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Design for general H o, almost disturbance decoupling problem with
measurement feedback and internal stability—an eigenstructure
assignment approach

BEN M. CHENf, ZONGLI LIN; and CHANG C. HANG¥}

Feedback controllers, explicitly parameterized in a single parameter &, are con-
structed to solve the well-known H,, almost disturbance decoupling problem
with measurement feedback and with internal stability (Hoo-ADDPMS) for con-
tinuous-time linear systems. The construction of these feedback laws utilizes eigen-
structure assignment algorithms and does not involve the solution of any
parameterized algebraic Riccati equations. As a result, the coefficients of the feed-
back laws are explicitly given as polynomial matrices in . The results generalize the
earlier work of Ozcetin et al. by allowing the system to have invariant zeros on the
imaginary axis. Such a generalization is motivated by the recent development of
low-gain feedback design technique.

1. Introduction

We revisit the problem of Hy, almost disturbance decoupling with measurement
feedback and internal stability for continuous-time linear systems. The problem of
almost disturbance decoupling has a vast history behind it, occupying a central part
of classical as well as modern control theory. Several important problems, such as
robust control, decentralized control, non-interactive control, model reference or
tracking control, A, and Hy, optimal control problems can all be recast into an
almost disturbance decoupling problem. Roughly speaking, the basic almost disturb-
ance decoupling problem is to find an output feedback control law such that in the
closed-loop system the disturbances are quenched, say in an L, sense, up to any pre-
specified degree of accuracy while maintaining internal stability. Such a problem was
originally formulated by Willems (1981, 1982) and labelled ADDPMS (the almost
disturbance decoupling problem with measurement feedback and internal stability).
In a case where, instead of a measurement feedback, a state feedback is used, the
above problem is termed an ADDPS (the almost disturbance decoupling problem
with internal stability). The prefix Hy in the acronyms Ho,-ADDPMS and Heo-
ADDPS is used to specify that the degree of accuracy in disturbance quenching is
measured in an L,-sense.

There is extensive literature on the almost disturbance decoupling problem (see,
for example, the recent work of Weiland and Willems 1989, and Ozcetin ef al. 1993 a,
b, and references therein). In Weiland and Willems (1989), several variations of the

Received 15 December 1997. Revised 27 April 1998.

1 Department of Electrical Engineering, National University of Singapore, Singapore
119260.

1 Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22903,
USA.

0020-7179/98 $12.00 © 1998 Taylor & Francis Ltd.



654 B. M. Chen et al.

disturbance decoupling problems and their solvability conditions are summarized,
and the necessary and sufficient conditions are given under which the Ho,rADDPMS
and Hy-ADDPS for continuous-time linear systems are solvable. These conditions
are given in terms of geometry subspaces and for strictly proper systems (i.e. without
direct feedthrough terms from the control input to the output to be controlled and
from the disturbance input to the measurement output). Under these conditions,
Oxzcetin et al. (1993 a) constructs feedback laws, parameterized explicitly in a single
parameter ¢, that solve the Hy,-rADDPMS and the Hy,-ADDPS. These results were
later extended to proper systems (i.e. with direct feedthrough terms) in Ozcetin et al.
(1993b). The construction of these feedback laws utilizes explicit eigenstructure
assignment algorithms and avoids the solution of any parameterized algebraic Ric-
cati equations. As a result, the structure and design of the controllers do not require
an explicit value of the parameter e. As pointed out in Ozcetin ez al. (1993 a, b), such
a design approach has several distinct advantages, the prominent ones among which
are that it is a ‘one-shot’ design and does not encounter arbitrarily small or large
numbers, and hence it is not plagued by numerical ‘stiffness’.

We note that in all the results mentioned above, the internal stability was always
with respect to a closed set in the complex plane. Such a closeness restriction, while
facilitating the development of the above results, excludes systems with disturbance
affected purely imaginary invariant zero dynamics from consideration. Only recently
was this ‘final’ restriction on the internal stability restriction removed by Scherer
(1992), thus allowing purely imaginary invariant zero dynamics to be affected by the
disturbance. More specifically, the work of Scherer (1992) gave a set of necessary and
sufficient conditions under which the Hoo,rADDPMS and H,-ADDPS, with internal
stability being with respect to the open left-half plane, are solvable for general proper
linear systems. When the stability is with respect to the open left-half plane, the Hyo-
ADDPMS and H,-ADDPS will be referred to as the general H,,~ADDPMS and the
general Hy-ADDPS, respectively.

The objective of this paper is to generalize the direct eigenstructure assignment
approach to design for Hoo-ADDPMS of Ozcetin et al. (1993 a, b) by allowing the
system to have invariant zeros on an imaginary axis. We would like to note that a
drastic level of complexity is added to the design in a general setting when one allows
the system to have invariant zeros on the imaginary axis. Thus, due to the generality
of the problem considered, there is inherently a certain degree of complexity in
presenting our design algorithm. We, however, would like to emphasize that
although our design algorithm appears to be complex, our step-by-step presentation
facilitates its numerical implementation. In fact, our experience with its implementa-
tion in Matlab indicates that it is straightforward to come up with a stabilizing
controller which quenches the disturbance to any desired level of accuracy.

To state our problem more precisely, we consider the general Hyo,r ADDPMS and
the general Hoo-ADDPS for the following general continuous-time linear system, 2.:

X=Ax+ Bu + Ew
y=0Cx + Dyw (1)

z=0Cx+ Dou+ Dypw

where x €R” is the state, u €R™ is the control input, y €R’ is the measurement,
w €R7 is the disturbance and z €[R” is the output to be controlled. 4, B, E, C|, C,
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D1, D, and Dy are constant matrices of appropriate dimensions. For convenient
references in the future development, throughout this paper, we define 2p to be the
subsystem characterized by the matrix quadruple (4, B, C5, D), and X to be the
subsystem characterized by the matrix quadruple (4,E,Ci,D;). The following
dynamic feedback control laws, 2., are investigated:

(2)

XC = ACxC + ch
u=Cx.+D.y }

The controller 2 of equation (2) is said to be internally stabilizing when applied to
the system 2, if the following matrix is asymptotically stable:

A+ BD.C; BC.
A ==[ ] (3)

B.C A

i.e. all its eigenvalues lie in the open left-half complex plane. Denote by T, the
corresponding closed-loop transfer matrix from the disturbance w to the output to
be controlled z, i.e.

A+ BD.C; BCC]) - 1[E+ BD.D; ]

B.C A,

T, = [CZ +D2D.Ct D>C, ]( sl- [ B.D
1

+ D,D.Di+Dy (4)

The Hoo norm of the transfer matrix T, is given by

” Tzw”oo = %‘3}3@) Gmax[Tzw(ja))] (5)

where oma | | denotes the largest singular value. Then the general Hoo-rADDPMS and
the general Hoo-rADDPS can be formally defined as follows.

Definition 1: The general Hy almost disturbance decoupling problem with meas-
urement feedback and internal stability (the general Ho-rADDPMS) for equation
(1) is said to be solvable if, for any given positive scalar ¥ > 0, there exists at least
one controller of the form of equation (2) such that

(1) in the absence of disturbance, the closed-loop system comprising the system
equations (1) and the controller equations (2) is asymptotically stable, i.e. the
matrix 4q as given by equation (3) is asymptotically stable;

(2) the closed-loop system has an L,-gain, from the disturbance w to the con-
trolled output z, that is less than or equal to v, i.e.

Il <vlwll,, W eLs and for (x(0),x.(0) =(0,0)  (6)

Equivalently, the Hoo-norm of the closed-loop transfer matrix from w to z,
T.,, is less than or equal to v, i.e. ” Tm”OO <Y.
In the case that C; =1 and D; =0, the general H,,-rADDPMS as defined above
becomes the general H,,-ADDPS, where only a static state feedback instead of the
dynamic output feedback in equation (2) is necessary.



656 B. M. Chen et al.

As stated earlier, the objective of this paper is to construct families of feedback
control laws of the form in equations (2), parameterized in a single parameter, say e,
that, under the necessary and sufficient conditions of Scherer (1992), solve the above-
defined general H,,-rADDPMS and H,,-ADDPS for general systems whose subsys-
tems 2p and 2 may have invariant zeros on the imaginary axis. The feedback
control laws we are to construct are observer-based. A family of static state feedback
control laws parameterized in a single parameter is first constructed to solve the
general Hoo-rADDPS. A class of observers parameterized in the same parameter ¢
is then constructed to implement the state feedback control laws and thus obtain a
family of dynamic measurement feedback control laws parameterized in a single
parameter ¢ that solve the general Ho,-ADDPMS. The basic tools we use in the
construction of such families of feedback control laws are: (1) the special coordinate
basis, developed by Sannuti and Saberi (1987) and Saberi and Sannuti (1990), in
which a linear system is decomposed into several subsystems corresponding to its
finite and infinite zero structures as well as its invertibility structures; (2) a block
diagonal controllability canonical form that puts the dynamics of imaginary in-
variant zeros into a special canonical form under which the low-gain design tech-
nique can be applied; (3) the Hy, low-and-high gain design technique that is to be
fully developed here. The development of such an Hy, low-and-high gain design
technique was originated in Lin (1998) and Lin ez al. (1997) in the context of Huo-
ADDPMS for special classes of non-linear systems that specialize to a SISO (and
hence square invertible) linear system having no invariant zeros in the open right-
half plane.

The outline of this paper is as follows: Section 2 recalls the background materials
on the solvability conditions for the general H,,-ADDPMS and the special coordi-
nate basis of linear systems, §3 deals with control law design for the H,,~ADDPS, §4
deals with the construction of both full- and reduced order output feedback con-
trollers that solve the general HoorADDPMS, and finally, the concluding remarks are
made in §5.

Throughout this paper, the following notation will be used: X~ denotes the
transpose of matrix X; I denotes an identity matrix with appropriate dlmensmns
R is the set of all real numbers; C is the set of all complex numbers; €, € and C*
are the open left-half complex plane, the imaginary axis and the open right-half
complex plane, respectively; Ker (X) is the kernel of X; Im (X) is the image of X;
A(X) is the set of eigenvalues of a real square matrix X; and omax (X) denotes the
maximum singular value of matrix X. The following definitions of geometric
subspaces of linear systems will also be used intensively throughout the paper:

Definition 2: Consider a linear system X characterized by a matrix quadruple
(4,B,C,D). The weakly unobservable subspaces of Yx, VX, and the strongly con-
trollable subspaces of Y, sX, are defined as follows:

(1) V¥(Zx) is the maximal subspace of R” which is (4 + BF)-invariant and
contained in Ker(C + DF) such that the eigenvalues of (4 + BF |VX are
contained in €* c C for some constant matrix F;

(2) sX(3%) is the minimal (4 + KC)-invariant subspace of R” containing
Im (B+ KD) such that the eigenvalues of the map which is induced by
(A+ KC) on the factor space R”/s* are contained in C* —C for some
constant matrix K.
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Furthermore, we denote V° ZVX*and s” 25)1 if cX=¢ U(EO, V" = and
sT=s*if €* =C", and finally V' =V  and s " =s* if ¢* =C.

Definition 3: Consider a linear system X characterized by a matrix quadruple
(4,B,C,D). For any Ag €C, we define

=y e¢,1+m:( X) :[A- Aol B]u} )
0 C D

3ze¢m=o=[A'AOI B]( x)} (8)
C D u

Vi, (23+) and s 5, (2) are associated with the so-called state zero directions of X if Ag
is an invariant zero of 2.

S)\U(E“) = {X E(E"

and

VA[](E“) = {X E(E"

2. Background materials

We first recall the special coordinate basis of linear time-invariant systems intro-
duced by Sannuti and Saberi (1987) and Saberi and Sannuti (1990). Such a special
coordinate basis has the distinct feature of explicitly displaying the finite and infinite
zero structures as well as the invertibility structure of a given system. Connections
between the special coordinate basis and the various invariant subspaces of geo-
metric theory, as needed for our development, are also given.

Let us consider a linear time-invariant (LTI) system 2 characterized by the
quadruple (4, B, C,D) or in the state space form,

)

X =Ax+ Bu
y=Cx+ Du}

where x €R", u €R™ and y €R? are the state, the input and the output of X,
respectively. It is simple to verify that there exist non-singular transformations U
and V such that

Ly O
UDV = (10)
0 0

where my is the rank of matrix D. In fact, U can be chosen as an orthogonal matrix.
Hence hereafter, without loss of generality, it is assumed that the matrix D has the
form given on the right hand side of equation (10). One can now rewrite the system
of equations (9) as
) uO
X=Ax+ [B() B ]
Uy

) el o))

where the matrices By, Bi, Cy and C| have appropriate dimensions. We now have the
theorem given below.

(11)
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Theorem 1 (SCB):  Given the linear system Yx of (10), there exist

. .. - 0 4+
(1) coordinate free non-negative integers ny, ng, Ry, Np, Ne, N, Mg < M= My and

gi, 1=1,...,maq,

(2) non-singular state, output and input transformations 15, 1, and 1; which take
the given Xx into a special coordinate basis that displays explicitly both the
finite and infinite zero structures of 2x.

The special coordinate basis referred to above is described by the following set of

equations.
x=LIx, y=Ly, u=Ii, (12)
X, X1
Xa
Xp X2
X = , x, = 2 , Xy = (13)
Xe
N
Xa
Xd Ximg
V1 uj
0 Uo
g Y2 U
y=lya |, va=| |, W= wa |, = (14)
Vb Uc
ymd umd
and
Xa = AuwaXa + Boayo + Laaya t Lapyp (15)
X0 = Aoaxh + Blayo + Logya + Ly (16)
Xa = Auaxy + Biyo+ Lagya + Lapys (17)
Xp = AppXp + Bopyo t Lpaya, — b = CpXp (18)

xc = Acvxc + BOcyO + chyb + Lcdyd + Bc[Ec_ax; + E?axg + Ec_;x;—] + Bcuc (19)
30 = CoeXe + CouxXy + CouxXo + Cuxs + Coaxa + Copxp + g (20)

and for each i =1,... my,

b

my
X = Agxi+ Ligyo + Ligva + By| i + Eiuxy + Epxp + EiXe + ZE”’C’] (21)
ya

Vi =CyxXiy  ya = Cyxq (22)

- 0+ - . - 0 +
Here the states x,, Xq, X4, Xp, Xe and xq are of dimensions ng, Ng, hg, Np, Ne and
1, . . . . . .
na =4 qi, respectively while x; is of dimension q; for each i =1,... mqa. The con-
trol vectors uy, ug and u. are respectively of dimensions my, mqg and m. =m - mg - mg,
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while the output vectors yo, yq and y, are of dimensions py =moy, pq =mg and
Db =p= po- pa respectively. The matrices Ay, By, and C,, have the following form.

0 Iy 0
Aqi:[o 0 ]9 qu:[l:la qu:[laoa"'ﬁo] (23)

Assuming that x;, i =1,2,...,mg, are arranged such that q; < q;+1, the matrix Liq has
the particular form

Lid:[Lil Lo =+ L1 0 - 0] (24)

Also, the last row of each Li is identically zero. Moreover, we have A(Ay) —C” R
A4o,) =€ and A4y,) =C*. Also, the pair (A, B.) is controllable and the pair
(Ap, Cp) is observable.

Proof: See Sannuti and Saberi (1987) and Saberi and Sannuti (1990). The soft-
ware realizations of the decomposition can be found in LAS by Chen (1988) and
in MATLAB by Lin (1989). ]

We can rewrite the special coordinate basis of the quadruple (4, B, C, D) given by
Theorem 1 in a more compact form:

Aua 0 0 LGy 0 LaaCy|
0 AW 0 LyG 0 LyuCy
- 0 0 Auw LaG 0 LyCy
A=T1; (4- BG)I; = (25)
0 0 0 App 0 LysCy
BcEc_a BcEga BCE(,-"—Q Lch Cb Acv Lcd Cd
| BiEi BiFa BiEj, BiEw BiEs —Au |
[ By 0 0]
B, 0 0
L, 0 0
N
~ BOa 0 0 ~
B=L'[B Bi]li= , Db=L'phi=[ 0 0 o0 (26)
By 0 O
0O 0 0
By, 0 B.

C C6a Cga Cga C()b COC COd
~ 0
CZEl[ ]E: 0o 0 0 0 0 C (27)
G
0 0 0 @ 0 0

In what follows, we state some important properties of the above special coordi-
nate basis which are pertinent to our present work and which will be used through-
out this paper.
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Property 1: The given system X is observable (detectable) if and only if the pair
(Aobs, Cobs) is observable (detectable), where

[ Aaa 0 COa COC
Aobs 1= N Cobs 1= N (28)
B.E., A Euw  Ei
and where
Aw 0 0]
Aw:=| 0 Al 0 (29)
0 0 A
COG = [C(Sa Cga Cga ]9 Edﬂ = I:El;ﬂ Egﬂ Ed-'—a N ECd = [Ec_a E?a Ec-;
(30)
Also, define
B(_)a Lé_lb Lé_ld
Bu:=| Ba|, Lw:=| Lip|, Lu:=| Lu (31)
Bga L:b L:d
and
Aaa Lab Cb B 0Oa L ad
Acon := N Boon := (32)
0 A},/, BOb Lbd

Similarly, 2 is controllable (stabilizable) if and only if the pair (Acon,Bcon) is con-
trollable (stabilizable).

Property 2: Invariant zeros of 2 are the eigenvalues of A,, which are the
unions of the eigenvalues of 4;,, 42, and 4}.

Property 3: Xx has mo = rank (D) infinite zeros of order 0. The infinite zero
structure (of order greater than 0) of Xx is given by Sk (Zx) = {ql,qz,...,qmd},
i.e., each ¢; corresponds to an infinite zero of X of order g;.

Property 4: The given system 2x is right invertible if and only if x; (and hence
y») are non-existent, left invertible if and only if x. (and hence u.) are non-exist-
ent, and invertible if and only if both x; and x. are non-existent. Moreover, 2 is
degenerate if and only if it is neither left nor right invertible, i.e. both x; and x.
are present.

By now it is clear that the special coordinate basis decomposes the state-space
into several distinct parts. In fact, the state-space X is decomposed as

x =x, Bx0bxt dx, dx,. ®Bxy, (33)

The following property shows interconnections between the special coordinate basis
and various invariant geometric subspaces.

Property 5: Various components of the state vector of the special coordinate ba-
sis have the following geometrical interpretations:
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1) x; Ex0ex, ®xy spans S (2x);
2) X4 Bx.Bx,spans s (k)

3) x.%$x, spans ¥ (Z0):

4) x, $x%®x, spans V (Zo);

5) x, ®x . spans V' (3);

6) X Exbxt ®x, spans V' (Zx).

Finally, we are ready to recall the necessary and sufficient conditions of Scherer
(1992) under which the general Hy,or ADDPMS and Hy,-ADDPS are solvable.

Theorem 2:  Consider the general measurement feedback system in equation (1) with
D» =0. Then the general Hoo almost disturbance decoupling problem for equation
(1) with internal stability (Hoa-ADDPMS) is solvable if and only if the following
conditions are satisfied:

(1) (4, B) is stabilizable;

(2) (4,Cy) is detectable,

(3) Im(E) =5 (Zp) N {My S 2 () J;

(4) Ker () DV () U{Uhec Y2020 }:

(5) V' (Zo) =57 (Zp).

It is simple to verify that for the case that all states of the system in equation (1) are
fully measurable, i.e. C; =1 and D; =0, then the solvability conditions for the
general Hoo-ADDPS reduce to the following: (1) (4, B) is stabilizable; (2) Dy =0;
(3)Im(E) =s* (Zp) N {ﬂ)\o S A (Zp)} Moreover, in this case, a static state feed-
back control law, i.e. u = FXx, exists that solves the general H,,-ADDPS, where F is a
constant matrix and might be parameterized by certain tuning parameters.

3. Solution to the Hoo-ADDPS

In this section, we consider feedback control law design for the general Hy
almost disturbance decoupling problem with internal stability and with full state
feedback, where internal stability is with respect to the open left-half plane, i.e.
the general H-ADDPS. More specifically, we present a design procedure that
constructs a family of parameterized static state feedback control laws,

u="F(e)x
that solves the general Ho,-ADDPS for the following system,
X=Ax+ Bu+ Ew
y=x (35)

z=0Cx+ Dou+ Dypw

(34)

b

That is, under this family of state feedback control laws, the resulting closed-loop
system is asymptotically stable for sufficiently small &, and the Hy-norm of the
closed-loop transfer matrix from w to z, Tzw(s, ¢), tends to zero as ¢ tends to zero,
where

Ta(s,8) =[G+ D2F ()]s - A= BF(e)[ 'E+ Dy (36)
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Clearly, D»; =0 is a necessary condition for the solvability of the general Hy-
ADDPS. We present an algorithm for obtaining this F(e), following the asymptotic
time-scale and eigenstructure assignment (ATEA) procedure. The ATEA design
procedure was originally conceived by Saberi and Sannuti (1989) and was used to
solve many control problems (see, for example, Chen 1991, Ozcetin et al. 1993a, Lin
1994, Saberi et al. 1995, to name only a few). It uses the special coordinate basis of
the given system (see Theorem 1) to decompose the system into several
subsystems according to its finite and infinite zero structures as well as its
invertibility structures. The new component here is the low-gain design for the
part of the zero dynamics corresponding to all purely imaginary invariant zeros.
As will be clear shortly, the low-gain component is critical in handling the case when
the zero dynamics corresponding to purely imaginary invariant zeros is affected by
disturbance. It is well known that the disturbance affected purely imaginary zero
dynamics is difficult to handle and has always been excluded from consideration
until recently.

Step S.1. (decomposition of >p) Transform the subsystem Xp, i.e. the quadruple
(4, B, C>, D), into the special coordinate basis (SCB) as given by Theorem
1 in §2. Denote the state, output and input transformation matrices as [ ;p,
Iop and I'/p, respectively.

Step S.2. (gain matrix for the subsystem associated with x ). Let F, be any arbitrary
m, X n. matrix subject to the constraint that

Agv = Acv = BCFC (37)

is a stable ¢ matrix. Note that the existence of such an F, is guaranteed by
the property of SCB, i.e. (A, B.) is controllable.

Step S.3. (gain matrix for the subsystems associated with x ; and X ;). Let

Fy F
Fh=] e (39)
Fai Fpa
be any arbitrary (mo + my) x (n; + n,) matrix subject to the constraint
that
r
aﬂ a)C B a a
A;bc = . ’ d ab (39)
App By, Ly

is a stable matrix. Again, note that the existence of such an F, is guar-
anteed by the stabilizability of (4, B) and Property 1 of the special coor-
dinate basis. For future use, let us partition [Fad F;,d] as

Fi Foan |

Fun  Fo
[Fa Fa]=| (40)

+
F admy F bdmy

where F;;l,- and Fpy are of dimensions 1 x 7, and 1 X np, respectively.
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Step S.4. (gain matrix for the subsystem associated with x 2) The construction of
this gain matrix is carried out in the following sub-steps.

Step S.4.1. (preliminary coordinate transformation). Recalling the defini-
tion of (Acon, Beon), i.€. equation (32), we have

7
Acon - Bon[0 0 Fp]=| 0 A% Ao
0 0 Ay
[ B Ly
Bion =| Bl Lu (41)
By Lawi
where )
+ +
By = [BOa ], Lo = [ Lad]
By, Lpq
A =[0 LGy~ [Boa  Laa]Fi (42)
and

+

Aur =[0 LGy )= [Boa  Laa [Far
Clearly (Acon- BconF;},,Bcon) remains stabilizable. Construct
the following nonsingular transformation matrix,

-1

In?; 0 0
E], == 0 0 InZ +np (43)
0 Ly T

where T. is the unique solution to the following Lyapunov
equation:

Ao T - TOAY = Ay (44)

We note here that such a unique solution to the above
Lyapunov equation always exists since all the eigenvalues
of A, are on the imaginary axis and all the eigenvalues of
Ay are in the open left-half plane. It is now easy to verify that

[ A A O
Lo (Aeon = BenFp) Lo = 0 Az 0 (45)
0 0 A
B Lua
L[5t Beon = B Luba
Bl + TOByy Log+ ToLig

(46)
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Hence, the matrix pair (Aga,Bg) is controllable, where

Bg = [Bga + Tngab Lgd + Té(I)L:bd ]

Step S.4.2. (further coordinate transformation). Find non-singular trans-
formation matrices [%, and T, such that (Aga,Bg) can be
transformed into the block diagonal controllability canonical

form,
r A 0 - 0 7
0 A -+ 0
(I?a)_ 1A2d sa =
L 0 0 A |
[ B B -+ By %
0 B - By Xk
(I3 'BTh =
i 0 0 - B *,_
where / is an integer and for i =1,2,...,1,
0 1 0 - 0] (0]
0 0 1 e 0 0

5
Il

=
Il

0 0 0 e 1 0

i i i . i
=y =dp-1 =dp-2 - da 1

We note that all the eigenvalues of A; are on the imaginary
axis. Here the #s represent submatrices of less interest. We
note that the existence of the above canonical form was
shown by Wonham (1979), while its software realization can
be found in Chen (1997).

Step S.4.3. (subsystem design). For each (4;, B;), let F;(e) eR™" be the
state feedback gain such that

AAi+ BF(2)} =-2+A(4) €C

Note that F;(¢) is unique.

Step S.4.4. (cg)mposition of gain matrix for the subsystem associated with
X4). Let
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[ Fi(e) o - 0 0 T
0 B - 0 0
Ffz)(s) ::I(;')a (I?a)_l
0 0 F-i(e) 0
0 0 0 Fi(e)
. 0 0 0 0 |

(47)

where & €(0,1] is a design parameter whose value is to be
specified later.
Clearly, we have

£l <fde, = el0,1] (48)

for some positive constant ff , iIndependent of . For future use,
we define and partition F(s) Rt max (atm) o

Fuole) Omoxiiz O +my) Ff,)() () |
ab (8) = = Eb
Faba (8) Oden;, Omdx(nZ +np) F;?d (8
(49)
and
[ Faa(2) ]
Fapan(e)
Fabd (8) = . (50)
L Fa]n#nd (8) i
where FU(s) and Fo,(¢) are defined as
Fio(e)
F(s) = (51)
Fo(z)
We also partition Foy(z) as,
[ Fonle) ]
Fop(s)
Ry =| (52
L ngmd (8) ]

Step S.5. (gain matrix for the subsystem associated with x ;). This step makes use
of subsystems, i =1 to my, represented by equation (21) of §2. Let
A= {)\,-1, A, 7y Aig, }, i =1 to my, be the sets of ¢; elements all in
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C", which are closed under complex conjugation, where ¢; and my are as
defined in Theorem 1 but associated with the special coordinate basis of
2p. Let A;:= A UA U - UAy,. Fori =1 to my, we define

i
pils) == Hs- Ap) =sT+ Fus"™ 4+ Fyoas+ Fy,  (53)
J:

and
~ 1
Fle) = Fisi(e), (54)
8 1
where
Fi= [Fiqi Fig-1 - Fa ]9 Si(e) = diag {1989829' : ‘9gqi_ 1} (55)

(compositon of parameterized gain matrix F(¢)). In this step, various
gains calculated in Steps S.2-S.5 are put together to form a composite
state feedback gain matrix F(e). Let

Fuai(e)Fy, (e) !

5 Faar(e) P,y (2) [o7
Fabd(g) = . (56)

Fabc#nd (gFmdq,,,d /gqmd

+ ql
Falelql /8

+ q2
FadZFZqz /8

+ 4
F, admdF MG, / g

and

+ ql
Fya1Fi, [e

~ Fi;lZFZqz /ng
de(s) = . (58)

+
Fb[ﬁ/ndFmdq,,,d /sq"’rf

Then define the state feedback gain F(s) as

F(S) =- EP( F;;cd(g) + Fabcd(g))EPl (59)

where
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Cou Coa  Coa+ Fpo Cop + Fro o Coa
Fiiea(s) = Ei Ey Ep+Fuyle) Ep+ Fls) Ea Fule) + Eyg

| Eu E  Eu 0 F. 0
(60)
[ Fuole) 0 0
Fusa(e) =| Fuale) 0 0 (61)
0 0 0
and where-
En ... E,
E;=[ : . : (62)
Eng ... Epmg
Fyle) =diag {Fi(s), Fle), ..., F, (o)} (63)

Note that in principle one might take the perturbation or the LMI approach to
solving the general Hy,-ADDPS. However, these approaches, especially the pertur-
bation one, often have numerical difficulties in dealing with systems that have invar-
iant zeros on the imaginary axis and/or infinite zeros. Our approach does not have
such a problem as it does not involve the solution of any parameterized algebraic
Riccati equations. Furthermore, the resulting feedback laws from our method are
explicitly given as polynomial matrices in e.

We have the following theorem.

Theorem 3:  Consider the given system (36) satisfying the following conditions: (1)
(4,B) is stabilizable; (2) D =0; (3) Im(E) <5 " (Zp) N {Mh,ecoS 20 (Zp)}. Then
the closed-loop system comprising equation (35) and the static state feedback control
law u=F(¢)x, with F(e) given by equation (59), has the following properties: for
any given 'y > 0, there exists a positive scalar ¢* > 0 such that for all 0 < & < &".

(1) The closed-loop system is asymptotically stable, i.e. A{A + BF (s)} cC .

(2) The Hoonorm of the closed-loop transfer matrix from the disturbance w to the
controlled output = is less than ¥, i.e. || Tau(s, )|l < 7.

Hence, by Definition 1, the control law u = F(&)x solves the general Hy-ADDPS for
equation (36).

Proof: See Appendix A. ]

4. Solution to the Hoo-rADDPMS

In this section we present the designs of both full order and reduced order output
feedback controllers that solve the general Hoo-rADDPMS for the system given in
equation (1). Here, by full-order controller, we mean that the order of the controller
is exactly the same as the given system (1), i.e. is equal to n. A reduced order
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controller, on the other hand, refers to a controller whose dynamic order is less than
n. We will assume that D» = 0 in the system given in equation (1) throughout this
section. If Dy #0, one can easily show that the solvability of the general Hy-
ADDPMS implies the existence of a Conant matrix § such that

D»+ D>SD; =0 (64)

Then, by applying a pre-output feedback control law u =Sy + v to the system in
equation (1), the resulting system we obtain will have a zero direct feedthrough
matrix from w to z. Hence, it is without loss of any generality to assume that the
matrix Dy =0.

4.1. Full order output feedback controller design

The following is a step-by-step algorithm for constructing a parameterized full-
order output feedback controller that solves the general Hy,-ADDPMS:

Step F.C.1. (construction of the gain matrix Fp(¢)). Define an auxiliary system
X=Ax+ Bu+ Ew
y=x (65)
z=0Cx+ Dyu+ Dypw

and then perform Steps S.1-S.6 of the previous section to the above
system to obtain a parameterized gain matrix F(s). We let Fp(e) = F(e).

Step F.C.2. (construction of the gain matrix Kq(e)). Define another auxiliary system
X=Ax+ Cru+ Gw
y=x (66)
z=FE’x+ Dtu+ Dshw

and then perform Steps S.1-S.6 of the previous section to the above
system to get the parameterized gain matrix F(z). We let Kg(e) = F(e)”.

Step F.C.3. (construction of the full order controller Xxc(¢)). Finally, the parame-
terized full order output feedback controller, 2c(e), is given by

X, = Apc(g)xc + BFC(S)J/, (67)
u = Crc(e)x. + Drc(e)y

where
AFC(S) = A4+ BFP(S) + KQ(S) G
Brc(e) := - Kole) (68)
CFc(S) = FP(S)
Drcl(e) :=

We have the following theorem.
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Theorem 4:  Consider the system given in equation (1) with Dx =0 satisfying all
the conditions in Theorem 2. Then the closed-loop system comprising equation (1)
and the full order output feedback controller (60) has the following properties: For
any given Y > 0, there exists a positive scalar e > 0 such that for all 0 < ¢ < &™

(1) the resulting closed-loop system is asymptotically stable,

(2) the Hoo-norm of the resulting closed-loop transfer matrix from the disturbance
w to the controlled output = is less than ¥, ie. || T, (s, &)l < 7-

By Definition 1, the control law in equation (67) solves the general Hoyo-ADDP MS for
equation (1).

Proof: See Appendix B. []

4.2. Reduced-order output feedback controller design

In this subsection, we follow the procedure of Chen ez al. (1992) to design a
reduced order output feedback controller. We will show that such a controller
structure with appropriately chosen gain matrices also solves the general Hy-
ADDPMS for the system in equation (1). First, without loss of generality and for
simplicity of presentation, we assume that the matrices C; and D; are already in the
form

0 C D
Clz[ 1’02] and Dlz[ (;’0] (69)

where k = ¢ - rank (D) and D1 is of full rank. Then the system given in equation

(1) can be written as
X1 An A xi
RPN N A
o 0 Gy, n Dy
(yl) [Ik ] [ ]

=[Gy G ](

'

—~
~1
=

=

X1
) + Dou+ Dyw
X2 )
where the original state x is partitioned to two parts, x; and x,, and y is partitioned
to yo and y; with y; = x;. Thus, one needs to estimate only the state x; in the
reduced-order controller design. Next, define an auxiliary subsystem 2or character-
ized by a matrix quadruple (A4r, Er,Cr,Dr), where

(A, Er, Cr,Dx) = (Azz, 2,[C”2] [D”] (71)

The following is a step-by-step algorithm that constructs the reduced order out-
put feedback controller for the general Hoo-rADDPMS.
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Step R.C.2.

Step R.C.3.
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(construction of the gain matrix Fp(e)). Define an auxiliary system
X=Ax+ Bu+ Ew
y=x (72)
z=0Gx+ Du+ Dypw

and then perform Steps S.1-S.6 of §3 to the above system to get the
parameterized gain matrix F(s). We let Fp(e) = F(e).

(construction of the gain matrix Kg(e)). Define another auxiliary
system

X =Afx+ Cput+ Csow
y=x (73)
z=Egx+ Dgu+ Dsw

and then perform Steps S.1-S.6 of §3 to the above system to get the
parameterized gain matrix F(s). We let Kr(s) = F(e)”.

(construction of the reduced order controller 2gc(¢)). Let us partition
Fp(e) and Kg(e) as,

Fp(e) Z[Fpl(S) FP2(8)] and Kr(e) Z[KRO(S) KRl(S)]
(74)

in conformity with the partition

X
x= : and y= &
X2 N

respectively. Then define
Gr(e) =[- Krole), Ao+ Kri(e)di = (Ar + Kr(e) CR)Krile) | (75)

Finally, the parameterized reduced-order output feedback controller,
2rel(e), is given by

X = ARC(S)XC + BRC(S)y (76)
u = Crele)x, + Drele)y
where
Arc(e) := Ar + ByFp(e) + Kr(e) Cr + Kri(e) BiFp(e)
Brele) :=Grl(e) + [Bz + KR1(8)31][0,FP1 (2) - Fpa(e)Kri (8)]
(77)
Crele) := Fp(e)
Dgcl(e) := [O,Fm (e) - Fp(e)Kg, (8)]

We have the following theorem.
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Theorem 5:  Consider the system given in equation (1) with Dx =0 satisfying all
the conditions in Theorem 2. Then the closed-loop system comprising equation (1)
and the reduced order output feedback controller in equation (76) have the following
properties; for any given Y > 0, there exists a positive scalar e > 0 such that for all
O0<e<Le:

(1) the resulting closed-loop system is asymptotically stable,

(2) the Hoy-norm of the resulting closed-loop transfer matrix from the disturbance
w to the controlled output = is less than ¥, ie. || T, (s, &)l < 7-
By Definition 1, the control law in equation (76) solves the general Hy,-ADDP MS for
equation (1).

Proof: See Appendix C. 0

5. Conclusions

In this paper we have presented several explicit procedures for constructing
solutions for the general Ho,-ADDPS and Ho-rADDPMS, in which the given
systems are allowed to have invariant zeros on the imaginary axis of the complex
plane. Our approach is decentralized in nature. We used a low-gain design technique
to handle the subsystem associated with the zero dynamics on the imaginary axis and
a high-gain technique to deal with the subsystem associated with the infinite zero
structure of the given system. Hence, our approach can be termed as a low-and-high
gain method.

6. Appendix A — Proof of Theorem 3

Under the feedback control law u = F(¢)x, the closed-loop system on the special
coordinate basis can be written as follows:

Xa = AwXa + Boazo + Laaza + Lapzp + Eq w (78)
0 _ 0 0 0 0
Xa — Aaaxa + Bouzo + Ladzd + Labzb + ng (79)

o e+ + 0 0_+ + + + + +
Xab — Aab Xab = BOaIJFSO(S) [xa + Taxab] + Labd [Fad, Fra T Labdzd + Eabw (80)

Zp — I:Om/,XnZ, Cb]x:b (81)
j:c = Agr + LCOZO + chzb + Lchd + ECW (82)
20 = = [Fao, Fioas = Fao(e) (xa + Taxip) (83)

. 1 + +
X; = Agx;i + Liozo + Ligza - ngi[FadiEq,-xa + FpaiFigxp

+ Fai(e) Fy, [xg + Tf,)x:,rb] + FiSi(S)Xi]"'EiW, (84)
z=Cpxiy,  i=1,2,...,my (85)

where X, = [(x:,r )7, xf,]’ and By, and L, are as defined in Step S.4.1 of the state
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feedback design algorithm. We have also used Condition 2 of the theorem, i.e.
D» =0, and E,, E,, E;,,, Ep, Ec and E;, i =1,2,...,my, are defined as follows,

CrE=[(E) (E) (Ej) Ec Et Es - Eg) (86)
Condition 3 of the theorem then implies that
E, =0, (87)
and
Im (E9) <5 (4%) := Nuaia Im{wl - A%} (88)

To complete the proof, we will make two state transformations on the closed-
loop system in equations (78)—~(85). The first state transformation is given as follows:

)Eab = Ebl xab, )Ec = xc, (89)
Xit =X + FogXy + Fyaxp + Fag(e) [xg + Ta(z)x:b], i=12,...,mg, (90)
)_Cii = Xij, j:2939"'9qi9 i:1929"'9md (91)

where x, =[(x7), (xg)’, (x:,},)’]’ and X, = [(x7)7, ()_c:;,)’, ()_cg)’]’. In the new state

variables in equations (89)—+(91), the closed-loop system becomes

Xo = Ao + AiXp = [Biay LuaFal&)30 + LiaZa + Ew, (92)
3‘}2—17 = AZIJC)EZI) - [Bgalag L;bd:ng(g))zg + L:bdzd (93)
X0 = (Aoa - BUF) ()Xo + (Log + To Lipa)za + Eqw (94)

-

Xe = Agv)_cc + ( ch[o, Cb] = [LCO, Lcd ;})) )E;b = [LLO, Lcd]Ffz)(g))zg + Lcdzd + ECW

(95)

zo =~ [F;o, Fyolxas - Ffz)o(S)?_Cg, (96)
%= Ay BESIE)%+ Linlo)5h + L E )

+ L7 () FY () Asaxo + Lia(e)za + Ei(e)w (97)

Zi=z+ [F;l,.,F,,d,-];c;, + FouXo = Cpiy 1 =1,2,...,ma, (98)

Zg = [51,52,. . ,Zmd],, (99)

where A, Aga;,, B?, and L), are as defined in Step S.4.1 of the state feedback
control law design algorithm, and Ly (), L (¢), LE (&), Lis(e) and Ej(e) are defined
in an obvious way and, by equation (48), satisfy

L@l <y, 12@I<®,  |2el<®2,  |Lue| <,
E@] <e, = el,1], (100

. + - - .
for some non-negative constants /;, l,(-)al, l,(-)az, l;s and ¢; independent of e.
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We now proceed to construct the second transformation. We need to recall the

following preliminary results from Lin et al. (1997).

Lemma 1:  Let the triple (Ai,Bi,Fi(¢)) be as given in Steps S.4.2 and S.4.3 of the
state feedback design algorithm. Then, there exists a nonsingular state transforma-
tion matrix Q;(e) eR™ " such that:

(1) Qile) transforms A; - BiF;(¢) into a real Jordan form, i.e.

07 '(e)(4;- BiFi(£))Qi(e) = Ji(s) =blkdiag {Jio(e), Jit (¢),Jn(e),. .. . Jin (e},

(101)
where
- 1
Jole) = .o (102)
- 1
=& | roxr
and for each j =1 to p;,
[ JNe) b ]
. -e By
Jl.'l'(g) = ’ ) 9 i &) = ' 9
Jie) b -By -e
L Jl/ 8) | 2ryX2ry
(103)

with B > 0 for all j =1 to p; and By * Bi for j £ k;
(2) both ||0i(e)|| and ||0; ' (e)|| are bounded, i.e.
lo@ll <o, loi'el<e, =e0,] (104)

for some positive constant 9;, independent of ¢,
. 5 nixXq -
1
(3) if E; eR"™ is such that

Im (E;) < Nver(ayIm (wl - 4;), (105)
then there exists a & 2 0, independent of e, such that
loi'El <8,  =e0,] (106)
and, if we partition O '(¢) E; according to that of Ji(¢) as,
[ Eole) [ Eji(e)
1 Eii(e) Ein(e)
o'wE=| |, BGe= |,

L Epl (8) EiOri[] (8) ri[]Xl
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Eji(e)

Ej(e)

E!']' (8) = (107)

Ej, (e)

i 2ryx1

then there exists a B; 2 0, independent of ¢, such that for each j =0, to p;,
15, )l < pre (108)
(4) if we define a scaling matrix S, (e) as
Sai(s) = blkdiag {Sao(e), Sait (£), S (&), . .., Saip(¢)} (109)
where
Saole) =diag{e™ &2 6,1} (110)
and for j =1 to p;,
Saj(e) =blkdiag {e"" ' b, *D,..., eb, b} (111)
then there exists a k; 2> 0 independent of ¢ such that

|Fi(2)0i(2)Sa' (&) S kiey  |File) 4:0:(e) S (2)] < Kiz (112)

Proof: This is a combination of Lemmas 1, 3 and 4 of Lin et al. (1997), and
(2.2.13) of Lin (1994). (]

Lemma 2: Let

Ji(e) = blkdiag {Jio, Ji1 (2),. .., Jyp (&) } (113)
where
-1 1
To = R (114)
-1 1
-1 rioXrio
and for each j =1 to p;,
[ Tje) b -
N R ~ -1 By/e
Tile) = L , T = L
THe) b -Bile -1
L Jl/ 8) i 2riX2r

with B > 0 for all j =1 to p; and B; F P for j # k. Then the unique positive definite
solution P; to the Lyapunov equation
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"\41

J(e)’Pi+ PiJi(e) =-1 (116)
is independent of e.
Proof: This is Lemma 2 in Lin ez al. (1997). ]

We now define the following second state transformation on the closed-loop system:

%=X, X=Xy (117)
%o =R, (8)7, - (o)) = Su(e)0 () ()X (118)
Sa(e) = blkd1ag{ a1(8),Sa2(8) (8)}
0(s) = blkdiag {01 (s),0x(),. .. ,Ql(S)}
Xe = eXx, (119)
R =[F1,58,., %], =Si(e)x, i=1,2,...,ma (120)

under which the closed-loop system becomes

X0 = AuX + Az (&)X + Aol ()X + LidZa + Ezw (121)
X = Aus X + Aua(e)Xa + LopaZa (122)
V=T + Ble)X+ T%()Z, + Ed(e)w (123)
X = ALK+ e[A;b%:b + Acale)Xa + LadZa + Eow] (124)
zo =~ [F;B, Fyo i = Fao(e)5, (125)
%= (A, - ByF)X + ety (o)X + eTo()R0 + eLi(e)Z + eEle)w  (126)
Zi=zi=z+ [Fadl, de:]%b + Fou()X) = % (127)
%0 =[0,220 2] (128)
where
Auq (&) = = [Biu, Laa]Fa () [2aQ0(e) S5 ( (129)
Ag(e) = [Boab, abd]FO [5.0(2)Sz ( ) (130)
J(e) =blkdiag {eJ(¢),elo(c),. .., eTi(e) } (131)
[0 Bp(e) Bisle) ... Bulo]

N 0 0 Bxnle) ... Byle)

B(e) = . . . . . (132)
0 0 0 ... 0

Fa(e) = 54(2)07 1 (2) BiFi(2) 04 (2)S3 (2)
JEL2. L k=il
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Loa(e) = Su(£)0™ (o) (T0) ™ (Liy + T4 Lipy) (133)
Eo(e) = Sale)O o) (o) IES, Ed(e) = [(Egl ()7 (En) ... (Nal(S)),],
(134)
Agp = Lch[O Cb]' [Lco, LealFy, (135)
Acale) = = [Leo, Lea[Fa (o) T0Q(2) S5 (136)
Foo(e) = Fao() Sz ' () 0(e) TS, (137)
Lip(e) = Sie) Li () (138)
Lh(e) = Sile) [L?al ()Fy (¢) + Lig () Fy (£) A0 [[5a0() S5 ' (e) (139)
Lua(e) = Sie) Lule) (140)
Ei(e) = Si(e) Eile) (141)
Fau(e) = Foyr(2)[2,0(2) (142)
and where, for i =1 to l J ( ) is as defined in Lemma 2.

By equations (48) and (100), and Lemma 1, we have that for all = €(0, 1],
i N < Gy, N <Toty N4l < (143)
Izl <ale,  lam@l<dle [l <de,  [FEoel <Fe

(144)

for i =1 to my,
1Tes()} <Th, 0N <D,  NTUN<T 1B <7,
|E)| <z (145)

fori=1to/,

(|25 (e)l| < 20 (146)
and finally, forj=1to [, k =j+ 1to |,

1Bi(e)l < Bice (147)

- 70 + -0 +0~0 0 70 T 0 7 70 T ~ e
where aua, Lads Aeaps Qaa > aa s €as deas | a0s Laps las Las f ads bjx and € are some positive

constants, independent of e.

We next construct a Lyapunov function for the closed loop system in equations
(121)+128). We do this by composing Lyapunov functions for the subsystems. For
the subsystem of X,, we choose a Lyapunov function,

Va (%2) = (X2)"PaXa (148)
where P, > 0 is the unique solution to the Lyapunov equation
(Az)?Py + PoAyy =-1 (149)

and for the subsystem of X, we choose a Lyapunov function

+

Vab (,562—1)) = (%2—1)) P 2—1)%2—1) (1 50)



H oo almost disturbance decoupling problem 677

where P, > 0 is the unique solution to the Lyapunov equation
(Aay)"Pay + PopAay == (151)

The existence of such P;, and P, is guaranteed by the f: act that both A4, and A, are
asymptotically stable. For the subsystem of ¥ Xg = [ Xa1)” (5622) yerns (5621) /, We
choose a Lyapunov function

/ -1
PR =ZM (&) P, (152)

&

where 0(2 is a positive scalar, whose value is to be determined later, and each P?,i is
the unique solution to the Lyapunov equation

Ti(e) Py + Podi(e) =-1 (153)

which, by Lemma 2, is independent of e. Similarly, for the subsystem X, choose a
Lyapunov function

Ve(X) =XzPXe (154)
where P, > 0 is the unique solution to the Lyapunov equation
(Agv),Pc + PcAgv =-1 (155)

The existence of such a P. is again guaranteed by the fact that A. is asymptotically
stable. Finally, for the subsystem of X;, choose a Lyapunov function

my

V(%) = Z%{P,-xc (156)

where each P; is the unique solution to the Lyapunov equation
(4, - B,F))’Pi + Pi(A,, - B,F) =-1 (157)

Once again, the existence of such P; is due to the fact that 4, - B, F; is asympto-
tically stable.

We now construct a Lyapunov function for the closed-loop system in equations
(121)~(128) as follows:

+

V(Séé_l ,xab,xg,xc,xd) Va; (,564_1) + a;b Vab (,562—1)) + Vg(,)‘ég) + Vc(%c) + oy Vd(%d)
(158)

where o), = 2||P ” (dzu)* and the value of O is to be determined.
Let us first consider the derivative of V, (xg) along the trajectories of the sub-
system %0, and obtain that

! 0yi- 1
Z[ ) 2 3 O ) BB (o)
— J=

&

0\i-
+2) ) AT G AR (09)

Using equation (147) it is straightforward to show that there exists an ol > 0 such
that
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7 < - 5P+ Tl + ool (140

for some non-negative constants oy and o, independent of .
In view of equation (160), the derivative of ¥ along the trajectory of the closed-
loop system in equations (121)—(128) can be evaluated as follows:

V== (%5)% + 2(35)7 Py A ()X + 2(35 )7 Py Al ()30 + 2(X3 )Py LadZa
+ 2(’562) Pa a W= %17( ab) 2—1) + 2&2—1) (x;b),PZbA;)% (8)’5‘52 + 2q;b (x:b),PZb L:bdzd

- IRl + SRzl + colbl” - e + 26ReP [zl + o)
my 1 - N
+ LaiZs + Ew]+ ou Z[ - R+ 2% P Ly (o)X + 250 Pi L)X,

+ 2P T2 + 2x,fP,-E,-<s)w] (161)

Using the majorizations in equations (143)-(146) and noting the deﬁmtlon of oy,
in equation (158), we can easﬂy verify that there exists an oy > 0 and an = (0, 1]
such that, for all £ (0 81],

7<= A% 1P - 30 - SR - S lmAP + el (162)

for some positive constant oy, independent of e.

From equation (162), it follows that the closed-loop system in the absence of
disturbancew is asymptotlcally stable. It remains to show that for any given y > 0,
there exists an ¢ e(O 81] such that, for all £ (0, ],

Izl ., < yllwll., (163)

To this end, we integrate both sides of equation (162) from 0 to oo Noting that
V' >0and V(1) =0 at t =0, we have

|Zd||Lz — V ”W”L2 (164)

which, when used in equation (160), results in

IR0 < | Ve e |l (165)

Viewing Z; as disturbance to the dynamics to X, also results in
55112, < (ou VAl (166)

for some positive constant oy, independent of e.
Finally, recalling that

ZO
z=T0p Zu- FpXy - Fau(e)3) (167)
Zp

where
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Fan(2) (168

ngnld (8 )

with each F,(¢) satisfying equation (145), we have

Il <ol 6 Bose + aull E5INE+ osVAcgone + ool (169)

for some positive constant ¢ independent of e.
% %
To complete the proof, we choose ¢ & (O,sl] such that

Gl V2082 + oull Fpl| VE + as \501%0(38 +ope?) <y (170)

For the use in the proof of measurement feedback results, it is straightforward to
verify from the closed-loop equations (121)-(128) that the transfer function from
2W 10 z is given by

Tao(s) = Taols,e)[sT = Aua+ BaFa(e)] ! (171)

where T, (s,2) —0 pointwise in s as & —0. []

Appendix B. Proof of Theorem 4

It is trivial to show the stability of the closed-loop system comprising the plant
given in equation (1) and the full-order output feedback controller in equation (67).
The closed-loop poles are given by )\{A + BFp(s)}, which are in €™ for sufficiently
small &, as shown in Theorem 3, and )\{A + Kole) Gy }, which can be dually shown to
be in €~ for sufficiently small ¢ as well. In what follows, we will show that the full-
order output feedback controller achieves the Hoo,rADDPMS for equation (1), which
satisfies all five conditions of Theorem 2. Without loss of any generality but for
simplicity of presentation, hereafter we assume throughout the rest of the proof
that the subsystem 2p, ie. the quadruple (A, B, CZ,DZ), has already been trans-
formed into the special coordinate basis as given in Theorem 1. To be more specific,
we have

Ay O 0 LG 0 LGy

0 A 0 LyG 0 LGy

0 0  Aw LyG 0 LyGCy -
A:B()Czj()*' ::B()C2’0+A

0 0 0 App 0 LpaCy

B.E, B.Ey B.Ey LGy, Ae  LaCy
BiEj, BiEy BiEg BiFsa BiEi  Aw

(172)
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[ B 0 0] [ By |
B, 0 0 Bl
B, 0 0 By,
B= , B=
B()}, 0 0 BOb
BOC 0 Bc BOC
B()d Bd 0 BOd
and - - - -
C6a Cga Cg—a C()b COC COd
G=[o0o 0 0 0 0 G,
0 0 0 ¢ 0 0
CQFZF& Coa Cou Con Coc CM]
(1 00 0]
07 00
I 00
s 000 0
D,=[0 0 0], s"(Z)=Img
00 0O
0 00
00 I O
00 0 [
N\ - J

It is simple to note that Condition 3 of Theorem 2 implies that

SECES Y

Next, for any { €W, (2q) with Ag cC’, we partition Cas follows:

8 O O £ L LY

Then, Condition 4 of Theorem 2 implies that C;C= 0, or equivalently

CZ’QC: 0, C;,@ =0 and Cd@ =0

(173)

(174)

(175)

(176)

(177)

(178)
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By Definition 3, we have

A-AdI E
’ S\ = (179)
G Dy |\ m
for some appropriate vector 1} Clearly, equations (179) and (176) imply that
*
0
(A- Al)=-En= 0 (180)
*
*

where the % are some vectors of little interest. Note that equation (178) implies

(A= ADE= (ByCog+ A= ADE= (A - A

* *

* *
_| U 2DG + Lo GG+ LuCaly| | (aa- 2DG as1)

(App = ADG + Ly Caly (Aw - 201G
* *
L * L * -
and equations (180) and (181) imply that

(A= MDG =0 and (4w - AD)G =0 (182)

Since A,, has all its eigenvalues in C*, (4y, - Aol )Z; =0 implies that Z; =(. Simi-
larly, since (A4p, C) is completely observable, (Ap - AoI)G =0 and GG = 0 imply
G =0. Thus, Chas the following property:

G
O +
€= o | € (Zp) (183)
G
G
Obviously, equation (183) together with Condition 5 of Theorem 2 imply
5T (Zp) DV (Z) U{Uyer a0 (Z0)} (184)

Next, it is straightforward to verify that 4 - s/ can be partitioned as
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A-sSI=X1+ oG+ X3+ X, (185)
where
[ Ay-sI 0 0 LyG 0 LoyCy ]
0 0 0 0 0 0
0 0 0 0 0 0
X :=
0 0 0 0 0 0
BE, BEy B.Ew LoCy Aw-sI  LuCa
BiEy  BiEy BuEy BiEw  BiFa  Aa- SI|
By 0 0] [0 0 0 0 0 0]
B, L% LY 00 0 0 0 0
By Lo Ly 0 0 Ap- sl 0 0 0
X, = , Xi= (187)
By Ly 0 00 0 Aw-sI 0 0
Be O 0 00 0 0 0 0
| B 0 0| 100 0 0 0 0]
and
[0 0 000 0]
0 A%-sI 00 0 0
v = 0 0 0000 (189)
0 0 0000
0 0 0000
0 0 0000
It is simple to see that ] ]
Im (X7) =5 (Zp) N My ecoS 20 (Xp) } (189)
and
Ker (X3) D5 ¥ (%) DV (Zo) U {Up, e Va0 (Z0) } (190)
It follows from the proof of Theorem 3 that as ¢ —0
[[C2 + DaFe(@)]fs1 - 4= BFp(e)] |oo < ko (191)

where kp is a finite positive constant and is independent of ¢. Moreover, under
Condition 3 of Theorem 2, we have

[CZ + Dsz(s)][sl- A- VFp(s)]' 'E—0 (192)

and
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[C2+ DaFp(e)[sI - 4~ BEs(&)] X1 >0 (193)

pointwise in s as ¢ —0. By equation (171), we have
[Co+ DaFe(e)[sT - A= BEs(o)] X4 >0 (194)

pointwise in s as ¢ —0. Dually, one can show that
s - 4- Kole) O] '[E + Kole)Di]loo < ko (195)

where Kq is a finite positive constant and is independent of . If Condition 4 of
Theorem 2 is satisfied, the following results hold:

Cofst - A= Kole) 1] '[E+ Ko(e)D1] 0 (196)
and
Xa[sI - 4- Kole)G 1[E+ Kq(e)D1] =0 (197)

pointwise is s as ¢ —0.

Finally, it is simple to verify that the closed-loop transfer matrix from the dis-
turbance w to the controlled output z under the full-order output feedback controller
in equation (67) is given by

Tals,e) = [Co + DaFp(e)|s - A= BFp(e)[ 'E
+ CfsI- 4- Ko(o)G] I[E + Ko(e)D1]+ [C2 + D2Fo(e)]

x [T - A= BFp(e)[ (4~ sD[sT - A= Ko(e) 1] '[E+ Ko(e)D1]
Using equation (185), we can re-write Tb,(s, ) as

Tay(s,8) =[Ca+ DaFple) s - A- BFe(e)] 'E
+ Cfsl - A- Kole) O] '[E + Kole)Di]
+[Co+ DaFp(e)[[s - A= BFe(e)| ' (X1 + oG+ X3 + X)

X [s1- 4- KQ(S)Cl]'l[E+ Kqo(e)Di]

Following equations (191)-(197), and with some simple manipulations, it is straight-
forward to show that as ¢ —>0, Tzw(s, ¢) —0, pointwise in s, which is equivalent to
” T Zw”oo —0 as ¢ —>0. Hence, the full-order output feedback controller in equation
(67) solves the Hy,,r ADDPMS for the plant given in equation (1), provided that all
five conditions of Theorem 2 are satisfied. []

Appendix C. Proof of Theorem 5

Again, it is trivial to show the stability of the closed-loop system comprising the
plant given in equation (1) and the reduced-order output feedback controller in
equation (76) as the closed-loop poles are given by A{A + BFP(S)} and
A Ar + Kr(e) CR}, which are asymptotically stable for sufficiently small . Next, it
is easy to compute the closed-loop transfer matrix from the disturbance w to the
controlled output z under the reduced-order output feedback controller
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0
Tonls,e) = Cz( ) ) (7= Ar = Kn(e)Ce] '[Er + Kn(e)Dx]
n-k

+ [Cz + DzFP(S)][SI - A- BFP(S)]‘ Y4 - s1) 0
In— k

X [SI - Ag - KR(S) CR]_ 1[ER + KR(S)DR]

+ [Co+ DaFp(e)]s1 - A~ BFp(e)[ 'E
It was shown in Chen (1991) that

0
( ) V' (Zor) = V' (o) (198)

In— k

Following the same lines of reasoning as in Chen (1991), one can also show that

0
(I ) Uryeg® Yao(Zor) = Uny et Va0 (Z0) (199)
n-k

Hence, we have

0
(I )<v+<zQR>u{uwmz@)})=v+<zQ>u{uMe¢wM<zQ>} (200)
n-k

The rest of the proof follows on the same lines as in Theorem 4. ]
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