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Abstract: This paper presents a simultaneous H2/H= optimal control problem for discrete-

time systems in the state-feedback case. By the use of dynamic state feedback controllers, the de-

sign seeks to minimize the H2 norm of a closed-loop transfer matrix while simultaneously satisfying

a prescribed H= norm bound on some other closed-loop transfer matrix. The class of problems ad-

dressed here is relatively general and consists of systems which have left invertible transfer func-

tion matrix from the control input to the controlled output. Necessary and sufficient conditions are

established so that the posed simultaneous HdH= problem is solvable with state feedback con-

trollers.

Key words: simultaneous HdH= optimal control; robust control; control for discrete-time
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1 Introduction

In multi variable control theory ,optimization of a nominal performance measure with ro-

bust stability is becoming a standard mode operation. Hrnorm is found to be the most appro-

priate measure in the characterization of nominal performance while the H=-norm is to identi-

fy robustness to unstructured plant uncertainties. H2-norm minimization problems were heav-

ily studied in 1960's and early 1970's as Line.ar Quadratic Gaussian (LQG ) optimal control

problems. More recently these problems have been studied in a generalized setting of mini-

mizing the H2-norm of a transfer function matrix from an exogenous disturbance to the con-

trolled output of a given linear time-invariant system by an appropriate selection of an inter-

nally stabilizing controller (see e. g. , [l]and[Z]). On the other hand ,since the seminal work

of [3], H=-norm optimization problems have been heavily studied, and are continuing to be

developed. In H=-norm optimization, one seeks a control law which stabilizes a given plant,

and also makes the H=-norm of a selected closed-loop transfer function smaller than a priori

given number. The H=-norm optimization deals with the worst-case objective in contrast

Manuscript received Apr. 30,1996.



218 CONTROL THEORY AND APPLICATIONS. Vol. 15

with the common mean square objectiv<,; of ,the tradiiip~al LQG(Hz) optim~l qontrol. Recent-

ly,problems where both Hz and Hoo-norm performance measures are mixed ,have received at-

tention as they show a potential to achieve optimal nominal performance with some robust

stability (see e. g. [4~6]). A typical problem in this connection,called.a simultaneous Hz/Hoo

optimal control problem, has been formulated for continuous-time system-s in [6] and later

extended in [7]. This problem seeks to minimize the Hz-norm of a clo~ed-Ioop tr~nsfer matrix

while simultaneously satisfying a prescribed Hoo-norm bound on some other closed-loop

transfer matrix. The intent of this paper is to look at the parallel problem in discrete-time

systems. A set of necessary and sufficient conditions under which a simultaneous Hz/Hoo opti-

mal control problem is solvable for a class of singular problems for discrete-time systems are

developed. The class of problems we consider have a left-invertible transfer function matrix

from the control input to controHed output which is used for the Hz-norm performance mea-

sure. This class of problems subsumes the class of regular Hz optimization problems. The de-

velopment given here for discrete-time systems is analogous to but not quite the same as that

for continuous-time systems in [7]. The differences reflect the specific nature and character-

istics of the discrete-time systems.

This paper is organized as follows. Section 2 gives a clear mathematical statement of the

problem, while Section 3 recalls several pertinent preliminary results. Section 4 develops the

necessary and sufficient conditions under which the posed simultaneous Hz/Hoo optimal con-

trol problem for discrete-time systems is solvable. Finally,Section 5 draws the conclusions of

our current work.

Throughout this paper ,Ker[ V] and 1m [V] denote respectively the kernel and the image

of V. Also, p (M) denotes the spectral radius of matrix M, while normrank denotes the rank

of a matrix with entries in the field of rational functions. Given a stable and strictly proper

transfer function G(z) ,as usual ,its Hz-norm is denoted by II G II z;and given a proper sta-

ble transfer function G(z), its Hoo-norm is denoted by II G II 000 Also, RH'denotes the set of

real-rational transfer functions which are stable and strictly proper. Similarly,RHoo denotes

the set of real-rational transfer funGtions which are stable and proper. Finally ,Co and CQ9de-

note respectively the unit circle and the set of complex numbers outside the unit circle.

2 Problem Statement and Definitions

Consider the following system,

i

X(k + 1) = Ax(k) + Bu(k) + Ezwz(k) + Eoowoo(k),

y(k) = x(k),
2;.

. zz(k) = Czx(k) + Dzu(k),. ,

zoo(k) = Coox(k) + Doou(k),

(2.1)

wherex E R" is the state, u E Rm is the control input, WooE JR.I,and WooE JR.1=are the distur-

bance inputs ,and Zz E JR.q,and ZooE JR.q=are the controlled outputs. Also ,consider an arbitrary

proper controller,

u = K(z)x. (2.2)

A controller u = K (z)x is said to be admissible if it provides internal stability of the resulting
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closed-loop system. Let T2 (K) denote the closed-loop transfer functions from Wz to Zz and

from w= to z= ,respectively, under the feedback control law U = K (z )x. Moreover ,let the in-

fimum of the Hz norm of the closed-loop transfer function Tz (K) over all the stabilizing prop-

er controllers K(z) be denoted by Y; ;that is,

Y; : = inf{ II Tz(K) II zlu = K(z)x internally stabilizes ~}. (2.3)

The simultaneous Hz/H= optimal control problem is defined as follows:

Definition 2. lCThe simultaneous H2/H= optimal control problem). For the given plant

~ and a scalar y>O,find an admissible controller K (z) such that II T2(K) IIz = Yz*and

Ii T =(K) II = < Y.
Definition 2.2 The following definitions will also be convenient in the sequel.

1) (The Hz optimal controller): An admissible controller K (z) is said to be an Hz opti-

mal controller if II Tz(K) IIz = Y;.
2) (The H= Y- suboptimal controller): An admissible controller K (z) is said to be an

H= Y- suboptimal controller if II T =(K) II = < Y.
3) (Stabilizable weakly unobservable subs pace) Given a system ~* characterized by a

matrix quadruple (A ,B ,C ,D) ,we define the stabilizable weakly unobservable subs pace IIg

(~* ) as the largest subspace IIfor which there exists a mapping F such that the following

subspace inclusions are satisfied:

(A + BF)II C IIand (C + DF)II == {O},

and such that A + BF III is asymptotically stable.

Our goal in this paper is to derive a set of necessary and sufficient conditions under

which the simultaneous Hz/H= optimal control problem is solvable. To achieve this, we first,

following [8J, parameterize the set of all Hz optimal dynamic state feedback controllers for

general singular problems ,and then utilize a theorem of [9J which studies the existence con-

ditions for the Y- suboptimal strictly proper controller for discrete-time systems.

3 Preliminaries

In this section, we recall several preliminary results needed to establish the necessary

and sufficient conditions under which the simultaneous Hz/H= optimal control problem is

solvable, while at the same time we also introduce some new results.

3. 1 Review of H2-optimal Control

In this subsection, we recall from [1OJ the necessary and sufficient conditions under

which an Hz-optimal state feedback control law of either static or dynamic type for discrete-

time systems exists. We also recall a recent result of [8}vhich characterizes all the possible
Hz optimal state feedback laws.

The conditions under which an optimal controller exists for the discrete-time system

1

X(k +

.

D ~ Ax(k) + Bu(k) + Ezwz(k),

42: y(k) = x(k), .

zz(k) = Czx(k) + Dzu(k), .

can be formulated in terms of an auxiliary system ~auzconstructed from the data of (3. D. The

(3.D
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auxiliary system ~au2is as given below:

{

XP(k + 1) = AXp(k) + BUp(k) + E2W

.

2(k),

Eau2: Yp(k) = xp(k), .

zp(k) = Cpxp(k) + Dpup(k). .

(3.2)

Here Cp and Dp satisfy

[
Cj,

]F2(P2) = Dj, [CpDpJ,

where

[

A' P2A - P2 + CiC2 A'P2B + qD2
]F2(P2): = B' P2A + D'C B' P2B + DiD2 ' (3.3)

and where P 2is the largest solution of the matrix inequality F 2 (P 2) ~ o. It is known that un-

der the condition that ( A ,B) is stabilizable ,such a solution P 2 exists and is unique.

We have the following theorem.

Theorem 3. 1 Consider the given system ~2 as in (3. 1) ,and the auxiliary system ~au2as

in (3. 2). Define a subsystem ~p of ~au2 as that characterized by the quadruple (A,B,C p,

Dp ). Then, the infimum, '12*, can be attained by a static as well as by a dynamic stabilizing

state feedback controller if and only if the pair( A,B ) is stabilizable and Im( E2) C IJg(~p) .
Proof See[lOJ.

We know that whenever an optimal solution to the original H2 problem exists, there ex-

ists a con~tant gain F such that AF: = A + BF is stable and that

II (C2 + D2F) (zI - AF)-lE2 II 2 = '12* (3.4)

or equivalently (see [8J),

(Cp + DpF)(zI - AF)-lE2 = O.

It can be easily shown that any proper dynamic controller K (z) that stabilizes the system ~au2

can be written in the following form,

{
~(k + 1) = AF~(k) + BYl (k),

u(k) = Fx(k) + Yl (k),
(3. 5)

where

Yl(k) = Q(z)[x(k) - ~(k)J (3.6)

for some proper and stable Q(z) ,i. e. , Q(z) E RH=, with appropriate dimensions. The fol-

lowing theorem qualifies Q(z) so that the controller K(z) is H2 optimal for the given system

~2'

Theorem 3. 2 Consider the given system ~2 as in (3.1). Let the system characterized by

the matrix quadruple (A,B ,CpD2 ) be left invertible. Also, assume that the pair ( A,B ) is

stabilizable, and that 1m (E2) c IJg(4p) . Define a set Q as,

Q: = {Q(z) E RH= IQ(z) = W(z)(l - E2Ei)(zI - AF), W(z) E RHS}. (3.7)

Then a proper dynamic controller K (z) stabilizes ~2and achieves the infimum, '1; , if and on-

ly if K (z) can be written in the form of (3. 5) and (3. 6) for some Q (z) E Q. Moreover, if

(Aw,Bw,Cw) is a state space realizati?n ofW(z), thenQ(z) = W(z)(l- E2Ei)(zI - AF)
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can be written as,

Q(z) = Cw(zI - Aw)-I[AwBw(l- E2Et) - Bw(l - E2Et)AFJ + CwBw(l- E2Et).

(3.8)

Proof It follows'from [8J.

3.2 Existence of H=-suboptimaJ Controllers

We recall in this subsection a theorem of [9J which gives a set of necessary and suffi-

cient conditions under which the following auxiliary system has an H= Y-suboptimal strictly

proper controller,

1

X(k + 1) = Ax(k)

.

+ Bu(k) + E=w=(k),

~au=:y(k) = Clx(k) + Dlw=(k),
z=(k) = C=x(k) + D=u(k).

(3.9)

For future use, let us define the following matrices. Given any symmetric positive semi-defi-

nite matrices P= E JR.nXnand Q= E JR.nXnwhich satisfy
R=: = 1- E!Y=E= > O. and Y=: = (l- Q=P=)-IQ= ~ 0,

we define
V =: = B' P =B + D:JJ=,
Ax: = A - BV;'(B' P=A + D/x,C=),

CIP: = Cl + DIR;;,IE!Y=Ax,
C2p: = (V;;2)+ (B'P=A + D/x,C=+ B'P=E=R;;,IE!Y=Ax),
DI2P: ..:-.DIR;;,1/2,

D22P = (V;;2)+ B' P =E=R;;,1I2,

Wp: = DI2PDI2'p+ CIPY=CI'p,

Sp: = I - D22PD22'p- C2PY=C2'p+ (C2PY=Cl'p + D22PDI2'p)Wt(CIPY=C2'p+ DI2PD22'p).

Finally, we define

D22PY: = Sp1l2(C2PY=CI'p+ D22PDI2~)(W}!2)+.

We have the following result.

Theorem 3.3 Consider the auxiliary system ~u~=as in (3.9). Assume that two systems

one characterized by ( A,B ,C= ,D= ) and the other by ( A ,E=,C ,D) have no invariant zeros

on the unit circle. Then the following statements ,are equivalent:

1) There exists a linear, time-invariant and strictly proper dynamic compensator Ko(z)

such that when the control law u(z) = Ko(z)y(z) is applied to ~au=,the resulting closed-loop

system is internally stable. Moreover, the H=-norm of the closed-loop transfer function from

the disturbance input w= to the controlled output z= is less than 1.

2) There exists symmetric matrices P = ~ 0 and Q= ~ 0 such that

a) We have R=: = I - E!Y=E= > O.

b) P = satisfies the discrete algebraic Riccati equation:
P= =A'P=A + C/x,C=

-

[
B' P=A + D/x,C=

]
'C +

[
B' P=A + D/x,C=

]E!Y =A (P =) Eo!,P=A '

[

D:JJoo+ B' P=B B' P=E=
]C(P ). =. .

= . E!Y=B E!Y=E= - I

(3. to)

(3.11)

where (3. 12)
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c) For all z E COU ClI9,we have

[

zI - A ~ B - E=

]normrank B' P =A + D~C= B' P=B + D~= B' P=E= ,E~ =A E~ =B E~ =E= ---I

= n + l= + normrank{C=(zI- A)-IB + D=}. .

d) We have S=: = I - C=Q=C~> o.
e) Q= satisfies the following discrete algebraic Ricdti' equation:

Q= =AQ=A' + E=E~

-
[
CIQ=A' + DIE~

]
'H (Q ) + '

[
CIQ=A' + DIE~

]C=Q=A' = C=Q=A' '

-
[

DIDI + CIQ=CI CIQ:x,C~
]H(Q=) - ,', .

C~Q=CI C=Q=C~- I
f) For all z E CO U CO ,we have

[

ZI - A AQ=CI + E=DI AQ=C~

]normrank - Cl CIQ=CI + DIDI CIQ=~~
- C= C=Q=CI C=Q=C= - I

= n + q= + normrank{CI(zI - A)-IE= + Dl}.

where

,.'

(3. 13)

(3. 14)

g) p(P=Q=) < 1.

h) II D22PY II < 1, where D22PYis as defined in

above conditions a) ~g).

Proof See [9].

4 The Simultaneous H2/H= Prol5lem
In this section, we give our main result regarding the simultaneous H2/H= problem. We

have the following theorem.

Theorem 4.1 Consder the given system 2: as in (2.1). Assume that the pair (A,B) is

stabilizable and the system characterized by the quadruple (A,B ,CpD2) is le£t\nvertible.

Also, assume that the quadruple (A,B ,C= ,D=) has no invariant on the unit circle. Then

there exists an internally stabilizing control law u = K(z)x such that II T2 K 112 = Y2*and II

T = (K) II = <1 if and only if the following conditions hold:

(3. 10) with P = and Q= satisfying the

. .
1) 1m (E2) C lig (2:p) , which is equivalent to the £~ct that there exists an F such that AF:

= A + BF is ~table and (3.4) holds. Also, let C=F: = C= + D=F and M= = 0-;- E2Et )E=.

2) There exists symmetric matrices P = ~ 0 and Q= ~ 0 such that

a) We have R=: = I - E~=E= > O.

b) P = satisfies the discrete algebraic Riccati equation:

where

P== A'P=A + C~C=

[
B'P=A + D~C=

]
' +

[

B'P=A + D~C=
]- E~=A G(P=) E~=A '

[

D~= + B'P=B BP=E=
]

G( P ). = .
=. , E~ =B E~ =E= - I

(4.1)

(4. 2)
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c). For all z E COU G8I ,we have

[

zI - A - B - E=

]

normrank B' P=A + D/.,C= B' P=B + D!.,D= B' P=E=

E/.,P=A E' P =B E/.,P=E= - I

= n + l= + normrank{C=(zI- A)-IB +D=}.

d) We have S=: = I - C=FQ=C=F > 0.

e) Q= satisfies the following discrete algebraic Riccati equation:

Q= = AFQ=A~ + E=E/., - E=M/.,(M=M/.,)+ M=E/., + AFQ=C=FS;;C=j,Q=A~.

f) For all z E COU CiSi ,we have

E=M/.,

M=M/.,

(4.3)

[

ZI - AF

normrank' °
- C=F

AFQ~C=~

]°, = n + q=+ rank(M=).C=FQ=C=F- I°
g) p (P=Q=) < 1.

h) II DzzFY II <1 ,where DzzFYis as defined in (3.10) with P= and Q= satisfying the

above conditions a)~g), Cl = ° and Dl =.M= .
Proof At first ,let us note that T = (K ) ,the closed-loop transfer function from w= to z=

under the controller of (3.5) and (3.6) with Q(z) E Q ,is given by

T =(K) = C=F(zI - AFrIE= + [C=F(zI - AF)-IB + D=]W(z)Mw (4.4)

It can be simply verified that T = (K) is equivalent to the closed-loop transfe function from w=

to z= of the following auxiliary feedback system,

{

X(k + 1) ~ A,x(k) + Bu(k) + Lw~(k),

~=: y(k) = M=w= (k),

. z=(k) = C=Fx(k) + D=u(k).

u = W(z)y.

(4. 5)

(4. 6)

Furthermore ,let us observe that the system characterized by the quadruple (AnE=,O,M=)

has no invariant zeros on CO due to the fact that AF is stable. We are now ready to prove the

theorem.

(~ ) : For the given system ~,if there exists a stabilizing proper controller u = K (z)x

such that the corresponding II Tz(K) II z = yz*and II T =(K) II = <1 ,then by Theorem 3.1

we have 1m ( Ez) c IIg(~g) ,which is equivalent to the fact that there exists a constant gain F

such that AF: = A + BF is stable and (3.4) holds. Next, II T = (K) II = <1 implies that there

exists a Q(z) E Q such that the corresponding W(z) is an H= suboptimal controller to the

auxiliary system ~= of (4.5). We also observe that Conditions Z a)~c) in Theorem 4.1 are

the conditions under which there exists a s,tate feedback H= suboptimal law to the following

system,

{

X(k + 1) = Ax(k) + Bu(k) + E=w=(k),

y(k) = x(K),
z=(k) = C=x(k) + D=u(k).

Then ,from Theorem 3. 3 and some simple algebra ,it follows that Conditions in Item Zhold.

(4.7)
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( <=) : Conver~ely, We assume that Conditions in Items 1 and 2 in Theorem 4. 1 hold.

Then Conditions in Item 2 imply that there exists a strictly proper con:troller W(z) E RHs

such that when it is applied to k= the resulting closed-loop transfer functipn from w= to z=

has H= norm less than 1. We first note that due to the special structure of k= ,all the inter-

nally stabilizing ~ontrollers must themselves be stable. Hence W(z) is ~table. Then it! is
, , .' I

straightforward to verify that t~e controller (3.5) and (3.6) ,withQ(z) = W(z)(l -

EzEt)(zI - AF) achieves II Tz(K) (I z = Yz"'and'II T=(K) II =< 1. This completesthe proof.
of Theorem 4.1.

Remark 4. 1 Necessary and sufficient conditions for the existence of an internally' stabi-

lizing simultaneous Hz/H= optimal compensator which makes the H= norm of the closed loop

system from w= to z= less than some ,a priori given ,upper bound Y> 0 can be easily derived

from Theorem 4.1 scaling.

5 Conclusions

Necessary and sufficient conditions are established so that a simultaneous Hz/H= prob-

lem for discrete-time systems is solvable using dynamic state-feedback cOQtrollers. The class

of singular problems considered have a left invertible transfer function matrix from the con-

trol input to the controlled output which is used for the Hz nor~'performance mea,sure. The

results extend the work of [7] in the continuous-time setting to the discrete-time settin~.
. I
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