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In this paper, we consider the problem of designing a robust
controller for a multivariable servomechanism of a free gyro-
stabilized mirror system where there exists cross-coupling between
the axes. The nonlinear dynamics of the system are first linearized
and reformulated into an H. problem. A reduced order output
feedback controller is then designed using the asymptotic time-
scale and eigenstructure assignment (ATEA) technique. The over-
all design has been implemented using a personal computer with
C+ + and tested on the actual gyro-stabilized mirror system. Our
simulation and implementation results show that the design is very
successful.

1 Introduction to the Problem

Electro-optical (E-O) sensors that are mounted on vehicles such
as aircraft, helicopter, and tanks are subjected to vibrations intro-
duced by these platforms. These vibrations cause the line-of-sight
(LOS) of the E-O sensors to shift, resulting in serious degradation
of the image quality (see for example, Bigley and Rizzo, 1987).
This problem is even more pronounced in systems with high
magnification property. One way of overcoming it is to use free
gyro-stabilization. A gyroscope or gyro is basically an axially
symmetrical mass rotating under a high constant speed. With the
magnitude of the angular inertia and the speed of rotation both kept
constant, the momentum generated is also fixed. Bearing in mind
that the momentum is a vector quantity, this implies that the
directional orientation is maintained. Therefore under the absence
of large external forces, a gyro is capable of maintaining the
orientation of its spin axis in the inertia space. By choosing an
appropriate high value for the speed of rotation, the vibrational
torque produced by the platforms can be made insignificant as
compared to the momentum generated. The LOS can thus be
stabilized by simply designing a system such that the LOS and the
ayro’s spin axis are parallel in space. However, a spinning gyro
has another property known as precession. This means that if a
torque is applied to one axis, it will, contrary to the intuitions of
mechanics, rotate in the direction of another axis (Perry, 1957). In
this paper, we consider a multivariable servomechanism free gyro-
stabilized mirror system. More specifically, it is a two-input-two-
output system. The control of this multiple-input-multiple-output
system is not a simple problem solved by using conventional PID
controllers, because there exist cross-coupling interactions be-
tween the dynamics of the two axes. In addition, the controller has
to maintain stable operation even when there are changes in the
system dynamics. Over the years, many researchers have worked
on this system, and the control methodologies studied include
adaptive with feedforward paradigm (see e.g., Lee et al., 1996, and
Yang and Chang, 1996), neural network control (see e.g., Ge et al.,
1997), fuzzy logic (see e.g., Lee, 1995), linear quadratic Gaussian
technique (see e.g., Bigley and Rizzo, 1997, and Constancis and
Sorine, 1992), and feedback linearization (see e.g., Dzielski et al.,
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1991), to name a few. We tackle in this paper a gyro-stabilized
mirror system design using an H. control approach. We will
design a simple low order controller such that the overall closed-
loop system would have fast tracking and good robustness perfor-
mance.

2 The Free Gyro-Stabilized Mirror System

Figure 1 is a schematic diagram of the gyro mirror. It consists of
the following essential components: (i) a flywheel and its spin
motor; (i) gimbals that provide two degrees of freedom to the
flywheel and two torque motors for slewing purposes; and (iii) a
mirror that is geared to the gimbals through a 2:1 reduction drive
mechanism.

Because no rigid body can spin forever, a piece of a pancake
spin motor (flywheel) is used as the gyroscope (gyro). By adjusting
the input torque, the flywheel can be made to spin at a high
constant velocity about its spin axis (Axis 3 in Fig. 1). The
flywheel is mounted on an inner gimbal so that it can rotate freely
up and down. This axis of rotation is called the pitch axis and
corresponds to Axis 2 in Fig. 1. The inner gimbal is in turn
mounted on an outer gimbal, which provides another axis of
freedom (the yaw axis or Axis 1) which moves left and right. Note
that with these three axes being orthogonal to each other, the
system’s line-of-sight (LOS) can be made parallel to Axis 3 by
aligning the mirror axis to the pitch axis.

A torque motor is attached to each of the inner and outer
gimbals. These torque motors move the gyro either in the yaw or
in the pitch direction, and are thus named the yaw and the pitch
motors, respectively. Providing appropriate torque through these
motors causes the system to precess relative to the inertia space to
achieve some desired line-of-sight (LOS). Removing these input
torques stabilizes the LOS in its new position. The angular posi-
tions about which the yaw and the pitch axes are defined as 6, and
6, respectively. 6, and 6, can be measured through potentiometers
mounted on the inner and outer gimbals. There are, however, no
velocity sensors to sensef), and fl,. Due to physical constraints, the
workspace for the gyro-stabilized mirror is limited to —50° = 0, =
50° and —30° = 6, = 30°. Also, the maximum torques for both
yaw and pitch motors are physically limited to a range from —0.5
Nm to 0.5 Nm.

In this particular system considered here, a mirror is used in

+ Axes 1, 2 & 3 are mutually
perpendicular axes fixed
in space

Motor 1 & Motor 2 Torque Motor
Motor 3 Spin Motor
POT1 & POT2 Potentiometers
Fig. 1 Schematic diagram of the gyro mirror
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place of the actual electro-optical (E-O) sensors. The advantage of
doing this is that the E-O sensors will not form an integral part of
the system. Therefore any E-O sensor can be used without affect-
ing the system’s dynamics. The mirror is connected to the
flywheel-gimbal structure via a 2:1 reduction drive. This 2:1 re-
duction drive is required because when the mirror is tilted by an
angle «, the reflected LOS is rotated by 2a.

Ng (1986) developed the dynamical equations of the gyro mirror
by applying the Lagrange’s method. The equations are:

M(6)8, + H,(8, 0) + G,(6, 8, 8:) = u,, (1)

2

where 60 = (6,, 0,)"; u; and u, are the actuator torques for the
vaw and the pitch axes;8; is the spin velocity of the flywheel. The
parameters in Eqgs. (1)—(2) are defined as follows:

M,(6)8, + Hy(6, 6) + G,(0, 6, ;) = uy,

M =a+d+ (b—d+1) cos’6,
+i@+z) +i(e—g)sing, (3
H =—(b—d+1)0,6,sin20,+ (¢ — 2)0,6, cos 6,
+ k6,0, sin 8, cos 6,, (4)
G, = k0,0, cos 6,, (5
My=¢+1+1, (6)
H,=1%1(b—d+1)07sin 26, — +(z — )67 cos 6,
— k6? sin 6, cos B, (7)
G, = —k#,0; cos 6,, (8)

where a, b, ¢, d, e, f, g, [, and k are all physical constants
representing the various moment of the inertia of the system. Ng
(1986) and Lee (1995) identified these constants, which have the
following values:

a=0.004, b=0.00128, ¢=0.00098, d=0.02, (9
and
e =0.0049, f=0.0025, z=0.00125,
[=0.0032, k=0.0025. (10)

The above parameters have units of kg - m”. As can be seen from
the above equations, the system is highly nonlinear and there exist
cross-coupling terms between the yaw and the pitch axes. When
spin velocity @) is large, the interactions are acting mainly
through the G, and G, terms.

3 Controller Design Using H .. Disturbance Decoupling
Approach

In this section, we will briefly revisit the well-known problem of
H.. almost disturbance decoupling. We will then use it to solve our
gyro-stabilized mirror targeting control system design problem.
We consider the problem of H. almost disturbance decoupling
with measurement feedback and with internal stability (H.-
ADDPMS) for the following continuous-time linear system:

x=A x+B u+E w,
Tiiy=0 x +D, w, (11)
h=C, x+D, u,

where x € R" is the vector of states, u € R"™ is the vector of
control inputs, y € R’ is the vector of measurements, w € R? is
the vector of disturbances, and h € R” is the vector of outputs to
be controlled. A, B, E, C,, C,, D,, and D, are constant matrices
of appropriate dimensions. We define 2, to be the subsystem
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characterized by the matrix quadruple (A, B, C,, D,) and X to
be the subsystem characterized by the matrix quadruple (A, E, C,,
D). The following dynamic feedback control laws are investi-
gated:

xr:Ac
Ef:{u =C.

The controller X, of (12) is said to be internally stabilizing when
applied to the system 2, if the following matrix is asymptotically
stable:

x.+ B, vy,

x.tD. oy (12)

A+ BD.C,
Ag = (13)

BC.
B.C, ’

A,
i.e., all its eigenvalues lie in the open left-half complex plane.

Denote by T, the corresponding closed-loop transfer matrix from
the disturbance w to the output to be controlled 4, i.e.,

Ty, = D,D.D, + [C,+ D,D.C, D,C,]
» (” B [A + BD.C, BCCD ’II:E + BDcD.] (14)
B.C, A, B.D,
The H. norm of the transfer matrix 7,, is given by
ITslle 2= sup o[ T ()], (15)

wE[0,2)

where o[ - ] denotes the largest singular value. Then the H .-
ADDPMS can be formally defined as follows.

Definition 3.1. The H. almost disturbance decoupling prob-
lem with measurement feedback and with internal stability (H .-
ADDPMS) for X of (11) is said to be solvable if, there exists a
parameterized controller, with a parameter say €, of the form (12)
such that as € — 0 (i) the closed-loop system comprising the
system (11) and the controller (12) is asymptotically stable, and (ii)
the H.-norm of the closed-loop transfer matrix from the distur-
bance w to the controlled output & tends to 0, i.e., [T,/ — 0.

It turns out (see, for example, Chen et al., 1998) that the
H.-ADDPMS for the given system ¥ is always solvable if 1) the
subsystem 2. is right invertible and of minimum phase, and 2) the
subsystem X, is left invertible and of minimum phase. As it will
be seen shortly, our gyro-stabilized mirror targeting system will
satisfy these conditions. Thus, we will recall in the following a
simplified version of the asymptotic time-scale and eigenstructure
assignment (ATEA) method from Chen et al. (1998), which solves
the H.-ADDPMS for a given £ whose subsystems satisfy the
above two conditions. Moreover, the ATEA design method has the
capability of assigning appropriate eigenstructures such that the
resulting closed-loop system has zero overshoot in its step re-
sponse. The detailed proofs of the algorithm can be found in Chen
et al. (1998) and Chen (1998).

Stage 1. The following is the ATEA algorithm for construct-
ing a parameterized state feedback gain F(e) such that u = F(e)x
will solve the problem of disturbance decoupling with internal
stability for the system of (11) with C, = I and D, = 0. In this
case, the system representation is :

x=A x+B u+E w,
3oy = X (16)
h:CZ I+D2 u,

where (A, B, C,, D,) or 2, is assumed to be right invertible and
of minimum phase.

Step S.F.1: Utilize the results of the special coordinate basis of
linear systems of Sannuti and Saberi (1987), and Saberi and
Sannuti (1990) (see also Chen, 1998, for the detailed proofs of its
properties), to find nonsingular state, input and output transforma-
tions I',, ';, and ', to the system (16) such that if we let
h=T,h, (17)

x=1I%, u=1,
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we will have

N X,
x
a xz
f_(xr), =1 |, (18)
Xa x;,;d
h, u
. h h o U
h:(hz)’ hy = ;2 s ﬁ=(ud) u;=1| - |, (19
. u, .
hm.f Uy,
and
X, =Aux, + Boho+ Lohat+ Egw, (20)
X.=A.x.+ Byhy+ Lyyhy+BE_x,+Bu.+Ew, (21)
hy= Cogx, + Coex. + Cogxy + g, (22)
and foreachi = 1, ..., my,
X; = Aq,xi + Lighg + Lighy
mqg
+ By u+ Epxy + Eoxo+ 2 Epx; | + Egw, (23)
j=1
h,— = qux,-, hd = Cdxd (24)

Here the states x,,, x. and x, are, respectively, of dimensions n, ,

mg

n.and n, = 2 g, while x; is of dimension g, for each i =
i=1

1, ..., m, The control vectors u,, u, and u, are, respectively,

of dimensions m, = rank(D,), m, and m, = m — my — my

while the output vectors h, and h, are, respectively, of dimen-

sions p, = m, and p, = m,. The matrices A,, B,,, and C,, have

the following form:

0 I, 0
Aq,Z[O "0‘], Bq‘=|:1], C,=[1,0,...,0]. (2%

Moreover, the eigenvalues of A, are all in the left half complex
plane, i.e., they are stable, and the pair (A.., B.) is controllable.

Step S.F.2: Let F_ be any arbitrary m, X n, matrix subject to
the constraint that

AL = A, — BF, (26)

is a stable matrix.

Step S.F.3: This step makes use of subsystems, i = 1 to m,,
represented by (23). Let us choose A; = { A, A, .., A} i =
1 to m,, be the sets of g, elements all in C", which are closed
under complex conjugation. Let A, := A, U A, U...UA,,.
Fori = 1 to m,, we define

qi

pils) =[] (s = Ay

=1

=594 Fus® 4 .+ F s+ F,, @7
and
_ 1
Fie) := T FSde), (28)
where
Fi=[Fi, Fig F.l,
Si{e) = diag {1, €, €, ..., €'} (29)
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Step S.F.4: Finally, the parameterized state feedback gain that
solves the H..-ADDPMS for X of (16) is given by as

Cou Coe  Cou
Fle):=-T,| Equ Es Fule)+E; T, (30)
E_,, F. 0
where
El] e Elmd
E;=| - N E 31)
Em,;l T Em,{md
and
F () = diag {F\(e), Fyle), ..., F,(e)}. (32)

This concludes the ATEA algorithm for the state feedback case.

Stage 2. We now design a reduced order measurement feed-
back controller that solves the H..-ADDPMS for the system (11),
in which the subsystem 2 is right invertible and of minimum
phase, and the subsystem X, is left invertible and of minimum
phase. First, without loss of generality and for simplicity of presen-
tation, we assume that the matrices C, and D, are already in the form,

0 C D
C = |:1k (l).oz] and D, = [ d'n] s

where k = [ — rank(D,) and D, is of full rank. Then the given
system (11) can be written as

() =[ar 4] ()8 we[B] =
o =10 ] () %] -

x
= [Cz,l Cz.z] (x;) + D, u,

(33)

(34
where the original state x is partitioned to two parts, x, and x,; and
v is partitioned to y, and y, with y, = x,. Thus, one needs to

estimate only the state x, in the reduced order controller design.
Next, define an auxiliary subsystem 2 characterized by a matrix
quadruple (Ag, Er, Cg, Dy), where

— C1.02 Dl,[)
(An B, Ce Do = (Ae 2| 0] [ 27])-

The following is a step-by-step algorithm that constructs the
reduced order output feedback controller for the general H..-
ADDPMS.

(33)

Step R.O.1: Define an auxiliary system

x=A x+B
y= x

z=C, x+ D, u,

u+tE w,
' (36)

and then perform Steps S.F.1 to S.F.4 of the previous algorithm to
the above system to get the parameterized gain matrix F(e). We let
Fy(e) = F(e).

Step R.0.2: Define another auxiliary system

x=Ag x+Cip u+Cirw,
y= x (37
z=Ey x+ Dy u,

and then perform Steps S.F.1 to S.F.4 of the previous algorithm to
the above system to get the parameterized gain matrix F(e). We let
Kg(€) = Fle)'.
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Step R.0.3: Let us partition Fu(€) and Ky(€) as,

Fp(e) = [Fple) Fple)]
Kgle) = [KRO(E) Kgi(e)]

and

in conformity with the partition x =
respectively. Then define

Grle) = [~ Krole),
Ay + Kpi(€)Ay, — (Ag+Kgp(e)Cp)Kri(€)].  (39)

Finally, the parameterized reduced order output feedback con-
troller is given by

i, = Agcl€) x.+ Bycle) y,

ERC(E) : {H = CRC(G) X, + Dgcle) vy, (40)

where

Agcl€) 1= Ag+BoFp(€) + Kpl€)Cp + Ky (€)B Fpy(e€),
Brcle) := Gple) + [B, + KRT(f)BI][Oa Fpi(€) — Fp(€)Kg (€)].

Crel€) 1= Fpyle),

Dycle) := [0, Fp(e) - Fr(€)Kpi(e€)]. J

Now, we are ready to design our gyro-stabilized mirror system.
Our goal is to design a simple and low order controller such that
the overall system will: (i) have fast tracking in both the yaw and
the pitch axes for step input commands (the settling time should
not exceed 1 second for a step command with a magnitude up to
10°); (ii) have zero overshoots; (iii) minimize the cross-coupling
interactions between the yaw and pitch axes (less than 0.5°); and
(iv) ensure that the overall system is robust to external distur-
bances and changes in system parameters. As will be seen shortly,
our controller is very simple and has low order. Thus, it can easily
be implemented using low speed personal computers and A/D and
D/A cards.

First of all, we need to linearize the dynamical model given in
Egs. (1)—(2) and cast it into the standard state space form. The
linearized state space model is given as follows:

X, = Agx, + Bau + Ew,, (42)
where x, = (8, 0, 05, 62)', u = (u,, u,)’, and w, € &£, is the
viscous damping for the system, which can be regarded as distur-
bances. The matrices A,, B, and E, are given by

0 1 0 0

o0 0 —kéyN,
A=lo o o 1 ’
0 kBN, O 0
0 0 0 0
I/N, 0 -1 0
Bo=| o o | E=|o o @
0 1/N, 0 -1
where
o _ e+g - o
N =a+b+ 3 + 1, NE:C-O-Z-FI. (44)

The measurement output of the free gyro-stabilized mirror system

is
0= (92) ’
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(45)

Since we are interested in the changes in the orientation of the
LOS, we focus only on the case where the command input r(1) is
a step function. To be more specific, we consider

o=[70] = [B)o=rae

where 1(7) is the unit step function, and ¥, s, are some constants.
Then, we have

(46)

o= 7o)

where 8(1) is the unit impulse function. Let us define a controlled
output i as the difference between the actual output 6 and the
command input r, ie.,

o - 0, —r,
h—07r~(62_r2).
Obviously, h is simply the tracking error. Finally, we obtain the
following system in the standard state space form:

= [i‘]a(:) = 8(1),

47
2

(48)

i=A x+B ut+E w,
T:oiy=0C «x + D, ow, (49)
h=C, x+ D, u,
with
6
6,
X\ _ 6, . ul)
x=\,]= 0, w=\y,) "
r
"
6,
W, 0,
W:(S(;))’ y= e (50)
r
A, 0 _ [ B, [E, 0O
R B I
D, =0, D,=0, 51
and
[1 0 0 0 0 0
C. = 0O 0 1 0 0 0
=10 0 0 0 1 0f"
L0 0 0 0 0 1
[t 0o 0 0 -1 0
G=loo 10 0 -1
(52)

It can be verified that:

1. The subsystem (A, B, C,, D) is invertible with two
invariant zeros at 0, which comes from the command
input. It also has two infinite zeros of order 2.

2. The subsystem (A, E, C,, D) is left invertible and of
minimum phase with no invariant zeros. It has one infinite
zero of order 1 and two infinite zeros of order 2.

Utilizing the algorithms of the previous section, which are imple-
mented in a MATLAB toolbox by Chen (1996), we obtained after
few iterations the following state feedback gain,

2.3732  1.0271 1.4264 0.0000

B ~2.3732
= 7| -1.4264 0.0000 2.3732 1.0113

—1.4264
1.4264 ’

—2.3732
(53)
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(a) Response for 6.
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30—t . L i L
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(b) Response for 6;.

Fig. 2 Simulation result: Responses of 6, and 6,

and the following reduced order observer gain matrix Ky,

_ 85.4439 212201 0 O
Ke=~121.2201 1223176 0 0" G4
which yield a reduced order measurement feedback control law of
the form (12) with

[ —174.3280 —74.2370
Ac= | 106.2743 —332.7939 " (55)
 [-83.3798 —64.5160 1.0269 0.6172
B=1 115772 —194.7265 —1.4843 2.4695|: 0
[ —205.4112 0
C.= 0 —202.2678 | * 67
[ -90.1288 232207 23732 14264
D.=| 200343 -126.0777 —1.4264 2.3732|- ©8

As it will be seen in the next section, this controller will produce
a satisfactory result.

4 Simulation and Implementation Results

In order to implement our controller designed in the previous
section using our hardware setup, we need to discretize it. The
performance of this discretized controller is then evaluated using
MATLAB Simulink. Finally, it is applied to the actual free gyro-
stabilized mirror system. Using the well-known bilinear transfor-
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mation with a sampling time of 4 ms, we obtained the following
discretized controller,

ok +1) =4, ok)+ B, y(k),
24 {u(k) =C, ok +D, yk), (39
where
[0.4624 —0.1304
4= 10.1866 0.1841 | (60)
[ -61.7225 -34.4820 0.8476 0.2904 ]
¢=| —0.9257 —121.3119 —0.7830 1.5197 |- ©D
o _ [ ~0.6008 0.0536
4= 1 -0.0755 —0.4790 | ° (62)
_[-64.7719 —9.0547  2.0249 1.3072
Di=| _19.6598 —77.0027 —1.1097 1.7584 | (63

The simulation of the overall free gyro-stabilized mirror system
is done using the Simulink package of MATLAB. In order to
achieve more accurate results, the nonlinear model given in equa-
tions (1)—(2) is used. Simulations are carried out using the Runge-
Kutta 5 method with both minimum and maximum step sizes set to
be the same as the sampling period, i.e., 4 ms. To account for the
limitations in the torque motors, a saturation block is added to each
of them. The limits are set to be *0.5 Nm. Throughout the
simulations, the gyro’s spin velocity is set to be 2500 rpm.

The gyro is first commanded to move simultaneously to (yaw,
pitch) = (5°, —5°). On the fifth seconds, it is moved from this new

Torque 1 (Nm)

15 20 25 30 35
Time (seconds)

(a) Control input, u;.

Torque 2 (Nm)

25 30 35

H L L
] 5 10 15

20
Time (seconds)
(b) Control input, uz.

Fig. 3 Simulation result: Control inputs u; and u;
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{a) Response for ;.

40 T T T T T u

Theta 2 (degrees)

30 i L i + i
0

5 10 15 20 25 30 3 40
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(b) Response for #;.
Fig. 4 Implementation with dead zone compensation: 6, and 6,

position to (20°, —20°). A horizontal span is then carried out, i.e.,
the gyro is moved horizontally from 20° to —5° while keeping the
pitch position at —20°. This is followed by a vertical span; this
time the yaw position is fixed at —5° while the pitch position is
changed from —20° to 5°. Finally, it is pushed to its extreme
position (—50°, 30°) before returning back to its zero position. The
gyro’s response as well as the torque input to each axis are plotted
in Figs. 2-3.

The various set-points in the above tests are chosen such that
from one position to another, the displacement ranges from as
small as 5° up to 45°. This is to verify that our controller works
well within the whole workspace although it is designed based on
a linearized model. The simultaneous movement is to test whether
our controller is capable of achieving perfect tracking in both axes
while the spans are conducted to investigate how well does our
controller ‘decouple’ the gyro-stabilized mirror system. As can be
seen from the responses in Fig. 2, the gyro is able to reach all
commanded positions without steady state errors. Furthermore,
none of the responses exhibits any overshoot. The settling time
from its extreme position back to the zero position is about 3.5
seconds. The maximum coupled movement in 6, caused by mov-
ing 0, is around 0.15°. The maximum coupled movement in 6,
caused by moving 6, is about 0.5°. A check with Fig. 3 shows that
all these are accomplished with the torques kept within the con-
straint of 0.5 Nm. Thus we conclude that our controller designed
in the previous section is very satisfactory.

Next, we implement this controller on the actual free gyro-
stabilized mirror system via a computer and perform the whole test
once again. During implementation process, we observe that there
are dead zones in both torque motors, which cause steady-state
errors in the both axes. Through trial and error, we find that the
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magnitude of the dead zone compensation seems to be related to
the set-points in the following way:

Upep = ayry + Byry and  u,o = aury + Boro, (64)
where u,,, and u,. are the values to be added to u, and u,,
respectively. Various sets of (ry, r,) are used to tune a,, a,, B, and
B so as to obtain suitable offsets to be added to the control inputs
such that the dead zone effects can be minimized. Figures 4 and 5
are the results we obtain from our controller with a dead zone
compensation whose parameters are chosen as follows:

oy = —0.001125, B, = —0.000125,

a, = —0.0049875, B, = —0.00059375. (65)
The results show that our controller is able to perform fast tracking
without overshoots in the both axes and minimize the coupled
effect (0.8° in the yaw axis and 0.5° in the pitch axis) on the actual
system. In fact, the actual performance of our controller matches
quite well with the simulation results given in Fig. 2. All the design
specifications are fully achieved.

In order to test the robustness of this controller, we send a
command to move the gyro simultaneously in the yaw (+20°) and
pitch (—20°) direction. Then we purposely introduce some distur-
bance (through knocking on the gimbals) to the system. As shown
in Fig. 6, our controller is robust to this external disturbance.

0.5 T T T

04r
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Fig. 5 Implementation with dead zone compensation: u; and u;
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Fig. 6 Robustness test for the final system

5 Conclusions

In this paper, we have designed and implemented a measure-
ment feedback tontroller for a multivariable servomechanism
gyro-stabilized mirror system. We first formulated the design into
an H.. control problem and then applied the asymptotic time-scale
and eigenstructure method of Chen et al. (1998) to solve the
problem. Both simulation and implementation studies show that
our design is very successful. Finally, we note that controllers
obtained using other techniques such as adaptive feedforward
control in Lee et al. (1996), neural network control in Ge et al.
(1997) and fuzzy logic in Lee (1995), are generally too compli-
cated to be implemented in the real system with a slow personal
computer.
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