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Abstract—This paper presents a comprehensive picture of the
mapping of structural properties associated with general linear
multivariable systems under bilinear transformation. While the
mapping of poles of linear multivariable systems under such
a transformation is well known, the question of how the struc-
tural invariant properties of a given system are mapped remains
unanswered. This paper addresses this quastion. More specifi-
cally, we investigate how the finite and infinite zero structures, as
well as invertibility structures, of a general continuous-time
(discrete-time) linear time-invariant multivariable system are
mapped to those of its discrete-time (continuous-time) counter-
part under the bilinear (inverse bilinear) transformation. We
demonstrate that the structural invariant indices lists .4, and
#; of Morse remain invariant under the bilinear transformation,
while the structural invariant indices lists #; and #, of Morse
are, in general, changed. © 1998 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION AND PROBLEM STATEMENT

The need to perform continuous-time to discrete-
time model conversions arises in a range of engin-
eering contexts, including sampled-data control
system design, and digital signal processing. As
a consequence, numerous discretization procedures
exist, including zero- and first-order hold input
approximation, impulse invariant transformation,
and bilinear transformation (see, for example
Astrém et al., 1984; Franklin et al., 1980). Despite
of the widespread use of the bilinear transform,
however, a comprehensive treatment is lacking
which details how key structural properties of con-
tinuous-time systems, such as the finite and infinite
zero structures, and invertibility properties, are in-
herited by their discrete-time counterparts. Given
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the important role played by the infinite and finite
zero structures in control system design, a clear
understanding of the zero structures under bilinear
transformation would be useful in the design of
sampled-data control systems, and would comp-
lement existing results on the mapping of finite and
infinite zero structures under zero-order hold
sampling (see, for example, Astrom et al., 1984,
Grizzle and Shor, 1988). In this paper, we present
a comprehensive study of how the structures, i.e.
the finite and infinite zero structures, as well as
invertibility structures, of a general continuous-
time (discrete-time) linear time-invariant system are
mapped to those of its discrete-time (continuous-
time) counterpart under the well-known bilinear
(inverse bilinear) transformations

=a(z_1> and z=
z+1

respectively. Since the bilinear and inverse bilinear
transformations find widespread use in digital con-
trol and signal processing, the results obtained have
immediate applications. In particular, some of the
results have already been applied to solve discrete-
time algebraic Riccati equations (see for example
Chen et al., 1994), and in the solution of certain
H_, control problems (see for example, Chen, 1996;
and Chen et al., 1996).

We consider in this paper general linear time-
invariant systems characterized by

ox = Ax + Bu,
2
{y=Cx+Du, @

where xe R", ye R, ue R™ and A, B, C and D are
matrices of appropriate dimensions. In equation
(2), & is an operator defined as follows: 6x = X if Z is
a continuous-time system, and éx = x(k + 1)if X is
a discrete-time system. Without loss of any general-
ity, we assume throughout this paper that both
matrices [C D] and [B’' D'] are of full rank.

Y
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The paper is organized as follows: In Section 2,
we recall the special coordinate basis of linear sys-
tems, which is instrumental to the development and
derivation of the main results. Section 3 contains
the main results of this paper, narnely, in Section 3.1
we present the mapping of finite and infinite zero
structures of a continuous-time linear time-invari-
ant system to those of its discrete-time counter-
part under the bilinear transformation, while in
Section 3.2, we give corresponding results for the
mapping from discrete time to continuous time.
Section 4 gives the detailed proof of our main
results. Finally, concluding remarks are made in
Section 5.

Throughout this paper, X’ denotes the transpose
of matrix X. I denotes an identity matrix of appro-
priate dimension, while I, denotes a k x k identity
matrix. R and C are, respectively, the sets of real
and complex numbers. 1(X) is the set of eigenvalues
of a real square matrix X.

2. BACKGROUND MATERIALS

In this section, we recall the special coordinate
basis of linear systems from Sannuti and Saberi
(1987) and Saberi and Sannuti (1990), which is
instrumental to the main results developed in sub-
sequent sections. We will also recall some basic
concepts of finite and infinite zero structures of
linear time-invariant systems. First, it can be easily
shown using the singular-value decomposition that
one can always find nonsingular matrices U and
V that put the direct feedthrough matrix D of
equation (2) into the following form:

I, O
UDV=[O 0]’ (3)

where m, is the rank of D. It is well known that
these nonsingular transformations V and U leave
the finite and infinite zero structures of X unaffec-
ted. Hence, without loss of generality, one can as-
sume that the matrix D in equation (2) has the form
as shown in equation (3). Thus, the system in equa-
tion (2) can be rewritten as

5=Ax+[B, Bi] ("")
u,

Yo\ | Co Iy O] (uo
G-Lere=[s o))
where By, B,, C; and C, are the matrices of appro-
priate dimensions. We have the following theorem.

Theorem 2.1. For any given system X of equation
(2), there exist

(1) coordinate-free nonnegative integers n,, n,, n.,
ng,mg<m-—mgand q;, i =1,2,...,my;

(2) nonsingular state, output, and input trans-
formations I'y, I, and TI'; which take the given
% into a special coordinate basis that explicitly
displays both finite and infinite zero structures
of Z.

The special coordinate basis is described by the
following set of equations:

xa
U Yo
Xb -
u=Fi Uy |y x:rs X s y=Io Ya | (5)
U, ¢ Vb
X4
Xy Uy Y1
Xq = S =] o |, ya=| (6)
xm,, umd -ymd

and

0x4 = AaaXa + BaoYo + Laaya + Lavyss (7
0xp = AppXp + BpoYo + LeaVa, Vo = Cpxp, (8)
0x, = AeeXe + Booyo + Leaya + Lapys
+ B.E.,x, + B.u,, )]
Vo = CouXg + CopXp + CocX, + Coaxq + g (10)
and fori=1,2,...,my,
O0x; = Agx; + Lioyo + Ligya
+ B, [u; + Eiuxe + EipXp + EiX + Eigx4],
(11)
yi=Coxi  Va=Caxy (12)

Here the states x,, x;, x, and x, are, respectively, of
dimensions n,, n,, 1, and n; = Z:":‘ 14> while x; is of
dimension g; for each i = 1, 2, ..., m;. The control
vectors ug, 4y and u, are, respectively, of dimensions
mg, my and m. =m — my; — m,; while the output
vectors v, ys and y, are, respectively, of dimensions
my, my and p, = p — mo — my. The matrices A4,, B,
and C, have the following form:

0 I,_ 0
B )

C,=[1 0 .. 0] (13)

Furthermore, the pair (4., B.) is controllable and
the pair (4, C) is observable.

Proof. The original work of the special coordinate
basis was reported in Sannuti and Saberi (1987) and
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Saberi and Sannuti (1990). Software packages that
realize the above special coordinate basis are avail-
able either in LAS by Chen (1988) or in MATLAB
by Lin (1989). O

For future use, we rewrite the spicial coordinate
basis given in Theorem 2.1 in a more compact
form as a system characterized by the quadruple
(Asce» Bscs Cscss Dsca), where

Ascs =: Fs_l(A — BoCo)T;

Aaa Labe 0 Ladcd
0 A 0 L,,C
_ bb bd\“d , (14)
BcEca chCb Acc Lchd
BdEda BdEdb BdEdc Add
Bo 0 O
Bses:=I7'[B, B,IT:= By 00 (15)
SCB-— 1 0 1 i BCO 0 BC
By B; O
and
C COa C(lb COc COd
Cscp:=T4" [C"} =0 0 0 Cf,
' o ¢, 0 0
In,, 0 0
Dscgiz Fo-lDri = 0 0 0. (16)
0 00

In what follows, we recall some properties of the
special coordinate basis that are pertinent to the
present work. The first property we will recall deals
with the invariant zeros and their structures of the
given systems (see also MacFarlane and Karcanias,
1976; Saberi et al., 1991; for details).

Property 2.1. Invariant zeros of i are the eigen-
values of A,,, i.e. 1(A,.).

In order to display various multiplicities of in-
variant zeros, let X, be a nonsingular transforma-
tion matrix such that

X 'A4,,X, = J = Block diag{Jy, J», ..., Ji}, (17)

where J;, i=1,2,...,k, are some n;xn; Jordan
blocks:

0 I,
J; = diag{as @ ..., o) +[0 .01]. (18)

For any given « e A(A,,), let there be 1, Jordan
blocks of A,, associated with o Let n,,
My, 2, ..., Ny ., be the dimensions of the correspond-
ing Jordan blocks. Then we say « is an invariant
zero of T with multiplicity structure S¥(Z) (see also
Saberi et al., 1991),

S:(Z) = {na.la Ny 25 0 na,r,}- (19)

The geometric multiplicity of « is then simply given
by 1., and the algebraic multiplicity of « is given by
S ng ;. Here we should note that the invariant
zeros together with their structures of £ are related
to the structural invariant indices list #(X) of
Morse (1973).

The next property concerns the infinite structure
of the given system, which is related to the struc-
tural invariant indices list #,(X) of Morse (see,
for example, Commault and Dion, 1982; Morse,
1973; Owens, 1978; Saberi et al., 1995; for relevant
definitions).

Property 2.2. T has m, = rank(D) infinite zeros of
order 0. The infinite zero structure (of order greater
than 0) of X is given by

S;:o(z) = {QIv q2s > de}' (20)

That is, each g; corresponds to an infinite zero of
X of order g;.

Here we would note that the index S¥ of equa-
tion (20) is not exactly the same as .#, of Morse.
However, they are related and can be converted to
one another in a trivial manner (see Saberi et al.,
1995).

The special coordinate basis can also exhibit
the invertibility structure of a given system X.
The definitions of right and left invertibility
of a linear system can be found in Moylan
(1977).

Property 2.3. The given system X is right invertible
if and only if x, (and hence y,) are non-existent, left
invertible if and only if x, (and hence u,) are
nonexistent, and invertible if and only if both
x; and x, are nonexistent. Moreover, Z is degener-
ate if and only if it is neither left nor right invertible,
i.e., both x; and x, are present.

The special coordinate basis can also be modified
to obtain the structural invariant indices lists
#, and £, of Morse (1973) of the given system X.
In order to display #,(X) , we let X, and X;
be nonsingular matrices such that the control-
lable pair (4., B,) is transformed into Brunovsky
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canonical form, i.e.

[0 1,., ~ 0 0 ]

* * L. % *
Xt_lAchcz ’

0 0 0 I, -

_* * * * i

"o -

1 0
X:'BXi=|: - i, (21)

0
[0 - 1]

where #’s denote constant scalars or row vectors.
Then we have

IZ)y =41y lm (22)

which is also called the controllability index of
(A, B). Similarly, we have

13(2) = {Aula Tres .upb}’ (23)

where {y,, ..., 1} is the controllability index of
the controllable pair (A4;,, Cy).

3. A COMPLETE STRUCTURAL PICTURE OF THE
BILINEAR TRANSFORMATION

We present our main results in this section.
More specifically, in Section 3.1, we study how
the finite and infinite zero structures, as well as
invertibility properties, of a continuous-time linear
time-invariant system are mapped to those of its
discrete-time counterpart under bilinear trans-
formation. In Section 3.2, we present corresponding
results for the mapping from a discrete time to
continuous time. Two examples are included to
illustrate the results obtained in this section. The
detailed proof of our main results, i.e. Theorem 3.1,
will be given in the next section for the sake of
clarity.

3.1. From continuous time to discrete time
The bilinear transformation has been widely
applied to solve problems in the areas of signal
processing, communications and control system
design. It is therefore important to study its stru-
ctural behavior in order to have a clear understand-
ing of this technique. In this section, we will
consider a continuous-time linzar time-invariant

system X, characterized by
5. {x=Ax+Bu, 24)

y=Cx + Du,

where X, has transfer function
G.(s) = C(sI — A)"'B + D. (25)

Let us apply a bilinear transformation to the above
continuous-time system, by replacing s in equation

(25) with
2/z-1 z—1
=3 (5) =) e

where T = 2/a is the sampling period. As presented
in equation (26), the bilinear transformation is often
called Tustin’s approximation, while the choice

!
= an(@,T/2) @7
yields the pre-warped Tustin approximation, in
which the frequency responses of the continuous-
time system and its discrete-time counterpart are
matched at frequency w;. In this way, we obtain
a discrete-time system

z—1
G =C
alz) (az+1

1—- A>—1B +D. (28

The following lemma provides a direct state-
space realization of G4(z). Its proof is straightfor-
ward and hence is omitted.

Lemma 3.1. A state-space realization of G4(z), the
discrete-time counterpart of the continuous-time
system I, of equation (24) under the bilinear trans-
formation (26), is given by

[x(k +1) = Ax(k) + Bu(k),
Za: {y(k) = Cx(k) + Du(k), (29)
where
A = (al + A)(al — A1,
B = /2a(al — A)"'B,
J2a(al — A) 0

C=./2aC(al — A,
D=D+ C(al — A)"'B.

Here we clearly assume that matrix A has no eigen-
values at a. O

The following theorem establishes the intercon-
nection of the structural properties of X, and X4,
and forms the major contribution of this paper.

Theorem 3.1. Consider the continuous-time system
T of equation (24) characterized by the quadruple
(4, B, C, D) with matrix 4 having no eigenvalues
at a, and its discrete-time counterpart under the
bilinear transformation (26), i.e. £, of equation (24)
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characterized by the quadruple (4, B, C, D). We
have the following properties:

(1) Controllability (stabilizability) and observabil-
ity (detectability) of Z,:

(a) X4 is controllable (stabilizeble) if and only if
X. is controllable (stabilizable).

(b) 4 is observable (detectable) if and only if
X, is observable (detectable).

(2) Effects of nonsingular state, output and input
transformations, together with state feedback
and output injection laws:

(a) For any given nonsingular state, output
and input transformations T,, T, and T;,
the quadruple (7,” *AT,, 7, 'BT,, T, 'CT,,
T;'DT), is the discrete-time counter-
part of the continuous time system
(T, 'AT,, T, 'BT,, T, 'CT,, T;'DT;) un-
der the transformation (26).

(b) For any F e R™*" with A + BF having no
eigenvalues at a, define a nonsingular
matrix

T,,=1+ F(al — A— BF)"'B

=[I — F(al — A 'B]"'eR™" (31)
and a constant matrix
F:=./2aF(al — A — BF)"'eR™". (32)

Then a continuous-time system Xy charac-
terized by (4 + BF, B, C + DF, D) is map-
ped to a discrete-time system Z,p, char-
acterized by (4 + BF, BT, C + DF, DT),
under the bilinear transformation (26).

(c) For any K € R"*? with A + KC having no
eigenvalues at a, define a nonsingular
matrix

T,.=[I+C(al — A— KC) 'K] 'eRF*?
(33)

and a constant matrix
K:=./2a(al — A - KC)"'K. (34)

Then a continuous-time system X g charac-
terized by (4 + KC, B + KD, C, D) is map-
ped to a discrete-time system Xuk, charac-
terized by (4 + RC, B + KD, T, 'C, T, D),
under the bilinear transfcrmation (26).
(3) Invertibility and structural invariant indices

lists .#, and #; of Z:

() £r(Zg) = £H2(Zo), and F3(Eg) = F5(Xo).

(b) Z4 is left (right) invertible if and only if X is
left (right) invertible.

(c) X4 is invertible (degenerate) if and only if
% is invertible (degeneraie).

(4) The invariant zeros of Z,; and their associated
structures consist of the following two parts:
(a) Let the infinite zero structure (of order

greater than 0) of X. be given by
S¥(Z)=1{41.492, ..., 4m,}. Then z=—11is
an invariant zero of X; with multiplicity
structure $* 1 (Z4) = {41, 92 -+ s Gmy)-

(b) Let s=a#a be an invariant zero
of X, with multiplicity structure
SYZ)=1{n,1.n42 ....ny.}. Then z=
f=(a+a)(a—a) is an invariant zero
of Z; with multiplicity structure S§(Z,) =
(Mo 1s My 20 oy Mgy )

(5) The infinite zero structure of X4 consists of the
following two parts:

(a) Let mo be the number of infinite zeros of
. of order 0, ie. my = rank(D), and let
mq be the total number of infinite zeros of
%, of order greater than 0. Also, let 7, be the
geometric multiplicity of the invariant zero
of £, at s = a. Then the total number of
infinite zeros of 24 of order 0, i.e. rank (D), is
equal to mgy + my — 1,.

(b) Let s = a be an invariant zero of the given
continuous-time system X, with a multipli-
city structure SF(Z.) = {41, 4.2, -+ s Moy}
Then X; has an infinite zero (of order
greater than 0) structure S%(Z4) =
{Ma, 15 a2 s Mo )

We have the following two interesting proposi-
tions. The first is with regard to the minimum phase
and nonminimum phase properties of £4, while the
second concerns the asymptotic behavior of X4 as
the sampling period T tends to zero (or, equiva-
lently, as a = o).

Observation 3.1. Consider a general continuous-
time system X, and its discrete-time counterpart
4 under the transformation (26). It follows from
4(a) and 4(b) of Theorem 3.1 that

(1) £, has all its invariant zeros inside the unit
circle if and only if . has all its invariant zeros
in the open left-half plane and has no infinite
zeros of order higher than 0;

(2) X4 has invariant zeros on the unit circle if and
only if £; has invariant zeros on the imaginary
axis, and/or X has at least one infinite zero of
order greater than 0;

(3) Z,4 has invariant zeros outside the unit circle if
and only if ¥, has invariant zeros in the open
right-half plane.

Observation 3.2. Consider a general continuous-
time system X_ and its discrete-time counterpart
¥4 under the bilinear transformation (26). Then
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a consequence of Theorem 3.1, 2.4 has the following
asymptotic properties as the sampling period T
tends to zero (but not equal to zero):

(1) Z; has no infinite zeros of order greater
than 0, i.e. no delays from the input to the
output;

(2) Z4 has one invariant zero at z = — 1 with an
appropriate multiplicity structure if £, has any
infinite zeros of order greater than 0; and

(3) The remaining invariant zeros of X4, if any, tend
to the point z = 1. More interestingly, the in-
variant zeros of Z4 corresponding to the stable
invariant zeros of X_. are always stable, and
approach the point z = 1 from inside the unit
circle. Conversely, the invariant zeros of Z, cor-
responding to the unstable invariant zeros of
X, are always unstable, and approach the point
z = 1 from outside the unit circle. Finally, those
associated with the imaginary axis invariant
zeros of Z_ are always mapped onto the unit
circle and move towards to the point z = 1.

3.2. From discrete time to continuous time

The inverse bilinear transformation has found an
important application in the solution of discrete-
time H,, control problems. Namely, one can design
a discrete-time H,. suboptimal controller by (i) first
transforming the discrete-time model to continuous
time, using an inverse bilinear transformation;
(i) designing a continuous-time H, suboptimal
controller for the continuous-time model so
obtained; and then (iii) the discrete-time H
suboptimal controller is given by the bilinear trans-
formation of the obtained continuous-time H.
suboptimal controller. The inverse bilinear trans-
formation has also been applied to solve general
discrete-time Riccati equations (see Chen et al,
1994).

We present in this section a similar result as in
the previous subsection, but for the inverse bilinear
transformation mapping a discrete-time system to a
continuous-time system. We begin with a discrete-
time linear time-invariant system %4 characterized
by

«  [x(k+1)= Ax(k) + Bu(k), (33)
¢ y(k) = Cx(k) + Du(k)

and with corresponding transfer function
Hy(z) = C(zI — A)"'B + D. (36)

The inverse bilinear transformation correspond-
ing to equation (26) replaces z in equation (36) with

_(1+S

(37)

z =
a—s

to obtain the following continuous-time system:

a—+s
a—s

-1
m@:é( 1—£)§+5. (38)
The following lemma is analogous to Lemma 3.1,
and provides a state-space realization of H(s).

Lemma 3.2. A state-space realization of H(s), the
continuous-time counterpart of the discrete-time
system £, of equation (35) under the inverse bi-
linear transformation (37), is given by

- X = Ax + Bu,
DI ’
{y =Cx + Du (39)
where
A=a A+ D YA-D,
B=./2a(A +1)"'B,
(40)

C=./2aC(A+D7",
D=D-C(A+DN'B

Here we clearly assume that the matrix 4 has no
eigenvalues at — 1.

The following theorem is
Theorem 3.1.

analogous to

Theorem 3.2. Consider the discrete-time system 4
of equation (35) characterized by the quadruple
(4, B, C, D) with matrix 4 having no eigenvalues at
—1, and its continuous-time counterpart under the
inverse bilinear transformation (37), ie. £, of
equation (39) characterized by the quadruple
(A, B, C, D) . We have the following properties:

(1) Controllability (stabilizability) and observabil-
ity (detectability) of Z.:

(a) . is controllable (stabilizable) if and only if
£, is controllable (stabilizable).

(b) £.is observable (detectable) if and only if £,
is observable (detectable).

(2) Effects of nonsingular state, output and input
transformations, together with state feedback
and output injection laws:

(a) Forany given nonsingular state, output and
input transformations T, T, and T;, the quad-
ruple (T, 'AT,, T, 'BT,, T, 'CT,, T, ' DT)
is the continuous-time counterpart of the
discrete-time system (T, 'AT,, T; ‘BT,
T, 'CT,, T, 'DT,) under the inverse bi-
linear transformation (37).

(b) For any Fe R™*" with A + BF having no
eigenvalues at —1, define a nonsingular
matrix

=1 —F(I+ A+ BF)"'BeR™™ (41)
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and a constant matrix
Fi=./2aFI + A+ BF) 'er™". (42

Then a discrete-time system Z4p character-
ized by (4 + BF, B, C + DF, D) is mapped
to a continuous-time counterpart £ char-
acterized by (4 + BF,BT;,C + DF,DT))
under the inverse bilinear transformation
(37).

(c) For any K € R"*? with 4 + KC having no
eigenvalues at — 1, define a nonsingular
matrix

T,.=[I-CUI+A+KC) 'Kl 'eRr~?

43)
and a constant matrix
K:=./2a(l + A+ KC) ‘K. (44)

Then a discrete-time system £, character-
ized by (4 + KC, B + KD, C, D) is mapped
to a continuous-time £ g, characterized
by (A + KC,B + KD, T,”'C, T, ' D), under
the inverse bilinear transformation (37).
(3) Invertibility and structural invariant indices
lists #, and 5 of P _ _

(@ {z(ic) = J,(2q), and S3(X) = fa(zd)-~

(b) X, is left (right) invertible if and only if 24 is
left (right) invertible.

(c) £. is invertible (degenerat2) if and only if £,
is invertible (degenerate).

(4) Invariant zeros of £, and their structures con-
sist of the following two parts:

(a) Let the infinite zero structure (of order
greater than 0) of ¥, be given by
S*Ed) =1{q1,92 ---»9m,}- Then s =ais an
invariant zero of £, with multiplicity struc-
ture Sa(ic) = {Qh q2; -+ qmd}-

(b) Let z=a # — 1 be an invariant zero of
$. with multiplicity structure S¥*(£y) =
{Pa1s Ma.25 - s My ). Then s = f=a(a — 1)/
(2 + 1) is an invariant zero of £, with multipli-
city structure SFE) = {51, Mg 20 -+ > Hare )

(5) The infinite zero structure of £ consists of the
following two parts:

(a) Let m, be the number of infinite zeros of £4
of order 0, i.e. my = rank(D), and let m4 be
the total number of infinite zeros of 4 of
order greater than 0. Also, let 7_; be the
geometric multiplicity of the invariant zero
of £, at z = — 1. Then the total number of
infinite zeros of ¥ of order 0, i.e. rank(D), is
equal to my + mg — T_ 1.

(b) Let z=—1 be an invariant zero of
the given discrete-time system £, with
multiplicity structure $* (£ = {n_y.1,n-1.,,

...sn_1. }. Then £, has an infinite zero
(of order greater than 0) structure s*(Ey) =

{n—l.ls H_1,25 ves n—l.t;}'

Finally, we wrap up this section with Fig. 1,
which summarizes in graphical form the structural
mappings associated with the bilinear and inverse
bilinear transformations.

4. PROOF OF MAIN RESULTS

We give in this section a detailed proof of
Theorem 3.1 of the previous section. The derivation
of Theorem 3.2 follows very similar lines to that of
Theorem 3.1 and thus is omitted.

Proof of Theorem 3.1. For the sake of simplicity of
presentation, and without loss of any generality, we
assume that a = 2/ T = 1 throughout the proof.

1(a). Let B be an eigenvalue of A4, i.e. B € A(4). It
is straightforward to verify that § # — 1, provided
A has no eigenvalues at a=1 and ¢« =(§ — 1)/
(B + 1) is an eigenvalue of A, ie. o€ A(A). Next,
consider the matrix pencil

[BI-A B]
=[BI—(I—A)"'I+A4) /20— A)'B]
=(I—A'BU—-A)—(+4) /2B]
=(I—A)[B-DI-(+ 1A /2B]

(B +DI, OJ
0 \/51"l '

Clearly, rank[pI — A B] = rank[af — A B], and
the result 1(a) follows. O

=(I—A) [l — A B][

1(b) is the dual of 1(a) and 2(a) is trivial. O

2(b). It follows from Lemma 3.1 that the discrete-
time counterpart X,; of the bilinear transformation
(with a = 1) of £, characterized by (4 + BF, B,
C + DF, D), is given by (Ay, By, Cr, D) with

Ar=(I+ A+ BF)(I — A— BF)™!,
Br=/2( — A — BF)™!B,
Cr=/2(C + DF)(I — A — BF)™},
Dr=D+(C+DF)I -—A—BF)"'B.

(45)

We first recall from the appendix of Kailath
(1980) the following matrix identities that are fre-
quently used in the derivation of our result:

T+XV)'X =X+ YX) ! (46)
and

[+ X(sI—2) 'Y} ' =1-X(sI-Z+XY) Y.
47
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Fig. 1. Structural mappings of the bilinear and inverse bilinear transformations.

Next, we note that
Ar=(+ A+ BF)(I — A— BF)™*
=(I+A+BF)I—A)"'[I-BFI—-A4)"']!
= [A+ BF(I — A" "][{I — BF(I — A" ]!
=[A +BF(I—A)"'][I + BF(I — A — BF)™ ]
= A+ ABF(I — A — BF)™!
+ BF(I — A '[1 + BF(I — A — BF)™"]
= A+ ABF(I — A — BF)™!
+ BF(I — A" ' — A)(I - A— BF)™!
=A+ ABF(I — A — BF)™!
+ BF(I — A— BF)™!
=A+(A+I)BFI—A—BF)™!
=A+20—-A)'BF(I—A—BF)"' =4 + BF,
By =./20-A—BF)"'B

= /201 —(I— A 'BF1"'(/ — A)"'B

= J2(I — A" 'B[I — F(I — 4 'B]™* = BT,
Cr=/2(C + DF)(I — A— BF)™!

= /2(C + DF)(I — A)"'[1 - BF(I — A)™']"!

2(C+ DF)Y(I— A)"'[I + BF(I — A— BF)™ ]
=./2C(I — A + J2DF(I — A)~*
+./2(C +DF)(I — A" 'BF(I — A — BF)™!
= C + /2[DF(I — A)"\(I — A — BF)
+(C + DFYI — A)"'BF](I — A — BF)™*
=C +./2[DF —DF(I—A)"'BF
+C(I—A)"'BF
+DF(I—A)"'BF](I-A4 — BF)™*
=C+[D+C(I—-A)"'Bl/2F(I—A—BF)™!
=C + DF,
Dr=D +(C+DF)(I —A— BF)"'B
=D +(C+DF)[I—(—A) 'BF]"'(I—A)"'B
=D +(C+DF)(I—A) *B[I-F( —A)"'B]™!
={D[I—-F(I— A)"'B] +(C+DF)(I - A 'B}T;
={D—-DF(I—A)'B+C(I—A4)'B
+ DF(I — A)"'B}T; = DT,
which completes the proof of 2(b). O
2(c). Dual of 2(b). |
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With the benefit of properties of 2(a)-2(c), the
remainder of the proof is considerably simplified. It
is well known that the structural invariant indices
lists of Morse, which correspond precisely to the
structures of finite and infinite zeros as well as
invertibility, are invariant under nonsingular state,
output and input transformations, state feedback
laws and output injections. We can thus apply
appropriate nonsingular state, output and input
transformations, as well as state feedback and out-
put injection, to . and so obtain a new system, say
XX If this new system has X} as its discrete-time
counterpart under bilinear transformation, then
from properties 2(a}-2(c), it follows that ¥ and
X4 have the same structural invariant properties. It
is therefore sufficient for the remainder of the proof
that we show 3(a)-5(b) are properties of X¥.

Let us first apply nonsingular state, output and
input transformations I'y, I'; and 175 to Z, such that
the resulting system is in the form of the special
coordinate basis as in Theorem 2.1, or, equiva-
lently, the compact form in equations (14)-16). We
will assume that A,, is already in the Jordan form of
equations (17) and (18), and that matrices A4, Ly,
B,o, Egs Cous Eco and L, are partitioned as follows:

A:a 0 Zd
A = s La = s
" [ 0 A:‘a] ‘ [L;"J
B _ [ Zo} L, - [Lﬂ 48)
a0 B:o H a IJ‘I*b H

Eda = [Ecaia]a COa = [C‘(I)a Cg‘ﬂ]?
E,=[E, E%] (49)

where matrix A4, has all its eigenvalues ata = 1, i.e.

0 I,,x - 0 0 ]

0 0 - 0 0
Asa=1+: : Lo E (50)
0 0 o 0 Jy s
o 0o - 0 0 |

and A¥ contains the remaining invariant zeros of
X.. Furthermore, we assume that the pair (A, B,)
is in the Brunovsky canonical form of equation (21),
as is the pair (4;,, Cy). Next, define a state feedback
gain matrix

?)a - Cg Cga COb COc COd
F = - Fi Eza - Cg E:i':l Edb Edc
E¢, EY¥ 0 E., O

and an output injection gain matrix
-

B — B L2, —B% L%
B, L% L%
K=-TI, By Lpa Ly, I~0—1. (52)
Bc() Lcd ch
L Bdo de 0 ]

Here, E_. is chosen such that all #’s in equation (21)
are cleaned out, ie. AX:= A, — B.E is in Jordan
form with all diagonal elements equal to 0. Sim-
ilarly, Ly, is chosen such that (A%) := (4, — Ly,Cy)
is in Jordan form with all diagonal elements equal
to 0. Likewise, E;; and Ly are chosen such that
A¥y:= Ay — L3,Cy — ByE,, is in Jordan form with all
diagonal elements equal to 0, which in turn implies

Coll — AL)” lBa = Imd- (53)

The matrices B, B3, C{ and C5 are chosen in
conformity with 45, of equation (50) as follows:

(0 0 - 0]
0 1 - 0
Bu=(B Bii=(: . 0 i
0 0 0
0
00 -« 00
¢l [t o - 00
C*.= = . 4
P E
00 « 10

This can always be done, as a consequence of the
assumption that the matrix A has no eigenvalues
at a =1, which implies that the invariant zero
at a=1 of X, is completely controllable and
observable.

Finally, we obtain a continuous-time system
* characterized by the quadruple (A*, B*, C*, D*),
where

A* =P 'I'; (A + BF + KC + KDF)[',P

[4* 0 0 0 0
0 A% O 0 0
= 0 4% 0 0 , (55)

0
0 0 0 A% B;Cq
0 0 0

0 0 0
0 0 0
B*=P 'T]'B+KD)T;=|0 0 B.| (56)
0 B, O
(B3 0 0
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and
0 0 0 0
C*=I,(C+DF)I,P=|0 0 0 C,, 0 |,
0 G 0
I,, 00
D*=T,'DIi=| 0 0 0] (57)
0 00

where P is a permutation matrix that transforms
Aj, from its original position, i.e. block (1, 1), to
block (5, 5) in equation (55).

Next, define a subsystem (A, By, C,, D,) with

4w Al B,C

ST BIC, A%+ BACE |
0 B,

B, .= 58
[B‘s OJ 9

10 {Im O
Cs-_ [Cd 0 :|’ DS'_ |: 0 O:| (59)

It is straightforward to verify that with the choice of
B® and C* as in equation (54), A, has no eigenvalues
at a = 1. Hence A* has no eigenvalues at a =1
either, since both A and A% have all eigenvalues at
0, and A}, contains only the invariant zeros of
Z. which are not equal to a = 1. Applying the
bilinear transformation (26) to £¥, it follows from
Lemma 3.1 that we obtain a discrete-time system
T¥, characterized by (4*, B*, C*, D*), with

I+ A% — A%)! 0
. 0 (I + AR — A
0 0
0 0
0 0
0 0
B = /2 NG
I (I—4%"'B (@1
(I - A)"'B, 0
and
0 0 0CU-A)"
*
¢ _ﬁ[o CGU—4)10 0 :I
=y _[Ds+ CI—4)7'B, O
*= S S . 62
e o] )

Our next task is to find appropriate transforma-
tions, state feedback, and output injection laws, so
as to transform the above system into the form of
the special coordinate basis displaying the proper-
ties 3(a)-5(b).

To simplify the presentation, we first focus on the
subsystem (4, B;, C,, D,) with

L= (I + A)I — A4)™ ",
B.:=/2(1 - 4)7'B,

Co=/2C,(I - 4)7,
Dy:=D, + C{I — A)"'B,

(63)
and

(64)

Using equation (53) in conjunction with Appendix
A .22 of Kailath (1980), it is straightforward to com-
pute

- X
A, = _ _
[2(1 — Az — B*C)T'B{Cy(I — A7) !
2(I — A7)~ 'B,CI(I — Az, — B*’C) ™! (65)
(U + Al + B°Co)(I — Al — BC) ™! [
where
=(I 4+ AT — A3~ +2(I — A%) " 'B,CY
x(I — A%, — B'CY)7'BiC,(I — A) ™,
= (I — A%)™'B,Ci(I — Al; — B°C*)™'B;
B, =./2
s J[ (I—A"aa—B“C“)“B’é

(I— A%) " 'Ba[I + Ci(I — A5, — B°C)"'Bj (66)
(I — A%, — B°C*)™'B;

0 0
0 0
* -1 ; (60)
(I + ACC) (I - Acc) 0
0 I+ A) + A)~!

C. =
J2 i - Aﬁ., - B“C")“B" Cd(I — A"
[+ Ci( — A% — B°C*) ™ 'B{]1Ci(I — Ak~

2 — Al — B°C%)? 67)
(I — Ai, — B°C)™!
and
=~ [I+C5( — 45, — B°C*) ™' B;
* (I — A%, — B°C*) " 'Bj

va A% __ paay— lBa
2({ Aaaa B C l _11 b (68)
I+ C{(I — Ag — B*C*)™ ' B}
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Noting the structure of A, in equation (50), and the B.=B,+R.,D, =
structures of B” and C* in equation (54), we have

0 0
_ __ Reray—1 2
(= Aww = B°C) V2 [(I—Az.,—B“c")—le (- 4z, —B“C“)—IB‘;]
0 -1 .- 0 0 p
Ip2y 0 0 0 an
=l S : . (69) C.. = C.+ D.F,
0 0 - 0 ~! 0 Ci(I — A% — B°C*)"!
_ — ) 2 = Agg — )
0 0 Ina.r.-‘l 0 f I:O Czlz(I _ AZa _ Baca)—l:l
Ci(I — A,, — B°C*" B =0, o
. - (70) Next, repartition B* and C? of equation (54) as
2l — Ay — B°C*)" "B =0 follows:
and
CI — A,, — B°CH " 'B* = 0 0 (71) B*=[0 B,] d C*= 0 78
g aa - —0 _ fta . - a an - éa E] ( )
Thus, B,, C, and D, are reduced to the following
forms:
5_ 7 0 (1= AZ) B+ CL — AL, —B°CY BT )
*TVIlu 48 —BC) By (I — Al —B*C*)™'BS :
0 C5(I — A%, — BCY)~!
C=v2 [1 +CU - A%, — BCY T BIC — %) G — A —poenyt ]
and
~ I+ C5(I — A% — B*C*)™'B; 0
= 4
D, |: 0 I+ C{(I — A%, — B°C*)~ ' B} 74
Next, define where both B, and C, are of maximal rank. We thus
0 0 obtain
Fo= 7 7
& ﬁ[—cd(I—Azarl 0] P [ 0 .
and * 0 (I + Aza +Baca)(I_AZa —‘Baca)—1 ’

. 0 —(—-AX)"'B
Ks:=\/i[0 ( 0‘”’ "} CI I 0
o O (I_Aaa_EaCa)_IBu ’
from which it follows that

_ . o e and
A, = A, + BF, + K.C, + K,DF,
o~ 6 - \/’2' O 0
_[A% 0 s 0 CI—Au—B.CH 'Y
0 (I+A%+BCHY —A,—-BCcy ! |
B 5 __l“j _ 1m0+m,,—ta 0
where se = Ds = 0 ol

A%k . __ * 4% 1
Al = + AI)I — AZ) Using equations (50) and (69), straightforward ma-
— 21 — A%)"'B,CyI — AX)™Y, (T7) nipulations yield

(r o0 -2 ]
S °

{I + AZa + Eaéa)(l - AZa - ’Ba(ﬂjma)—1 =
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0 - 0
(I — A2 —B.C) 'B,=—|: ~
0 1
0 0]
and
0 1 00
Cal —A% —BC) t=~|: + "ot 1|
00 - 01

Moreover, it can be readily verified that each sub-
system (A, B,;, C). i =1, ..., 1, with

~ 0 -2
Aai - _In.,‘i + I: _21'.“_1 0 ]’

[(1 + A%)(I — A%)" 0 0 0 0
0 (I + A% — A%)™' 0 0 0
=|0 0 I+ AT —A%"1 0 0 (82)
0 0 0 A% 0
0 0 0 0 A4

- -1 ~
Bai = [ 0 ], Cai == [0 —1]’

has the following properties:
CoBai= CodBu= - = Cof A) 2B, =0
and
Cal Ay~ 'B,; # 0.

It follows from Theorem 2.1 that there exist non-
singular transformations I',,, I, and T, such that

Zd = r*;l[([ + A:a + Eaéa)(l - AZa - Eaéu)_ 1] l—‘sa

IL,-, - 0 0
* * .. 0 0
={: : U B (79)
0 0 el ¥ I”“a__1
LO 0 eee ¥ * ]
gd = F;l [(I - Aga - B'a(ja)_ IEJ 1—‘ia
-O 0-
1 - 0
=|: . (80)
0 0
[0 1]

and

éd = F‘;]l [éa(l - AZG - Eaéa)_ ljrsa

(81)

Now, let us return to X} characterized by
(A*, B*, C*, D*) as in equations (60)—(62). Using
the properties of the subsystem (4, B,, C,, D,) just
derived, we are in a position to define appropriate
state feedback and output injection gain matrices,
say F* and K*, together with nonsingular state,
output and input transformations I"'*, I'* and ¥,
such that

Afcs:= ([~ (A* + B*F* + K*C* + R*D*F)I'}

with A** given by equation (77), and

BEcw:=(TH™'(B* + R*D")Tt

[0 o 0 ]
0 0 0
=0 0 (I-A%»"'B.{, (83
0 0 0
[0 B, 0 |
* . Ty~ 1(C* 3L ALIY B
SCB'_(fo) (C +D F )rs
0 0 0 0 0
=10 GU-A4%"t 0 0 0 (84)
0 0 0 0 C,
and
Im0+m,,—t,, 0 0
Dtp:= @ 'D*f*=| 0 0 0| (85
0 0 0

Clearly, %5 characterized by (A%, B, Cip, Dis)
has the same structural invariant indices lists as
does X%, which in turn has the same structural
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invariant indices lists as X;. Most importantly,
however, X& is in the form of the special coordi-
nate basis, and we are now ready to prove proper-
ties 3(a)-5(b) of the theorem.

3(a). First, we note that #(Zy) = 5, (Zs)
From equations (82) to (85) and the properties of
the special coordinate basis, we know that #,(Z&s)
is given by the controllability index of the pair

((I + A% — A%, — A% B}
or

(I + AN — A%, B.}.

It is straightforward to verify that the controllabil-
ity index of {(I + AX)(I — A¥)™ !, B.} is the same as
that of (4%, B.), and thus I,(Z,) = [,(Z,). Likewise,
the proof that I3(Z,) = I3(Z.) follows along similar
lines. O

3(b)-3(c). Follow directly from 3(a). O

4(a). It follows from the properties of the special
coordinate basis that the invariant zero structure of
ESCB, or equivalently X, is given by the eigenvalues
of A** and (I + AX)(I — A%)” I together with
their associated Jordan blocks. Property 4(a) cor-
responds with the eigenvalues of A%* of equation
(77), together with their associated Jordan blocks.
First, we note that for any z e C,

2l — A** =[(z — DI — (z + 1) A%,

+ 201 — A%) " 'B,C U — AF)™'. (86)
It can be shown that
(z— DI —(z+ 1)AY +2( — AY) " 'B,C,
= Blockdiag{Q,(2), ..., Qi(2)},
where Q;(z) e C™*" is given by
z4+1 —(z+1) 0 0
2 z—1 —(z-+1) 0
2 0 z—1 e 0
0@ =| : S
0 0 z—1
L 2 0 0 0
fori =1, ..., m,. It follows from (86) that the eigen-

value of A** is the scalar z that causes the rank
of Block diag{Q;(z), ..., Qnm,(2)} to drop below
ng = Y%, q;- Using the particular form of Q;(z), it is
clear that the only such scalar z ¢ C which causes
Qi(z) to drop rank is z= — 1. Moreover,
rank{Q;(— 1)} =n,, — 1, i.e. Qi(— 1) has only one

——(z'+1)

linearly independent eigenvector. Hence, z = — 1
is the eigenvalue of A%*, or equivalently the
invariant zero of Z4, with multiplicity struc-
ture  S*(Zg) = {41, ..., Gm,} = S%H(Z.), thereby
proving 4(a). O

4(b). This part of the infinite zero structure
corresponds to the invariant zeros of the matrix
(I + AX)(I — A%)"'. With A% in Jordan form,
Property 4(b) follows by straightforward
manipulations. O

5(a) follows directly from equatlon (85) and 5(b)
follows from the structure of (4, B,, C,) in equa-
tion (79) to equation (81), in conjunction with
Property 2 of the special coordinate basis. O

This concludes the proof of Theorem 3.1.

5 CONCLUSIONS

We have presented in this paper a comprehensive
study of the structural mappings, and invertibility
properties, associated with the bilinear transforma-
tion of general linear time-invariant multivariable
systems. It has been demonstrated that, in general,
the structural invariant indices lists .#, and .#, of
Morse (1973) are changed under bilinear trans-
formation, while the structural invariant indices
lists £, and .#; of Morse are preserved. Finally, it is
worth pointing out that the Jordan canonical form,
the Brunovsky canonical form, and the Special
Coordinate Basis of Sannuti and Saberi, are truly
remarkable tools that can be utilized to character-
ize all structural properties of interest for general
linear time-invariant multivariable systems, as
demonstrated in the proof of the main results. Fu-
ture research will investigate the applicability of
these same tools to the analysis of the structural

87)

z—1

properties of sampled-data systems generated by
zero-order hold (ZOH) sampling.
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