ad

£ ¤
† is not completely

controllable. Following Property 1 of the special coor-

dinate basis, the uncontrollability of …A0
aa; B0

0a L0
ad

£ ¤
†

implies the unstabilizability of the pair …A; B†, which is

obviously a contradiction. Hence, x0
a must be non-exist-

ent. It then follows from Property 1 of the special coor-
dinate basis that SP is of minimum phase. This

completes the proof of the necessary part of Theorem 2.

We note that for the case when D1 ˆ 0, then D22

must be a zero matrix as well, and the last condi-

tion, i.e. item (4), of Theorem 2 is reduced to

Ker…C2† ¼ Ker…C1†.
We will show the su� ciency of those conditions in

Theorem 2 by explicitly constructing parameterized con-

trollers which solve the proposed robust and perfect

tracking problem under Conditions (1) to (4) of

Theorem 2. This will be done in the following sub-
sequent subsections. First, we have the following corol-

lary that deals with the state feedback case.

Corollary 1: Consider the given system (1) with its ex-

ternal disturbance w 2 Lp, p 2 ‰1,1†, its initial con-

dition x…0† ˆ x0. Assume that all its states are measured

for feedback, i.e. C1 ˆ I and D1 ˆ 0. Then, for any re-

ference signal r…t†, which has all its i-th order deriva-

tives, i ˆ 1,2,. . .,µ ¡ 1, µ ¶ 1, being available for
feedback and r…µ†…t† being either a vector of delta func-

tions or in Lp, the proposed robust and perfect tracking

(RPT)problem is solvable by the control law of (2) if

and only if the following conditions are satis® ed: (i)
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…A,B† is stabilizable; (ii) D22 ˆ 0; and (iii) SP, i.e.

…A,B,C2,D2†, is right invertible and of minimum phase.

3.1. Solutions to the state feedback case

When all states of the plant are measured for feed-

back, the problem can be solved by a static control law.

We construct in this subsection a parameterized state

and reference feedback control law

u ˆ F …"†x ‡ H0…"†r ‡ ¢ ¢ ¢ ‡ Hµ¡1…"†r…µ¡1† …44†

which solves the robust and perfect tracking (RPT)

problem for (1) under the conditions given in

Corollary 1. It is simple to note that we can re-write

the given reference in the form

d

dt

r

..

.

r…µ¡2†

r…µ¡1†

0

BBBBB@

1

CCCCCA
ˆ

0 I` ¢ ¢ ¢ 0

..

. ..
. . .

. ..
.

0 0 ¢ ¢ ¢ I`

0 0 ¢ ¢ ¢ 0

2

6666664

3

7777775

r

..

.

r…µ¡2†

r…µ¡1†

0

BBBBB@

1

CCCCCA
‡

0

..

.

0

I`

2

666664

3

777775
r…µ†

…45†

Combining (45) with the given system, we obtain the
augmented system

SAUG :

_x ˆ Ax ‡ Bu ‡ Ew

y ˆ x

e ˆ C2x ‡ D2u

8
>>><

>>>:
…46†

where

w :ˆ
w

r…µ†

Á !

; x :ˆ

r

..

.

r…µ¡2†

r…µ¡1†

x

0

BBBBBBBB@

1

CCCCCCCCA

…47†

A ˆ

0 I` ¢ ¢ ¢ 0 0

..

. ..
. . .

. ..
. ..

.

0 0 ¢ ¢ ¢ I` 0

0 0 ¢ ¢ ¢ 0 0

0 0 ¢ ¢ ¢ 0 A

2

6666666664

3

7777777775

; B ˆ

0

..

.

0

0

B

2

666666664

3

777777775

; E ˆ

0 0

..

. ..
.

0 0

0 I`

E 0

2

666666664

3

777777775

…48†

and

C2 ˆ ¡I` 0 0 ¢ ¢ ¢ 0 C2‰ Š; D2 ˆ D2 …49†

It is then straightforward to show that the subsystem

from u to e in the augmented system (46), i.e. the quad-

ruple …A; B; C2; D2†, is right invertible and has the same

in® nite zero structure as that of SP. Furthermore, its

invariant zeros contain those of SP and ` £ µ extra

ones at s ˆ 0. We are now ready to present a step-by-

step algorithm to construct the required control law of

the form (44).

Step S.1. This step is to transform the subsystem from u

to e of the augmented system (46) into the

special coordinate basis of Theorem 1, i.e. to

® nd non-singular state, input and outputtrans-
formations Gs, Gi and Go to put it into the

structural form of Theorem 1 as well as in a

small variation of the compact form of (18) to

(20). It can be shown that the compact form of

(18) to (20) for the subsystem from u to e of
(46) can be written as

~A ˆ

A0
aa 0 0 0

0 A¡
aa 0 L¡

adCd

BcE
0
ca BcE

¡
ca Acc LcdCd

BdE0
da BdE¡

da BdEdc Add

2

6666664

3

7777775

A0
aa ˆ

0 I` . . . 0

..

. ..
. . .

. ..
.

0 0 ¢ ¢ ¢ I`

0 0 ¢ ¢ ¢ 0

2

66666664

3

77777775

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

…50†

and

~B ˆ

0 0 0

B¡
0a 0 0

B0c 0 Bc

B0d Bd 0

2

6666664

3

7777775

~C ˆ
C0

0a C¡
0a C0c C0d

0 0 0 Cd

2

4

3

5

~D ˆ
Im0

0 0

0 0 0

" #

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

…51†

Step S.2. Choose an appropriate dimensional matrix Fc

such that

Ac
cc ˆ Acc ¡ BcFc …52†

is asymptotically stable. The existence of such

an Fc is guaranteed by the property that

…Acc; Bc† is completely controllable.
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Step S.3. For each xi of xd , which is associated with the

in® nite zero structure of SP or the subsystem

from u to e of (46), we choose an Fi such that

pi…s† ˆ
Yqi

jˆ1

…s ¡ ¶ij† ˆ sqi ‡ Fi1sqi¡1 ‡ ¢ ¢ ¢ ‡ Fiqi¡1
s ‡ Fiqi

…53†

with all ¶ij being in C ¡. Let

Fi ˆ Fiqi
Fiqi¡1

¢ ¢ ¢ Fi1

£ ¤
; i ˆ 1; . . . ; md …54†

Step S.4. Next, we construct

F…"† ˆ ¡Gi

C0
0a C¡

0a C0c C0d

E0
da E¡

da Edc Ed ‡ Fd…"†

E0
ca E¡

ca Fc 0

2

664

3

775G¡1
s …55†

where

Ed ˆ

E11 ¢ ¢ ¢ E1md

..

. . .
. ..

.

Emd 1 ¢ ¢ ¢ Emd md

2

6664

3

7775 …56†

Fd…"† ˆ blkdiag
F1

"q1
S1…"†;

F2

"q2
S2…"†; . . . ;

Fmd

"qmd

Smd
…"†

« ¼

…57†

and where

Si…"† ˆ diag 1; "; "2; . . . ; "qi¡1
© ª

: …58†

Step S.5. Finally, we partition

F…"† ˆ H0…"† ¢ ¢ ¢ Hµ¡1…"† F…"†‰ Š …59†

where Hi…"† 2 R m£` and F…"† 2 R m£n. This

ends the constructive algorithm.

We have the following result.

Theorem 3: Consider the given system (1) with its ex-
ternal disturbance w 2 Lp, p 2 ‰1,1†, its initial con-

dition x…0† ˆ x0. Assume that all its states are measured

for feedback, i.e. C1 ˆ I and D1 ˆ 0. If Conditions (1)

to (3) of Corollary 2 are satis® ed, then, for any refer-

ence signal r…t†, which has all its i-th order derivatives,
i ˆ 0,1,. . .,µ ¡ 1, µ ¶ 1, being available for feedback

and r…µ†…t† being either a vector of delta functions or in

Lp, the proposed robust and perfect tracking (RPT)

problem is solved by the control law of (44) with F…"†
and Hi…"†, i ˆ 0,1,. . .,µ ¡ 1, as given in (59).

Proof: See Appendix A.1. &

3.2. Solutions to the measurement feedback case

Without loss of generality, we assume throughout

this subsection that D22 ˆ 0. If it is non-zero, it can

always be washed out by the following pre-output feed-

back, u ˆ Sy; with S as given in the second item of

Theorem 2.

3.2.1 Full order measurement and reference feed-

back. The following is a step-by-step algorithm for

constructing a parameterized full order measurement

and reference feedback controller, which solves the

robust and perfect tracking problem.

Step F.1. For the given reference r…t† and the given

system (1), we ® rst assume that all the state

variables of (1) are measurable and follow the

procedures of the previous subsection to

de® ne an auxiliary system,

_x ˆ Ax ‡ Bu ‡ Ew

y ˆ x

e ˆ C2x ‡ D2u

9
>>=

>>;
…60†

Then, we follow Steps S.1 to S.5 of the algor-

ithm of the previous subsectionto construct a

state feedback gain matrix

F…"† ˆ H0…"† ¢ ¢ ¢ Hµ¡1…"† F…"†‰ Š …61†

Step F.2. Let SQa be characterized by a matrix quad-

ruple

…AQa; EQa; CQa; DQa† :ˆ A; E In‰ Š; C1; D1 0‰ Š… † …62†

This step is to transform this SQa into the spe-

cial coordinate basis of Theorem 1. Because of

the special structure of the matrix EQa, it is

simple to show that SQa is always right inver-

tible and is free of invariant zeros. Utilize the

results of Theorem 1 to ® nd non-singular state,

input and output transformation GsQ, GiQ and

GoQ such that

G¡1
sQ AGsQ ˆ

AccQ LcdQ

EdcQ AddQ

2

4

3

5 ‡
B0cQ

B0dQ

2

4

3

5 C0cQ 0
£ ¤

…63†

G¡1
sQ EQaGiQ ˆ

B0cQ 0 In¡k 0

B0dQ Ik 0 0

2

4

3

5 …64†

and
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G¡1
oQC1GsQ ˆ

C0cQ 0

0 Ik

" #

G¡1
oQ D1 0‰ ŠGiQ ˆ

Ip¡k 0 0 0

0 0 0 0

" # …65†

where k ˆ p-rank…D1†. It can be veri® ed that
the pair …A; C1† is detectable if and only if the

pair

AccQ;
C0cQ

EdcQ

" #Á !
…66†

is detectable.

Step F.3. Let KcQ be an appropriate dimensional con-

stant matrix such that the eigenvalues of the

matrix

Ac
ccQ ˆ AccQ ¡ KcQ

C0cQ

EdcQ

" #

ˆ AccQ ¡ Kc0Q KcdQ

£ ¤ C0cQ

EdcQ

" #
…67†

are all in C ¡. Next, we de® ne a parameterized

observer gain matrix

K…"† ˆ ¡GsQ

B0cQ ‡ Kc0Q LcdQ ‡ KcdQ="

B0dQ AddQ ‡ Ik="

" #

G¡1
oQ …68†

Step F.4. Finally, we obtain the following full order

measurement and reference feedback control

law,

_v ˆ ‰A ‡ BF…"† ‡ K…"†C1Šv ¡ K…"†y

‡ BH0…"† r ‡ ¢ ¢ ¢ ‡ BHµ¡1…"†r…µ¡1†

u ˆ F…"† v ‡ H0…"† r ‡ ¢ ¢ ¢ ‡ Hµ¡1…"† r…µ¡1†

…69†

This completes the construction of the full

order measurement and reference feedback-

controller.

We have the following theorem.

Theorem 4: Consider the given system (1) with its ex-

ternal disturbance w 2 Lp, p 2 ‰1,1†, its initial con-

dition x…0† ˆ x0. If Conditions (1) to (4) of Theorem 2

are satis® ed, then, for any reference signal r…t†, which
has all its i-th order derivatives, i ˆ 0,1,. . .,µ ¡ 1, µ ¶ 1,

being available for feedback and r…µ†…t† being either a

vector of delta functions or in Lp, then the proposed ro-

bust and perfect tracking (RPT)problem is solved by

the parameterized full order measurement and reference

feedback control laws as given in (69).

Proof: See Appendix A.2. &

3.2.2. Reduced order measurement and reference feed-

back. For simplicity of presentation, we assume that

matrices C1 and D1 have already been transformed

into the forms

C1 ˆ
0 C1;02

Ik 0

" #
and D1 ˆ

D1;0

0

" #
…70†

where D1;0 is of full row rank. Before we present a step-

by-step algorithm to construct a parameterized reduced

order measurement and reference feedback controller,

we ® rst partition the system

_x ˆ Ax ‡ Bu ‡ ‰E InŠ ~w

y ˆ C1x ‡ D1 0‰ Š ~w

9
=

; …71†

in conformity with the structures of C1 and D1 in (70),

i.e.

_x1

_x2

Á !
ˆ

A11 A12

A21 A22

" #
x1

x2

Á !
‡

B1

B2

" #
u

‡
E1 Ik 0

E2 0 In¡k

" #
~w

y0

y1

Á !
ˆ

0 C1;02

Ik 0

" #
x1

x2

Á !

‡
D1;0 0 0

0 0 0

" #

~w

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

…72†

where

~w ˆ
w

x0 ¢ ¯…t†

Á !
…73†

Obviously, y1 ˆ x1 is directly available and hence need
not to be estimated. Next, we de® ne SQR to be charac-

terized by

…AR; ER; CR; DR†

ˆ A22; E2 0 In¡k‰ Š;
C1;02

A12

" #

;
D1;0 0 0

E1 Ik 0

" #Á !
…74†

It is again straightforward to verify that SQR is right

invertible with no ® nite and in® nite zeros. Moreover,

…AR; CR† is detectable if and only if …A; C1† is detectable.

We are ready to present the following algorithm.
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Step R.1. For the given reference r…t† and the given

system (1), we again assume that all the

state variables of (1) are measurable and fol-

low the procedures of the previous subsection

to de® ne an auxiliary system

_x ˆ Ax ‡ Bu ‡ Ew

y ˆ x

e ˆ C2x ‡ D2u

9
>=

>;
…75†

Then, we follow Steps S.1 to S.5 of the algor-

ithm of the previous subsection to construct a

state feedback gain matrix

F…"† ˆ ‰H0…"† . . . Hµ¡1…"† F…"†Š …76†

Let us partition F…"† in conformity with x1 and

x2 of (72) as

F…"† ˆ F1…"† F2…"†‰ Š …77†

Step R.2. Let KR be an appropriate dimensional con-

stant matrix such that the eigenvalues of

AR ‡ KRCR ˆ A22 ‡ KR0 KR1‰ Š
C1;02

A12

" #
…78†

are all in C ¡. This can be done because

…AR; CR† is detectable.

Step R.3. Let

GR…"† ˆ ¡KR0; A21 ‡ KR1A11 ¡ …AR ‡ KRCR†KR1‰ Š
…79†

and

Acmp…"† ˆ AR ‡ B2F2…"† ‡ KRCR ‡ KR1B1F2…"†

Bcmp…"† ˆ GR…"† ‡ …B2 ‡ KR1B1† 0; F1…"† ¡ F2…"†KR1‰ Š

Ccmp…"† ˆ F2…"†

Dcmp…"† ˆ 0; F1…"† ¡ F2…"†KR1‰ Š

9
>>>>>=

>>>>>;

…80†

Step R.4. Finally, we obtain the following reduced
order measurement and reference feedback

control law

_v ˆ Acmp…"† v ‡ Bcmp…"†y ‡ G0…"†r ‡ ¢ ¢ ¢ ‡ Gµ¡1…"†r…µ¡1†

u ˆ Ccmp…"† v ‡ Dcmp…"†y ‡ H0…"†r ‡ ¢ ¢ ¢ ‡ Hµ¡1…"†r…µ¡1†

9
=

; …81†

where for i ˆ 0; 1; . . . ; µ ¡ 1

Gi…"† ˆ …B2 ‡ KR1B1†Hi…"† …82†

This ends the construction of the reduced

order measurement and reference feedback

controller.

Theorem 5: Consider the given system (1) with its ex-

ternal disturbance w 2 Lp, p 2 ‰1,1†, its initial con-

dition x…0† ˆ x0. If Conditions (1) to (4) of Theorem 2

are satis® ed, then, for any reference signal r…t†, which

has all its i-th order derivatives, i ˆ 0,1,. . .,µ ¡ 1, µ ¶ 1,
being available for feedback and r…µ†…t† being either a

vector of delta functions or in Lp, then the proposed ro-

bust and perfect tracking (RPT) problem is solved by

the parameterized reduced order measurement and refer-

ence feedback control laws of (81).

Proof: See Appendix A.3. &

By now, the su� ciency of Theorem 2 is obvious in

view of the results of Theorems 4 and 5. The proof of

Theorem 2 is thus completed. &

4. Robust and perfect tracking for other references

It is very often in practical control system design to
track some references such as sinusoidal functions,

which are in L1. It is obvious that we could not make

the L1 norm of the tracking error arbitrarily small if

there is a mismatch in the initial value of the output to

be controlled and that of the reference signal. Another
very common situation could be that the references r…t†
might have some entries belonging to one set, say Lp1

,

and some belonging to another set, say Lp2
, for some

p1 2 ‰1; 1Š and p2 2 ‰1; 1Š. Thus, for this class of refer-

ences, we will have to modify our original problem for-

mulation a little bit in order to obtain some meaningful
results. Again, we consider a linear system as given in (1)

with an external disturbance

w ˆ

w1

w2

..

.

wq

0

BBBB@

1

CCCCA
…83†

where wi 2 Lpwi
, pwi

2 ‰1; 1Š, i ˆ 1; 2; . . . ; q. We also

consider a reference

r ˆ

r1

r2

..

.

r`

0

BBBB@

1

CCCCA
…84†

which has the following properties: for i ˆ 1; 2; . . . ; `, we

have ri, _ri, . . ., r
…µi¡1†
i , µi ¶ 1, being available for feed-

back, and r
…µi†
i being a delta function or in Lpri

for some
pri

2 ‰1; 1Š. Then, the general robust and perfect track-

ing (GRPT) problem for this type of references is to ® nd

a parameterized dynamic measurement and reference

feedback control law of the form
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_v ˆ Acmp…"†v ‡ Bcmp…"†y ‡
Xµ1¡1

iˆ0

G1;i…"†r…i†
1 ‡ ¢ ¢ ¢

‡
Xµl ¡1

iˆ0

G ;̀i…"†r…i†
`

u ˆ Ccmp…"†v ‡ Dcmp…"†y ‡
Xµ1¡1

iˆ0

H1;i…"†r…i†
1 ‡ ¢ ¢ ¢

‡
Xµl ¡1

iˆ0

H`;i…"†ri
`

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

…85†

such that when (85) is applied to (1), we have

(1) There exists an "¤ > 0 such that the resulting

closed-loop system with r ˆ 0 and w ˆ 0 is
asymptotically stable for all " 2 …0; "¤Š; and

(2) The resulting closed-loop error signal e, which is

obviously a function of ", can be decomposed as

e ˆ er1
‡ ¢ ¢ ¢ ‡ er`

‡ ew1
‡ ¢ ¢ ¢ ‡ ewq

‡ eo …86†

and as " ! 0

~J…x0; w; r; "† ˆ
X̀

iˆ1

keri
kpri

‡
Xq

iˆ1

kewi
kpwi

‡ keokp ! 0

…87†

for all 1 µ p < 1 and for any x0 2 R n. Roughly,

eo is the error due to mismatch in initial con-

ditions of the controlled output and reference,

while eri
, i ˆ 1; 2; . . . ; `, and ewi

, i ˆ 1; 2; . . . ; q,

are corresponding to the steady state error.

Theorem 6: Consider the given system (1) with its
initial condition x…0† ˆ x0. Also, consider the external

disturbance w with its entries wi 2 Lpwi
, pwi

2 ‰1,1Š,
i ˆ 1,2,. . .,q. Then, for any reference signal r…t† of the

form (84) with ri, _ri, . . ., r
…µi¡1†
i , µi ¶ 1, being available

for feedback, and r
…µi†
i being a delta function or in Lpri

,

pri
2 ‰1,1Š, i ˆ 1,2,. . .,`, the general robust and perfect

tracking (GRPT) problem is solvable by the control law

of (85) if and only if all the same four conditions of

Theorem 3.1 hold.

Proof: The proof of this theorem follows from simi-

lar lines of reasoning as those of Theorem 2 with some

minor ® ne tuning. The constructive algorithms of the
previous section should be modi® ed as follows:

(1) State feedback case. For the state feedback

case, one ® rst needs to obtain an augmented

system

~X
AUG

:

_x ˆ Ax ‡ Bu ‡ Ew

y ˆ x

e ˆ C2x ‡ D2u

8
>><

>>:
…88†

with

e ˆ h ¡ r; w :ˆ
w

r…µ†

Á !

; x :ˆ

r1

..

.

r`

x

0

BBBBBBB@

1

CCCCCCCA

ri ˆ

ri

..

.

r
…µi¡1†
i

0

BBBB@

1

CCCCA
; i ˆ 1; . . . ; `

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

…89†

Then, follow the same procedures as in Steps S.1 to

S.4 of the previous section to obtain a gain matrix

F…"†, and partition it as

F…"† ˆ ‰H1;0…"† ¢ ¢ ¢ H1;µ1¡1…"† ¢ ¢ ¢ Hl;0…"† ¢ ¢ ¢ Hl;µ`¡1…"† F…"†Š

…90†
The state and reference feedback controller is

given by

u ˆ F…"†x ‡
Xµ1¡1

iˆ0

H1;i…"†r…i†
1 ‡ ¢ ¢ ¢ ‡

Xµ`¡1

iˆ0

H`;i…"†r…i†
` …91†

(2) Full order measurement and reference feedback

case. One only needs to replace Step F.1 of

the algorithm in the previous section with item

(1) above to obtain the desired F…"†. Steps F.2
and F.3 remain unchanged, and the full order

measure and reference feedback controller is

given by

_v ˆ Acmpv ¡ K…"†y ‡
Xµ1¡1

iˆ0

BH1;i…"†r…i†
1 ‡ ¢ ¢ ¢

‡
Xµ`¡1

iˆ0

BH ;̀i…"†r…i†
`

u ˆ F…"† v ‡
Xµ1¡1

iˆ0

H1;i…"†r…i†
1 ‡ ¢ ¢ ¢ ‡

Xµ`¡1

iˆ0

H`;i…"†r…i†
`

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

…92†

where Acmp ˆ A ‡ BF…"† ‡ K…"†C1.

(3) Reduced order measurement and reference feed-

back case. Similarly, one again needs only to
replace Step R.1 in the algorithm of the previous

section with item (1) above. Steps R.2 and R.3

remain the same, and the reduced order measure

and reference feedback control is given in the
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form of (85) with Acmp…"†, Bcmp…"†, Ccmp…"†,
Dcmp…"†, being given as in (80), Hj;i…"†, j ˆ
1; 2; . . . ; ` and i ˆ 0; 1; . . . ; µj ¡ 1, being given

as in (90), and

Gj;i…"† ˆ …B2 ‡ KR1B1†Hj;i…"†;

j ˆ 1; 2; . . . ; `; i ˆ 0; 1; . . . ; µj ¡ 1

)
…93†

This completes the proof of Theorem 6 &

5. Concluding Remarks

We have proposed in this paper the robust and per-
fect tracking (RPT) problem for general linear time-

invariant multivariable systems. A set of necessary and

su� cient conditions under which the proposed problem

is solvable are obtained and, under these conditions,

constructive algorithms are given that yield solutions,
which are explicitly parameterized in a tuning parameter

".

Appendix A.1 Proof of Theorem 3

It was mentioned in the constructive algorithm of

}3.1 that, following the structural algorithms of

Sannuti and Saberi (1987) and Saberi and Sannuti

(1990), one can transform the system (46) into the spe-

cial coordinate basis as given in the compact form of

(50) and (51). That is there exist non-singular state,
input and output transformation Gs, Gi and Go such that

r

x

Á !
ˆ Gs

r

x¡
a

xc

xd

0

BBBBB@

1

CCCCCA
ˆ

Iµ£` 0

?
~Gs

" #
r

x¡
a

xc

xd

0

BBBBB@

1

CCCCCA

e ˆ Go

e0

ed

Á !

; u ˆ Gi

u0

ud

uc

0

BB@

1

CCA

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

…94†

r ˆ

r

_r

..

.

r…µ¡1†

0

BBBBBB@

1

CCCCCCA
; xd ˆ

x1

x2

..

.

xmd

0

BBBBBBB@

1

CCCCCCCA

; xi ˆ

xi1

xi2

..

.

xiqi

0

BBBBBBB@

1

CCCCCCCA

ed ˆ

h1

h2

..

.

hmd

0

BBBBBBB@

1

CCCCCCCA

; ud ˆ

u1

u2

..

.

umd

0

BBBBBBB@

1

CCCCCCCA

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

…95†

and

_r ˆ

0 I` ¢ ¢ ¢ 0

..

. ..
. . .

. ..
.

0 0 ¢ ¢ ¢ I`

0 0 ¢ ¢ ¢ 0

2

6666664

3

7777775
r ‡

0

..

.

0

I`

2

666664

3

777775
r…µ† …96†

_x¡
a ˆ A¡

aax¡
a ‡ L¡

ad ed ‡ B¡
0ae0 ‡ E¡

a w ‡ G¡
a r…µ† …97†

_xc ˆ Accxc ‡ Lcded ‡ B0ce0

‡ Bc

h
uc ‡ E0

car ‡ E¡
cax

¡
a

i
‡ Ecw ‡ Gcr

…µ† …98†

e0 ˆ C0
0ar ‡ C¡

0ax
¡
a ‡ C0cxc ‡ C0dxd ‡ u0 …99†

and for each i ˆ 1; . . . ; md ,

_xi ˆ Aqi
xi ‡ Li0e0 ‡ Lided ‡ Bqi

"
ui ‡ E0

iar ‡ E¡
iax¡

a ‡

Eicxc ‡
Xmd

jˆ1

Eijxj

#
‡ Eiw ‡ Gir

…µ† …100†

ei ˆ Cqi
xi ˆ xi1; ed ˆ Cdxd …101†

Now, it is straightforward to see that if r…µ† is a vector

of delta functions, then the terms G¡
a r…µ†, Gcr

…µ† and

Gir
…µ†can be treated as some additional initial conditions

added to the original ones of the state variables, x0
a, xc

and xd , respectively. If r…µ† is in Lp, p 2 ‰1; 1†, it can be

treated as an additional disturbance and can be merged

with the original disturbance w. Thus, in both cases, we

can write (97), (98) and (100) as

_x¡
a ˆ A¡

aax¡
a ‡ L¡

ad ed ‡ B¡
0ae0 ‡ ·E¡

a ·w …102†

_xc ˆ Accxc ‡ Lcded ‡ B0ce0

‡ Bc

h
uc ‡ E0

car ‡ E¡
cax

¡
a

i
‡ ·Ec ·w …103†

and

_xi ˆ Aqi
xi ‡ Li0e0 ‡ Lided ‡ Bqi

"
ui ‡ E0

iar ‡ E¡
iax¡

a ‡

Eicxc ‡
Xmd

jˆ1

Eijxj

#

‡ ·Ei ·w …104†

with ·w 2 Lp, p 2 ‰1; 1†, and ·E¡
a , ·Ec and ·Ei being some

appropriate constant matrices, and with a new but again

bounded initial condition, say ·x0.

Next, we note that the control law u ˆ Fx with the

gain matrix F given in (55) can be rewritten as
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u0 ˆ ¡C0
0ar ¡ C¡

0ax¡
a ¡ C0cxc ¡ C0dxd …105†

uc ˆ ¡Fcxc ¡ E0
car ¡ E¡

cax¡
a …106†

and

ui ˆ ¡E0
iar ¡ E¡

iax¡
a ¡ Eicxc ¡

Xmd

jˆ1

Eijxj ¡ Fi

"qi
Si…"†·xi

…107†

Hence, the closed-loop system comprising the given

system and the above control law can be expressed as

e0 ˆ 0 …108†

_x¡
a ˆ A¡

aax¡
a ‡ L¡

ad ed ‡ ·E¡
a ·w …109†

_xc ˆ …Acc ¡ BcFc†xc ‡ Lcded ‡ ·Ec ·w

ˆ Ac
ccxc ‡ Lcded ‡ ·Ec ·w …110†

_xi ˆ Aqi
xi ¡ Bqi

Fi

"qi
Si…"†xi ‡ Lided ‡ ·Ei ·w; ei ˆ Cqi

xi

…111†

Let us de® ne a new state transformation as

~x¡
a : ˆ x¡

a ; ~xc :ˆ xc; ~xd :ˆ

~x1

..

.

~xmd

0

BBBB@

1

CCCCA

~xi : ˆ Si…"†xi; i ˆ 1; . . . ; md

9
>>>>>>>=

>>>>>>>;

…112†

Then, we have e0 ˆ 0, and

_~x¡
a ˆ A¡

aa ~x¡
a ‡ L¡

ad ~ed ‡ ·E¡
a ·w …113†

_~xc ˆ Ac
cc ~xc ‡ Lcd ~ed ‡ ·Ec ·w …114†

" _~xi ˆ …Aqi
¡ Bqi

Fi†~xi ‡ " ~Lid …"†~ed ‡ " ~Ei…"† ·w …115†

~ei ˆ ei ˆ Cqi
~xi; ~ed ˆ ed ˆ Cd ~xd

~Lid…"† ˆ Si…"†Lid ; ~Ei…"† ˆ Si…"† ·Ei …116†

It is simple to show that, for " 2 …0; 1Š

j ~Lid…°†j µ ~ld ; j ~Ei…°†j µ ³i; i ˆ 1; . . . ; md …117†

for some positive constant ~ld and ³i, which are indepen-
dent of ".

We next construct a Lyapunov function for the

closed loop system (113)± (115). We do this by compos-

ing Lyapunov functions for the subsystems. For the
subsystem of ~x¡

a , we choose a Lyapunov function

V¡
a …~x¡

a † ˆ …~x¡
a † 0P¡

a ~x¡
a …118†

where P¡
a > 0 is the unique solution to the Lyapunov

equation,…A¡
aa†0P¡

a ‡ P¡
a A¡

aa ˆ ¡I ; and for the subsys-

tem of ~xc, we choose a Lyapunov function,

Vc…~xc† ˆ ~x 0
cPc ~xc; where Pc > 0 is the unique solution

to the Lyapunov equation, …Ac
cc† 0Pc ‡ PcA

c
cc ˆ ¡I :

Finally, for the subsystem of ~xd , we choose a

Lyapunov function

Vd…~xd† ˆ
Xmd

iˆ1

~x 0
i Pi ~xi …119†

where Pi is the unique solution to the Lyapunov

equation, …Aqi
¡ Bqi

Fi†
0Pi ‡ Pi…Aqi

¡ Bqi
Fi† ˆ ¡I :

Since Aqi
¡ Bqi

Fi is asymptotically stable, the existence

of Pi is guaranteed. We now choose a Lyapunov func-

tion for the closed-loop system (113)± (115) as

V…~x¡
a ; ~xc; ~xd† ˆ V¡

a …~x¡
a † ‡ Vc…~xc† ‡ ¬dVd…~xd† …120†

where the value of ¬d is to be determined. The derivative

of V along the trajectory of the closed-loop system

(113)± (115) can be evaluated as

_V ˆ ¡…~x¡
a † 0 ~x¡

a ‡ 2…~x¡
a † 0P¡

a ‰L¡
ad

~ed ‡ ·E¡
a ·wŠ ¡ ~x 0

c ~xc

‡ 2~x 0
cPc‰Lcd

~ed ‡ ·Ec ·wŠ ‡ ¬d

Xmd

iˆ1

"
¡ 1

"
~xi

0 ~xi

‡ 2~xi
0Pi

~Lid…"†~ed ‡ 2~xi
0Pi

~Ei…"† ·w

#
…121†

It is straightforward to see now that there exist an

¬d > 0 and "¤ 2 …0; 1Š such that for all " 2 …0; "¤Š,

_V µ ¡ 1

2
j~xaj2 ¡ 1

2
j~xcj2 ¡ 1

2"
j~xd j2 ‡ ¬1j ·wj2 …122†

for some positive constant ¬1, independent of ". Thus,

the closed-loop system in the absence of disturbance w

and reference input r is asymptotically stable.
It remains to show that the resulting tracking error e,

which is a function of ", has the property

Jp…x0; w; r; "† ˆ kekp ! 0; as " ! 0 …123†

We ® rst assume that the disturbance ·w is non-existent. It

follows from (122) that

_V µ ¡¬2V ; …124†

for some positive scalar ¬2, independent of ". Noting the

transformation of (112), we have j~x…0†j µ ¬0j·x0j; for

some positive ¬0 > 0, independent of ", where ·x0 is the

combination of the initial condition of the original

system, i.e. x0, and the additional ones introduced by
r…µ†. Thus

jV…0†j µ ¬3j·x0j2 …125†

where ¬3 > 0 and is independent of ". By the standard

comparison theorem, it follows from (124) that

V µ V…0† e¡¬2t …126†
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which together with (125) imply that V µ ¬3 e¡¬2 tj·x0j2;
and thus

j~xd…t†j µ ¬4 e¡¬2 tj·x0j and j~ed…t†j µ ¬5 e¡¬2tj·x0j
…127†

for some positive scalars ¬4 and ¬5, independent of ".

Now viewing ~ed as an input to the subsystem ~xi of (115),

one can show that

j~xd…t†j µ …¬6 e¡¬8t=" ‡ ¬7" e¡¬2 t†j·x0j and

j~ed…t†j µ ­ 1…¬6 e¡¬8 t=" ‡ " e¡¬2t†j·x0j
…128†

for some positive scalars ¬6, ¬7, ¬8 and ­ 1, which are all

independent of ". Noting that

e ˆ Go
e0

ed

³ ´
…129†

where e0 ˆ 0 and ed ˆ~ed , we then have

jej µ jGoj­ 1…e¡¬8t=" ‡ " e¡¬2 t†j·x0j
ˆ ­ 2…e¡¬8t=" ‡ " e¡¬2t†j·x0j

…130†

Thus

kekp µ
…1

0

‰­ 2md…e¡¬8 t=" ‡ "e
¡¬2 t†j·x0jŠpdt

³ ´1=p

µ ­ " j·x0j ! 0

…131†

as " ! 0, for all 1 µ p < 1, where ­ is a positive scalar

independent of ".

Next, we take into consideration the disturbance

·w 2 Lp, p 2 ‰1; 1†, but with ·x0 ˆ 0. Noting that ~ed in

(115) is a part of the state variables of the system and

" ~Lid…"† is negligible compared to Aqi
¡ Bqi

Fi for su� -
ciently small ", the subsystem (115) can then be approxi-

mated as

_~xi º
1

"
…Aqi

¡ Bqi
Fi†~xi ‡ ~Ei…"† ·w …132†

where ·w 2 Lp. Thus, we have

jeij ˆ j~eij µ
…t

0

Cqi
exp ¡1

"
…Aqi

¡ Bqi
Fi†½

µ ¶
~Ei…"†·w…t ¡ ½†

­­­­

­­­­d½

µ ­ 3

…1

0

e¡­ 4½="j ·w…t ¡ ½†j d½ …133†

for some positive scalars ­ 3 and ­ 4, independent of ".

Using the well-known HoÈ lder Inequality, i.e.

k fgk1 µ k f kp ¢ kgkp¤ ; 1=p ‡ 1=p¤ ˆ 1 …134†

we have

jeij ˆ j~eij µ ­ 3

…1

0

e¡­ 4½="
± ²1=p

j ·w…t ¡ ½†j
µ ¶

e¡­ 4½="
± ²1=p¤

d½

µ ­ 3

…1

0

e¡­ 4½=" j ·w…t ¡ ½†jpd½

µ ¶1=p …1

0

e¡­ 4½="d½

µ ¶1=p¤

ˆ ­ 3

"

­ 4

³ ´1=p¤ …1

0

e¡­ 4½="j ·w…t ¡ ½†jpd½

µ ¶1=p

…135†

Thus,

keik
p
p µ ­ p

3

"

­ 4

³ ´p=p¤…1

0

…1

0

e¡­ 4½=" j ·w…t ¡ ½†jpd½

µ ¶
dt

ˆ ­ p
3

"

­ 4

³ ´p=p¤…1

0

e¡­ 4½="

…1

0

j ·w…t ¡ ½†jpdt

µ ¶
d½ …136†

ˆ ­ p
3

"

­ 4

³ ´p=p¤…1

0

e¡­ 4½="

…1

0

j ·w…t†jpdt

µ ¶
d½ …137†

ˆ ­ p
3

"

­ 4

³ ´p=p¤

k ·wkp
p

…1

0

e¡­ 4½="d½

ˆ ­
p
3

"

­ 4

³ ´1‡p=p¤

k ·wkp
p …138†

Note that we have used the property ·w…t† ˆ 0, t < 0, to
get (137) from (136). We would also like to note that the

above proof from (135) to (138) was inspired by similar

arguments reported in Desoer and Vidyasagar (1975). It

is now clear

keikp µ ­ 3

"

­ 4

³ ´1=p‡1=p¤

kwkp ˆ ­ 3

­ 4

³ ´
"k·wkp ! 0; as " ! 0

…139†

In view of (131) and (139), the robust and perfect track-

ing problem is then solved. This completes the proof of
Theorem 3. &

Appendix A.2. Proof of Theorem 4

First, let us de® ne a new state variable, xv ˆ x ¡ v:
Then, it is straightforward to verify that the closed-loop

system comprising the given system (1) and the full

order measurement and reference feedback control law

of (69) can be re-written as

_xv ˆ ‰A ‡ K…"†C1Šxv ‡ ‰E ‡ K…"†D1Šw …140†

_x ˆ ‰A ‡ BF …"†Šx ¡ BF…"†xv ‡ BH0…"†r ‡ ¢ ¢ ¢

‡ BHµ¡1…"†r…µ¡1† ‡ Ew …141†

h ˆ ‰C2 ‡ D2F…"†Šx ¡ D2F…"†xv

‡ D2H0…"†r ‡ ¢ ¢ ¢ ‡ D2Hµ¡1…"†r…µ¡1† …142†
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It is simple to see now the eigenvalues of the closed-loop

system are given by ¶fA ‡ BF…"†g,which have been

shown to be in C ¡ in Theorem 3, and ¶fA ‡ K…"†C1g,

which are equivalent to

¶
AccQ ¡ Kc0QC0cQ ¡KcdQ="

EdcQ ¡Ik="

" #( )

! ¶ Ac
ccQ

¡ ¢
[ ¡ 1

"
; . . . ; ¡ 1

"

« ¼
…143†

as " ! 0. Thus, the closed-loop system is asymptotically

stable for su� ciently small ", when the external disturb-

ance w ˆ 0 and reference r ˆ 0.

Next, we intend to investigate the properties of xv in

the subsystem (146). Let us transform the subsystem (62)

into the special coordinate basis of Theorem 1 with non-
singular state, input and output transformations GsQ,

GiQ and GoQ, as given in Step F.2 of }3.2 Also, let

xv ˆ GsQ

xcQ

xdQ

³ ´
…144†

Then, we can re-write (140) as

_xcQ ˆ
±

AccQ ¡ Kc0QC0cQ

²
xcQ ¡

KcdQ

"
xdQ ‡ EcQw …145†

_xdQ ˆ ¡ 1

"
xdQ ‡ EdcQxcQ ‡ EdQw …146†

for some appropriate dimensional matrices EcQ and EdQ,

independent of ". Now, let ~xcQ ˆ xcQ ¡ KcdQxdQ: Thus,
(145) and (146) can be re-written as

_~xcQ ˆ Ac
ccQ ~xcQ ‡ Ac

ccQKcdQxdQ ‡ …EcQ ¡ KcdQEdQ†w

…147†

_xdQ ˆ ¡ 1

"
I ‡ EdcQKcdQ

³ ´
xdQ ‡ EdcQ ~xcQ ‡ EdQw …148†

It is clear to see that as " ! 0, the poles of the above

system are asymptotically given by ¶…Ac
ccQ† and k

repeated ones at ¡1=". This con® rms with what we
have claimed earlier in (143). Following similar argu-

ments as in (123)± (139), we can show that for any

bounded initial condition and for w 2 Lp, p 2 ‰1; 1†

k~xcQkp µ ­ ckwkp and kxdQkp µ ­ d"kwkp …149†

for some positive scalars ­ c and ­ d , independent of ".
Thus, there exists a scalar ­ v, independent of ", such that

kxvkp µ ­ vkwkp …150†

Following (65), it is simple to verify that

C¡1
1 fIm…D1†g ˆ Ker GoQ

0 0

0 Ik

" #

G¡1
sQ

Á !

ˆ Ker
0 0

0 Ik

" #

G¡1
sQ

Á !
…151†

0 0

0 Ik

" #

G¡1
sQ

Á !
xv ˆ

0 0

0 Ik

" #
xcQ

xdQ

Á !
ˆ

0

xdQ

Á !
…152†

Thus, the last condition of Theorem 2, i.e.

Ker…C2† ¼ C¡1
1 fIm…D1†g, implies that

C2xv ˆ MxdQ and kC2xvkp µ ­ m"kwkp …153†

for some appropriate constant matrix M and positive

scalar ­ m, independent of ". In fact, for any appropriate

matrix N with Ker…N† ¼ Ker…C2†, we have

kNxvkp µ jN j ¢ ­ n ¢ " ¢ kwkp …154†

for some positive scalar ­ n (independent of ").

We are now ready to show that the full order meas-

urement and reference feedback control law of (69)

solves the RPT problem. It is straightforward to verify
that (141) and (142) can be re-written as

_x ˆ …A ‡ BF†x ¡ BF …"†xv ‡ Ew

e ˆ …C2 ‡ D2F†x ¡ D2F…"†xv

9
=

; …155†

where A, B, E, C2 and D2 are as de® ned in (48) and (49).

Without loss of any generality, we assume hereafter that

the quadruple…A; B; C2; D2† is in the form of the special
coordinate. Following the same procedures as in (94)±

(111), we can transform (155) with some appropriate

transformations into the form

_~x¡
a ˆ A¡

aa ~x¡
a ‡ L¡

ad ~ed ‡ ·E¡
a ·w ‡ N¡

a xv …156†

_~xc ˆ Ac
cc ~xc ‡ Lcd ~ed ‡ ·Ec ·w ‡ Ncxv …157†

_xi ˆ Aqi
xi ¡ Bqi

Fi

"qi
Si…"†xi ‡ Lided ‡ ·Ei ·w ‡ Nixv

¡ 0 0 Bqi

Fi

"qi
Si…"†

µ ¶
xv …158†

e0 ˆ ¡ C¡
0a C0c C0d‰ Šxv; ei ˆ Cqi

xi …159†

for some appropriate dimensional matrices N¡
a , Nc and

Ni, which are all independent of ". First, it is simple to

see that Ker…¡ C0a C0c Cod‰ Š† ¼ Ker…C2†: In view of

(154), we have

ke0kp ! 0; as "!0 …160†

Next, let us de® ne a new state transformation as in

(112), i.e.
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~x¡
a : ˆ x¡

a ; ~xc :ˆ xc; ~xd :ˆ

~x1

..

.

~xmd

0

BBBB@

1

CCCCA

~xi : ˆ Si…"†xi; i ˆ 1; . . . ; md

9
>>>>>>>=

>>>>>>>;

…161†

Then

_~x¡
a ˆ A¡

aa ~x¡
a ‡ L¡

ad ~ed ‡ ·E¡
a N¡

a‰ Š
·w

xv

Á !
…162†

_~xc ˆ Ac
cc ~xc ‡ Lcd ~ed ‡ ·Ec Nc‰ Š

·w

xv

Á !
…163†

_~xi ˆ 1

"
…Aqi

¡ Bqi
Fi†~xi ‡ ~Lid…"†~ed ‡ ‰ ~Ei…"† ~N i…"† Š

£
·w

xv

Á !
¡ 0 0 ~M i…"†

£ ¤
xv …164†

~ei ˆ ei ˆ Cqi
~xi; ~ed ˆ ed ˆ Cd

~xd …165†

where

~M i…"† ˆ Si…"†Bqi

Fi

"qi
Si…"† …166†

~Lid…"† ˆ Si…"†Lid ; ~N i…"† ˆ Si…"†Ni; ~Ei…"† ˆ Si…"† ·Ei

…167†

It is clear that the 2-norms of ~Lid…"†, ~Ni…"† and ~Ei…"† are

all bounded, and in view of the special structure of Bqi
,

Si…"† and Fi of (54), we have

~M i…"† ˆ

0 0 ¢ ¢ ¢ 0

..

. ..
. . .

. ..
.

0 0 ¢ ¢ ¢ 0

Fiqi

"
Fiqi¡1 ¢ ¢ ¢ "qi ¡2Fi1

2

66666666664

3

77777777775

ˆ
Fiqi

"

0

..

.

0

Cqi

2

6666666664

3

7777777775

‡ M̂i…"† ˆ
Fiqi

"
Ĉqi

‡ M̂i…"† …168†

where jM̂i…"†j µ ¹i for some positive scalar ¹i, indepen-

dent of ". Thus, (164) can be re-written as

_~xi ˆ 1

"
…Aqi

¡ Bqi
Fi†~xi ‡ ~Lid…"†~ed

‡ ~Ei…"† N̂i…"†
£ ¤ ·w

xv

Á !
¡

Fiqi

"
‰ 0 0 Ĉqi

Šxv

…169†

for some bounded N̂i…"†. It is clear that

Ker…‰ 0 0 Ĉqi
Š† ¼ Ker…C2† …170†

In view of (154), we have

Fiqi

"
‰ 0 0 Ĉqi

Šxv

®®®®

®®®®
p

µ ²ikwkp …171†

for some positive scalar ²i (independent of "). Hence, we

can view

·w
xv

³ ´
and

Fiqi

"
‰ 0 0 Ĉqi

Šxv …172†

as some Lp signals, whose lp norms are bounded by some

" independent scalars. Then, following the similar pro-

cedures as in (118)± (139), it is straightforward to show

that

kedkp ! 0; as " ! 0 …173†

In view of (160) and (173), it is clear that the RPT prob-
lem is solved by the full order measurement and refer-

ence feedback control law (69). &

Appendix A.3. Proof of Theorem 5

We ® rst de® ne a new state variable, xs ˆ x2¡
v ‡ KR1x1: Again, it is straightforward to verify that

the closed-loop system comprising the given system

(1) and the control law of (81) can be re-written as

_xs ˆ …AR ‡ KRCR†xs ‡ E2 ‡ KR

D1;0

E1

" #Á !
w …174†

_x ˆ ‰A ‡ BF …"† Šx ¡ BF2…"†xs ‡ BH0…"†r ‡ ¢ ¢ ¢

‡ BHµ¡1…"†r…µ¡1† ‡ Ew …175†

h ˆ ‰C2 ‡ D2F…"†Šx ¡ D2F2…"†xs ‡ D2H0…"†r ‡ ¢ ¢ ¢

‡ D2Hµ¡1…"†r…µ¡1† …176†

Thus, it is simple to see that the closed-loop system is

asymptotically stable for su� ciently small ", as the

closed-loop poles are given by the eigenvalues of
A ‡ BF…"† and AR ‡ KRCR.

Since AR ‡ KRCR is asymptotically stable, it follows

that for any initial condition, xs 2 Lp provided that

w 2 Lp. Next, we re-write
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BF2…"† ˆ BF…"†
0

xs

Á !
and D2F2…"† ˆ D2F…"†

0

xs

Á !

…177†

It follows from (65) that

C¡1
1 fIm…D1†g ˆ Ker

0 0

Ik 0

" #Á !
…178†

and

0 0
Ik 0

µ ¶
0
xs

³ ´
ˆ 0 …179†

Thus, the last condition of Theorem 2, i.e.

Ker…C2† ¼ C¡1
1 fIm…D1†g, implies that

C2
0

xs

³ ´
ˆ 0 and N

0

xs

³ ´
ˆ 0 …180†

for any appropriate dimensional matrix N with
Ker…N† ¼ Ker…C2†. Following the same procedures as

in (155)± (173), we can show that

kekp ! 0; as " ! 0 …181†

Hence, the RPT problem is solved by the reduced order

measurement feedback control law (81). &
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