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Feedback controllers, explicitly parameterized in a single parameter e , are con-
structed to solve the well-known H¥ almost disturbance decoupling problem
with measurement feedback and with internal stability (H¥ -ADDPMS) for con-
tinuous-time linear systems. The construction of these feedback laws utilizes eigen-
structure assignment algorithms and does not involve the solution of any
parameterized algebraic Riccati equations. As a result, the coe� cients of the feed-
back laws are explicitly given as polynomial matrices in e . The results generalize the
earlier work of Ozcetin et al. by allowing the system to have invariant zeros on the
imaginary axis. Such a generalization is motivated by the recent development of
low-gain feedback design technique.

1. Introduction

We revisit the problem of H¥ almost disturbance decoupling with measurement
feedback and internal stability for continuous-time linear systems. The problem of
almost disturbance decoupling has a vast history behind it, occupying a central part
of classical as well as modern control theory. Several important problems, such as
robust control, decentralized control, non-interactive control, model reference or
tracking control, H2 and H¥ optimal control problems can all be recast into an
almost disturbance decoupling problem. Roughly speaking, the basic almost disturb-
ance decoupling problem is to ® nd an output feedback control law such that in the
closed-loop system the disturbances are quenched, say in an L p sense, up to any pre-
speci® ed degree of accuracy while maintaining internal stability. Such a problem was
originally formulated by Willems (1981, 1982) and labelled ADDPMS (the almost
disturbance decoupling problem with measurement feedback and internal stability).
In a case where, instead of a measurement feedback, a state feedback is used, the
above problem is termed an ADDPS (the almost disturbance decoupling problem
with internal stability). The pre® x H¥ in the acronyms H¥ -ADDPMS and H¥ -
ADDPS is used to specify that the degree of accuracy in disturbance quenching is
measured in an L 2-sense.

There is extensive literature on the almost disturbance decoupling problem (see,
for example, the recent work of Weiland and Willems 1989, and Ozcetin et al. 1993a,
b, and references therein). In Weiland and Willems (1989), several variations of the
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disturbance decoupling problems and their solvability conditions are summarized,
and the necessary and su� cient conditions are given under which the H¥ -ADDPMS
and H¥ -ADDPS for continuous-time linear systems are solvable. These conditions
are given in terms of geometry subspaces and for strictly proper systems (i.e. without
direct feedthrough terms from the control input to the output to be controlled and
from the disturbance input to the measurement output). Under these conditions,
Ozcetin et al. (1993a) constructs feedback laws, parameterized explicitly in a single
parameter e , that solve the H¥ -ADDPMS and the H¥ -ADDPS. These results were
later extended to proper systems (i.e. with direct feedthrough terms) in Ozcetin et al.
(1993b). The construction of these feedback laws utilizes explicit eigenstructure
assignment algorithms and avoids the solution of any parameterized algebraic Ric-
cati equations. As a result, the structure and design of the controllers do not require
an explicit value of the parameter e . As pointed out in Ozcetin et al. (1993a, b), such
a design approach has several distinct advantages, the prominent ones among which
are that it is a òne-shot’ design and does not encounter arbitrarily small or large
numbers, and hence it is not plagued by numerical s̀ti� ness’ .

We note that in all the results mentioned above, the internal stability was always
with respect to a closed set in the complex plane. Such a closeness restriction, while
facilitating the development of the above results, excludes systems with disturbance
a� ected purely imaginary invariant zero dynamics from consideration. Only recently
was this ®̀ nal’ restriction on the internal stability restriction removed by Scherer
(1992), thus allowing purely imaginary invariant zero dynamics to be a� ected by the
disturbance. More speci® cally, the work of Scherer (1992) gave a set of necessary and
su� cient conditions under which the H¥ -ADDPMS and H¥ -ADDPS, with internal
stability being with respect to the open left-half plane, are solvable for general proper
linear systems. When the stability is with respect to the open left-half plane, the H¥ -
ADDPMS and H¥ -ADDPS will be referred to as the general H¥ -ADDPMS and the
general H¥ -ADDPS, respectively.

The objective of this paper is to generalize the direct eigenstructure assignment
approach to design for H¥ -ADDPMS of Ozcetin et al. (1993a, b) by allowing the
system to have invariant zeros on an imaginary axis. We would like to note that a
drastic level of complexity is added to the design in a general setting when one allows
the system to have invariant zeros on the imaginary axis. Thus, due to the generality
of the problem considered, there is inherently a certain degree of complexity in
presenting our design algorithm. We, however, would like to emphasize that
although our design algorithm appears to be complex, our step-by-step presentation
facilitates its numerical implementation. In fact, our experience with its implementa-
tion in Matlab indicates that it is straightforward to come up with a stabilizing
controller which quenches the disturbance to any desired level of accuracy.

To state our problem more precisely, we consider the general H¥ -ADDPMS and
the general H¥ -ADDPS for the following general continuous-time linear system, S :

Çx =Ax + Bu + Ew

y =C1x + D1w

z =C2x + D2u + D22w

üïïï
ýïïïþ

(1)

where x Î R n is the state, u Î R m is the control input, y Î R ° is the measurement,
w Î R q is the disturbance and z Î R p is the output to be controlled. A, B, E, C1, C2,
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D1, D2 and D22 are constant matrices of appropriate dimensions. For convenient
references in the future development, throughout this paper, we de® ne S P to be the
subsystem characterized by the matrix quadruple (A,B,C2,D2), and S Q to be the
subsystem characterized by the matrix quadruple (A,E,C1,D1) . The following
dynamic feedback control laws, S c, are investigated:

Çxc =Acxc + Bcy

u =Ccxc + Dcy } (2)

The controller S c of equation (2) is said to be internally stabilizing when applied to
the system S , if the following matrix is asymptotically stable:

Acl :=
A + BDcC1 BCc

BcC1 Ac[ ] (3)

i.e. all its eigenvalues lie in the open left-half complex plane. Denote by Tzw the
corresponding closed-loop transfer matrix from the disturbance w to the output to
be controlled z, i.e.

Tzw = C2 + D2DcC1 D2Cc[ ] sI-
A + BDcC1 BCc

BcC1 Ac[ ]( )
- 1 E + BDcD1

BcD1[ ]
+ D2DcD1+D22 (4)

The H¥ norm of the transfer matrix Tzw is given by

i Tzw i ¥ := sup
x Î [0,¥ )

s max[Tzw( jx )] (5)

where s max [́ ]denotes the largest singular value. Then the general H¥ -ADDPMS and
the general H¥ -ADDPS can be formally de® ned as follows.

De® nition 1: The general H¥ almost disturbance decoupling problem with meas-
urement feedback and internal stability (the general H¥ -ADDPMS) for equation
(1) is said to be solvable if, for any given positive scalar g > 0, there exists at least
one controller of the form of equation (2) such that

(1) in the absence of disturbance, the closed-loop system comprising the system
equations (1) and the controller equations (2) is asymptotically stable, i.e. the
matrix Acl as given by equation (3) is asymptotically stable;

(2) the closed-loop system has an L 2-gain, from the disturbance w to the con-
trolled output z, that is less than or equal to g , i.e.

i zi L 2 £ g i wi L 2, " w Î L 2 and for (x(0),xc (0)) = (0,0) (6)

Equivalently, the H¥ -norm of the closed-loop transfer matrix from w to z,
Tzw, is less than or equal to g , i.e. i Tzw i ¥ £ g .

In the case that C1 = I and D1 =0, the general H¥ -ADDPMS as de® ned above
becomes the general H¥ -ADDPS, where only a static state feedback instead of the
dynamic output feedback in equation (2) is necessary.
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As stated earlier, the objective of this paper is to construct families of feedback
control laws of the form in equations (2), parameterized in a single parameter, say e ,
that, under the necessary and su� cient conditions of Scherer (1992), solve the above-
de® ned general H¥ -ADDPMS and H¥ -ADDPS for general systems whose subsys-
tems S P and S Q may have invariant zeros on the imaginary axis. The feedback
control laws we are to construct are observer-based. A family of static state feedback
control laws parameterized in a single parameter is ® rst constructed to solve the
general H¥ -ADDPS. A class of observers parameterized in the same parameter e

is then constructed to implement the state feedback control laws and thus obtain a
family of dynamic measurement feedback control laws parameterized in a single
parameter e that solve the general H¥ -ADDPMS. The basic tools we use in the
construction of such families of feedback control laws are: (1) the special coordinate
basis, developed by Sannuti and Saberi (1987) and Saberi and Sannuti (1990), in
which a linear system is decomposed into several subsystems corresponding to its
® nite and in® nite zero structures as well as its invertibility structures; (2) a block
diagonal controllability canonical form that puts the dynamics of imaginary in-
variant zeros into a special canonical form under which the low-gain design tech-
nique can be applied; (3) the H¥ low-and-high gain design technique that is to be
fully developed here. The development of such an H¥ low-and-high gain design
technique was originated in Lin (1998) and Lin et al. (1997) in the context of H¥ -
ADDPMS for special classes of non-linear systems that specialize to a SISO (and
hence square invertible) linear system having no invariant zeros in the open right-
half plane.

The outline of this paper is as follows: Section 2 recalls the background materials
on the solvability conditions for the general H¥ -ADDPMS and the special coordi-
nate basis of linear systems, §3 deals with control law design for the H¥ -ADDPS, §4
deals with the construction of both full- and reduced order output feedback con-
trollers that solve the general H¥ -ADDPMS, and ® nally, the concluding remarks are
made in §5.

Throughout this paper, the following notation will be used: XÂ denotes the
transpose of matrix X; I denotes an identity matrix with appropriate dimensions;
R is the set of all real numbers; C is the set of all complex numbers; C - , C 0 and C +

are the open left-half complex plane, the imaginary axis and the open right-half
complex plane, respectively; Ker (X) is the kernel of X; Im (X) is the image of X;
¸(X) is the set of eigenvalues of a real square matrix X; and s max (X) denotes the
maximum singular value of matrix X. The following de® nitions of geometric
subspaces of linear systems will also be used intensively throughout the paper:

De® nition 2: Consider a linear system S * characterized by a matrix quadruple
(A,B,C,D) . The weakly unobservable subspaces of S *, VX, and the strongly con-
trollable subspaces of S *, S X, are de® ned as follows:

(1) VX ( S *) is the maximal subspace of R n which is (A + BF)-invariant and
contained in Ker (C + DF) such that the eigenvalues of (A + BF)|VX are
contained in C X Í C for some constant matrix F;

(2) S X ( S *) is the minimal (A + KC)-invariant subspace of R n containing
Im (B + KD) such that the eigenvalues of the map which is induced by
(A + KC) on the factor space R n /S X are contained in C X Í C for some
constant matrix K.
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Furthermore, we denote V- =VX and S - = S X if C X = C - Ä C 0, V+ =VX and
S + = S X if C X = C +, and ® nally V* =VX and S * = S X if C X = C .

De® nition 3: Consider a linear system S * characterized by a matrix quadruple
(A,B,C,D) . For any 0̧ Î C , we de® ne

S ¸0 ( S *) := x Î C n $ u Î C n+m
:

x

0( ) =
A - 0̧I B

C D[ ]u
ï
ï
ï
ï
ï{ } (7)

and

V¸0 ( S *) := x Î C n $ u Î C m
: 0 =

A - 0̧I B

C D[ ] x

u( )
ï
ï
ï
ï
ï{ } (8)

V 0̧ ( S *) and S ¸0 ( S *) are associated with the so-called state zero directions of S * if 0̧
is an invariant zero of S *.

2. Background materials

We ® rst recall the special coordinate basis of linear time-invariant systems intro-
duced by Sannuti and Saberi (1987) and Saberi and Sannuti (1990). Such a special
coordinate basis has the distinct feature of explicitly displaying the ® nite and in® nite
zero structures as well as the invertibility structure of a given system. Connections
between the special coordinate basis and the various invariant subspaces of geo-
metric theory, as needed for our development, are also given.

Let us consider a linear time-invariant (LTI) system S * characterized by the
quadruple (A,B,C,D) or in the state space form,

Çx =Ax + Bu

y =Cx + Du} (9)

where x Î R n, u Î R m and y Î R p are the state, the input and the output of S *,
respectively. It is simple to verify that there exist non-singular transformations U
and V such that

UDV =
Im0 0

0 0[ ] (10)

where m0 is the rank of matrix D. In fact, U can be chosen as an orthogonal matrix.
Hence hereafter, without loss of generality, it is assumed that the matrix D has the
form given on the right hand side of equation (10). One can now rewrite the system
of equations (9) as

Çx =Ax + B0 B1[ ]
u0

u1( )
y0

y1( ) =
C0

C1[ ]x +
Im0 0

0 0[ ] u0

u1( )

üïïïïï
ýïïïïïþ

(11)

where the matrices B0, B1, C0 and C1 have appropriate dimensions. We now have the
theorem given below.
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Theorem 1 (SCB): Given the linear system S * of (10), there exist

(1) coordinate free non-negative integers n-
a , n0

a, n+
a , nb, nc, nd, md £ m - m0 and

qi, i = 1, . . . ,md,
(2) non-singular state, output and input transformations G s, G o and G i which take

the given S * into a special coordinate basis that displays explicitly both the
® nite and in® nite zero structures of S *.

The special coordinate basis referred to above is described by the following set of
equations:

x = G s
~x, y = G o

~y, u = G i
~u, (12)

~x =

xa

xb

xc

xd

æ
ççççççè

ö÷÷÷÷÷÷ø
, xa =

x-
a

x0
a

x+
a

æ
çççè

ö÷÷÷ø
, xd =

x1

x2

..

.

xmd

æ
çççççççè

ö÷÷÷÷÷÷÷ø
(13)

~y =

y0

yd

yb

æ
çççè

ö÷÷÷ø
, yd =

y1

y2

..

.

ymd

æ
çççççççè

ö÷÷÷÷÷÷÷ø
, ~u =

u0

ud

uc

æ
çççè

ö÷÷÷ø
, ud =

u1

u2

..

.

umd

æ
çççççççè

ö÷÷÷÷÷÷÷ø
(14)

and

Çx-
a =A-

aax-
a + B-

0ay0 + L -
adyd + L -

abyb (15)

Çx0
a =A0

aax
0
a + B0

0ay0 + L 0
adyd + L 0

abyb (16)

Çx+
a =A+

aax
+
a + B+

0ay0 + L +
adyd + L +

abyb (17)

Çxb =Abbxb + B0by0 + L bdyd, yb =Cbxb (18)

Çxc =Accxc + B0cy0 + L cbyb + L cdyd + Bc E-
cax-

a + E0
cax

0
a + E+

cax
+
a[ ] + Bcuc (19)

y0 =C0cxc + C-
0ax-

a + C+
0ax

0
a + C+

0ax
+
a + C0dxd + C0bxb + u0 (20)

and for each i = 1, . . . ,md,

Çxi =Aqixi + L i0y0 + L idyd + Bqi ui + Eiaxa + Eibxb + Eicxc + å
md

j=1
Eijxj[ ] (21)

yi =Cqixi, yd =Cdxd (22)

Here the states x-
a , x0

a, x+
a , xb, xc and xd are of dimensions n-

a , n0
a, n+

a , nb, nc and
nd = å md

i=1 qi, respectively while xi is of dimension qi for each i = 1, . . . ,md . The con-
trol vectors u0, ud and uc are respectively of dimensions m0, md and mc =m - m0 - md,
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while the output vectors y0, yd and yb are of dimensions p0 =m0, pd =md and
pb = p - p0 - pd, respectively. The matrices Aqi , Bqi and Cqi have the following form:

Aqi =
0 Iqi- 1

0 0[ ], Bqi =
0

1[ ], Cqi = [1, 0, . . . , 0] (23)

Assuming that xi, i = 1,2, . . . ,md, are arranged such that qi £ qi+1, the matrix L id has
the particular form

L id = L i1 L i2 ´´´ L ii- 1 0 ´´´ 0[ ] (24)

Also, the last row of each L id is identically zero. Moreover, we have ¸(A-
aa) Ì C - ,

¸(A0
aa) Ì C 0 and ¸(A+

aa) Ì C +. Also, the pair (Acc,Bc) is controllable and the pair
(Abb,Cb) is observable.

Proof: See Sannuti and Saberi (1987) and Saberi and Sannuti (1990). The soft-
ware realizations of the decomposition can be found in LAS by Chen (1988) and
in MATLAB by Lin (1989). h

We can rewrite the special coordinate basis of the quadruple (A,B,C,D) given by
Theorem 1 in a more compact form:

~A = G - 1
s (A - B0C0) G s =

A-
aa 0 0 L -

abCb 0 L -
adCd

0 A0
aa 0 L 0

abCb 0 L 0
adCd

0 0 A+
aa L +

abCb 0 L+
adCd

0 0 0 Abb 0 L bdCd

BcE-
ca BcE

0
ca BcE

+
ca L cbCb Acc L cdCd

BdE-
da BdE0

da BdE+
da BdEdb BdEdc Add

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

(25)

~B = G - 1
s B0 B1[ ]G i =

B-
0a 0 0

B0
0a 0 0

B+
0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

, ~D = G - 1
o DG i =

Im0 0 0

0 0 0

0 0 0

é
êêêë

ùúúú
û

(26)

~C = G - 1
o

C0

C1[ ]G s =

C-
0a C0

0a C+
0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0

é
êêêë

ùúúú
û

(27)

In what follows, we state some important properties of the above special coordi-
nate basis which are pertinent to our present work and which will be used through-
out this paper.
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Property 1: The given system S * is observable (detectable) if and only if the pair
(Aobs,Cobs) is observable (detectable), where

Aobs :=
Aaa 0

BcEca Acc[ ], Cobs :=
C0a C0c

Eda Edc[ ], (28)

and where

Aaa :=

A-
aa 0 0

0 A0
aa 0

0 0 A+
aa

é
êêêë

ùúúú
û

(29)

C0a := [C-
0a C0

0a C+
0a ], Eda := [E-

da E0
da E+

da ], Eca := [E-
ca E0

ca E+
ca ]
(30)

Also, de® ne

B0a :=

B-
0a

B0
0a

B+
0a

é
êêë

ùúú
û
, L ab :=

L -
ab

L 0
ab

L +
ab

é
êêë

ùúú
û
, L ad :=

L -
ad

L 0
ad

L +
ad

é
êêë

ùúú
û

(31)

and

Acon :=
Aaa L abCb

0 Abb[ ], Bcon :=
B0a L ad

B0b L bd[ ] (32)

Similarly, S * is controllable (stabilizable) if and only if the pair (Acon,Bcon) is con-
trollable (stabilizable).
Property 2: Invariant zeros of S * are the eigenvalues of Aaa, which are the
unions of the eigenvalues of A-

aa, A0
aa and A+

aa.

Property 3: S * has m0 = rank (D) in® nite zeros of order 0. The in® nite zero
structure (of order greater than 0) of S * is given by S w

¥ ( S *) ={q1,q2, . . . ,qmd},
i.e., each qi corresponds to an in® nite zero of S * of order qi.

Property 4: The given system S * is right invertible if and only if xb (and hence
yb) are non-existent, left invertible if and only if xc (and hence uc) are non-exist-
ent, and invertible if and only if both xb and xc are non-existent. Moreover, S * is
degenerate if and only if it is neither left nor right invertible, i.e. both xb and xc
are present.

By now it is clear that the special coordinate basis decomposes the state-space
into several distinct parts. In fact, the state-space X is decomposed as

X =X -
a % X 0

a % X +
a % X b % X c % X d (33)

The following property shows interconnections between the special coordinate basis
and various invariant geometric subspaces.

Property 5: Various components of the state vector of the special coordinate ba-
sis have the following geometrical interpretations:
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(1) X -
a % X 0

a % X c % X d spans S + ( S *) ;
(2) X +

a % X c % X d spans S - ( S *) ;
(3) X c % X d spans S *( S *) ;
(4) X -

a % X 0
a % X c spans V- ( S *) ;

(5) X +
a % X c spans V+ ( S *) ;

(6) X -
a % X 0

a % X +
a % X c spans V*( S *) .

Finally, we are ready to recall the necessary and su� cient conditions of Scherer
(1992) under which the general H¥ -ADDPMS and H¥ -ADDPS are solvable.

Theorem 2: Consider the general measurement feedback system in equation (1) with
D22 =0. Then the general H¥ almost disturbance decoupling problem for equation
(1) with internal stability (H¥ -ADDPMS) is solvable if and only if the following
conditions are satis® ed:

(1) (A,B) is stabilizable;
(2) (A,C1) is detectable;
(3) Im (E) Ì S + ( S P) ´ {́ ¸0 Î C 0 S

0̧
( S P)};

(4) Ker (C2) É V+ ( S Q) Ä {Ä ¸0 Î C 0V¸0 ( S Q)};
(5) V+ ( S Q) Ì S + ( S P) .

It is simple to verify that for the case that all states of the system in equation (1) are
fully measurable, i.e. C1 = I and D1 = 0, then the solvability conditions for the
general H¥ -ADDPS reduce to the following: (1) (A,B) is stabilizable; (2) D22 =0;
(3) Im (E) Ì S + ( S P) ´ {́ ¸0 Î C 0 S ¸0 ( S P)}. Moreover, in this case, a static state feed-
back control law, i.e. u =Fx, exists that solves the general H¥ -ADDPS, where F is a
constant matrix and might be parameterized by certain tuning parameters.

3. Solution to the H ¥ ¥ -ADDPS

In this section, we consider feedback control law design for the general H¥
almost disturbance decoupling problem with internal stability and with full state
feedback, where internal stability is with respect to the open left-half plane, i.e.
the general H¥ -ADDPS. More speci® cally, we present a design procedure that
constructs a family of parameterized static state feedback control laws,

u =F( e )x, (34)

that solves the general H¥ -ADDPS for the following system,

Çx =Ax + Bu + Ew

y =x

z =C2x + D2u + D22w

üïï
ýïïþ

(35)

That is, under this family of state feedback control laws, the resulting closed-loop
system is asymptotically stable for su� ciently small e , and the H¥ -norm of the
closed-loop transfer matrix from w to z, Tzw(s, e ) , tends to zero as e tends to zero,
where

Tzw (s, e ) = [C2 + D2F( e )][sI - A - BF( e )]- 1E + D22 (36)
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Clearly, D22 = 0 is a necessary condition for the solvability of the general H¥ -
ADDPS. We present an algorithm for obtaining this F( e ) , following the asymptotic
time-scale and eigenstructure assignment (ATEA) procedure. The ATEA design
procedure was originally conceived by Saberi and Sannuti (1989) and was used to
solve many control problems (see, for example, Chen 1991, Ozcetin et al. 1993a, Lin
1994, Saberi et al. 1995, to name only a few). It uses the special coordinate basis of
the given system (see Theorem 1) to decompose the system into several
subsystems according to its ® nite and in® nite zero structures as well as its
invertibility structures. The new component here is the low-gain design for the
part of the zero dynamics corresponding to all purely imaginary invariant zeros.
As will be clear shortly, the low-gain component is critical in handling the case when
the zero dynamics corresponding to purely imaginary invariant zeros is a� ected by
disturbance. It is well known that the disturbance a� ected purely imaginary zero
dynamics is di� cult to handle and has always been excluded from consideration
until recently.

Step S.1. (decomposition of S P) Transform the subsystem S P, i.e. the quadruple
(A,B,C2,D2) , into the special coordinate basis (SCB) as given by Theorem
1 in §2. Denote the state, output and input transformation matrices as G sP,
G oP and G iP, respectively.

Step S.2. (gain matrix for the subsystem associated with X c). Let Fc be any arbitrary
mc ´ nc matrix subject to the constraint that

Ac
cc =Acc - BcFc (37)

is a stable e matrix. Note that the existence of such an Fc is guaranteed by
the property of SCB, i.e. (Acc,Bc) is controllable.

Step S.3. (gain matrix for the subsystems associated with X +
a and X b). Let

F+
ab :=

F+
a0 Fb0

F+
ad Fbd[ ] (38)

be any arbitrary (m0 + md) ´ (n+
a + nb) matrix subject to the constraint

that

A+c
ab :=

A+
aa L +

abCb

0 Abb[ ] -
B+

0a L +
ad

B0b L bd[ ]F+
ab (39)

is a stable matrix. Again, note that the existence of such an Fab is guar-
anteed by the stabilizability of (A,B) and Property 1 of the special coor-
dinate basis. For future use, let us partition F+

ad Fbd[ ] as

[F+
ad Fbd ]=

F+
ad1 Fbd1

F+
ad2 Fbd2

..

. ..
.

F+
admd Fbdmd

é
êêêêêêë

ùúúúúúú
û

(40)

where F+
adi and Fbdi are of dimensions 1 ´ n+

a and 1 ´ nb, respectively.
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Step S.4. (gain matrix for the subsystem associated with X 0
a). The construction of

this gain matrix is carried out in the following sub-steps.
Step S.4.1. (preliminary coordinate transformation). Recalling the de® ni-

tion of (Acon,Bcon) , i.e. equation (32), we have

Acon - Bcon 0 0 F+
ab[ ] =

A-
aa 0 A-

aab

0 A0
aa A0

aab

0 0 A+c
ab

é
êêë

ùúú
û

Bcon =

B-
0a L -

ad

B0
0a L 0

ad

B+
0ab L+

abd

é
êêë

ùúú
û

(41)

where

B+
0ab =

B+
0a

B0b[ ], L+
abd =

L +
ad

L bd[ ]
A0

aab = [0 L 0
abCb]- [B0

0a L 0
ad]F+

ab (42)

and

A-
aab = 0 L -

abCb[ ]- B-
0a L -

ad[ ]F+
ab

Clearly (Acon- BconF+
ab,Bcon) remains stabilizable. Construct

the following nonsingular transformation matrix,

G ab =

In-
a 0 0

0 0 In+
a +nb

0 In0
a T 0

a

é
êêë

ùúú
û

- 1

(43)

where T 0
a is the unique solution to the following Lyapunov

equation:

A0
aaT 0

a - T0
aA+c

ab =A0
aab (44)

We note here that such a unique solution to the above
Lyapunov equation always exists since all the eigenvalues
of A0

aa are on the imaginary axis and all the eigenvalues of
A+c

ab are in the open left-half plane. It is now easy to verify that

G - 1
ab (Acon - BconF+

ab) G ab =

A-
aa A-

aab 0

0 A+c
ab 0

0 0 A0
aa

é
êêë

ùúú
û

(45)

G - 1
ab Bcon =

B-
0a L -

ad

B+
0ab L +

abd

B0
0a + T 0

a B+
0ab L 0

ad + T0
a L +

abd

é
êêë

ùúú
û
(46)
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Hence, the matrix pair (A0
aa,B0

a) is controllable, where

B0
a = B0

0a + T 0
a B+

0ab L 0
ad + T 0

a L +
abd[ ]

Step S.4.2. (further coordinate transformation). Find non-singular trans-
formation matrices G 0

sa and G 0
ia such that (A0

aa,B0
a) can be

transformed into the block diagonal controllability canonical
form,

( G 0
sa)-

1A0
aa G 0

sa =

A1 0 ´´´ 0

0 A2 ´´´ 0

..

. ..
. . .

. ..
.

0 0 ´´´ Al

é
êêêêêêêêêë

ùúúúúúúúúú
û

( G 0
sa)-

1B0
a G 0

ia =

B1 B12 ´´´ B1l w

0 B2 ´´´ B2l w

..

. ..
. . .

. ..
. ..

.

0 0 ´´´ Bl w

é
êêêêêêêêêë

ùúúúúúúúúú
û

where l is an integer and for i = 1,2, . . . , l,

Ai =

0 1 0 ´´´ 0

0 0 1 ´´´ 0

..

. ..
. ..

. . .
. ..

.

0 0 0 ´´´ 1

- ai
ni - ai

ni- 1 - ai
ni- 2 ´´´ - ai

1

é
êêêêêêêêêêêë

ùúúúúúúúúúúú
û

, Bi =

0

0

..

.

0

1

é
êêêêêêêêêêêë

ùúúúúúúúúúúú
û

We note that all the eigenvalues of Ai are on the imaginary
axis. Here the w ’s represent submatrices of less interest. We
note that the existence of the above canonical form was
shown by Wonham (1979), while its software realization can
be found in Chen (1997).

Step S.4.3. (subsystem design). For each (Ai,Bi) , let Fi ( e ) Î R 1́ ni be the
state feedback gain such that

¸{Ai + BiFi ( e )} = - e + ¸(Ai) Î C
-

Note that Fi ( e ) is unique.
Step S.4.4. (composition of gain matrix for the subsystem associated with

X 0
a). Let
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F0
a ( e ) := G 0

ia

F1 ( e ) 0 ´´´ 0 0

0 F2( e ) ´´´ 0 0

..

. ..
. . .

. ..
. ..

.

0 0 ´´´ Fl- 1( e ) 0

0 0 ´´´ 0 Fl ( e )

0 0 ´´´ 0 0

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

( G 0
sa) -

1

(47)

where e Î (0,1] is a design parameter whose value is to be
speci® ed later.

Clearly, we have

i F0
a ( e ) i £ f 0

a e , e Î (0,1], (48)

for some positive constant f 0
a , independent of e . For future use,

we de® ne and partition Fab ( e ) Î R
(m0+md ) ´ (na+nb) as

Fab ( e ) =
Fab0( e )

Fabd ( e )[ ] =
0m0 ´ n-

a 0m0 ´ (n+
a +nb) F0

a0 ( e )

0md ´ n-
a 0md ´ (n+

a +nb) F0
ad ( e )

é
ë

ù
û
G - 1

ab

(49)

and

Fabd ( e ) =

Fabd1 ( e )

Fabd2 ( e )

..

.

Fabdmd
( e )

é
êêêêêêêë

ùúúúúúúú
û

(50)

where F0
a0( e ) and F0

ad ( e ) are de® ned as

F0
a ( e ) =

F0
a0 ( e )

F0
ad ( e )

é
ë

ù
û

(51)

We also partition F0
ad ( e ) as,

F0
ad ( e ) =

F0
ad1( e )

F0
ad2( e )

..

.

F0
admd

( e )

é
êêêêêêë

ùúúúúúú
û

(52)

Step S.5. (gain matrix for the subsystem associated with X d). This step makes use
of subsystems, i =1 to md , represented by equation (21) of §2. Let
L i ={ i̧1, i̧2, ´´´, i̧qi }, i =1 to md , be the sets of qi elements all in
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C - , which are closed under complex conjugation, where qi and md are as
de® ned in Theorem 1 but associated with the special coordinate basis of
S P. Let L d := L 1 Ä L 2 Ä ´´´ Ä L md . For i = 1 to md , we de® ne

pi (s) := Õ
qi

j=1

(s - i̧j) = sqi + Fi1s
qi- 1 + ´´´+ Fiqi- 1s + Fiqi, (53)

and

~Fi ( e ) :=
1

e qi
FiSi ( e ), (54)

where

Fi = Fiqi Fiqi- 1 ´´´ Fi1[ ], Si ( e ) =diag {1, e , e
2, . . . , e

qi- 1} (55)

Step S.6. (compositon of parameterized gain matrix F( e )) . In this step, various
gains calculated in Steps S.2± S.5 are put together to form a composite
state feedback gain matrix F( e ) . Let

~Fabd ( e ) :=

Fabd1 ( e )F1q1 ( e ) /e q1

Fabd2 ( e )F2q2 ( e ) /e q2

..

.

Fabdmd ( e Fmdqmd
/e qmd

é
êêêêêêêêêë

ùúúúúúúúúú
û

(56)

~F+
ad ( e ) :=

F+
ad1F1q1 /e q1

F+
ad2F2q2 /e q2

..

.

F+
admd Fmdqmd

/e qmd

é
êêêêêêêêêë

ùúúúúúúúúú
û

(57)

and

~Fbd ( e ) :=

F+
bd1F1q1 /e q1

F+
bd2F2q2 /e q2

..

.

F+
bdmd Fmdqmd /e

qmd

é
êêêêêêë

ùúúúúúú
û

(58)

Then de® ne the state feedback gain F( e ) as

F( e ) := - G iP
~Fw

abcd ( e ) + ~Fabcd ( e )( ) G - 1
sP (59)

where
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~Fw
abcd ( e ) =

C-
0a C0

0a C+
0a + F+

a0 C0b + Fb0 C0c C0d

E-
da E0

da E+
da + ~F+

ad ( e ) Edb + ~Fbd ( e ) Edc
~Fd ( e ) + Ed

E-
ca E0

ca E+
ca 0 Fc 0

é
êêêë

ùúúú
û
(60)

~Fabcd ( e ) =

Fab0 ( e ) 0 0
~Fabd ( e ) 0 0

0 0 0

é
êêêë

ùúúú
û

(61)

and where

Ed =

E11 . . . E1md

..

. . .
. ..

.

Emd1 . . . Emdmd

é
êêêêë

ùúúúú
û

(62)

~Fd ( e ) =diag{~F1 ( e ), ~F2( e ), . . . , ~Fmd
( e )} (63)

Note that in principle one might take the perturbation or the LMI approach to
solving the general H¥ -ADDPS. However, these approaches, especially the pertur-
bation one, often have numerical di� culties in dealing with systems that have invar-
iant zeros on the imaginary axis and/or in® nite zeros. Our approach does not have
such a problem as it does not involve the solution of any parameterized algebraic
Riccati equations. Furthermore, the resulting feedback laws from our method are
explicitly given as polynomial matrices in e .

We have the following theorem.

Theorem 3: Consider the given system (36) satisfying the following conditions: (1)
(A,B) is stabilizable; (2) D22 = 0; (3) Im (E) Ì S + ( S P) ´ {́ ¸0 Î C 0 S 0̧ ( S P)}. Then
the closed-loop system comprising equation (35) and the static state feedback control
law u =F( e )x, with F( e ) given by equation (59), has the following properties: for
any given g > 0, there exists a positive scalar e * > 0 such that for all 0 < e £ e *.

(1) The closed-loop system is asymptotically stable, i.e. ¸{A + BF( e )} Ì C - .
(2) The H¥ -norm of the closed-loop transfer matrix from the disturbance w to the

controlled output z is less than g , i.e. i Tzw(s, e ) i ¥ < g .
Hence, by De® nition 1, the control law u =F( e )x solves the general H¥ -ADDPS for
equation (36).

Proof: See Appendix A. h

4. Solution to the H ¥ ¥ -ADDPMS

In this section we present the designs of both full order and reduced order output
feedback controllers that solve the general H¥ -ADDPMS for the system given in
equation (1). Here, by full-order controller, we mean that the order of the controller
is exactly the same as the given system (1), i.e. is equal to n. A reduced order
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controller, on the other hand, refers to a controller whose dynamic order is less than
n. We will assume that D22 = 0 in the system given in equation (1) throughout this
section. If D22 /= 0, one can easily show that the solvability of the general H¥ -
ADDPMS implies the existence of a Conant matrix S such that

D22 + D2SD1 =0 (64)

Then, by applying a pre-output feedback control law u =Sy + v to the system in
equation (1), the resulting system we obtain will have a zero direct feedthrough
matrix from w to z. Hence, it is without loss of any generality to assume that the
matrix D22 =0.

4.1. Full order output feedback controller design
The following is a step-by-step algorithm for constructing a parameterized full-

order output feedback controller that solves the general H¥ -ADDPMS:

Step F.C.1. (construction of the gain matrix FP( e )). De® ne an auxiliary system

Çx =Ax + Bu + Ew

y =x

z =C2x + D2u + D22w

üïïï
ýïïïþ

(65)

and then perform Steps S.1± S.6 of the previous section to the above
system to obtain a parameterized gain matrix F(e ) . We let FP( e ) =F( e ) .

Step F.C.2. (construction of the gain matrix KQ( e )). De® ne another auxiliary system

Çx =AÂ x + CÂ1u + CÂ2w

y =x

z =EÂ x + DÂ1u + DÂ22w

üïïï
ýïïïþ

(66)

and then perform Steps S.1± S.6 of the previous section to the above
system to get the parameterized gain matrix F( e ) . We let KQ( e ) =F( e ) Â .

Step F.C.3. (construction of the full order controller S FC ( e )). Finally, the parame-
terized full order output feedback controller, S FC ( e ) , is given by

Çxc =AFC ( e )xc + BFC ( e )y,
u =CFC ( e )xc + DFC ( e )y } (67)

where

AFC ( e ) :=A + BFP( e ) + KQ( e )C1

BFC ( e ) := - KQ( e )

CFC ( e ) :=FP( e )

DFC ( e ) :=0

üïïïïï
ýïïïïïþ

(68)

We have the following theorem.
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Theorem 4: Consider the system given in equation (1) with D22 =0 satisfying all
the conditions in Theorem 2. Then the closed-loop system comprising equation (1)
and the full order output feedback controller (60) has the following properties: For
any given g > 0, there exists a positive scalar e * > 0 such that for all 0 < e £ e *:

(1) the resulting closed-loop system is asymptotically stable;
(2) the H¥ -norm of the resulting closed-loop transfer matrix from the disturbance

w to the controlled output z is less than g , i.e. i Tzw(s, e ) i ¥ < g .
By De® nition 1, the control law in equation (67) solves the general H¥ -ADDPMS for
equation (1).

Proof: See Appendix B. h

4.2. Reduced-order output feedback controller design
In this subsection, we follow the procedure of Chen et al. (1992) to design a

reduced order output feedback controller. We will show that such a controller
structure with appropriately chosen gain matrices also solves the general H¥ -
ADDPMS for the system in equation (1). First, without loss of generality and for
simplicity of presentation, we assume that the matrices C1 and D1 are already in the
form

C1 =
0 C1,02

Ik 0[ ] and D1 =
D1,0

0[ ] (69)

where k =° - rank (D1) and D1,0 is of full rank. Then the system given in equation
(1) can be written as

Çx1

Çx2( ) =
A11 A12

A21 A22[ ] x1

x2( ) +
B1

B2[ ]u +
E1

E2[ ]w

y0

y1( ) =
0 C1,02

Ik 0[ ] x1

x2( ) +
D1,0

0[ ]w

z = C2,1 C2,2[ ]
x1

x2( ) + D2u + D22w

üïïïïïïïïïïïïï
ýïïïïïïïïïïïïïþ

(70)

where the original state x is partitioned to two parts, x1 and x2, and y is partitioned
to y0 and y1 with y1 º x1. Thus, one needs to estimate only the state x2 in the
reduced-order controller design. Next, de® ne an auxiliary subsystem S QR character-
ized by a matrix quadruple (AR,ER,CR,DR) , where

(AR,ER,CR,DR) = A22,E2,
C1,02

A12[ ], D1,0

E1[ ]( ) (71)

The following is a step-by-step algorithm that constructs the reduced order out-
put feedback controller for the general H¥ -ADDPMS.
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Step R.C.1. (construction of the gain matrix FP( e )). De® ne an auxiliary system

Çx =Ax + Bu + Ew

y =x

z =C2x + D2u + D22w

üïïï
ýïïïþ

(72)

and then perform Steps S.1± S.6 of §3 to the above system to get the
parameterized gain matrix F( e ) . We let FP( e ) =F( e ) .

Step R.C.2. (construction of the gain matrix KR( e )). De® ne another auxiliary
system

Çx =AÂRx + CÂRu + CÂ2,2w

y =x

z =EÂRx + DÂRu + DÂ22w

üïïï
ýïïïþ

(73)

and then perform Steps S.1± S.6 of §3 to the above system to get the
parameterized gain matrix F( e ) . We let KR( e ) =F( e ) Â .

Step R.C.3. (construction of the reduced order controller S RC( e )). Let us partition
FP( e ) and KR( e ) as,

FP( e ) = FP1( e ) FP2( e )[ ] and KR( e ) = KR0 ( e ) KR1 (e )[ ]
(74)

in conformity with the partition

x =
x1

x2( ) and y =
y0

y1( )
respectively. Then de® ne

GR( e ) = - KR0( e ), A21 + KR1 ( e )A11 - (AR + KR( e )CR)KR1( e )[ ] (75)

Finally, the parameterized reduced-order output feedback controller,
S RC( e ) , is given by

Çxc =ARC( e )xc + BRC( e )y

u =CRC( e )xc + DRC( e )y } (76)

where

ARC( e ) :=AR + B2FP2 ( e ) + KR( e )CR + KR1 ( e )B1FP2 ( e )

BRC( e ) :=GR( e ) + [B2 + KR1( e )B1] 0,FP1 ( e ) - FP2 ( e )KR1 ( e )[ ]
CRC( e ) :=FP2 ( e )

DRC( e ) := 0,FP1 ( e ) - FP2 ( e )KR1 ( e )[ ]

üïïïïï
ýïïïïïþ

(77)

We have the following theorem.
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Theorem 5: Consider the system given in equation (1) with D22 =0 satisfying all
the conditions in Theorem 2. Then the closed-loop system comprising equation (1)
and the reduced order output feedback controller in equation (76) have the following
properties: for any given g > 0, there exists a positive scalar e * > 0 such that for all
0 < e £ e *:

(1) the resulting closed-loop system is asymptotically stable;
(2) the H¥ -norm of the resulting closed-loop transfer matrix from the disturbance

w to the controlled output z is less than g , i.e. i Tzw(s, e ) i ¥ < g .
By De® nition 1, the control law in equation (76) solves the general H¥ -ADDPMS for
equation (1).

Proof: See Appendix C. h

5. Conclusions

In this paper we have presented several explicit procedures for constructing
solutions for the general H¥ -ADDPS and H¥ -ADDPMS, in which the given
systems are allowed to have invariant zeros on the imaginary axis of the complex
plane. Our approach is decentralized in nature. We used a low-gain design technique
to handle the subsystem associated with the zero dynamics on the imaginary axis and
a high-gain technique to deal with the subsystem associated with the in® nite zero
structure of the given system. Hence, our approach can be termed as a low-and-high
gain method.

6. Appendix A Ð Proof of Theorem 3

Under the feedback control law u =F( e )x, the closed-loop system on the special
coordinate basis can be written as follows:

Çx-
a =A-

aax-
a + B-

0az0 + L -
adzd + L -

abzb + E-
a w (78)

Çx0
a =A0

aax
0
a + B0

0az0 + L 0
adzd + L 0

abzb + E0
aw (79)

Çx+
ab =A+c

ab x+
ab - B+

0abF
0
a0( e )[x0

a + T0
ax+

ab]+ L +
abd[F+

ad, Fbd]x+
ab + L+

abdzd + E+
abw (80)

zb = [0mb ´ n+
a ,Cb]x+

ab (81)

Çxc =Ac
cc + L c0z0 + L cbzb + L cdzd + Ecw (82)

z0 = - [F+
a0, Fb0]x+

ab - F0
a0 ( e ) (x0

a + T 0
ax+

ab) (83)

Çxi =Aqixi + L i0z0 + L idzd - 1
e qi

Bqi[F+
adiFiqix

+
a + FbdiFiqixb

+ F0
adi ( e )Fiqi[x0

a + T 0
ax+

ab]+ FiSi ( e )xi]+Eiw, (84)

zi =Cqixi, i = 1,2, . . . ,md (85)

where x+
ab = [(x+

a ) Â ,xÂb]Â and B+
0ab and L +

abd are as de® ned in Step S.4.1 of the state
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feedback design algorithm. We have also used Condition 2 of the theorem, i.e.
D22 =0, and E-

a , E0
a , E+

ab, Eb, Ec and Ei, i = 1,2, . . . ,md, are de® ned as follows,

G - 1
sP E = [ (E-

a ) Â (E0
a) Â (E+

ab) Â EÂc EÂ1 EÂ2 ´´´ EÂmd ]Â (86)

Condition 3 of the theorem then implies that

E+
ab = 0, (87)

and

Im (E0
a) Ì S (A0

aa) := ´ wÎ ¸(A0
aa)Im{wI - A0

aa} (88)

To complete the proof, we will make two state transformations on the closed-
loop system in equations (78) ± (85). The ® rst state transformation is given as follows:

xab = G - 1
ab xab, xc =xc, (89)

xi1 =xi1 + F+
adix

+
a + Fbdixb + F0

adi ( e )[x0
a + T 0

ax+
ab], i =1,2, . . . ,md, (90)

xij =xij, j = 2,3, . . . ,qi, i =1,2, . . . ,md (91)

where xab = [(x-
a ) Â , (x0

a) Â , (x+
ab) Â ]Â and xab = [(x-

a ) Â , (x+
ab) Â , (x0

a) Â ]Â . In the new state
variables in equations (89) ± (91), the closed-loop system becomes

Çx-
a =A-

aax-
a + A-

aabx+
ab - [B-

0a, L -
ad]F0

a ( e )x0
a + L -

adzd + E-
a w, (92)

Çx+
ab =A+c

ab x+
ab - [B+

0ab, L+
abd]F0

a ( e )x0
a + L +

abdzd (93)

Çx0
a = (A0

aa - B0
aF

0
a ( e ))x0

a + (L 0
ad + T0

a L+
abd)zd + E0

aw (94)

Çxc =Ac
ccxc + ( L cb[0, Cb]- [L c0, L cd]F+

ab) x+
ab - [L c0, L cd]F0

a ( e )x0
a + L cdzd + Ecw

(95)

z0 = - [F+
a0, Fb0]x+

ab - F0
a0( e )x0

a, (96)

Çxi =Aqixi - 1
e qi

BqiFiSi ( e )xi + L+
iab( e )x+

ab + L 01
ia ( e )F0

a ( e )x0
a

+ L 02
ia ( e )F0

a ( e )A0
aax

0
a + L id ( e )zd + Ei ( e )w (97)

zi = zi + [F+
adi,Fbdi]x+

ab + F0
adix

0
a =Cqi xi, i = 1,2, . . . ,md, (98)

zd = [z1,z2, . . . ,zmd ]Â , (99)

where A-
aab, A0

aab, B0
a and L +

abd are as de® ned in Step S.4.1 of the state feedback
control law design algorithm, and L +

iab ( e ) , L 01
ia ( e ) , L 02

ia ( e ) , L id ( e ) and Ei ( e ) are de® ned
in an obvious way and, by equation (48), satisfy

i L+
iab( e ) i £ l+iab, i L 01

ia ( e ) i £ l01
ia , i L 02

ia ( e ) i £ l02
ia , i L id ( e ) i £ lid,
i Ei ( e ) i £ ei, e Î (0,1], (100)

for some non-negative constants l+iab, l01
ia , l02

ia , lid and ei independent of e .
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We now proceed to construct the second transformation. We need to recall the
following preliminary results from Lin et al. (1997).

Lemma 1: Let the triple (Ai,Bi,Fi ( e )) be as given in Steps S.4.2 and S.4.3 of the
state feedback design algorithm. Then, there exists a nonsingular state transforma-
tion matrix Qi ( e ) Î R ni ´ ni such that:

(1) Qi ( e ) transforms Ai - BiFi ( e ) into a real Jordan form, i.e.

Q- 1
i ( e ) (Ai - BiFi ( e ))Qi ( e ) =Ji ( e ) =blkdiag{Ji0 ( e ),Ji1 ( e ),Ji2 ( e ), . . . ,Jipi ( e )},

(101)

where

Ji0( e ) =

- e 1

. .
. . .

.

- e 1

- e

é
êêêêêë

ùúúúúú
û ri0 ´ ri0

(102)

and for each j =1 to pi,

Jij ( e ) =

Jw
ij ( e ) I2

. .
. . .

.

Jw
ij (e ) I2

Jw
ij ( e )

é
êêêêêêë

ùúúúúúú
û 2rij ´ 2rij

, Jw
ij ( e ) =

- e b ij

- b ij - e[ ],
(103)

with b ij > 0 for all j =1 to pi and b ij /= b ik for j /= k;
(2) both i Qi ( e ) i and i Q- 1

i ( e ) i are bounded, i.e.

i Qi ( e ) i £ µi, i Q- 1
i ( e ) i £ µi, e Î (0,1] (104)

for some positive constant µi, independent of e ;
(3) if Ei Î R ni ´ q is such that

Im (Ei) Ì ´ wÎ ¸(Ai)Im (wI - Ai), (105)

then there exists a d i ³ 0, independent of e , such that

i Q- 1
i ( e )Ei i £ d i, e Î (0,1] (106)

and, if we partition Q- 1
i ( e )Ei according to that of Ji ( e ) as,

Q- 1
i ( e )Ei =

Ei0( e )

Ei1( e )

..

.

Eipi ( e )

é
êêêêêêë

ùúúúúúú
û
, Ei0( e ) =

Ei01 ( e )

Ei02 ( e )

..

.

Ei0ri0 ( e )

é
êêêêêêë

ùúúúúúú
û ri0 ´ 1

,
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Eij (e ) =

Eij1( e )

Eij2( e )

..

.

Eijrij ( e )

é
êêêêêêêêë

ùúúúúúúúú
û 2rij ´ 1

, (107)

then there exists a b i ³ 0, independent of e , such that for each j =0, to pi,

i Eijrij ( e ) i £ b i e (108)

(4) if we de® ne a scaling matrix Sai ( e ) as

Sai ( e ) =blkdiag{Sai0 ( e ) ,Sai1( e ),Sai2 ( e ), . . . ,Saipi ( e )} (109)

where

Sai0( e ) =diag{e
ri0- 1, e

ri0- 2, . . . , e ,1} (110)

and for j = 1 to pi,

Saij ( e ) =blkdiag{e
rij- 1I2, e

rij- 2I2, . . . , e I2,I2} (111)

then there exists a ·i ³ 0 independent of e such that

|Fi ( e )Qi ( e )S- 1
ai ( e )| £ ·i e , |Fi ( e )AiQi ( e )S- 1

ai ( e )| £ ·i e (112)

Proof: This is a combination of Lemmas 1, 3 and 4 of Lin et al. (1997), and
(2.2.13) of Lin (1994). h

Lemma 2: Let
~Ji ( e ) =blkdiag ~Ji0, ~Ji1 (e ), . . . , ~Jipi ( e ){ } (113)

where

~Ji0 =

- 1 1

. .
. . .

.

- 1 1

- 1

é
êêêêêë

ùúúúúú
û ri0 ´ ri0

(114)

and for each j = 1 to pi,

~Jij ( e ) =

~Jw
ij ( e ) I2

. .
. . .

.

~Jw
ij ( e ) I2

~Jw
ij ( e )

é
êêêêêêêë

ùúúúúúúú
û 2rij ´ 2rij

, ~Jw
ij ( e ) =

- 1 b ij /e

- b ij /e - 1[ ] (115)

with b ij > 0 for all j = 1 to pi and b j /= b k for j /= k. Then the unique positive de® nite
solution ~Pi to the Lyapunov equation
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~Ji ( e ) Â
~Pi + ~Pi

~Ji ( e ) =- I (116)

is independent of e .

Proof: This is Lemma 2 in Lin et al. (1997). h

We now de® ne the following second state transformation on the closed-loop system:

~x-
a =x-

a , ~x+
ab =x+

ab (117)

~x0
a = [(~x0

a1) Â , (~x0
a2)Â ,´´´ (~x0

al) Â ]Â =Sa ( e )Q- 1 ( e ) ( G 0
sa)-

1x0
a (118)

Sa ( e ) =blkdiag{Sa1( e ),Sa2 ( e ), . . . ,Sal ( e )}
Q( e ) =blkdiag{Q1 ( e ),Q2 ( e ), . . . ,Ql ( e )}

~xc = e xc (119)
~xd = [~xÂ1,~xÂ2, . . . ,~xÂmd ]Â , ~xi =Si ( e )xi, i =1,2, . . . ,md (120)

under which the closed-loop system becomes

Ç~x-
a =A-

aa
~x-

a + A-
aab ( e )~x+

ab + A- 0
aa ( e )~x0

a + L -
ad

~zd + E-
a w (121)

Ç~x+
ab =A+c

ab
~x+

ab + A+0
aba ( e )~x0

a + L +
abd

~zd (122)

Ç~x0
a = ~J( e )~x0

a + ~B( e )~x0
a + ~L 0

ad ( e )~zd + ~E0
a ( e )w (123)

Ç~xc =Ac
cc

~xc + e [A+
cab

~x+
ab + A0

ca ( e )~x0
a + L cd

~zd + Ecw] (124)

z0 = - [F+
a0, Fb0]~x+

ab - ~F0
a0 ( e )~x0

a (125)

e Ç~xi = (Aqi - BqiFi)~xi + e
~L +

iab ( e )~x+
ab + e

~L 0
ia ( e )~x0

a + e
~L id ( e )~zd + e

~Ei (e )w (126)

~zi = zi = zi + [F+
adi, Fbdi]~x+

ab + ~F0
adi ( e )~x0

a =Cqi
~xi (127)

~zd = [~z1,~z2, . . . ,~zmd ]Â , (128)

where

A- 0
aa ( e ) = - [B+

0a, L -
ad]F0

a ( e ) G 0
saQ( e )S- 1

a ( e ) (129)

A+0
aba ( e ) = - [B+

0ab, L +
abd]F0

a ( e ) G 0
saQ( e )S- 1

a ( e ) (130)
~J( e ) =blkdiag {e

~J1 ( e ), e
~J2 ( e ), . . . , e

~Jl ( e )} (131)

~B( e ) =

0 ~B12 ( e ) ~B13 ( e ) . . . ~B1l ( e )

0 0 ~B23 ( e ) . . . ~B2l ( e )

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 0

é
êêêêêêë

ùúúúúúú
û

(132)

~bjk ( e ) =Saj ( e )Q- 1
j ( e )BjkFk ( e )Qk ( e )S- 1

ak ( e )

j = 1,2, . . . , l, k = j + 1, j + 2, . . . , l
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~L 0
ad ( e ) =Sa ( e )Q- 1 ( e ) ( G 0

sa)-
1 (L 0

ad + T0
a L +

abd) (133)
~E0

a ( e ) =Sa ( e )Q- 1 ( e ) ( G 0
sa)-

1E0
a, ~E0

a ( e ) = [( ~E0
a1 ( e )) Â ( ~E0

a2 ( e )) Â . . . ( ~E0
al ( e )) Â ]Â

(134)

A+
cab = L cb[0,Cb]- [L c0, L cd]F+

ab (135)

A0
ca ( e ) = - [L c0, L cd]F0

a ( e ) G 0
saQ ( e )S- 1

a ( e ) (136)
~F0

a0 ( e ) =F0
a0( e )S- 1

a ( e )Q( e ) G 0
sa (137)

~L +
iab ( e ) =Si ( e ) L +

iab ( e ) (138)
~L 0

ia ( e ) =Si ( e )[L 01
ia ( e )F0

a ( e ) + L 02
ia ( e )F0

a ( e )A0
aa]G 0

saQ( e )S- 1
a ( e ) (139)

~L id ( e ) =Si ( e ) L id ( e ) (140)
~Ei ( e ) =Si ( e )Ei ( e ) (141)

~F0
adi ( e ) =F0

adi ( e ) G 0
saQ( e )S- 1

a ( e ) (142)
and where, for i = 1 to l, ~Ji ( e ) is as de® ned in Lemma 2.

By equations (48) and (100), and Lemma 1, we have that for all e Î (0,1],
i A-

aab ( e ) i £ a-
aab, i ~L 0

ad ( e ) i £ ~l 0
ad, i A+

cab i £ a+
cab (143)

i A- 0
aa ( e ) i £ a- 0

aa e , i A+0
aba ( e ) i £ a+0

aa e , i A0
ca ( e ) i £ a0

ca e , i ~F0
a0 ( e ) i £ ~f 0

a0 e

(144)

for i = 1 to md ,

i ~L+
iab( e )} £ ~l+

ab, i ~L 0
ia ( e ) i £ ~l 0

a ( e ), i ~L 0
id ( e ) i £ ~ld, i ~F0

adi ( e ) i £ ~f 0
ad e ,

i ~Ei ( e ) i £ ~e (145)

for i = 1 to l,

i ~E0
ai ( e ) i £ ~e0

a e (146)

and ® nally, for j =1 to l, k = j + 1 to l,

i ~Bjk ( e ) i £ ~bjk e (147)

where a-
aab, ~l 0

ad , a+
cab, a- 0

aa , a+0
aa , ~e0

a, a0
ca,

~f 0
a0,

~l+ab,
~l0a , ~ld, ~f 0

ad , ~bjk and ~e are some positive
constants, independent of e .

We next construct a Lyapunov function for the closed loop system in equations
(121) ± (128). We do this by composing Lyapunov functions for the subsystems. For
the subsystem of ~x-

a , we choose a Lyapunov function,

V -
a (~x-

a ) = (~x-
a ) Â P

-
a

~x-
a (148)

where P-
a > 0 is the unique solution to the Lyapunov equation

(A-
aa) Â P

-
a + P-

a A-
aa = - I (149)

and for the subsystem of ~x+
ab, we choose a Lyapunov function

V +
ab (~x+

ab) = (~x+
ab) Â P

+
ab

~x+
ab (150)
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where P+
ab > 0 is the unique solution to the Lyapunov equation

(A+c
ab ) Â P

+
ab + P+

abA
+c
ab =- I (151)

The existence of such P-
aa and P+

ab is guaranteed by the fact that both A-
aa and A+c

ab are
asymptotically stable. For the subsystem of ~x0

a = [(~x0
a1) Â , (~x0

a2)Â , . . . , (~x0
al) Â ]Â , we

choose a Lyapunov function

V 0
a (~x0

a) = å
l

i=1

( a 0
a)

i- 1

e
(~x0

ai) Â P
0
ai

~x0
ai (152)

where a 0
a is a positive scalar, whose value is to be determined later, and each P0

ai is
the unique solution to the Lyapunov equation

~Ji ( e ) Â P
0
ai + P0

ai
~Ji ( e ) = - I (153)

which, by Lemma 2, is independent of e . Similarly, for the subsystem ~xc, choose a
Lyapunov function

Vc (~xc) =~xÂcPc
~xc (154)

where Pc > 0 is the unique solution to the Lyapunov equation

(Ac
cc) Â Pc + PcA

c
cc =- I (155)

The existence of such a Pc is again guaranteed by the fact that Ac
cc is asymptotically

stable. Finally, for the subsystem of ~xd , choose a Lyapunov function

Vd (~xd) = å
md

i=1

~xÂ i Pi
~xc (156)

where each Pi is the unique solution to the Lyapunov equation

(Aqi - BqiFi) Â Pi + Pi (Aqi - BqiFi) =- I (157)

Once again, the existence of such Pi is due to the fact that Aqi - Bqi Fi is asympto-
tically stable.

We now construct a Lyapunov function for the closed-loop system in equations
(121) ± (128) as follows:

V (~x-
a ,~x+

ab,~x0
a,~xc,~xd) = V -

a (~x-
a ) + a +

abV +
ab (~x+

ab) + V 0
a (~x0

a) + Vc (~xc) + a d Vd (~xd)
(158)

where a +
ab = 2i P-

a i 2(a-
aab)

2 and the value of a d is to be determined.
Let us ® rst consider the derivative of V 0

a (~x0
a) along the trajectories of the sub-

system ~x0
a, and obtain that

ÇV 0
a (~x0

a) = å
l

i=1
- ( a 0

a)
i- 1 (~x0

ai) Â
~x0

ai + 2 å
l

j=i+1

( a 0
a)

i- 1

e
(~x0

ai) Â P
0
ai

~Bij ( e )~x0
j[ ]

+ 2 å
l

i=1

( a 0
a ) i- 1

e [(~x0
ai)Â P

0
ai

~L 0
ad ( e )~zd + (~x0

ai) Â P
0
ai

~E0
a ( e )w] (159)

Using equation (147) it is straightforward to show that there exists an a 0
a > 0 such

that
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ÇV 0
a (~x0

a) £ - 3
4 i ~x0

a i 2 + a 1

e
i ~x0

a i ´ i ~zd i + a 2 i wi 2 (160)

for some non-negative constants a 1 and a 2, independent of e .
In view of equation (160), the derivative of V along the trajectory of the closed-

loop system in equations (121) ± (128) can be evaluated as follows:

ÇV =- (~x-
a ) Â

~x-
a + 2(~x-

a ) Â P
-
a A-

aab ( e )~x+
ab + 2(~x-

a ) Â P
-
a A- 0

aa ( e )~x0
a + 2(~x-

a ) Â P
-
a L -

ad
~zd

+ 2(~x0
a) Â P

-
a E-

a w - a +
ab (~x+

ab) Â
~x+

ab + 2a +
ab (x+

ab) Â P
+
abA

+0
aba ( e )~x0

a + 2a +
ab (x+

ab) Â P
+
abL +

abd
~zd

- 3
4 i ~x0

a i 2 + a 1

e
i ~x0

a i ´ i ~zd i + a 2 i wi 2 - ~xÂc
~xc + 2e ~xÂcPc[A+

cab
~x+

ab + A0
ca ( e )~x0

a

+ L cd
~zd + Ecw]+ a d å

md

i=1
[ - 1

e
~xÂ i

~xi + 2~xÂ i Pi
~L +

iab ( e )~x+
ab + 2~xÂ i Pi

~L 0
ia ( e )~x0

a

+ 2~xÂ iPi
~L id ( e )~zd + 2~xÂ i Pi

~Ei ( e )w] (161)

Using the majorizations in equations (143) ± (146) and noting the de® nition of a +
ab

in equation (158), we can easily verify that there exists an a d > 0 and an e *
1 Î (0,1]

such that, for all e Î (0, e *
1],

ÇV £ - 1
2 i ~x-

a i 2 - 1
2 i ~x+

ab i 2 - 1
2 i ~x0

a i 2 - 1
2e

i ~xd i 2 + a 3 i wi 2 (162)

for some positive constant a 3, independent of e .
From equation (162), it follows that the closed-loop system in the absence of

disturbancew is asymptotically stable. It remains to show that for any given g > 0,
there exists an e * Î (0, e *

1] such that, for all e Î (0, e *],
i zi L 2 £ g i wi L 2

(163)

To this end, we integrate both sides of equation (162) from 0 to ¥ . Noting that
V ³ 0 and V (t) = 0 at t = 0, we have

i ~zd i L 2 £ ( ê ê ê ê ê ê ê ê ê ê2a 3 eÏ ) i wi L 2
(164)

which, when used in equation (160), results in

i ~x0
a i L 2 £

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê2a 2
1 a 3

e
+ a 2!æ

è
ö
ø i wi L 2

(165)

Viewing ~zd as disturbance to the dynamics to ~x+
ab also results in

i ~x+
ab i L 2 £ ( a 4 ê ê êeÏ ) i wi L 2

(166)

for some positive constant a 4, independent of e .
Finally, recalling that

z = G oP

z0
~zd - F+

ab
~x+

ab - ~F0
ad ( e )~x0

a

zb

é
êë

ùú
û

(167)

where
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~F0
ad ( e ) =

~F0
ad1( e )

~F0
ad2( e )

..

.

F0
admd ( e )

é
êêêêêë

ùúúúúú
û

(168)

with each ~Fadi ( e ) satisfying equation (145), we have

i zi L 2 £ i G oPi ( ê ê ê ê ê ê ê ê ê ê2a 3 eÏ + a 4 i F+
ab i ê ê êeÏ + a 5

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê2a 2
1 a 3 e + a 2 e 2Ï ) i wi L 2

(169)

for some positive constant a 5 independent of e .
To complete the proof, we choose e * Î (0, e *

1] such that

i G oPi ( ê ê ê ê ê ê ê ê ê ê2a 3 eÏ + a 4 i F+
ab i ê ê êeÏ + a 5

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê2a 2
1 a 3 e + a 2 e 2Ï ) £ g (170)

For the use in the proof of measurement feedback results, it is straightforward to
verify from the closed-loop equations (121) ± (128) that the transfer function from
E0

aw to z is given by

T0
ao (s) = Tao (s, e )[sI - A0

aa + B0
aF

0
a ( e )]- 1 (171)

where Tao (s, e ) ® 0 pointwise in s as e ® 0. h

Appendix B. Proof of Theorem 4

It is trivial to show the stability of the closed-loop system comprising the plant
given in equation (1) and the full-order output feedback controller in equation (67).
The closed-loop poles are given by ¸{A + BFP( e )}, which are in C - for su� ciently
small e , as shown in Theorem 3, and ¸{A + KQ( e )C1}, which can be dually shown to
be in C - for su� ciently small e as well. In what follows, we will show that the full-
order output feedback controller achieves the H¥ -ADDPMS for equation (1), which
satis® es all ® ve conditions of Theorem 2. Without loss of any generality but for
simplicity of presentation, hereafter we assume throughout the rest of the proof
that the subsystem S P, i.e. the quadruple (A,B,C2,D2) , has already been trans-
formed into the special coordinate basis as given in Theorem 1. To be more speci® c,
we have

A =B0C2,0 +

A-
aa 0 0 L -

abCb 0 L -
adCd

0 A0
aa 0 L 0

abCb 0 L 0
adCd

0 0 A+
aa L +

abCb 0 L +
adCd

0 0 0 Abb 0 L bdCd

BcE-
ca BcE

0
ca BcE

+
ca L cbCb Acc L cdCd

BdE-
da BdE0

da BdE+
da BdEbd BdEdc Add

é
êêêêêêêêêêêêë

ùúúúúúúúúúúúú
û

:=B0C2,0 + ~A

(172)
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B =

B-
0a 0 0

B0
0a 0 0

B+
0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0

é
êêêêêêêêêêêêë

ùúúúúúúúúúúúú
û

, B0 =

B-
0a

B0
0a

B+
0a

B0b

B0c

B0d

é
êêêêêêêêêêêêë

ùúúúúúúúúúúúú
û

(173)

and

C2 =

C-
0a C0

0a C+
0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0

é
êêë

ùúú
û
,

C2,0 = [C-
0a C0

0a C+
0a C0b C0c C0d] (174)

D2 =

I 0 0

0 0 0

0 0 0

é
êêë

ùúú
û
, S + ( S P) = Im

I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I

é
êêêêêêêêêêêêë

ùúúúúúúúúúúúú
û

ìïïïïïïïïïïïï
íïïïïïïïïïïïïî

üïïïïïïïïïïïï
ýïïïïïïïïïïïïþ

(175)

It is simple to note that Condition 3 of Theorem 2 implies that

E =

E-
a

E0
a

0

0

Ec

Ed

é
êêêêêêêêêë

ùúúúúúúúúú
û

(176)

Next, for any z Î V¸0
(S Q) with 0̧ Î C 0, we partition z as follows:

z =

z -
a

z 0
a

z +
a

z b

z c

z d

æ
çççççççççççè

ö÷÷÷÷÷÷÷÷÷÷÷ø

(177)

Then, Condition 4 of Theorem 2 implies that C2 z = 0, or equivalently

C2,0 z = 0, Cb z b = 0 and Cd z d = 0 (178)
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By De® nition 3, we have

A - 0̧I E

C1 D1[ ] z
h( ) =0 (179)

for some appropriate vector h . Clearly, equations (179) and (176) imply that

(A - 0̧I) z =- E h =

w

w

0

0

w

w

æ
çççççççççççè

ö÷÷÷÷÷÷÷÷÷÷÷ø

(180)

where the w s are some vectors of little interest. Note that equation (178) implies

(A - 0̧I) z = (B0C2,0 + ~A - 0̧I) z = ( ~A - 0̧I) z

=

w

w

(A+
aa - 0̧I) z +

a + L +
abCb z b + L +

adCd z d

(Abb - 0̧I) z b + L bdCd z d

w

w

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

=

w

w

(A+
aa - 0̧I) z +

a

(Abb - 0̧I) z b

w

w

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

(181)

and equations (180) and (181) imply that

(A+
aa - 0̧I) z +

a = 0 and (Abb - 0̧I) z b =0 (182)

Since A+
aa has all its eigenvalues in C + , (A+

aa - 0̧I) z +
a = 0 implies that z +

a =0. Simi-
larly, since (Abb,Cb) is completely observable, (Abb - 0̧I) z b =0 and Cb z b = 0 imply
z b = 0. Thus, z has the following property:

z =

z -
a

z 0
a

0

0

z c

z d

æ
çççççççççççè

ö÷÷÷÷÷÷÷÷÷÷÷ø

Î S + ( S P) (183)

Obviously, equation (183) together with Condition 5 of Theorem 2 imply

S + ( S P) É V+ ( S Q) Ä {Ä ¸0 Î C 0 V¸0 ( S Q)} (184)

Next, it is straightforward to verify that A - sI can be partitioned as
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A - sI =X1 + X2C2 + X3 + X4 (185)

where

X1 :=

A-
aa - sI 0 0 L -

abCb 0 L -
adCd

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

BcE-
ca BcE

0
ca BcE

0
ca L cbCb Acc - sI L cdCd

BdE-
da BdE0

da BdE+
da BdEdb BdEdc Add - sI

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

X2 =

B-
0a 0 0

B0
0a L 0

ad L 0
ab

B+
0a L+

ad L +
ab

B0b L bd 0

B0c 0 0

B0d 0 0

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

, X3 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 A+
aa - sI 0 0 0

0 0 0 Abb - sI 0 0

0 0 0 0 0 0

0 0 0 0 0 0

é
êêêêêêêêêêêêêë

ùúúúúúúúúúúúúú
û

(187)

and

X4 =

0 0 0 0 0 0

0 A0
aa - sI 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

é
êêêêêêêêêêêë

ùúúúúúúúúúúú
û

(188)

It is simple to see that

Im (X1) Ì S + ( S p) ´ {́ ¸0 Î C 0S ¸0
( S P)} (189)

and

Ker (X3) É S + ( S P) É V+ ( S Q) Ä {Ä
0̧ Î C 0 V

0̧
( S Q)} (190)

It follows from the proof of Theorem 3 that as e ® 0

i [C2 + D2FP( e )][sI - A - BFP( e )]- 1 i ¥ < ·P (191)

where ·P is a ® nite positive constant and is independent of e . Moreover, under
Condition 3 of Theorem 2, we have

[C2 + D2FP( e )][sI - A - VFP( e )]- 1E ® 0 (192)

and
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[C2 + D2FP( e )][sI - A - BFP( e )]- 1X1 ® 0 (193)

pointwise in s as e ® 0. By equation (171), we have

[C2 + D2FP( e )][sI - A - BFP( e )]- 1X4 ® 0 (194)

pointwise in s as e ® 0. Dually, one can show that

i [sI - A - KQ( e )C1]- 1[E + KQ( e )D1]i ¥ < ·Q (195)

where ·Q is a ® nite positive constant and is independent of e . If Condition 4 of
Theorem 2 is satis® ed, the following results hold:

C2[sI - A - KQ( e )C1]- 1[E + KQ( e )D1] ® 0 (196)

and

X3[sI - A - KQ( e )C1]- 1[E + KQ( e )D1] ® 0 (197)

pointwise is s as e ® 0.
Finally, it is simple to verify that the closed-loop transfer matrix from the dis-

turbance w to the controlled output z under the full-order output feedback controller
in equation (67) is given by

Tzw(s, e ) = [C2 + D2FP( e )][sI - A - BFP( e )]- 1E

+ C2[sI - A - KQ( e )C1]- 1[E + KQ( e )D1]+ [C2 + D2FP( e )]
´ [sI - A - BFP(e )]- 1 (A - sI)[sI - A - KQ( e )C1]- 1[E + KQ( e )D1]

Using equation (185), we can re-write Tzw (s, e ) as

Tzw(s, e ) = [C2 + D2FP( e )][sI - A - BFP( e )]- 1E

+ C2[sI - A - KQ( e )C1]- 1[E + KQ( e )D1]
+ [C2 + D2FP( e )][sI - A - BFP( e )]- 1 (X1 + X2C2 + X3 + X4)

´ [sI - A - KQ( e )C1]- 1[E + KQ( e )D1]
Following equations (191) ± (197), and with some simple manipulations, it is straight-
forward to show that as e ® 0, Tzw(s, e ) ® 0, pointwise in s, which is equivalent to
i Tzw i ¥ ® 0 as e ® 0. Hence, the full-order output feedback controller in equation
(67) solves the H¥ -ADDPMS for the plant given in equation (1), provided that all
® ve conditions of Theorem 2 are satis® ed. h

Appendix C. Proof of Theorem 5

Again, it is trivial to show the stability of the closed-loop system comprising the
plant given in equation (1) and the reduced-order output feedback controller in
equation (76) as the closed-loop poles are given by ¸{A + BFP( e )} and
¸{AR + KR( e )CR}, which are asymptotically stable for su� ciently small e . Next, it
is easy to compute the closed-loop transfer matrix from the disturbance w to the
controlled output z under the reduced-order output feedback controller
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Tsw (s, e ) =C2

0

In- k( ) [sI - AR - KR( e )CR]- 1[ER + KR( e )DR]

+ [C2 + D2FP( e )][sI - A - BFP( e )]- 1 (A - sI)
0

In- k( )
´ [sI - AR - KR( e )CR]- 1[ER + KR( e )DR]
+ [C2 + D2FP( e )][sI - A - BFP( e )]- 1E

It was shown in Chen (1991) that

0

In- k( ) V+ ( S QR) = V+ ( S Q) (198)

Following the same lines of reasoning as in Chen (1991), one can also show that

0

In- k( ) Ä ¸0 Î C 0 V¸0 ( S QR) = Ä ¸0 Î C 0V¸0 ( S Q) (199)

Hence, we have

0

In- k( ) (V+ ( S QR) Ä {Ä ¸0 Î C 0 V¸0 ( S QR)}) =V+ (S Q) Ä {Ä ¸0 Î - C 0 V¸0 ( S Q)} (200)

The rest of the proof follows on the same lines as in Theorem 4. h
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