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Abstract

We study in this paper the problem of disturbance decoupling with constant (i.e., static) measurement feedback (DDPCM) for linear
systems. For a class of systems which have a left invertible transfer function from the control input to the controlled output or a right
invertible transfer function from the disturbance input to the measurement output, we obtain a complete characterization of all
solutions to the DDPCM. For a system that does not satisfy the above invertibility condition, we use the special co-ordinate basis to
obtain a reduced-order system. Then a complete characterization of all possible solutions to the DDPCM for the given system can be
explicitly obtained, if the obtained reduced-order system itself satisfies the invertibility condition. The main advantage of these
solutions is that the solutions are given in a set of linear equations. This resolves the well known difficulty in solving non-linear
equations associated with the DDPCM. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Linear systems; Disturbance decoupling; Static measurement feedback control

1. Introduction

The problem of disturbance decoupling with or with-
out internal stability by either state feedback or measure-
ment feedback is well known and has been extensively
studied for the last three decades (see e.g., Basile
& Marro, 1968; Wonham, 1979; Akashi & Imai, 1979;
Schumacher, 1980; Imai & Akashi, 1981; Willems
& Commault, 1981). It actually motivated the develop-
ment of the geometric approach to linear systems, and
has played a key role in a number of problems, such as
decentralized control, non-interacting control, model ref-
erence tracking control, and H,, optimal control. For the
problem of disturbance decoupling with constant or
static measurement feedback (DDPCM), there have been
only a few results in the literature. Hamano and Furuta
(1975) formulated the problem as finding a geometric
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subspace that only covers some special solutions. Re-
cently, Chen (1997) obtained a set of constructive con-
ditions for the solvability of the DDPCM and character-
ized all the possible solutions for a class of systems which
have a left invertible transfer function from the control
input to the controlled output. A similar result for this
class of system has also been reported by Koumboulis
and Tzierakis (1998).

Consider the following linear-time-invariant system X:

X = Ax + Bu + Ew,
y=Cix+ D;w, (1)
zZ = sz + Dzu + D22W,

where x € R" is the state, u e R™ is the control input, y e R
is the measured output, we R? is the disturbance, z € R? is
the controlled output, and 4,B,E,C;,D,,C,,D, and
D,, are constant matrices of appropriate dimensions.
Define Xp and X, respectively as the quadruples charac-
terized by (4,B,C,,D,) and (A,E,C;,D{). Then, the
DDPCM is to find a constant measurement feedback
control law

u=Ky, (2)
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with KeR™*’, such that the transfer function H,,(s)
from w to z of the closed-loop system is zero, i.e.,

H.,(s) =(C, + D;KC,)sI — A — BKC;)™*
(E + BKD,) + (D5, + D,KD;) = 0. 3)

Furthermore, the problem of disturbance decoupling
with constant measurement feedback and with internal
stability (DDPCMY) is to find a constant measurement
feedback control in the form (2) such that (3) is satisfied
and the closed loop system state matrix A + BKC; is
stable.

The main contribution of this paper is a characteriza-
tion of all solutions to the DDPCM for a class of linear
systems by a set of linear equations. This resolves the
difficulty in solving the non-linear equations associated
with the DDPCM. The solutions to the DDPCM which
are characterized by a set of linear equations require that
Yp is left invertible or X, is right invertible. For systems
which do not satisfy this condition, we use the special
coordinate basis to obtain an irreducible reduced-order
system. Then, the DDPCM can also be solved from a set
of linear equations if the obtained reduced-order system
itself satisfies the above invertibility condition. For sys-
tems whose reduced-order system does not satisfy the
invertibility condition, the reduced-order system also
simplifies the solution to the DDPCM.

Throughout this paper, X denotes the pseudo-inverse
of X, Ker(X) denotes the kernel of X, Im(X) denotes the
image of X, {A|Z> denotes the smallest A-invariant sub-
space containing Z which itself is a subspace, and
C Y&} :={x|CxeZ}, where Z is a subspace and C is
a constant matrix. We also use the following definitions
of geometric subspaces: Given an nth-order system
% characterized by (4, B, C, D), we define (1) the weakly
unobservable subspaces of X, 7 *(X), to be the maximal
subspace of R” which is (4 + BF)-invariant and is con-
tained in Ker(C + DF) such that the eigenvalues of
(A + BF)|7"* are contained in C for some constant
matrix F; and (2) the strongly controllable subspaces of
Z, $*Z), to be the minimal (4 + KC)-invariant sub-
space of R" containing Im(B + KD) such that the eigen-
values of the map which is induced by (4 + KC) on the
factor space R"/9* are contained in C for some constant
matrix K.

2. Solvability conditions for DDPCM and characteriza-
tions of its solutions

This section presents the main results of the paper. For
clarity of presentation, we provide the proofs of the main
results in appendices. The following two theorems give
the necessary conditions for the existence of solutions to
the DDPCM, which can be derived from the result of
Stoorvogel and van der Woude (1991). Due to

space limitation, the proofs of these two theorems are
omitted.

Theorem 1. Consider the given system X of (1). If the
problem of disturbance decoupling with constant measure-
ment feedback (DDPCM) for X is solvable, then ¥ must
satisfy the following conditions:

(i) D,, +D,SD, =0, where S:= — (D,D,)'D,D,,D',
(DID&)T;
(i) Im(E + BSD{) < 7 *(Zp) + BKer(D,);
(iii) Ker(C, + D,SCy) 2 $*(Zq)nCy Y{Im(D,)};
(iv) F*(Zq) S ¥ H(Zp).

Theorem 2. Consider the system X in (1). Let X and Y be
any full rank constant matrices such that Ker(X) = 7#(Zp)
and Im(Y) = S*(Xq). If the problem of disturbance de-
coupling with constant measurement feedback (DDPCM)
for X is solvable, then the following equation has at least
one solution N,

|:XB:|N[C Y Dy |:XAY XE:| 0 @
+ =0.
D, ! ' C,Y Dy

Let N be the set of all the solutions of (4). Then, any
constant measurement feedback law u = Ky, which solves
the DDPCM for Z, satisfies Ke V', i.e., K is a solution

of (4).

We now use these results to present a necessary
and sufficient condition for the solvability of the
DDPCM and the DDPCMS for a special class of
systems.

Corollary 3. Consider the given system X of (1). Assume
that both [Cy D] and[B' D] are full rank matrices, Zp is
left invertible and Xq is right invertible. Then, the problem
of disturbance decoupling with constant measurement feed-
back (DDPCM) for X is solvable if and only if

(Cy + D;NC,)sI —A — BNC,) YE + BND,)
+ (D, + D,ND,) =0, (5)

where N is a known constant matrix and is given by

B XAY XE
N = —(BX'XB + D,D,) '[BX' D,]

C,Y Dy,

’

Y'C)y 1
X (C,YY'Cy +D,D}) . (6)
D
Also, the problem of disturbance decoupling with constant
measurement feedback and with internal stability
(DDPCMS) for X is solvable if and only if (5) holds, and
A + BNC, is stable. Furthermore, both solutions to the
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DDPCM and DDPCMS for the given X, if existent, are
identical. They are uniquely given by u = Ny.

The proof of the above corollary follows from the
properties of ¥* and %*, and some simple algebras.
Next, we will proceed to tackle the case when a given
system does not satisfy the conditions posed in Corollary
3. We will partition the given system Z of (1) into some
subsystems using the special coordinate basis of Sannuti
and Saberi (1987) (see also Chen (1998) for the detailed
proofs of its properties). From now on, we will assume
that the necessary conditions for the solvability of the
DDPCM in Theorem 1 are satisfied. The following is
a step-by-step algorithm to obtain a reduced-order sys-
tem, which can be used to simplify the solution to the
DDPCM.

Step 1. Compute

XAY XE
N = — (BX'XB + D,D,)[BX D]

C,Y Dy,

Y'C}
X D (C,YY'Cy + D, D)), (7)

1

and then apply a pre-output feedback u = Ny + v to the
given system X, which yields the following new
system,

% =(A+BNCy)x + Bv + (E + BND,)w,
y=Cix + Dyw, (8)
zZ = (Cz + DzNCl)x + DzU + Ow.

Furthermore, it follows from the proof of Theorem 2 that
Im(E + BND;) < V"#(Zp).

Step 2: Find a non-singular transformation I, such
that

C
V=Thm =rm<y°>, Cimi=Ty'C, =[ 1’0}
V1 Cia

D
Dy,:=T,'D, = [ 0"} )

where D, o is of maximal row rank.

Step 3: Utilize the special coordinate basis of Sannuti
and Saberi (1987) (see also Chen, 1998) to find the non-
singular transformations I', I'; and I, i.e., let

X Vo Zo
Xa Vg Zq
x:Fs > U:Fi > Z:Fo > (10)
Xp o Zp
X4 Uy Z,

which yields the following transformed system

xa Acc Bc Ecu ch Cb Lcd Cd Xe
—kc 0 Aaa Lab Cb Lad Cd Xa
.| = + Ao
X 0 0 A LpaCa Xp
Xq BiEy ByEs BiEa A Xa

B, 0 B, 0]/vg E.

Bu() 0 0 Vg Ea

+ + w
By 0 0 O0]|ov E,
BdO Bd 0 0 U* Ed
Xe

|:C1,Oc Cioa Ciop Cl,Od:| Xa |:D1,0:|
Ym = + w

Cite Cria Crip Ciaal|xs 0
Xq
Zo Coc Coa Cop COd_ Xe
Zp . 0 0 0 Cd Xq
| |0 0 G 0 ||x
Zy 0 0 0 0 | \Xa
I.., 0 0 0]/
0 0 0 O0}flvg
+ (11)
0 0 0 0]}]uw
0O 0 0 O v,
where
BCO
BaO
Ao = [Coc Cou Cop Codl,
Byo
Bao
E,
E, _
=T, 1(E + BND,), (12)
E,
E,
and
[Cie Ciu Cup Ciyli=CiT (13)

Let Xy be characterized by (4+BNCy,B,C, +DNC,D,).
We further note that the decomposition in (11) has the
following properties: The pair (4., B.) is completely con-
trollable and Xy is left invertible if x. is non-existent;
(App, Cp) 1s completely observable and Zy is right invert-
ible if x, is non-existent; Xy is invertible if both x, and
X, are non-existent; (444, By, C4) 1s square invertible and
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is free of invariant zeros; the eigenvalues of A4,, are the
invariant zeros of Xy; and finally,

I 0
Y H(EN) = Im (T 0
00
00
and
I 0
SHZN) = Im(T; 00 (14)
00
0 I

It is simple to verify that under the conditions of
Theorem 1, we have E, =0, E; =0. Moreover, the
DDPCM for (1) is equivalent to that for the transformed
system (11).

Step 4: Let I', be a non-singular transformation such
that

L A A L [E
rll Aaara - a5 K FII Ea - El
0 A% 0

F; 1BaO = |: :O:|a (15)
a0
rl; lLub =|: :b:|> r(; 1l‘ud = |: jd:|a
ab ad
C a F a CE a
P 2 (16
Cl,la 1,1a Cl,lu
and
COara = [Ci)a %a]v Edara = [EZa Eia]a

Ecara = [Ega Eia] (17)

where (AS,, E;) is controllable.
Step 5: Define a reduced-order auxiliary system Xy as
follows:

.).CR = ARXR + BRuR —+ ERW,
yr = CirXg + Dipw, (18)

zg = CorXr + Doriig,

where
Ar = [ A BCI.Z;“] + |:BL:0:|[C0¢- 0al, Er = |:EL:|,
L0 A a0 E,
(19)
%l o o o

D211:|:Im0 0 0 0:|ri1, (20)
0 I, 0 0

d

and
Cioc Cioa
ClR 1—‘m|: o o :|9 DlR_Fm|: 10:|,
Citc Ciia 0
Co. E)a:|
Cor = [ 1)
" Edc ;a

This concludes the algorithm.

Let n, be the dimension of the space spanned by xg.
Apparently, n, can be in general considerably smaller
than n the dimension of the original system (1). Further-
more, it is simple to see that (Ag, Bg, Car,D2r) is right
invertible without infinite zeros.

For the given system X of (1) and the reduced-order
system X of (18), we define

A = {K|u = Ky solves the DDPCM for X}, (22)
and

H'g = {Kg |ug = Kryg solves the DDPCM for X }.
(23)

We now establish an equivalence between the
DDPCM for the original system X in (1) and that for the
reduced-order system Xy in the following theorem.

Theorem 4. Consider the given system X of (1). Assume
that conditions 1-4 of Theorem 1 are satisfied. Then,
we have

A ={Kg + N|Kge Ay}, (24)

where N is given by (7). Thus, the solvability of the DDPCM
for X of (1) and that for Zy of (18) are equivalent.

Proof. See Appendix A.

The following corollaries deal with some special cases
for which we are able to obtain complete solutions for the
DDPCM. The proofs of these corollaries follow the lines
of that given in Chen (1997).

Corollary 5. Consider the given system X (1) with
(A, B, C,,D,) or Zp being left invertible. Then, the problem
of disturbance decoupling with constant measurement feed-
back is solvable for X if and only if conditions 1-4 of
Theorem 1 are satisfied and

. 6
Ker(C.14) Ker{|:E3a:|}, (25)
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and all solutions to the DDPCM for this class of systems are
characterized by

0 Ko,
%‘:= Fi 0 Kdl r,;lKeRmX/,
K,o K,

Cga K01 c
Ko, K, are free and| = |+ 1a=0).
Eda Kdl

(26)

We note that for the case when Xp is left invertible, the
necessary and sufficient conditions for the solvability of
DDPCM can be simplified as follows:

Ecij: Eb=0a Ed=0a

Ker (C K Coa 27
er(Ci.1a) < er{|:Ec :|}, (27)

da

where E., E, and E,; are as defined in (12). These condi-
tions are quite transparent and can be easily verified
using the special coordinate basis decomposition.

Next, recall the given system X in (1). We define
a transposed system of X as

X=A'x+ Ciu+ Chw,
y = B'x + Dw,
z=FE'x+ Dju+ D5,w. (28)

It is apparent that the DDPCM for X is solvable if and
only if the DDPCM for the above transposed system is
solvable. Furthermore, if X, is right invertible, then the
transposed system satisfies the condition of Corollary 5.
Thus, we have the following corollary.

Corollary 6. Consider the given system X (1). If Xq is right
invertible, then the set of all possible solutions to the
DDPCM for X can be obtained by applying the result of
Corollary 5 to the transposed system (28).

From Corollaries 5 and 6, we see how to solve the
DDPCM for X when either Zp is left invertible or X is
right invertible or both. It is very interesting to note that
the solutions can be solved from a set of linear equations
in the form (26). Thus, the solutions can be easily com-
puted. We now further tackle the case when Zp is not left
invertible and X, is not right invertible. For this case, we
use the following algorithm to obtain an irreducible
reduced-order system, which considerably simplifies the
solution to the DDPCM. The basic idea is as follows: it is
clear from Theorem 4 that the DDPCM for the original
system is equivalent to that for a much smaller dimen-
sional auxiliary system Xy, which is taken from a subset
in 77* of the original system. We then dualize this auxili-

ary system and apply a similar reduction on it to obtain
a new auxiliary system whose dynamical order is further
reduced. We keep repeating this process until we reach
a system, which is irreducible. We have the following
step-by-step algorithm.

Step A: For the given system X, whose Xp is not left
invertible and X, is not right invertible, we apply Steps
1-5 of the previous algorithm to obtain a constant matrix
N and a reduced-order system Zy. Let X, := Xg and
N, := N with « = 1. Furthermore, we append a subscript
o to all the matrices of Z, .

Step B: For £, 5, we define an auxiliary system X} as
follows:

. ’ ’ !
Xor = AarXar + CoirlUsr + Cy2RWars
/ ’
Yar = ByrXyr + Dy orWar,
! !
ZgR = Eoc,Rxoc,R + Da,lRua,R' (29)

If the above system X} does not satisfy conditions 1-4 of
Theorem 1, then the DDPCM for X has no solution and
the procedure stops. If the above system X} cannot be
further reduced, we let & := o, 71, be the dynamic order of
>, r and stop the algorithm. Otherwise, go to Step C.

Step C: Apply Steps 1-5 of the previous algorithm to
>¥gr to find another matrix N (rename it as N, for
future use) and another reduced-order system, say
X, + 1, Characterized by

X+ 1R = Aut 1RXa+ 1R T Bat tRUz+ 1R T Eut 1R Wt 115
Vot 1R = Cor1,1RXa+ 1.8 + Dat 1, 1R Wat 1.1
Zy+1R = Cor 1,2k Xz 4+ 1.k + Dyt 1,2rRUs+ 1R (30)

If (Az+1.r>Ba+ 1.5 Cav 1,285 Dt 1,2r), Which is always
right invertible, is also invertible, we let &:= o + 1 and
stop the algorithm. Otherwise, let a:= o« + 1 and then go
back to Step B. This concludes the algorithm.

Consider the given system (1) with X, being not left
invertible and X4 being not right invertible, and assume
that conditions 1-4 of Theorem 1 are satisfied. We use
the results of Theorem 4, Corollaries 5 and 6 to obtain
the following theorem.

Theorem 7. If the quadruple (Asgr,Bsr,Cs.or> Ds.or) 1S
invertible, then the DDPCM for ¥ can be solved using the
result of Corollary 5. Specifically, if we let # 5 g be the set
of all solutions to the DDPCM to X g, then all the solutions
to the DDPCM for X are given by

%:{K&,R +N1 +N’2 + +N&|K5’REJ{/‘&’R} (31)
if & is an odd integer, or
H ={Kjr + Ny + N5 + - + N3 |KsreA5r} (32)

if o is an even integer. Obviously, if A 3y is empty, A is
empty, i.e., the DDPCM to X has no solutions at all.
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Finally, we note that for the case where
(Asr> Bsr> Csor> Dsor) 18 not invertible, in principle,
solutions to the DDPCM can be carried out through the
use of QEPCAD in Collins (1996). This is a finite step
computation problem, but the emerging conditions could
be hard to interpret. If we are interested in a purely
numerical characterization, then the method of Grobner
bases combined with QEPCAD may be applied to the
reduced-order system to find all possible solutions for
DDPCM and DDPCMS (see, e.g., Cox, Little & O’Shea,
1992).

3. Conclusion

We have studied in this paper the problem of distur-
bance decoupling with constant measurement feedback
(DDPCM) for linear systems, and obtained solutions to
the DDPCM for a class of systems which can be explicit-
ly solved from a set of linear equations. The solutions are
firstly obtained for systems which have a left invertible
transfer function from the control input to the controlled
output or a right invertible transfer function from the
disturbance input to the measurement output. For sys-
tems that do not satisfy the above invertibility property,
we have used the special coordinate basis to obtain
a reduced-order auxiliary system. The solutions to the
DDPCM for the original system can then be generated
from a set of linear equations, if the obtained reduced-
order system itself satisfies the invertibility condition.
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Appendix A. Proof of Theorem 4

Without loss of generality but for simplicity of pre-
sentation, we assume that the non-singular transforma-
tionsI', =11, =1,T, =1andI',, = I as all of them do
not affect the solutions to the DDPCM at all. We will
prove the theorem in two stages:

Stage I: Assume that the feedback control uy = Ky yg
is a solution for the DDPCM of the system Xg. Let K be
partitioned as follows:

KOO KOl
Ko K
Ke=| " 7 (A1)
KCO Kcl
K, K,

Then, Ky € # g implies that D,y Kg Dg = 0, which im-
plies that K,y = 0 and K;o = 0. Thus, we have

Agy = Ar + BrKrCir

| o S
Boo(Coc+Ko1Cr.1c)  Aaa+Bao(Cou +Ko1 €9 14) '

(A.2)
where
Xl = Acc + BC(KCOCI,OC + Kcl Cl,lc)
+ Bio(Coc + Ko1Cy 10), (A.3)
X5 = B,o(Cos + Ko1C9,14)
+ Bc(Ega + KCO Li,Oa + Kcl C1,1:1)7 (A4)
Ec + BcKc0D1,0
Egry:= Eg + BgKgrDg = 0 ) (A.5)
and
CRxO
Cry: = = Cor + Do KrCix
CRxd
Coc + K1 Cy 1c %a + Ko1CS 1a
:|: o 01C11 (C) 01 01,1 :| (A6)
Eq + K41Crie  Eao + K1 Chva

Note that Ky € 4y implies that Cry(sI — Ary) ' Egx =0,
for all s, or equivalently,

CRxO

CRxAlileRx = |: :|A;{xER = 09 (A7)

Rxd
fori=0,1,...,n — 1. Since E, =0 and E; = 0, we have

ERx
0
E.=:E+BND, +BKDy =| | (A.8)

0

For system (11), we apply the constant measurement
feedback control u = Ky y to obtain

A.:=A + BNC, + BKyC,
Agrx *
BZO CRxO *
Bio Crxo *
BioCryo + BiCrxa K

R S
R b
>
2

and

Creo * * *
Cx = C2 + DzNCl + DzKRcl == 5

0 * * *
(A.10)
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where *’s are some matrices of not much interest. It is
now straightforward to verify that

CXEX
chx=[ RB R]:o,

(A.11)

ArxErx
Bio Crxo Erx
Bpo Crxo Erx
| Bio Crxo Er + BiCryaErs

CiALE, = C,

[ArxErx

O CRxOARxERx
0 :[ 0

0

} =0. (A.12)

It follows that C,ALE, =0, foralli =2,...,n — 1. Thus,
C.(sI — A,) 'E, =0, for all s. Moreover, it is simple to
check that D,:=D,, + D,(N + Kg)D; =0. Hence,
u= (N + Kg)y is a solution for the DDPCM of the
original system X~ and N + Ky is an element of 4" or
equivalently

(Kg + N|Kgedy) = 4. (A.13)

Stage 2: Suppose that u = Ky is a solution for the
DDPCM of the original system Z. It follows from (3) that

D22 + DzKDl = O (A14)

Next, define the smallest (4 + BKC,)-invariant subspace
containing Im(E + BKD,) as

W= (A + BKC, |Im(E + BKD,)>. (A.15)

We note that this subspace #" is well defined as both
A + BKC, and E + BKD, are constant matrices. Then
Egs. (3) and (A.14) imply that #" < Ker(C, + D,KCy)
and by definition

I 0
0 I

W <V HEp) =V H(EN) = span 0 0 (A.16)
0 0

Hence, there exists a similarity transformation T such
that

. B cc AL‘E
T YA + BKC,)T = =
O ACC

T YE + BKD,) = [i] (A.17)

and

(C, + D,KC)T =[0C], W = span{T[(I)]}, (A.18)

where (A%, E°) is controllable. It is now straightforward
to verify that T can be chosen in the following form:

T, 0 0
T=l0 I 0] (A.19)
0 0 I

where T, is of dimension n, xn, Next, we let
Kr:= K — N. Clearly, Ky is a solution to the DDPCM
for the system in (11). We further partition the subsystem
associated with x, into the form (15)-(17), and partition
Ky as

KOO KOI
Ko K
Ke=| " T4 (A.20)
KcO Kcl
K,o K,

It is simple to show that D,, + D,KD; =0 implies
Koo =0and Im(E + BKD{) < ¥ *(Zp) implies K o = 0.
Thus, we have D,g Kg D1g = 0. Also, (A.17)-(A.20) imply
that

1 A A 1 E°
T* ARxT* = O AZ‘E N T* ERx = O N (A21)
*

and

Cra 0 *
w7 =Lo ¥}
B,Crua 0 *

where Ag., Ery,Creo and Cg. are as defined in
(A.2)-(A.6), and a % again denotes a matrix of not much
interest. Since (Ay4, By, C,) is invertible, which implies
that B, is of full column rank, Eq. (A.22) is equivalent to

(A.22)

CRxO

]T* = [0 *]. (A.23)

CRx T* = |:

Egs. (A.21) and (A.23) together yield
Cro(sI — Agy) 'Egy =0, for all s. Hence, ug = Kgyg is
a solution for the DDPCM of the reduced-order system
2r, which implies that

A = {Kp + N|Kg €Ak} (A.24)
Egs. (A.13) and (A.24) imply # = {Kg + N|Kr € A }.

Rxd
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