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Explicit solvability conditions for the general discrete-time H
almost disturbance decoupling problem with internal stability

Bex M. Cuent, Jun HET and YAaLING CHENG

We present in this paper several sets of numerically checkable solvability conditions
for the discrete-time He almost disturbance decoupling problem with internal stability
and with either (i) full information feedback, or (i) full state feedback, or (iii) general
measurement feedback. The problem considered here is general in the sense that we
allow the subsystems of a given system to have invariant zeros on the unit circle.
More importantly, our conditions are to be explicitly expressed in terms of some
well-defined geometric subspaces, and, furthermore, these conditions can easily be

verified numerically.

1. Introduction

The disturbance decoupling or almost disturbance
decoupling problem is to find a compensator, either
static or dynamic, to a given system affected by external
disturbances, such that in the closed-loop system the
disturbances have no influence at all or almost no influ-
ence in a certain sense (normally in the sense of Hj- or
Hs-norm) on the controlled output. It is one of the
main stimuli in the development of control theory and
plays a central role in several important problems such
as decentralized control, non-interacting control, model
reference tracking control, A, optimal control and Hw
optimal control. The question of when the disturbances
can be completely decoupled by feedback control from
the to-be-controlled outputs led to the development of
geometric control theory. Using the concept of (A,B)—
invariant subspace, (C,A,B)—pairs, Wohnam (1979),
Schumacher (1980), and others solved the complete dis-
turbance decoupling problem with state or measurement
feedback and with internal stability. The almost disturb-
ance decoupling problem was introduced and partially
solved by Willems (1981, 1982) and Weiland and
Willems (1989) using the concept of almost invariant
subspaces of linear systems. In the earlier results,
which dealt with the almost disturbance decoupling
problem, the stability region was normally restricted to
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a closed set in the complex plane to avoid the situation
when the given plants’ subsystems have purely
imaginary invariant zeros. More recently, Scherer
(1992), has finally overcome this difficulty and derived
a set of necessary and sufficient conditions for the
solvability of the Hs almost disturbance decoupling
problem for general continuous-time systems without
any pre-assumptions. His conditions are elegantly char-
acterized in terms of geometric subspaces of the subsys-
tems of the given system.

In this paper, we consider the problem of He almost
disturbance decoupling for general discrete-time plants
whose subsystems are allowed to have invariant zeros on
the unit circle of the complex plane. Also, the stability
region of a discrete-time system considered in this paper
is defined as usual as the open unit disc. To be more
specific, we consider the following standard linear time-
invariant discrete-time system 2 characterized by

xk+1) =4 x(k)+ B ulk) + E wlk),
DI y(k) = xlk) + D, w(k),
h(k) =G X(k) + D, u(k) + Dy W(k),

(1)

where x € R" is the state, u € R" is the control input,
y € R’ is the measurement, w € R? is the disturbance
and /1 € R? is the output to be controlled. 4, B, E, C,
D1, C3, Dy and Dy, are constant matrices of appropriate
dimension. For the sake of easy reference in future
development, we denote by 2p and 25, the subsystems
characterized by matrix quadruples (A,B, G, D ») and
(4 LE,C1,D 1), respectively. The following dynamic feed-
back control laws are investigated:
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s {xc(lﬁ' D = Aemp xk) + Bemp y(i), (2)

ullk) = Comp x(k) + Demp ¥k,

The controller 2. of (2) is said to be internally stabilizing
when applied to the system 2, if the following matrix is
asymptotically stable:

_ [A+BDcmpC1 BComp
d

(3)
chp Ci Acmp

L.e. all its eigenvalues lie inside the open unit disc of the
complex plane. Denote by G the corresponding closed-
loop transfer matrix from the disturbance w to the con-
trolled output 4. Then the Hw-norm of the transfer
matrix Gy is given by

||Gc1||00 = Sup Gmax[Gcl(ejw)]

€l i

where omax ['] denotes the largest singular value. We have
the following formal definitions of the solvability of the
Hx almost disturbance decoupling problems for general
discrete-time systems.

Definition 1.1: Consider the given discrete-time system
2. of (1). Then, the problem of Ho almost disturbance
decoupling with measurement feedback and with
internal stability (Hs-ADDPMS) for X is said to be
solvable if for any given y > 0, there exists a controller
of the form (2) such that the resulting closed-loop
system is asymptotically stable and the resulting
closed-loop transfer matrix lGyllso < Y. L]

We would like to note that for the plants whose sub-
systems 2p and 2 have no invariant zeros on the unit
circle, Chen e al. (1996) have obtained a solvability
condition for the Hx-ADDPMS. For a plant Y, whose
subsystems have unit circle invariant zeros, Saberi et al.
(1996) have recently shown that the following two state-
ments are equivalent.

(1) The Hoo-ADDPMS is solvable.

(2) The H> almost disturbance decoupling problem for
2. with measurement feedback and with internal
stability for 2. is solvable; and for all € > 0 and for
any invariant zero so on the unit circle of either Xp
or 2o there exists a matrix K such that
sol — A — BKC) i1s invertible and

I(cy + D,KCy) (5ol — 4 — BKC) ™ (E + BKC))
+DKD |l <e. (4)

The main problem with the above conditions given by
Saberi er al. (1996) is that it is very difficult, if not
impossible, to verify them, especially the second con-
dition of the second statement, in which one would
have to find a gain matrix for each unit circle invariant
zero of 2p or 2 and for each specific € > 0 such that

condition (4) is satisfied. Clearly, the second statement
of Saberi ez al. (1996) is simply reformulating the orig-
inal Hx-ADDPMS to another problem, which is even
more difficult to solve than the former, in our opinion.
The main object of this paper is to derive necessary and
sufficient conditions for the solvability of the Hoo-
ADDPMS for general discrete-time systems. Our con-
ditions are explicitly expressed in terms of geometric
subspaces and are simple to be checked numerically.

The remainder of this paper is organized as follows.
In section 2, we will recall the special coordinate basis of
linear systems, which is instrumental in the derivation of
the main results of the paper. Section 3 gives sets of
necessary and sufficient conditions for the solvability
of the Hoo-ADDPMS for general discrete-time systems
in terms of well-defined geometric subspaces. There are
three cases considered in this section, namely, the full
information feedback, the full state feedback and the
general measurement feedback cases. The proofs of
these results are separately given in section 4 for the
sake of clarity of presentation. Finally, the concluding
remarks are drawn in section 5.

Throughout this paper, the following notations will
also be used:

R := the set of real numbers,
C := the entire complex plane,
C := the open left-half complex plane,

C* = the open right-half complex plane,

€’ := the imaginary axis in the complex plane,
C” := the set of complex numbers inside the
unit circle,
C® := the set of complex numbers outside the
unit circle,
CO := the unit circle in the complex plane,
I := an identity matrix,
A(X) := the set of eigenvalues of a square matrix X,
X := the transpose of matrix X,
X
X1 = the complex conjugate transpose of
matrix X,

~

P

:= the pseudo inverse of matrix X,

XY= the orthogonal complementary subspace
of subspace ¥,
Ker (X) := the kernel of X,
Im (X) := the image of X,
C YA} = {x] Cx € &}, where X is a subspace and C
1S a constant matrix,
dim (X) := the dimension of subspace .

The following geometric subspaces will also be heavily
used in the paper to characterize the solvability con-
ditions of the proposed problems and their proof.
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Definition 1.2:  For a linear system X characterized by
a matrlx quadruple (A* B+, Cx D*), with A4« € R"™,
B-€ER"™, C.€ER" and D* ER” " we define the
weakly unobservable subspaces of X VX and the
strongly controllable subspaces of X, S*, as follows.

(1) VX(X.) is the maximal subspace of R" which
is (4« + B«Fo)-invariant and contained in
Ker (C« + D«F:) such that the elgenvalues of
(4« + B«F.)IVX are contained in €* C € for some
constant matrix F.

(2) SX(X) is the minimal (4« + K. C:)-invariant sub-
space of R" containing Im (B« + K«D+) such that
the eigenvalues of the map that is induced by
(4 + K*C*) on the factor space R" /SX are con-
tained in C* C € for some constant matrix K.

We further let V=VXand S =8* if¢*=¢c U (]:0
VE=WXand ST =8 irc*=¢"; V=YK dS@
1f(]:X c U €0; VE=WX and 88=5%, f(]:X c®; and
finally V'=VX and S*=S8% if ¢*=C.

Next, for any A € C, we deﬁne

Sy (3)
n X - )\I B+
— Xeq:n Hueq:nm: — u ,
0 Cs D+
(5)
and
V(3
- )\1 B+ X
=4x€C"|FueEC”: 0= .
Cx D+« u
(6)

Va(Z) and Sa(3:) are associated with the so-called
state zero directions of X if A is an invariant zero of

2. []

Finally, note that V*(3.) and SX(E*) are dual in the
sense that VX (3 = 8X E)L where >is characterized
by the quadruple (A* C* B* D:). The subspacesS (X
and V1(Z) are also dual 1e S\ = E**) where
A is the complex conjugate of A.

2. Background materials

We recall in this section a special coordinate basis (SCB)
of a linear time-invariant system introduced by Sannuti
and Saberi (1987), and Saberi and Sannuti (1990). Such
a special coordinate basis has a distinct feature of expli-
citly displaying the finite and infinite zero structures as
well as the invertibility structure of a given system. Let
us consider a linear time-invariant (LTI) system 2%,

which could be of either continuous-time or discrete-
time, characterized by the quadruple (A*,B*,C*,D*),
or in the state space form,

s(x) = 4+ x + B« u,}
y =Cext Deu,

(7)

where 5(x) = x(¢), if > is a continuous-time system, or
sx)=xk+1), if X is a discrete-time system.
Similarly, x € R", u € R" and y € R? are the state, the
input and the output of Y. They represent x(7), u(z) and
(1), respectively, if the given system is of continuous-
time, or they represent x(k), u(k) and y(k), respectively,
if 2 is of discrete-time. It is simple to verify that there
exist non-singular transformations U and V such that

0
0

(8)

9

o Imo
UD«V =
0

where my is the rank of matrix D«. In fact, U can be
chosen as an orthogonal matrix. Hence hereafter,
without loss of generality, it is assumed that the
matrix D has the form given on the right hand side of
(26). One can now rewrite the system of (25) as,

u
sx) = A x+ [By Byl <0>>
Ui
9)
<y0> _ C*,O Imo 0] <M0>
1 G 0 0 ur)’

where the matrices B:p, Bxj, Cvp and C«; have
appropriate dimensions. The following theorem com-
bines the results of Sannuti and Saberi (1987), and
Saberi and Sannuti (1990).

Theorem 2.1 (SCB):  Given the linear system 2x of (7),
there exist non-singular state, output and input transfor-
mations 1,, 1. and I; such that

X
Uo
Xa
u=Til u |, x=1I; ,
Xp
Ue
Xy (10)
Xa 0
== 0 ==
Xq xa |, y=Io| ],
+
Xa Vb

with x. € R™, x, € R™, x, €R™, x; € R™, and
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Ke=T7 (4 = By )T,

[ A« BE, BEY BE. LyCy LuCy]
0 Aua 0 0  LaChr LuCa
0 0 Aw 0 LG LoCa
0 0 0  An LG LGy
0 0 0 0 Ay LpaCy

— +
L BiEse BiEg BiEy BiEg BaEay A
(11)

By,
B
Bl
By,
Boy
LBys Bu

=

B. = El[B*,o B L=

S O o o O

S O O o O
»

N Ceo Coc Cou Cla Ca; Co» Cou
c*=01[’]1?= 0o 0 0 0 0 Cif,

Ce
’ 0 0 0 0 G 0
(13)
and
Iny, 0 0
D.=L;'pI;=]0 0 0], (14)
0 00

where (ACC,BC) is completely controllable, (Abb, Cb) is
completely observable, and (Add,Bd, Cy) is invertible
and free of invariant zeros. Moreover, AAq) C C,
Al4%,) (]:0, and AM4L,) € ¢*, if 2% is a continuous-
time  system;  or Al4,,) < (]:G, )\(Aga) cc°
Al4y) € c®, if 2 is a discrete-time system. j

By now it is clear that the special coordinate basis
decomposes the state-space into several distinct parts.
In fact, the state-space X of 2« is decomposed as

X=X oX eXoX aX, X, (15

Here, X, is related to the stable invariant zeros, i.e. the
eigenvalues of A, are the stable invariant zeros of Y.
Similarly, X° and XY are respectively related to the
invariant zeros of X located in the marginally stable
and unstable regions. On the other hand, &, is related
to the right invertibility, i.e. the system is right invertible
if and only if X, = {07, while &, is related to left invert-
ibility, i.e. the system is left invertible if and only if
X, ={o}. Finally, ', is related to zeros of 2 at infinity.

The following property shows the interconnections
between the special coordinate basis and various invar-
iant geometric subspaces.

Property 2.1
(1) X, 900X,

spans {V_ Y.), if 2 is of continuous-time,
P VG(E*), if 2% is of discrete-time.

2) Ay & X,

SpANS {V; ), if 2 is of continuous-time,
P VI(X), if 2 is of discrete-time.

(3) X; @XS@X:@XC spans V*(E*)
(4) X; X X,

Shans {5;(2}), if 2% is of continuous-time,
P S§7(%), if 2 is of discrete-time.

(5) X eXeX X,

Spans {5+(B), if 2% is of continuous-time,
P 5®(2*), if 2% is of discrete-time.

(6) X.® X, spans S'(Z). ]

The SA(3%) and Va(Z) can also be easily obtained
using the special coordinate basis. We have the fol-
lowing property.

Property 2.2

M~44 0 0 0
S\(Z) =Im { T, 8 %’A 13( 8 , (16)
0 0 0 I,
where
Im { ¥ja} = Ker [Cb(Abﬁ-Kbe a7, (7

and where K, is any appropriate matrix subject to the
constraint that matrix 4,, + K, C), has no eigenvalues at
A. We note that such a K, always exists as (Abb,Cb) 1S
completely observable.

Xa O
V() =Im I3 8 X(,)A , (18)
0 0

where X, 1s a matrix whose columns form a basis for
the subspace,

{gee

(AT = 4.)G = 0}, (19)

and

X := (ACC + B.F. — )\1) B

Cs

(20)

with F,. being any appropriately dimensional matrix sub-
ject to the constraint that 4.. T B.F, has no eigenvalues
at A. Again, we note that the existence of such an F, is
guaranteed by the controllability of (ACC,BC). L]

Clearly, if A & A(4,) UA4S,) UA(4,,), then
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V(Z)EVXE), and S\(Z)28%T). (1)

Lastly, we would conclude this section by noting that
software packages that realize the special coordinate
basis of Theorem 2.1 can be found in LAS by Chen
(1988) and in MATLAB by Lin (1989). The rigorous
proofs of the above mentioned properties of the special
coordinate basis can be found in Chen (1998).

3. Solvability conditions for the Ho,orADDPMS

We are now ready to present our main results of this
paper. In this section we give the solvability conditions
for the general He almost disturbance decoupling prob-
lems with internal stability for the following three cases:
the full information feedback, the full state feedback
and the measurement feedback. These conditions are
characterized in terms of some well-defined geometric
subspaces. We also develop a numerical algorithm that
will check these conditions without actually computing
any geometric subspaces. The proofs of the main results
of this section are given in the next section just for
clarity of presentation.

Let us first examine the full information case. We
have the following result.

Theorem 3.1:  Consider the given discrete-time linear
time-invariant system Y, of (1) with the measurement
output being

yZ(fi), or CF(é), D1:(?>, (22)

i.e., all state variables and disturbances (full information)
are measurable and available for feedback. The Hs
almost disturbance decoupling problem with full informa-
tion feedback and with internal stability for the given
system is solvable if and only if the following conditions
are satisfied:

(a) (4,B) is stabilizable.

(b) Im(Dy) C Inffl(Dz), ie, Dp+DyS=0, where
S =—(D5D,)'D3D.

(c) Im(E+ BS) C {V°(Zp) + BKer (D,)} N
{m|)\|:1 S)\(EP)} L]

The result for the general measurement feedback case
is given in the next theorem.

Theorem 3.2: Consider the given discrete-time linear
time-invariant system Y. of (1). The Hoo almost disturb-
ance decoupling problem with measurement feedback and
with internal stability (Hs-ADDPMS) for (1) is solvable
if and only if the following conditions are satisfied:

(a) (4,B) is stabilizable.
(b) (4,Cy) is detectable.

(c) D+ D>SD; =0, where S=—(D3D>)'D5D»D|
(D0}

(d) Im(E + BSD,) € {V°(Ip) + BKer (D))} N
{Mia=1 SA ().

(e) Ker(Cy+ D25Cy) D {8%(2) N ¢ Him (D))} U
U= VA ())-

(f) $°(Zo) € V(). O
The following remarks are in order.

Remark 3.1: Note that if Xp is of minimum phase and
right invertible with no infinite zeros, and 2 is of mini-
mum phase and left invertible with no infinite zeros,
then Conditions (d) to (f) of Theorem 3.2 are automa-
tically satisfied. Hence, the solvability conditions of the
Hx-ADDPMS for such a case reduce to:

(a) (4,B) is stabilizable.
(b) (4,Cy) is detectable.

(¢) D+ D2SD) =0, where S = —(D3D1) D3D2 D} X
(D\DY)".

Remark 3.2: For a special case when all the states of
the system (1) are measurable and available for feed-
back, i.e. y = x, it can be easily derived from Theorem
3.2 that the H almost disturbance decoupling problem
with full state feedback and with internal stability for
the given system is solvable if and only if the following
conditions are satisfied:

(a) (4,B) is stabilizable.
(b) Dy» =0.
(¢) Im(E) € VO(Zp) N {Njp=; Sa(Zp)}. O

As mentioned earlier, the conditions in Theorem 3.2
can actually be verified without computing the geo-
metric subspaces of 2p and 2. This can be done by
fully understanding and utilizing the properties of the
special coordinate basis of linear systems as given in
Theorem 2.1. We have the following algorithm that
will verify the solvability conditions given in
Theorem 3.2.

Step 0. Let S =—(D3D2)'DsD»D (DD}, If D+
D32SD; # 0, the Hoo-ADDPMS for (1) is not
solvable and the algorithm stops here.
Otherwise, go to the next step.

Step 1. Compute the special coordinate basis of Xp, i.e.
the quadruple (A,B, Cz,Dz). For easy refer-
ence, we append a subscript ‘p’ to all sub-
matrices and transformations in the SCB as-
sociated with Xp, e.g. [p is the state transfor-
mation of the SCB of Xp, B,p is replacing the
sub-matrix By, and Agap 1s associated with
invariant zero dynamics of 2p on the unit circle.
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Step 2. Next, we denote the set of eigenvalues of Agap
with a non-negative imaginary part as
{a)pl,a)pg,...,a)pkp} and for i=1,2,... kp,
choose complex matrices V;p, whose columns
form a basis for the eigenspace
{x € " | sMopr — 4%p) = 0}, where nlp is
the dimension of X «p- Then, let

Vp:= [ Vip Vop... Vkpp] . (23)
We also compute  nyp:= dim (X o)+
dim (X4p) + dim(Xjp), and
B
Ep
| Egp
Lp(E+BsSD):=| ¢ |. (24)
EaP
Epp
L EdP J

Step 3. Let ZQ be the dual system of ZQ, and be char-
acterized by a quadruple (4’ ,C1 ,E D). We
compute the special coordlnate ba51s of ZQ
Again, for ease of reference, we append a sub-
script ‘QQ’ to all sub-matrices and transforma—
tions in the SCB associated with 33, e.g. EQ
is the state transformation of the SCB of ZQ
Byq is replacing the sub-matrix B,, and AaaQ 1s
associated with invariant zero dynamics of ZQ
on the unit circle.

Step 4. Similarly, we denote the set of eigenvalues of
AgaQ with a non-negative imaginary part as
{a)Ql,a)Qz,...,a)QkQ} _and for i=1,2,... ko,
choose complex matrices Vg, whose columns
form  a bas1s for the eigenspace
{x€ (E””Q | x (a)QlI AaaQ) 0}, where 7,q is
the dimension of X%, «Q- Then, let

Vo= [ Vig Vag '+ VkQQ}. (25)
We next compute ,q:= dim(X :QH'
dim (¥,q) + dim(X o), and
_ECQ_
Ex
| r _ | Bl
oG+ Dyscy) == | 2. (26
E.qQ
EbQ
L Eaq ]
Step 5. Finally, compute
Iy — |k K
I - X A, @)

where ['is a n,p X n,q constant matrix.

The following proposition summarizes the result of
the above algorithm. It also gives a set of necessary
and sufficient conditions, in terms of sub-matrices as-
sociated with the special coordinate bases of Xp and
2, for the solvability of the Ho-ADDPMS for the
general discrete-time system 2. of (1).

Proposition 3.1:  Consider the given discrete-time linear
time-invariant system Y. of (1). The Hoo almost disturb-
ance decoupling problem with measurement feedback and
with internal stability (Hw-ADD PMS) for (1) is solvable
if and only if the following conditions are satisfied:

(a) (A B) is stabilizable,

(b) (4,Cy) is detectable

(C) D22 D, DzDz) D2D22D1(D1D1) D= 0.

(d) Vp Eap 0, Eap 0, Ezp = 0, Im (Ezp) C Im (Bgp),
(

e) VOEQ=0, Exo= 0, Exq= 0, Im (Esq) € Im (Byg),
(f) I'=o0.

Note that all the matrices in (d)-(f) are well-defined in
Steps 0 to 5 of the algorithm. U]

The above result can be directly verified using the
properties of the special coordinate basis and the
result of Theorem 3.2 (see also Chapter 7 of Chen
(1998) for a similar result for continuous-time systems).

4. Proofs of main results

We will prove the main results of the paper in this sec-
tion. Our idea is to first transform the Hs-ADDPMS
for the discrete-time system (1) into an equivalent Heo-
ADDPMS for an auxiliary continuous-time system
using the well-known inverse bilinear transformation
and then identify the mappings of geometric conditions
under such a transformation.

4.1. Proof of Theorem 3.1

Let us first show the result of Theorem 3.1, ie. the
solvability conditions of the Hw-ADDPMS for the
following full information system,

DITEE
xk+1D)= 4 x)+ Bulk)+ E wk),
w0 = (1) = + () win,
h(k) = (O X(k)"’Dz u(k)+ Dy W(k).
(28)

We define the following auxiliary continuous-time
system,
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X= A Xt But E_w,
~ I\ < 0) ~
= +
21:1 y (0> X (1> w, (29)
2= G 55"’52’11"' 522 ﬂ/,

where 4, B, E, C», D and Dy, are defined as

=(U+BR+D 4+ BR -1
204+ BFy+D7'B,
V2(4+BRy+D7'E

’ . (30)
V2(Cy + DaFo) (4 + BRy+ D7,
D> =Dy = (G + D2F)(4+ BFy+ D' B,

Dy =Dyp—(Cy+ DsF)A4+BF,+ 1) 'E

9

S LRI TN
Il

9

and where Fy is chosen such that 4 + BF, has no eigen-
values at —1. This can always be done provided that
(A,B) is stabilizable. For future use, we denote Sp as
the subsystem characterized by (A,B, Cz,Dz). It was
shown by Glover (1984) that the infimum of Hw
optimization for the discrete-time system (46) is
equivalent to that of Hx optimization for the auxiliary
continuous-time system (47). Thus, as a direct conse-
quence, the H-ADDPMS for the discrete-time system
(46) is solvable if and only if the Ho-ADDPMS for the
continuous-time system (47) is solvable. Following the
results of Scherer (1992), one can show that the Heo-
ADDPMS for (47) is solvable if and only if the
following conditions are satisfied.

(a) (4, B) is stabilizable.
(b) There exists a matrix S such that Dy + 52§ =0.
(C) Im (E + ES;) - S+(2P) N {m)\eq;o S)\(S:P)}

It is simple to show that (A,B) is stabilizable if and only
if (A,B) is stabilizable. Hence, it is sufficient to show
Theorem 3.1 by showing that the following two state-
ments are equivalent.

(1) The first statement:
(a) there exists an S such that Dy + D,S = 0,
(b) Im(E + BS) € {V°(Zp) + BKer (D,)} N
{Mi=1 SA ()}

(2) The second statement:
(a) there exists an S such that Dy + D,S = 0,
(b) Im (E + ES;) - S+(2P) N {m)\eq;o S)\(S:P)}

Statement 1 = Statement 2: It is without loss of any
generality to assume that matrix D2 in (46) is equal to 0.
Also, by the definitions of the geometric subspaces L2
SX V) and Sy, it is simple to verify that they are all
invariant under any state feedback, output injection
laws, and non-singular input as well as non-singular
output transformations. Hereafter, we will assume that
the subsystem Xp, i.e. the quadruple (A,B, Cz,Dz), isin

the form of the special coordinate basis of Theorem 2.1.
For easy reference in future development, we further
assume that the state space of 2p has been decomposed
as follows:

_ 30* - +
X=XVoX oX oX) @Xb@)(d@)(g“, (31)
where X% corresponds to the zero dynamics of Xp
associated with the invariant zero at z = —1 and XS
corresponds to the zero dynamics of Xp associated

with the rest invariant zeros on the unit circle. More
specifically, we let

4% 0 0 o %c t%c, o
0 Au O 0 LiCyh LuwCq 0O
* - +
BcEc(’)a BcEca Acc BcEca chCb Lca'Cd BCE((’)J

A=| 0 0 0 A, LLC, Lhc, 0
0 0 0 0 A LpaCq 0
* - +
ByEjyy BiEds BiEa BiEj BiEa Ais  BaEds

LavCy LaaCa  Au
+ByCayp, (32)

L 0 0 0 0

BY 0 0 [ EY ]
By 0 0 E,
B 0 B. E,
B=[B, Bl=|B, 0 o, E=|E |,
By 0 0 E,
By Bs O Ey
LB 0 ol L EY
(33)
and
o= -Cz,o
L Co,1
(b Cu Co Coa Co» Coa Con
=10 0 0 0 0 C 0|,
Lo 0 0 0 G 0 0
(1 0 0
Dy=1{0 0 Of, (34)
[0 0 0

where Agi, has all its eigenvalues at —1 and ASZ has all
its eigenvalues on the unit circle, but excluding the
point —1. Then, the condition in Statement 1(b) is

equivalent to
E, =0, E,=0, E'=U+AMX", E;=BiXa,

(35)

9
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for some appropriately dimensional X2! and X, and
Ey = Yo Xd'

where Yg; is a matrix whose columns span
ﬁqe;\(Ag;)Im(O(I —A%) and XY is an appropriately
dimensional matrix.

Let us now choose Fy as,

(36)

9

- +
Con Cou Coc Cou Cop Coa o

Fo=—|EY En Ei Ej Ep» 0 EN—E)
EY E. 0 E. 0 0 0
(37)
Then, we have
A=A+ BF,
(4% 0 o o % %c, o ]
0 A, 0 0 LpC, LuCs O
0 0 A, O LpCy, LuCy O
=10 0 0 Ay LG LaC, 0 |,
0 0 0 0 Ay LyC; O
0 0 0 0 0 Ay BE)
Lo o o o %¢ YMe, 4%
(38)
and
0000 0O 0 0
Cy=C+DyFo=10 0 0 0 0 ¢, 0]. (39
0000C 0 0

For simplicity, we further assume that 4., 4, and A4
have no eigenvalues at —1. Otherwise, some additional
pre—sta;e feedback will relocate them to somewhere else.
Also, Eda is chosen such that 4 has no ecigenvalues at
—1. Next, it can be computed that

(4+BFy+1)"'=

[(1+4%)7 0 0 0 Xis Xig Xi7)
0o (+4,)™" o 0 Xos Xog Xo
0 0 U+4a)™ 0 Xz Xy Xy
0 0 0 (I+A4.)7" Xis Xas Xar >
0 0 0 0  Xss Xs Xs7
0 0 0 0 Xos Xoo Xe7
L O 0 0 0 X75 X76 X771
(40)

where
Xs55 = (1+Abb)_1{1_Lded(1+Add)_l

X BERAT LS C (14 4,,)7' Y, (41)

9

Xsg = —(I+ A) " Lyg U+ Lyg Co(I+ Agg) "' BLEGA™!
X (L0 — 1% 0 (14 Ap) ™ Loal}

XCd(]+Add)_l (42)

9

X5 = U+ 4p)™ Ly Call+ 4™ BiEG@A™ (43)

Xes = (I 43) " BELAT LY (1 4) 7! (44)

9

Xog = (I"’Add) {BdEda [LS},— Lg;l,Cb(1+Abb)_1Lbd]

< CalI+a)” " +1}, (49

Xe = —(+44) " BAELAT, (46)
Xos = —AT L Cy 1+ 44,7 (47)

9

Xr6 = AL Cy 1+ Ap) ™ Lyg— LY Cy (1 4,407, (48)

Xn=A"", (49)
Xis = —(1+ 4%) (L9 CpXss + LgCaXes), (50)
Xig = —(1+ 4%) " (L9 CpXs6 + LigCaXes), (51)
Xi7 =~ + 4%) (L9 CoXs7 + LigCaXer), (52)
Xos = —(1+ 4z) " (Lp CpXss + Ly CaXes), (53)
Xog = —(1 + 42) " (L CpXs6 + Ly CaXes), (54)
Xo = —(1+ 42) " (L CpXs7 + Ly CaXer), (55)
Xas = —(I+ A) " (LepCpXss + LeaCaXes), (56)
Xa6 = (I + )" (Lo Cy X5 + Lo CaXeo), (57)
Xy =~ + 4. (LyCp X5y + LeaCaXe), (58)
Xos = —(1+ 43) " (L CyXss + Loy CaXes), (59)
Xag =~ + 43) " (L CyXss + LiyCaXes), (60)
Xy =~ + 43) " (L CoXsy + Loy CaXer), (61)
and where

A=A+ LG+ A Ly = L2

X C,(I+ A,) ' BEY. (62)
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Furthermore, we have

(1+4%) ™" B+ XisBoy+ Xi16Boat X178 Xi6Ba 0

(I+A2) ™" Bout XosBoy+ Xa6Boa+ X1 B XasBa

(I+A4.0)™" Boet X35 Bop+ X36Boat Xs7BOy  X36Ba (I+4.)™"
B=V2 (1+A43,)™" Boy ™ XasBoy+ XasBoa+ Xa7 By XagBu 0

XssBop+ Xs6Boa T Xs7B0s  Xs6Ba
XesBoo+ Xo6BoaT Xe1Boa  Xe6Ba
X75Bop+ X76Boa T X71B0s  X76Ba
[ (14 4G) ™" Yoa X3+ X1 BaXa+ X (I + A,

(I+ Az) " E; +Xos By Xy Xy (145

(I Ae) " B X3By X+ X (I+ A X!

E=V2 XuoBaXq+ X (1+ A% X7
(

(

(1

S O O

)XOI
1) x 9!
Xse By X+ X7 (1+4%0) X2

Xes By X+ X (1 4%0) x!
L X6Ba Xyt X77(1+ A%) X'
I 0 0

D2 = | ~CuXesBu+ XoBoa+ Xe7B0w)  —~CaXesBa 0
—Cy(XssBoy+ Xs6Boa T Xs7B04)  —CpXs6Ba 0

9

and
0

522 = _Cd[XﬁéBdXd + X67(I + AQ},)XC?I]
—CyXs6By Xy + X57(1 + 4% x0']

Next, let us define
0

§= | —xo+ EUXY
0

Noting that .
I+ A% =A~ [LE,’},C;,(I + ) Lpa — LE,'},} Ca(I + A40)”' BaEgs,

it is straightforward to verify that
0
522 + 52§ = _Cd[X67(I‘|’ AS},)Xﬁ” + X%BdE%Xgl] =0
—CylXs7 (I + A X3 + Xs6ByEgu Xa'|

which shows that Statement 2(a) holds, and

9

[+ 4% 7 Yo X+ Xi6BaEQ X0+ X (14 4%)

(I 45) " ES + Xo6BaEQ X0+ X (1 4%)
(I+ A) " B+ Xa6BaEQ X + X7 (14 4%)
E+BS=V2 XasBaEL X'+ X (1 42)
(1+A45)

(1+A45)

(1+A450)

—_

—_

—_

XssBaEg Xo +Xs7(I+ A3
XesBaER XY+ X7 (14 4°
L Xo6 B EQ X0+ X (14 4°

—_

—_

|
S

B.

g (1407 Yo X

* © © S % »
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where % are matrices of not much interest. Let the state
space of Sp, ie. the matrix quadruple (A,B, CoD»), be
decomposed as follows:

F=RoX oT ok ofek ok, (7)

where ??S , X , XC, X, and X, are the usual subspaces
defined in the special coordinate basis of 2[), while X; !
corresponds to the zero dynamics of >p associated with
the invariant zero at s = 1, and X corresponds to the
zero dynamics of 3p associated with the rest of the
unstable invariant zeros (excluding the point s = 1). It
was shown by Chen and Weller (1998) that X of 3p and
X of Yp are related by

X(a) = Xg*, X; = X;, XC = XC, X:* = X;—, (72)
and
it
Xb:Xb, X, :Xd, X, = (73)

Moreover, the zero dynamics of Xp, corresponding to
the imaginary axis invariant zeros, are fully character-
ized by the eigenstructure of the following matrix,

Kow = (4% + D7 (4% = 1), (74)
Noting (54), one is ready to verify that

{7+ 497y = () mipr— Ayt (75)
BEA(AL,)

It is now straightforward to see from (70) and the
properties of the special coordinate basis that

Im(E + BS) C ST (Zp) N { N S)\(EP)}, (76)

Aec’

i.e. Statement 2(b) holds.

Statement 2 = Statement 1: This follows by reversing
the above arguments using the well-known bilinear
transformation and the results of Chen and Weller
(1998). Thus, it is omitted. This completes the proof of
Theorem 3.1. U]

4.2. Proof of Theorem 3.2

For simplicity of presentation, we assume throughout
this proof that matrix 4 has no eigenvalues at —1.
Then, we define the following auxiliary continuous-
time system,

x=AXt+But E W
> y=C % + Dy W, (77)
326255"'52%"'522%,

2,52 and Dy, are defined as

A =u+p"'u-n,

B =V204+17'B,

E =vV24+D7'E

& =vaca+ (78)
Dy =D -4+ 'E,

G = V204 + 17",

Dy =Dy— G4+ 1)'1{9,

Dy = Dy — Cz(A "’I)_ E.

For easy reference later on, we let Zp denote the sub-
system characterized by (A,E, C,D ~1) and 2 denote
the subsystem characterized by (A,E, Cl,Dl), respect-
ively. Following the result of Glover (1984), one can
show that the following two statements are equivalent.

(1) The Hs-ADDPMS for the originally given discrete-
time system 2. of (1) is solvable.

(2) The Hx-ADDPMS for the auxiliary continuous-
time system 2. of (97) is solvable.

It was shown in Scherer (1992) that the second statement
above is also equivalent to the following conditions,

(a) (4, B) is stabilizable.
(b) (4, ,(Nfl) is detectable.
(¢) Do+ D>SDy =0, e e
where § = —(D»D»)'D2D» (D1Dy)'.
(d) Im(E + BSD)) € 8™ (5p) N{Myeqn S2p)}
(6) Ker((Nfz + 52561) o V+(§:Q) U {U)\eq:o V)\(NZQ)}
(f) V(S € ST(5»).

First, it is simple to check that the triple (;I,E, Cy) is
stabilizable and detectable if and only if the triple
(A,B, C) is stabilizable and detectable. Next, following
the proof in Subsection 4.1, we have the following
equivalent statements:

(1) Statement I:
(a) D22+D2SD1 :/0, i , It
where § = —(D>D»)'D2D» D1(D1D1)".
(b) Im(E + BS) € {V°(Zp) + BKer (D)} N
{N=; SA (P
(2) Statement IT:
(a) 522+52§51 :0, ,
where S = —(52/52)”32/522 5{(5151)T.
(b) Im(E + BSD)) € 87 () N {Mpeer Sa3p) ).

Dualizing the arguments of Subsection 4.1, we can show
that the following two statements are also equivalent:

(1) Statement A:

(a) Dy + D2SD; =0, ‘L ) "
where S = —(D»D»)'D>D» Di(D D).
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(b) Ker (Cy + D,5C)) 2 {S®(Zp) N ¢!
{Im (D)} U{Ujp= Va(Z)t.
(2) Statement B:
(a) 522 + 52551 = 0,
where S = —(D3D>
(b) Ker (G + D,8C) 2 V' (3,
{U)\eq;o V)\(SQ)}
Finally, it was shown in Chapter 4 of Chen (1998) that
VO(5p) = §7(5y), 825 =V'Sy),  (79)

-

and

V(5 = 875y, SS9 =V (Y. (80)

Hence, the following two statements are equivalent:
(1) $°(Zo) € V().
(2) V7(Ey) € ST (5.

Thus, the result of Theorem 3.2 follows. L]

5. Conclusions

We have presented sets of necessary and sufficient con-
ditions for the solvability of the Hs almost disturbance
decoupling problem with internal stability for general
discrete-time systems whose two subsystems—i.c. the
subsystem from the control input to the output to be
controlled and the subsystem from the disturbance input
to the measurement output—are allowed to have invar-
iant zeros on the unit circle of the complex plane. These
conditions are expressed in terms of some well-defined
geometric subspaces and they are numerically check-
able. Furthermore, we have also developed an algorithm
that verifies these conditions without actually calcu-
lating any geometric subspaces at all.
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