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Abstract

A direct and non-iterative method for the computation of the in�mum for a class of discrete-time H∞ optimal control
problem is considered in this paper. The problem formulation is fairly general and does not place any restrictions on
any direct feedthrough terms of the given systems. The method is applicable to systems where (i) the transfer function
from the disturbance input to the measurement output is free of unit circle invariant zeros and left invertible, and (ii) the
transfer function from the control input to the controlled output of the given system is free of the unit circle invariant
zeros and right invertible. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction and Problem Statement

Ever since the original formulation of the H∞ optimal control problem in [17], a great deal of work has
been done on the solution of this problem in both continuous-time setting (see for example [7–12]), and
discrete-time setting (see for example [1, 16]), The solution to the discrete-time H∞ optimal control problem
can be obtained from purely time-domain methods based on the 
-dependent discrete-time algebraic Riccati
equations (AREs). Typically in ARE approaches to H∞-optimal control problems, the achieved design solution
is suboptimal in the sense that the H∞-norm of the closed-loop system transfer function from the disturbances
to the controlled outputs is less than a prescribed value, say 
. The ARE-based approach to this problem
(see for example [16]) provides an iterative scheme of approximating the in�mum (denoted here by 
∗) of
the H∞-norm of the closed-loop transfer function. In this paper, we address the problem of computing the
in�mum in discrete-time H∞ optimization. We propose a non-iterative method for computing this 
∗ for a
class of discrete-time H∞-optimization problems in which the transfer function from the disturbance to the
measurement output is left invertible, and the transfer function from the control input to the output to be
controlled is right invertible. The work of this paper can be regarded as a counterpart of our earlier work (see
[2, 3]) in non-iterative computation of the in�mum for the continuous-time H∞-optimal control problem. It is
hoped that the results of this paper will provide new insight into solutions to the discrete-time H∞ optimal
control problem, as the role its counterpart [3] has played in the continuous-time problem.
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More speci�cally, we consider in this paper the following standard linear time-invariant discrete time system
� characterized by

x(k + 1) = A x(k) + Bu(k) +Ew(k);

y(k) = C1 x(k) +D1 w(k);

z(k) = C2 x(k) + D2 u(k) +D22 w(k);

(1)

where x∈Rn is the state, u∈Rm is the control input, y∈R‘ is the measurement, w∈Rq is the unknown
disturbance and z ∈Rp is the output to be controlled. A, B, E, C1, D1, C2, D2 and D22 are constant matrices
of appropriate dimension. Without loss of generality but for simplicity of presentation, we assume throughout
this paper that matrices [C1 D1] and [B′ D′

2] are of maximal rank. This is because if these two matrices
are not of maximal rank, one can simply drop the redundant control inputs and measurement outputs to make
them maximal rank. The H∞ optimal control problem is to �nd an internally stabilizing causal controller such
that the H∞-norm of the overall closed-loop system is minimized. To be more speci�c, we will investigate
dynamic feedback laws of the form

�c :



xc(k + 1) = K xc(k) +L y(k);

u(k) = M xc(k) +N y(k):
(2)

We will say that the controller �c of Eq. (2) is internally stabilizing when applied to the system �, if the
following matrix is asymptotically stable:

Acl :=

[
A+ BNC1 BM

LC1 K

]
; (3)

i.e., all its eigenvalues lie in the open unit disc. Denote by Gcl the corresponding closed-loop transfer matrix.
Then the H∞ norm of the transfer matrix Gcl is given by

‖Gcl‖∞ := sup
!∈[0;2�]

�max[Gcl(e j!)]; (4)

where �max[·] denotes the largest singular value. The in�mum 
∗ can now be formally de�ned as


∗ := inf{‖Gcl‖∞ |�c internally stabilizes �}: (5)

Given a 
¿
∗, the H∞ optimal (or more precisely suboptimal) control problem is to �nd an internally
stabilizing controller �c such that the resulting ‖Gcl‖∞¡
. Also, �c is said to be a 
 suboptimal controller
for � if the corresponding ‖Gcl‖∞¡
. The main purpose of this paper is to present a non-iterative method
that computes exactly this 
∗ for � under the following assumptions:
(A1): (A; B) is stabilizable;
(A2): (A; B; C2; D2) is free of unit circle invariant zeros;
(A3): (A; B; C2; D2) is right invertible;
(A4): (A; C1) is detectable;
(A5): (A; E; C1; D1) is free of unit circle invariant zeros;
(A6): (A; E; C1; D1) is left invertible.
Here we should point out that Assumptions (A1) and (A4) are necessary for any control problems, while
(A2) and (A5) are fairly standard in H∞ literature. The assumptions (A3) and (A6) are not essential and can
be relaxed as in the continuous time case (see for example [4]). Note that (A3) and (A6) also imply that
matrices [C2 D2] and [E′ D′

1] are of maximal rank.
The paper is organized as follows: In Section 2, we recall the special coordinate basis of linear sys-

tems, which is instrumental to the development and derivation of the main results. Section 3 gives the main
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results, namely, non-iterative algorithms for computation of 
∗ for three common cases, i.e., the full in-
formation, the output feedback and the state feedback cases. Finally, the concluding remarks are drawn in
Section 4.
Throughout this paper, X ′ denotes the transpose of matrix A. I denotes an identity matrix with appropriate

dimension. R is the set of real numbers. �(X ) is the set of eigenvalues of a real square matrix X . �max(X )
denotes the maximum eigenvalue of X where �(X )⊂R, and �nally �max(X ) denotes the maximum singular
value of matrix X .

2. Background materials

In this section, we should recall a theorem of the special coordinate basis of linear systems from [14, 15]
which will be instrumental to the main results developed in the next sections. Consider the system described
by

x(k + 1) = A x(k) + B u(k) + E w(k);

z(k) = C2 x(k) + D2 u(k) + D22 w(k):
(6)

It can be easily shown that using singular value decomposition one can always �nd an orthogonal transfor-
mation U and a non-singular matrix V that puts the direct feedthrough matrix D2 into the following form:

UD2V =

[
Ir 0

0 0

]
; (7)

where r is the rank of D2. Without loss of generality one can assume that the matrix D2 in Eq. (6) has the
form as shown in Eq. (7). Thus the system in Eq. (6) can be rewritten as

x(k + 1)=A x(k) + [ B0 B1 ]
(
u0(k)
u1(k)

)
+ E w(k);

(
z0(k)
z1(k)

)
=
[
C2;0
C2;1

]
x(k) +

[
Ir0
00

](
u0(k)
u1(k)

)
+
[
D22;0
D22;1

]
w(k);

(8)

where B0, B1, C2;0, C2;1, D22;0 and D22;1 are the matrices of appropriate dimensions. Note that the inputs u0
and u1, and the outputs z0 and z1 are those of the transformed system. Namely,

u=V
(
u0
u1

)
and

(
z0
z1

)
=Uz: (9)

Also, note that the H∞-norm of the system transfer function from w to z is unchanged when we apply an
orthogonal transformation on the output z, and under any non-singular transformations on the states and control
inputs. We have the following theorem.

Theorem 2.1. Consider the linear system as in Eq. (6). Assume that (A; B; C2; D2) is right invertible with
no unit circle invariant zeros. Then, there exist non-singular transformations �s and �i such that

x=�s



xc
x−a
x+a
xd


 ;

(
u0
u1

)
=�i


 u0
ud
uc


 (10)
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and

�−1
s (A− B0C2;0)�s =




Acc BcE−
ca BcE+ca LcdCd

0 A−aa 0 L−adCd

0 0 A+aa L+adCd

BdEdc BdE−
da BdE+da Add


 ; �−1

s E=




Ec

E−
a

E+a

Ed


 ; (11)

�−1
s

[
B0 B1

]
�i =




B0c 0 Bc

B−0a 0 0

B+0a 0 0

B0d Bd 0


 ; (12)

[
C2;0

C2;1

]
�s =

[
C0c C−

0a C+0a C0d

0 0 0 Cd

]
; D2�i =

[
Ir 0 0

0 0 0

]
; (13)

where the pair (Acc; Bc) is completely controllable, while the subsystem (Add ; Bd ; Cd) is invertible and free of
any invariant zeros. Also, �(A+aa) and �(A

−
aa) are, respectively, the sets of unstable and stable invariant zeros

of (A; B; C2; D2). Moreover, the pair (A; B) is stabilizable if and only if the pair (Acon ; Bcon) is controllable,
where

Acon :=

[
A+aa L+adCd

BdE+da Add

]
and Bcon :=

[
B+0a 0

B0d Bd :

]
: (14)

Also, (A; B; C2; D2) is invertible if and only if xc is non-existent. For future use, we de�ne an integer scalar
nx := dim(x+a ) + dim(xd).

3. Main results

Now, we are ready to present our main results, i.e., the non-iterative algorithms for computing the in�mum,

∗, of discrete-time H∞ optimization. This section is naturally divided into two subsections. The �rst subsection
deals with the full information case, while the second subsection deals the general output feedback case. The
full state feedback problem is then treated as a special case in the second subsection.

3.1. The full information case

We assume that y= [x′ w′]′ and conditions (A1)–(A3) are satis�ed. Without loss of generality, but for
simplicity of presentation of our results, we also assume that D2 is in the form of Eq. (7). In what follows,
we state a step-by-step algorithm for the computation of the in�mum 
∗ for the full information problem.
Step 1: Transform the following system:

x(k + 1) = A x(k) + B u(k) + E w(k);

z(k) = C2 x(k) + D2 u(k) + D22 w(k);
(15)
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into the special coordinate basis as in Section 2 and Theorem 2.1, and de�ne Ax, Bx, Ex, Cx and Dx as follows:

Ax :=

[
A+aa L+adCd

BdE+da Add

]
; Bx :=

[
B+0a 0

B0d Bd

]
; Ex :=

[
E+a

Ed

]
; (16)

Cx :=

[
0 0

0 Cd

]
and Dx :=

[
Ir 0

0 0

]
: (17)

It is simple to see from the special coordinate basis that the quadruple (Ax; Bx; Cx; Dx) is invertible and free
of stable invariant zeros. Also, (Ax; Bx) is controllable.
Step 2: Find a matrix Fx such that Ax + BxFx has no eigenvalues at −1. Then de�ne Ãx, B̃x, Ẽx, C̃x, D̃x

and D̃22 as in the following:

Ãx := (Ax + BxFx + I)−1(Ax + BxFx − I);
B̃x := 2(Ax + BxFx + I)−2Bx;

Ẽx := 2(Ax + BxFx + I)−2Ex;

C̃x :=Cx + DxFx;

D̃x :=Dx − (Cx + DxFx)(Ax + BxFx + I)−1Bx;
D̃22 :=D22 − (Cx + DxFx)(Ax + BxFx + I)−1Ex:

(18)

Step 3: Solve the following two continuous-time 
-independent algebraic Lyapunov equations:

(Ãx − B̃xD̃−1
x C̃x)S̃x + S̃x(Ãx − B̃xD̃−1

x C̃x)′= B̃x(D̃
′
xD̃x)

−1B̃
′
x; (19)

(Ãx − B̃xD̃−1
x C̃x)T̃x + T̃x(Ãx − B̃xD̃−1

x C̃x)′=(Ẽx − B̃xD̃−1
x D̃22)(Ẽx − B̃xD̃−1

x D̃22)′ (20)

for positive de�nite solution S̃x and positive semi-de�nite solution T̃x. The existences of such solutions will
be justi�ed in the proof of this algorithm. For future use, we de�ne

Sx := (Ax + BxFx + I)S̃x(A′x + F
′
x B

′
x + I)=2 (21)

and

Tx := (Ax + BxFx + I)T̃x(A′x + F
′
x B

′
x + I)=2: (22)

Step 4: The in�mum, 
∗, is given by


∗=
√
�max(T̃xS̃

−1
x )=

√
�max(TxS−1x ): (23)

Proof of the Algorithm. Following the results of [5, 16], it is straightforward to show that the following three
statements are equivalent:

1. There exists a 
 suboptimal controller for � of (1) with C1 =
(
I
0

)
and D1 =

(
0
I:

)
2. There exists a 
 suboptimal controller for the following auxiliary system:

xx(k + 1) = Ax xx(k) + Bx ux(k) +Ex wx(k);

yx(k) =
(
0
I

)
xx(k) +

(
I
0

)
wx(k);

zx(k) = Cx xx(k) + Dx ux(k) +D22 wx(k);

(24)

where Ax; Bx; Ex; Cx and Dx are de�ned as in Eqs. (16) and (17):
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3. There exists a 
 suboptimal controller for the following auxiliary system:

˙̃xx= Ãx x̃x + B̃x ũx + Ẽx w̃x

ỹx=
(
0
I

)
x̃x +

(
I
0

)
w̃x

z̃x = C̃x x̃x + D̃x ũx +D̃22 w̃x

(25)

where Ãx, B̃x, Ẽx, C̃x, D̃x and D̃22 are as de�ned in Eq. (18).
We would like to note that items 2 and 3 above are also equivalent to the following:
1. There exists a Px¿0 to the following discrete-time Riccati equation:

Px =A′xPxAx + C
′
xCx −

[
B′xPxAx + D

′
xCx

E′
xPxAx + D

′
22Cx

]′
Gx(Px)−1

[
B′xPxAx + D

′
xCx

E′
xPxAx + D

′
22Cx

]
; (26)

where

Gx(Px) :=

[
D′
xDx D′

xD22

D′
22Dx D′

22D22 − 
2I

]
+

[
B′x

E′
x

]
Px[ Bx Ex ]; (27)

such that the following conditions are satis�ed:

Vx :=B′xPxBx + D
′
xDx¿0; (28)

Rx := 
2I − D′
22D22 − E′

xPxEx + (E
′
xPxBx + D

′
22Dx)V

−1
x (B′xPxEx + D

′
xD22)¿0: (29)

2. There exists a P̃x¿0 to the following continuous-time Riccati equation:

0= P̃xÃx + Ã
′
x P̃x + C̃

′
xC̃x −


 B̃′xP̃x + D̃′

xC̃x

Ẽ
′
xP̃x + D̃

′
22C̃x



′

G̃
−1
x


 B̃′xP̃x + D̃′

xC̃x

Ẽ
′
xP̃x + D̃

′
22C̃x


 (30)

with

D̃
′
22[I − D̃x(D̃

′
xD̃x)

−1D̃
′
x]D̃22¡


2I (31)

and

G̃x :=


 D̃

′
xD̃x D̃

′
xD̃22

D̃
′
22D̃x D̃

′
22D̃22 − 
2I


 : (32)

Furthermore, the solutions to the above Riccati equations are related, if exist, by

Px =2(A′x + F
′
xB

′
x + I)

−1P̃x(Ax + BxFx + I)−1: (33)

Thus, it is equivalent to show that 
∗ given by Eq. (23) is the in�mum for system � of Eq. (1) by showing
that it is an in�mum for the auxiliary system in Eq. (25). This can be done by �rst showing the properties
of the auxiliary system of Eq. (25) and then applying the results of [2]. We note that the matrix Fx in Step 2
of the algorithm is a pre-state feedback gain, which is introduced merely to deal with the situation when Ax
has eigenvalues at −1 and the inverse of I + Ax does not exist. For the sake of simplicity but without loss
of generality, we will hereafter assume that Ax has no eigenvalues at −1 and Fx =0. We will �rst show in
the following that the quadruple (Ãx; B̃x; C̃x; D̃x) has a total number of nx, where nx is the dimension of Ax,
unstable invariant zeros with some located at �{(A+aa + I)−1(A+aa − I)} and the rest at 1. By the de�nition of
D̃x, i.e.,

D̃x =Dx − Cx(Ax + I)−1Bx =Cx(−I − Ax)−1Bx + Dx (34)
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and also noting that from the special coordinate basis, the quadruple (Ax; Bx; Cx; Dx) is square invertible and
Ax is assumed to have no eigenvalues at −1, it follows D̃x is a non-singular matrix. Hence (Ãx; B̃x; C̃x; D̃x)
has a total number of nx invariant zeros, which are complex numbers, say s, such that

rank

[
sI − Ãx −B̃x
C̃x D̃x

]
¡nx + p; (35)

where p is the dimension of z of the given system (1). Noting that

rank

[
sI − Ãx −B̃x
C̃x D̃x

]

= rank

[
sI − (Ax + I)−1(Ax − I) −2(Ax + I)−2Bx

Cx Dx − Cx(Ax + I)−1Bx

]

= rank

[
s(Ax + I)− (Ax − I) −2(Ax + I)−1Bx

Cx Dx − Cx(Ax + I)−1Bx

]

= rank

[
(1 + s)I − (1− s)Ax −(1− s)Bx

Cx Dx

]

= rank




(1 + s)I − (1− s)A+aa −(1− s)L+adCd −(1− s)B+0a 0

−(1− s)BdE+da (1 + s)I − (1− s)Add −(1− s)B0d −(1− s)Bd
0 0 Ir 0

0 Cd 0 0




= rank




(1 + s)I − (1− s)A+aa 0 0 0

0 (1 + s)I − (1− s)Add 0 −(1− s)Bd
0 0 Ir 0

0 Cd 0 0


 :

It is obvious from the above expression that for any s∈ �{(A+aa + I)−1(A+aa − I)}, the rank of matrix[
sI − Ãx −B̃x
C̃x D̃x

]
(36)

will drop lower than nx + p. The only other scalar that causes the matrix to drop rank is s=1 because of
the property of the subsystem (Add ; Bd ; Cd), which is invertible and free of invariant zeros (see Theorem 2.1).
This proves our claim on the locations of the invariant zeros of (Ãx; B̃x; C̃x; D̃x). Let us apply a pre-output
feedback law,

ũx =−D̃−1
x C̃xx̃x − D̃−1

x D̃22w̃x + ṽx (37)
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to the auxiliary system (25). Again, this pre-feedback law will not e�ect solutions to the H∞ problem for Eq.
(25) or to the solution P̃x of Eqs. (30)–(32). After applying this pre-feedback law, we obtain the following
new system:

˙̃xx = (Ãx − B̃xD̃−1
x C̃x) x̃x + B̃xṽx +(Ẽx − B̃xD̃−1

x D̃22)w̃x;

ỹx =
(
0
I

)
x̃x +

(
I
0

)
w̃x;

z̃x = 0 x̃x + D̃xṽx +0 w̃x:

(38)

We are lucky enough to get rid of the direct feedthrough term D̃22. Then it follows from the well-known
results in H∞ control theory that the existence condition of a 
 suboptimal controller for Eq. (38) is equivalent
to the existence of a P̃x¿0 such that

0 = P̃x(Ãx − B̃xD̃−1
x C̃x) + (Ãx − B̃xD̃−1

x C̃x)′P̃x − P̃xB̃x(D̃′
xD̃x)

−1B̃
′
xP̃x

+ P̃x(Ẽx − B̃xD̃−1
x D̃22)(Ẽx − B̃xD̃−1

x D̃22)′P̃x=
2 (39)

is satis�ed. Note that the solution P̃x to the above Riccati equation is identical to the solution that satis�es
Eqs. (30)–(31).
Since the quadruple (Ãx − B̃xD̃−1

x C̃x; B̃x; 0; D̃x) in the auxiliary system of Eq. (38) is invertible and has no
stable invariant zeros and in�nite zeros, it satis�es the conditions of [2]. In fact, following the results of [2],
we can show that


∗=
√
�max(T̃xS̃

−1
x ) (40)

and for any 
¿
∗, the positive-de�nite solution P̃x of Eqs. (30)–(32) is given by

P̃x =(S̃x − T̃x=
2)−1: (41)

It then follows from Eq. (33) that for any 
¿
∗, the positive de�nite solution Px of Eqs. (26)–(29) is given
by

Px =2(A′x + I)
−1(S̃x − T̃x=
2)−1(Ax + I)−1 (42)

and hence 
∗ can also be obtained from the following expression:


∗=
√
�max(TxS−1x ); (43)

where Sx and Tx are as de�ned in Eqs. (21) and (22), respectively.
Finally, the existences of the positive-de�nite solution S̃x and the positive semi-de�nite solution T̃x can be

justi�ed as follows: It is simple to see from Eq. (38) that the eigenvalues of Ãx − B̃xD̃−1
x C̃x are also the

invariant zeros of (Ãx; B̃x; C̃x; D̃x), which are shown to be in the right-half complex plane. It then follows from
[13] that the solution S̃x to the Lyapunov equation (19) is positive de�nite because (Ãx; B̃x) is controllable,
and the solution T̃x to the Lyapunov equation (20) is positive semi-de�nite. In fact, both of them are unique.
This completes the proof of our algorithm.

3.2. The output feedback case

This subsection deals with the general measurement feedback problem. Again, we consider the given system
of Eq. (1) and assume that (A1)–(A6) are satis�ed. As in the previous subsection, we will �rst give a step-
by-step non-iterative algorithm that calculates the in�mum, 
∗, and leave detailed justi�cation in the proof of
the algorithm.
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Step A: De�ne an auxiliary full information problem for

x(k + 1) = A x(k) + B u(k) +E w(k);

y(k) =
(
0
I

)
x(k) +

(
I
0

)
w(k);

z(k) = C2 x(k) + D2 u(k) +D22 w(k)

(44)

and perform Steps 1–3 of the algorithm given in the previous subsection. For future use and in order to avoid
any notation confusion, we rename the state transformation of the special coordinate basis for this subsystem
as �sP and the dimension of Ax as nxP. Also, rename Sx of Eq. (21) and Tx of Eq. (22) as SxP and TxP,
respectively.
Step B: De�ne another auxiliary full information problem for

x(k + 1) = A′ x(k) + C′
1u(k) +C′

2w(k);

y(k) =
(
0
I

)
x(k) +

(
I
0

)
w(k);

z(k) = E′ x(k) + D′
1 u(k) +D

′
22 w(k)

(45)

and again perform Steps 1–3 of the algorithm given in Section 3.1 one more time but for this auxiliary. We
also rename the state transformation of the special coordinate basis for this case as �sQ and the dimension of
Ax as nxQ, and Sx of Eq. (21) and Tx of Eq. (22) as SxQ and TxQ, respectively.
Step C: Partition

�−1
sP (�

−1
sQ )

′=

[
? ?

? �

]
; (46)

where � is a nxP× nxQ matrix, and de�ne a constant matrix

M =

[
TxPS−1xP + �S

−1
xQ �

′S−1xP −�S−1xQ
−TxQS−1xQ �′S−1xP TxQS−1xQ

]
: (47)

Step D: The in�mum 
∗ is then given by


∗=
√
�max(M): (48)

Proof of the Algorithm. The dirty work was done in the proof of the previous subsection. Once the result
for the full information case is established, the proof of this algorithm follows the lines of reasoning given
in [2, 3].

As was pointed out in [16], for discrete-time H∞ control, the in�mum for the full information problem is
in general di�erent from that of the full state feedback problem. For the state feedback case, i.e., C1 = I and
D1 = 0, we note that the subsystem (A; E; C1; D1) is always free of invariant zeros (and hence free of unit
circle invariant zeros) and left invertible. Thus, as long as the other subsystem of the given system (1), i.e.,
(A; B; C2; D2) is free of unit circle invariant zeros and right invertible, one can apply the above algorithm to get
the in�mum 
∗. It turns out that for this special case �sQ, nxQ, SxQ and TxQ in Step B of the above algorithm
can be directly obtained using the following simple procedure: Compute a non-singular transformation �sQ
such that

�′
sQE=

[
0
Ê

]
; (49)

where Ê is a nxQ× nxQ non-singular matrix. Then SxQ and TxQ, are, respectively, given by
SxQ = (Ê

−1
)′Ê

−1
and TxQ = (Ê

−1
)′(D′

22D22)Ê
−1
: (50)
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4. Concluding remarks

We have presented in this paper a non-iterative method for the computation of the in�mum, 
∗, for a
class of discrete-time H∞ optimization problem in which the given system satis�es certain conditions, i.e.,
(i) the transfer function from the control input to the controlled output of the given system is free of the
unit circle invariant zeros and right invertible, and (ii) the transfer function from the disturbance input to the
measurement output is free of unit circle invariant zeros and left invertible.
Finally, we note that in principle one could tackle the proposed problem of this paper directly from the

discrete-time domain instead of using the technique of bilinear transformation to transfer the problem to the
continuous-time domain. The disadvantages of such an approach are: (i) it will be mathematically much more
complicated as it involves solving discrete-time algebraic Riccati equations (DARE’s), and (ii) it will bury the
interconnections of structural properties between the continuous-time and discrete-time problems. We would
like to point out further that most of results in the literature for solving DAREs involve iterative procedures
except the one in [5]. The result of [5] again utilizes the bilinear transformation technique to derive a non-
iterative method for solving general DARE’s. Clearly, this technique is an e�cient mean for dealing with
many discrete-time problems. The mapping of structural properties, such as �nite and in�nite zero structures
as well as invertibility structures, of general multivariable linear systems under bilinear transformation has
been fully studied in a recent work of [6]. Utilizing the result of [6], one could easily obtain the insight of
many discrete-time problems.
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