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Abstract

The problem of perfect regulation is to design a family of control laws for a given plant such that the resulting overall
closed-loop system is internally stable and its controlled output can be reduced to zero arbitrarily fast from any initial
condition. Such a problem was heavily studied by many researchers in the 1970s and early 1980s. However, to the
best of our knowledge, all of the earlier results deal only with the problem under full state feedback. In this paper, we
solve the long-standing problem of perfect regulation via measurement output feedback for general linear time-invariant
multivariable systems. In particular, we derive necessary and su�cient conditions under which the problem of perfect
regulation via measurement output feedback is solvable for general systems, and, under these conditions, construct two
families of feedback laws, one of full order and the other reduced order, that solve the problem. c© 2000 Elsevier Science
B.V. All rights reserved.

1. Introduction to the problem

The problem of perfect regulation is to design a family of control laws for a given plant such that the
resulting overall closed-loop system is internally stable and its controlled output can be reduced to zero
arbitrarily fast from any initial condition. Such a problem and its related topics were heavily investigated by
many researchers in the 1970s and early 1980s. Kwakernaak and Sivan [7] derived a set of necessary and
su�cient conditions for the solvability of the problem for square-invertible systems. Kimura [6] did a complete
study of this problem under a crucial assumption, i.e., the limits of the closed-loop system eigenvalues should
remain in the open left-half complex plane, which is equivalent to assuming that the given plant does not
have invariant zeros on the imaginary axis. The problem investigated by Francis [5] was somewhat di�erent.
His result was concerning the set of initial conditions that can be reduced to zero arbitrarily fast. The problem
of perfect regulation for non-strictly proper systems was examined by Scherzinger and Davison [12]. The
necessary and su�cient conditions of [12] was also given under the assumption that the plant is free of
the imaginary invariant zeros. The result of Lin et al. [9] shows that the problem is still solvable when
the given plant has invariant zeros on the imaginary axis. In our opinion, the work of Lin et al. [9] is the
most complete one up-to-date. Nevertheless, all the above mentioned results only dealt with the case when
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all the state variables of a given plant are available for feedback, which is usually not the case in practical
situations. The problem of perfect regulation via measurement output feedback for linear multivariable systems
still remains unsolved. Our objective here is to tackle this long-standing open problem.
We consider a linear time-invariant multivariable system � characterized by the following state-space equa-

tions:

ẋ = Ax + Bu; x(0) = x0

y = C1x + D1u;

h= C2x + D2u;

(1)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rq is the measurement output, and h ∈ Rp is
the output to be regulated. A, B, C1, D1, C2 and D2 are constant matrices of appropriate dimensions. The
problem of perfect regulation via measurement output feedback for the given plant (1) is to design a family
of parameterized dynamic measurement output feedback control laws �cmp,

v̇= Acmp(�)v+ Bcmp(�)y;

u= Ccmp(�)v+ Dcmp(�)y;
(2)

under which the closed-loop system has the following properties:

1. There exists a positive scalar �∗¿ 0 such that for all � ∈ (0; �∗], the resulting closed-loop system comprising
the given plant � and the controller �cmp is internally stable.

2. For any given initial condition x0, the output to be regulated, i.e., h(t), in the closed-loop system, which
is clearly a function of �, satis�es

‖h‖2 =
∫ ∞

0
h′(t)h(t) dt → 0; as �→ 0: (3)

We note that the second property basically means that the family of control laws is capable of regulating h(t)
to zero arbitrarily fast. The paper aims (i) to derive a set of necessary and su�cient conditions under which
the above proposed problem is solvable, and (ii) under these conditions, to construct families of feedback
laws that solve the problem.
Next, we note that it is without loss of generality to assume that D1 = 0. This can be justi�ed using the

following arguments. If D1 6= 0, then one can de�ne a new measurement output
ynew:=y − D1u= C1x; (4)

which has a zero direct feedthrough term from u. Suppose we design a control law using this new measurement
output, say

u=K(s)ynew : (5)

Then, it can be converted to the following:

u=K(s)(y − D1u) or u= [I +K(s)D1]−1K(s)y: (6)

This shows that the control problem using y and ynew are equivalent, because they can be converted from
one to the other. Thus, we will assume throughout the rest of this paper that matrix D1 = 0. For simplicity
of presentation, we also assume that matrices C1, [C2 D2] and [B′ D′

2] are of full rank.
The outline of this paper is as follows: Section 2 presents the necessary and su�cient conditions under

which the proposed perfect regulation problem is solvable. Numerical algorithms based on an eigenstructure
assignment technique are given in Section 3 to construct solutions to the problem under the obtained solvability
conditions. Two controller structures are considered: one has full order dynamics, i.e., the order of the controller
is equal to n, and the other has reduced order dynamics, i.e., the order of the controller is ¡n. Finally, the
concluding remarks are made in Section 4, where we also give a set of necessary and su�cient conditions
for the solvability of the perfect regulation problem for plants with external disturbances.
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Throughout this paper, the following notation will be used: X ′ denotes the transpose of matrix X ; I denotes
an identity matrix while Ik denotes an identity matrix of dimension k × k; ‖h‖2 denotes the l2-norm of a
time-domain signal vector h(t), while ‖H‖2 denotes the H2-norm of a transfer matrix H (s); R is the set of
all real numbers; C is the set of all complex numbers; C−, C0 and C+ are respectively, the left-half complex
plane, the imaginary axis and the right-half complex plane; Ker (X ) is the kernel of X ; Im (X ) is the image
of X ; and �nally �(X ) is the set of eigenvalues of a real square matrix X . We also introduce the following
geometric subspaces:

De�nition 1.1 (Geometric Subspaces V∗ and S∗). The weakly unobservable subspaces of �, V∗, and the
strongly controllable subspaces of �, S∗, are de�ned as follows:

1. V∗(�) is the maximal subspace of Rn which is (A+BF)-invariant and is contained in Ker(C+DF) such
that the eigenvalues of (A+ BF)|V∗ are contained in C for some constant matrix F .

2. S∗(�) is the minimal (A+KC)-invariant subspace of Rn containing Im(B+KD) such that the eigenvalues
of the map which is induced by (A+KC) on the factor space Rn=S∗ are contained in C for some constant
matrix K .

2. Solvability conditions for general perfect regulation problem

We are now ready to present the �rst result of this paper, i.e., the necessary and su�cient conditions under
which the problem of perfect regulation via measurement output feedback for general linear multivariable
systems is solvable. We have the following theorem.

Theorem 2.1. Consider the given system � of (1). The problem of perfect regulation via measurement output
feedback for � is solvable if and only if the following conditions are satis�ed:

1. (A; B) is stabilizable and (A; C1) is detectable;
2. (A; B; C2; D2) is right invertible and is free of invariant zeros in C+; and
3. Ker(C2)⊇Ker(C1).

Proof. Since the property (3) is required of all initial conditions of �, it is simple to verify that the problem
of perfect regulation problem via measurement output feedback for � is equivalent to an H2 optimal control
problem for the following auxiliary system;

ẋ = Ax + Bu+ Iw; x(0) = 0;

y = C1x;

h= C2x + D2u;

(7)

where w = �(t), a vector of impulse functions, for which the best achievable value of the H2-norm of the
closed-loop transfer matrix from w to h under measurement output feedback, say 
∗, is equal to zero. Following
the result Saberi et al. [10, Theorem 5.5.1], one can show that the in�mum 
∗ of the H2 optimal control
problem for the above auxiliary system can be expressed as


∗ = {trace(P) + trace[(A′P + PA+ C′
2C2)Q]}1=2; (8)

where P and Q are positive-semi-de�nite matrices and are, respectively, the so-called semi-stabilizing solutions
to the following linear matrix inequalities:[

A′P + PA+ C′
2C2 PB+ C′

2D2

B′P + D′
2C2 D′

2D2

]
¿0; (9)
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and [
AQ + QA′ + I QC′

1

C1Q 0

]
¿0: (10)

It follows from (8) that 
∗ = 0, or equivalently to say that the proposed perfect regulation problem for � is
solvable, if and only if

P = 0 and (A′P + PA+ C′
2C2)Q = C

′
2C2Q = 0: (11)

It then follows from the result of Saberi et al. [10] that the following two statements are equivalent:

1. P = 0 is a semi-stabilizing solution to the linear matrix inequality (9).
2. The pair (A; B) is stabilizable and the quadruple (A; B; C2; D2) is right invertible and is free of invariant
zeros in C+.

Thus, our remaining task is to show that C′
2C2Q = 0 is equivalent to that (A; C1) is detectable and

Ker(C2)⊇Ker(C1): (12)

We note that the detectability of (A; C1) is a necessary condition for the linear-matrix inequality (10) to have
a semi-stabilizing solution Q. C′

2C2Q=0 implies and is implied by that C2Q=0. Let �Q denote the quadruple
(A; I; C1; 0). Following the result of [6, see Remark 5.4.3] and using the fact that the control matrix of �Q is
an identity matrix, which implies that �Q is right invertible and has no �nite zero structure, we have

Im(Q) =V∗(�Q) ∩S∗(�Q): (13)

It is simple to verify that for such a system �Q, S∗(�Q) = Rn. Hence,

Im(Q) =V∗(�Q): (14)

Again, because the control matrix of �Q is an identity matrix, it follows from the de�nition of V∗ that
V∗(�Q) = Ker(C1), which can be easily veri�ed by choosing F = −A in De�nition 1.1. Thus, condition
C2Q = 0 is equivalent to

C2 · Ker(C1) = 0 or Ker(C2)⊇Ker(C1): (15)

This concludes the proof of Theorem 2.1.

The following remarks are in order.

Remark 2.1. It is interesting to note that neither the two subsystems associated with the measurement output
y, i.e., the quadruples (A; B; C1; D1) and (A; I; C1; 0), is required to be left invertible and=or minimum phase
for the solvability of the problem of perfect regulation via measurement output feedback, as one would expect
from the separation principle arguments. In fact, (A; B; C1; D1) can be non-invertible and=or of non-minimum
phase.

Remark 2.2. For the state feedback case, i.e, y= x, or C1 = I and D1 = 0, then Ker(C1) = {0} and the third
condition of Theorem 2.1 is automatically satis�ed. The set of conditions in Theorem 2.1 is reduced to the
following:

1. (A; B) is stabilizable; and
2. (A; B; C2; D2) is right invertible and is free of invariant zeros in C+.

The above result coincides with that of Lin et al. [9].

Remark 2.3. For the case when h = y or h is contained in y, i.e., h =My for some constant matrix M of
appropriate dimensions, then the third condition of Theorem 2.1 is also automatically satis�ed. The solvability
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conditions for the problem of perfect regulation via measurement output feedback for this class of systems are
identical to those of the state feedback case. However, the condition that h is contained in y, is not necessary
for the solvability of the proposed problem. We will illustrate this in a numerical example in the next section.

3. Solutions to general perfect regulation problem

We present in this section two algorithms that construct solutions to the problem of perfect regulation via
measurement output feedback for system � of (1) provided that the solvability conditions in Theorem 2.1
satis�ed. The �rst algorithm is to construct full-order solutions whose dynamical order is the same as that of
�, while the second one is to construct reduced-order solutions whose dynamical order is less than that of �.
Both of these algorithms involve �nding a parameterized state feedback gain matrix F(�) such that A+BF(�)
is asymptotically stable for su�ciently small �, and

‖[C2 + D2F(�)][sI − A− BF(�)]−1‖2 → 0 as �→ 0: (16)

The above gain matrix can be obtained using the result of Lin et al. [9] (see [8] for a simpli�ed procedure
that results in a simpler gain matrix). Interestingly, it turns out that the observer gain design for our general
perfect regulation problem is not dual to that of the state feedback gain, because the subsystem �Q, i.e., the
quadruple (A; I; C1; 0), is always right invertible and hence its dual system, i.e., (A′; C′

1; I; 0), is always left
invertible. The results of Lin et al. [9,8], which are applicable only to right invertible systems, cannot be
applied to such this dual system.

3.1. Design of full-order solutions

The following step-by-step algorithm deals with the full-order solutions to the problem of perfect regulation
via measurement output feedback.

Step F.1. Follow the result of Lin [8] to obtain a parameterized gain matrix F(�) which has the property
as in (16).
Step F.2. Transform �Q in to the special coordinate basis of Sannuti and Saberi [11] (see also Chen [3]

for the detailed proofs of its properties). Since the control matrix of �Q is an identity matrix, it can be shown
that there exist nonsingular transformations �s, �o; �s such that

�−1
s A�s =

[
Acc Lcd

Ec Add

]
; �−1

s �i =

[
0 In−q

Iq 0

]
; �−1

o C1�s = [0 Iq]: (17)

It can be veri�ed that (A; C1) is detectable if and only if (Acc; Ec) is detectable.
Step F.3. Let Kc be a constant matrix of dimension (n − q) × q such that the eigenvalues of the matrix

Acc − KcEc are in C−. This can always be done because of the fact that (Acc; Ec) is detectable provided that
(A; C1) is detectable.
Step F.4. Next, we form a parameterized observer gain matrix,

K(�) =−�s
[
Lcd + Kc=�

Add + Iq=�

]
�−1
o : (18)

Step F.5. Finally, the family of full-order measurement feedback parameterized control laws is given by
(2) with

Acmp(�) = A+ BF(�) + K(�)C1;

Bcmp(�) =−K(�);
Ccmp(�) = F(�);

Dcmp(�) = 0:

(19)
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This concludes the constructive algorithm of the full-order solution to the general perfect regulation problem.
We have the following theorem.

Theorem 3.1. Consider the given plant � of (1) and assume that the solvability conditions in Theorem 2:1
are satis�ed. Then; the family of full-order measurement feedback control laws of the form as in (2) with
its gain matrices as given in (19) solves the problem of perfect regulation for �.

Proof. Using the result of Chen [1], one can show that the observer gain matrix K(�) of (18) has the following
properties:

1. A+ K(�)C1 has q eigenvalues in the neighborhood of −1=� and n− q eigenvalues in the neighborhood of
�(Acc − KcEc). Hence, A+ K(�)C1 is asymptotically stable for su�ciently small �.

2. As �→ 0,

Im{[sI − A− K(�)C1)−1} → V∗(�Q) = Ker(C1): (20)

Hence, we have

‖C2[sI − A− K(�)C1)−1‖2 → 0 as �→ 0: (21)

Noting that the eigenvalues of the closed-loop system comprising the given plant (1) and the full-order
control law (2) and (19) are given by the eigenvalues of A + BF(�) and A + K(�)C1. Thus, it is clear that
the closed-loop system is asymptotically stable for su�ciently small �. Next, utilizing the results of Chen
et al. [2] with some straightforward manipulations, we can show that the Laplace transform of h(t) in the
closed-loop system, H (s), is given by

H (s) = [C2 + D2F(�)][sI − A− BF(�)]−1x0 + C2[sI − A− K(�)C1]−1x0
+ [C2 + D2F(�)][sI − A− BF(�)]−1(A− sI)[sI − A− K(�)C1]−1x0: (22)

In view of (16), (21) and (22), it is clear that as �→ 0,

‖H‖2 → 0⇔ ‖h‖2 → 0: (23)

This completes the proof of Theorem 3.1.

3.2. Design of reduced-order solutions

Next, we will develop an algorithm that constructs reduced order measurement output feedback solutions,
which have a dynamical order of n− q, to the problem of perfect regulation problem via measurement output
feedback. For simplicity of presentation, we assume that matrix C1 is already in the following form;

C1 = [Iq 0]; (24)

and without loss of any generality, we can still assume that the disturbance matrix in (7) is an identity matrix.
Then, (7) can be partitioned as follows:(

ẋ1
ẋ2

)
=


 A11 A12

A21 A22


(

x1
x2

)
+
[
B1
B2

]
u+

[
Iq 0

0 In−q

]
w; x0 =

(
x10
x20

)
;

y = [Iq 0]
(
x1
x2

)
;

h= [C21 C22]
(
x1
x2

)
+ D2u:

(25)

Next, de�ne �QR to be a subsystem characterized by

(AR ; ER ; CR ; DR) = (A22; [0 In−q]; A12; [Iq 0]): (26)

The following is a step-by-step constructive algorithm.
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Step R.1. Follow the result of Lin [8] to obtain a parameterized gain matrix F(�) which has the property
as in (16). We partition F(�) in conformity with the partition of the state vector x in (25) as

F(�) = [F1(�) F2(�)]: (27)

Step R.2. It is straightforward to see that �QR is right invertible and is free of �nite and in�nite zeros.
Moreover, it can be veri�ed that (AR ; CR) is detectable if and only if (A; C1) is detectable. Let KR be a
constant matrix of dimension (n− q)× q such that the eigenvalues of the matrix AR + KRCR are in C−. We
note that this reduced-order observer gain matrix KR is independent of �.
Step R.3. Finally, the family of reduced-order measurement feedback parameterized control laws is given

by (2) with

Acmp(�) = A22 + B2F2(�) + KRA12 + KRB1F2(�);

Bcmp(�) = A21 + KRA11 − (A22 + KRA12)KR + (B2 + KRB1)[F1(�)− F2(�)KR];
Ccmp(�) = F2(�);

Dcmp(�) = F1(�)− F2(�)KR :

(28)

This concludes the constructive algorithm of the reduced-order solution to the problem of perfect regulation.

Theorem 3.2. Consider the given plant � of (1) and assume that the solvability conditions in Theorem 2:1
are satis�ed. Then; the family of reduced-order measurement output feedback control laws (2) with its gain
matrices as given in (28) solves the problem of perfect regulation for the given �.

Proof. It is straightforward to verify that the closed-loop system comprising the given plant (1) and the
reduced order control law (2) and (28) is asymptotically stable for su�ciently small �, because the closed-loop
poles are the eigenvalues of A + BF(�) and AR + KRCR. Next, following the results of Chen et al. [2], one
can show that the Laplace transform of the closed-loop response h(t), H (s), is given by

H (s) = [C2 + D2F(�)][sI − A− BF(�)]−1x0 + C2
(
0
In−q

)
(sI − AR − KRCR)−1(x20 + KRx10)

+[C2 + D2F(�)][sI − A− BF(�)]−1(A− sI)
(
0
In−q

)
(sI − AR − KRCR)−1(x20 + KRx10): (29)

We note that Ker(C2)⊇Ker(C1) implies

C2

(
0
In−q

)
= 0: (30)

Hence, (16) implies that as �→ 0,

‖H‖2 → 0⇔ ‖h‖2 → 0: (31)

This concludes the proof of Theorem 3.2.

3.3. A numerical example

We consider a given linear time-invariant system of the form (1) characterized by

A=

[−1 1

1 0

]
; B=

[
0
1

]
; C1 = [1 0]; D1 = 0; C2 = [1 0]; D2 = 1; x0 =

(
x10
x20

)
: (32)

It is straightforward to verify that (A; B) is stabilizable, (A; C1) is detectable, and (A; B; C2; D2) is invertible and
has two invariant zeros at −1 and 0, respectively. Also, Ker(C2)=Ker(C1). Hence, the solvability conditions
of Theorem 2.1 are satis�ed. We note that h and y are linearly independent.
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First, following the algorithm for the full-order solutions, we obtain a family of parameterized control laws,

v̇=

[ −1=� 1

−1− 1=� −�

]
v+

[
1=�− 1
1=�+ 1

]
y;

u= [− 1 − �]v:
(33)

It is straightforward to verify that the eigenvalues of the closed-loop system are given by −1, −�, −1+O(�)
and −1=�+O(1), and the closed-loop response h(t) for �� 1, is given by

h(t) ≈ (�x10 − x20)�e−�t + (x10 − �x20)e−t=� + 2(x20 − x10)�e−t : (34)

Thus, for �� 1,

‖h‖2 =
∫ ∞

0
h2(t) dt = 1

2 [(�x10 − x20)2 + (x10 − �x20)2]�+O(�2): (35)

Clearly, as � → 0, ‖h‖2 → 0. Thus, the perfect regulation problem for the given plant is solved by the
full-order measurement output feedback control laws (33).
Next, we follow the algorithm for the reduced-order solutions and obtain a family of reduced order param-

eterized control laws,

v̇=−(1 + �)v− �y;
u=−�v− (1 + �)y:

(36)

It is again simple to verify that the eigenvalues of the closed-loop system are given by −1, −� and −1, and
the closed-loop response h(t) is given by

h(t) = (x20 − x10=1− �)�e−t + (�x10 − x20=1− �)�e−�t : (37)

Thus, for �� 1,

‖h‖2 =
∫ ∞

0
h2(t) dt =

1
2
(�x10 − x20)2�+O(�2): (38)

Obviously, as � → 0, ‖h‖2 → 0. Hence, the problem of perfect regulation for the given plant is also solved
by the family of reduced-order measurement output feedback laws (36).

4. Concluding remarks

We have completely solved the problem of perfect regulation via measurement output feedback for general
linear multivariable systems. A set of solvability conditions are obtained, which are all simple to verify. Under
these solvability conditions, two algorithms are presented for the construction of both full- and reduced-order
measurement output feedback laws that solve the problem perfect regulation.
We note that our results can be easily adapted to handle the case when there are external disturbances in

the plant, i.e., the plant is characterized by

ẋ = Ax + Bu+ Ew; x(0) = x0

y = C1x + D̃1u+ D1w;

h= C2x + D2u+ D22w; (39)

where the external disturbances w is independent zero mean white noise. For simplicity, we assume that
D̃1 = 0. Then, the necessary and su�cient conditions under which the problem of perfect regulation for the
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above system (39) with external disturbances, are as follows:

1. (A; B) is stabilizable and (A; C1) is detectable;
2. D22+D2SD1=0, where S=−(D′

2D2)
†D′

2D22D
′
1(D1D

′
1)

† and where (·)† denotes the Moore–Penrose (pseudo)
inverse;

3. (A; B; C2; D2) is right invertible and is free of invariant zeros in C+; and
4. Ker(C2 + D2SC1)⊇C−1

1 {Im(D1)}:={v |C1v ∈ Im(D1)}.

The proof of such an assertion follows similar lines of reasoning as those of Theorem 2.1. Finally, we note
that the above conditions are very di�erent from those for the perfect tracking problem considered in [4].
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