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Abstract

A noniterative method for the computation of infimum for a class of continuous-time H., optimal control problem
is considered in this paper. The problem formulation is fairly general and does not place any restrictions on any direct
feedthrough terms of the given systems. The method is applicable to systems where (i) the transfer function from the
disturbance input to the measurement output is free of imaginary axis invariant zeros and left invertible, and (ii) the
transfer function from the control input to the controlled output of the given system is free of imaginary axis invariant
zeros and right invertible. The result presented in this paper is a continuation of the previous work of the author and
his co-workers (Chen et al., 1992), in which the direct feedthrough term from the disturbance input to the measurement
output of the given system are required to be zero. © 1997 Elsevier Science B.V.
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1. Introduction and problem statement

Since the original formulation of the H., optimal control problem in [18], a great deal of work has been
done on the solution of this problem (see, for example, [1,6-8, 10, 11, 16]). The solution to the H,, optimal
control problem can be obtained from purely time-domain methods based on the y-dependent algebraic Riccati
equations (AREs) or linear matrix inequalities (LMIs). Typically in ARE or LMI approaches to H,, optimal
control problems, the achieved design solution is suboptimal in the sense that the Ho,-norm of the closed-loop
system transfer function from the disturbance input to the controlled output is less than a prescribed positive
scalar, say 7.

In this paper, we address the problem of computing infimum in continuous-time H,, optimal control. In
principle, the ARE approach (mainly for the regular case) or LMI approach (mainly for the singular case)
to this problem provides an iterative scheme of approximating the infimum (denoted here by y*) of the H.-
norm of the closed-loop transfer function. For example, utilizing the results of [16], an iterative procedure for
approximating y* for the general singular case would proceed as follows: one starts with a y >0 and determines
whether 7> 7y* by first performing a loop shifting transformation to get rid of the direct feedthrough term from
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the disturbance input to the controlled output, and then solves two linear matrix inequalities and checks the
positive semi-definiteness and stabilizing properties of these solutions. In the case where such positive semi-
definite solutions exist and satisfy a coupling condition, we have y>y* and one repeats the above steps using
a smaller value of y. Obviously, this search procedure is exhaustive and can be very costly. More significantly,
as 7 gets close to y*, numerical solutions for these loop shifting transformation and LMIs can become highly
sensitive and ill-conditioned. Thus, it might be difficult to obtain a meaningful approximation of 7* from the
above searching procedure or other iterative methods especially for the case when the direct feedthrough term
from the disturbance input to the controlled output is nonzero. So in general the above iterative procedure
should not be used to determine y*.

We propose a noniterative method for computing this y* for a class of continuous-time H,, optimal con-
trol problem in which the direct feedthrough term from the disturbance input to the controlled output of
the given system is not necessarily zero, but the transfer function from the disturbance to the measure-
ment output is left invertible, and the transfer function from the control input to the controlled output is
right invertible. The work of this paper can be regarded as a continuation of our earlier work [3, 4] in
which the direct feedthrough term from the disturbance input to the controlled output is required to be
Zero.

We consider in this paper the following standard linear time-invariant discrete time system 2 characterized
by:

X =Ax + Bu + Ew,

y=Cix + Dipw, (1.1)
z=Cox + Dyju + Dnyw,

where x € R” is the state, u € R™ is the control input, y € R’ is the measurement, w € R? is the unknown
disturbance and z € R? is the output to be controlled. 4, B, E, Cy, D3, C2, Dy; and D,; are constant matrices
of appropriate dimension. Without loss of generality but for simplicity of presentation, we assume throughout
this paper that matrices [C; D3] and [B’ Dj;] are of maximal rank. This is because if these two matrices
are not of maximal rank, one can simply drop the redundant control inputs and measurement outputs to make
them maximal rank. The H,, optimal control problem is to find an internally stabilizing proper controller such
that the H.,-norm of the overall closed-loop system is minimized. To be more specific, we will investigate
dynamic feedback laws of the form:

x.=Kx.+ Ly,
Zc:{c c y

(1.2)
u=Mx;+ Ny.

We will say that the controller X of (1.2) is internally stabilizing when applied to the system X, if the
following matrix is asymptotically stable:

B [A +BNC,  BM 13

L Vo) K

i.e., all its eigenvalues lie in the open left-half complex plane. Denote by G the corresponding closed-loop
transfer matrix. Then the H., norm of the transfer matrix G is given by

”Gclnoo = sup Jmax[Gcl(jw)]
[0,00)

we
where 6max[-] denotes the largest singular value. The infimum 7* can now be formally defined as
9* := inf{||Gy|loo | 2. internally stabilizes X}. (1.4)

Given a y>7y*, the H,, optimal (or more precisely suboptimal) control problem is to find an internally
stabilizing controller Z. such that the resulting ||Gall< <y. Also, Z; is said to be a y suboptimal controller
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for X if the corresponding ||Gaifloc <7. The main purpose of this paper is to present a noniterative method
that computes exactly this y* for ¥ under the following assumptions:

(A1) (4, B) is stabilizable;

(A2) (4,B,Cy,Dyy) is free of imaginary axis invariant zeros;

(A3) (4,B,C2,Dqy) is right invertible;

(A4) (4,Cy) is detectable;

(AS5) (4,E,Cy,Dy3) is free of imaginary axis invariant zeros;

(A6) (4,E,C1,D2) is left invertible.

Here we should point out that Assumptions (Al) and (A4) are necessary for any control problems, while
(A2), (AS5), (A3) and (A6) are not essential and can be relaxed. For example, Assumptions (A2) and (A5)
can be easily removed using the technique reported in [2], while Assumptions (A3) and (A6) can be replaced
by certain weaker geometric conditions as in [5]. We would keep these assumptions here in this paper merely
to make the presentation of our results simpler. Also, note that (A3) and (A6) also imply that matrices
[C; D3] and [E’ Dy, ] are of maximal rank.

The paper is organized as follows: In Section 2, we recall the special coordinate basis of linear systems,
which is instrumental to the development and derivation of the results in this paper. Section 3 gives the
main results, namely, the noniterative algorithms for computation of y* for three common cases, i.e., the full
information, the output feedback and the state feedback cases. Finally, the concluding remarks are drawn in
Section 4.

Throughout this paper, X’ denotes the transpose of matrix 4. / denotes an identity matrix with appropriate
dimension. R is the set of real numbers. A(X') is the set of eigenvalues of a real square matrix X. Apax(X)
denotes the maximum eigenvalue of X where A(X)CR, and finally gmax(X) denotes the maximum singular
value of matrix X.

2. Background materials

In this section, we should recall a theorem of the special coordinate basis of linear systems from [14, 15],
which will be instrumental to the main results developed in the next sections. Consider the system described
by

X =Ax + Bu+ Ew,

(2.1)
z = Cyx 4+ Dyyu + Dyyw.

It can be easily shown that using singular value decomposition one can always find an orthogonal transfor-
mation U and a nonsingular matrix ¥ that puts the direct feedthrough matrix D,; into the following form:

5, 0
UDy WV = s 2.2
21 [0 0} (2.2)

where 7 is the rank of D;;. Without loss of generality, one can assume that the matrix D;; in Eq. (2.1) has
the form as shown in Eq. (2.2). Thus the system in (2.1) can be rewritten as

i=Ax+[Bo B1] (Z") + Ew,
1

2 Coo I, 0} (u Do
S x+ + w

(2.3)
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where By, By, Ca9, Ca1, D220 and Dy, ) are the matrices of appropriate dimensions. Note that the inputs ug
and u;, and the outputs zy and z, are those of the transformed system. Namely,

qu(uo) and (ZO> =Uz.
U Z]

Also, note that the H-norm of the system transfer function from w to z is unchanged when we apply an
orthogonal transformation on the output z, and under any nonsingular transformations on the states and control
inputs. We have the following theorem.

Theorem 2.1. Consider the linear system as in (2.1). Assume that (A,B, C2,Dy\) is right invertibie with no
imaginary axis invariant zeros. Then, there exist nonsingular transformations I;, I} and I, such that

Xy
o - L 0
Uy *a 2o r 2o
- r U ) = F N = s 24
U
Xd
and
4, 0 0 LG Ef
0 A4 0 L.C E;
74 - BoCoo); = + ‘ =l L'E=| "1, (2.5)
B.EL BE, Ae LGy E,
BdE;_,, BdEd_ B4E,, Ay E;
B, 0 0
B, 0 0 Do |
L'[By B =] ™ ., Dp= o, 2.6
s [Bo Bi] B 0 B. 22 Das | (2.6)
Bos By 0
Cpol| .. |Ca Cu Coc Cu Dol [, 0 o0 @7
Ca 0 0 0 I,Cil 0 0 0 '

where the pair (Ac, B.) is completely controllable and the subsystem (Agq,Ba,Cy) is invertible and free of
any invariant zeros. Sub-matrix Cy4 can be arranged as C;=[0 I]. Also, A(A},) and }(AL) are, respectively,
the sets of unstable and stable invariant zeros of (A,B, Cy,Da1). Moreover, the pair (A,B) is stabilizable if
and only if the pair (A},,[Bg,, L},1) is controllable, where also, (4,B,C,,Dz)) is invertible if and only if x.
is nonexistent. For future use, we define an integer scalar n} .= dim(x}).

Proof. The above theorem is a special case of the results reported in [15, 14]. The realization of this special
coordinate basis can be found in the toolbox of [12]. O

3. Main results

Now, we are ready to present our main results, i.e., the noniterative algorithms for computing infimum, y*.
This section is naturally divided into two subsections. The first subsection deals with the full information case,
while the second subsection deals with the general output feedback case. The full state feedback problem is
treated as a special case in a remark.
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3.1. The full information case

We assume that y =[x’ w']’ and the conditions (A1)—(A3) are satisfied. Without loss of generality but for
simplicity of presentation of our results, we also assume that D, is in the form of (2.2). In what follows,
we state a step-by-step algorithm for the computation of infimum y* for the full information problem.

Step 1: Transform the following system:

x=Ax + Bu + Ew,

3.1)
zZ= ng + D21u + D22W,
into the special coordinate basis as in Section 2 and Theorem 2.1.
Step 2: Solve the following two continuous-time y independent algebraic Lyapunov equations:
AeS + S(A3,) =Bio(Bi,Y + Loy I (Lay I 'Y (32)
AT+ T(AL,Y =(Ef = B{,Dno — LI, ' D XEY — BuDno — Lyl ' Dot Y (3.3)

for positive definite solution S and positive semi-definite solution 7. The existences of such solutions follows
from [13] because of the fact that (47, [Bg,, L},]) is completely controllable and 47, is an anti-stable matrix.
Step 3: Define a constant matrix,

Dy Dy 0 }

M= -1
0 IS

(3.4)

The infimum, y*, is then given by
Y =V Amax(M). (3.5)

Proof of the algorithm. Without loss of generality, but for the simplicity of presentation, we will assume
that the given system of (3.1) is already in the form of the special coordinate basis as in Theorem 2.1. Let
us first apply a pre-state feedback law

+
+ — *a
Uy COa COa C()c C()d . Ug
u, |=—|E}, Ej Es O : + | va (3.6)
<
e EL, E, 0 0 N ve

to the system in (3.1). Also, note that the sub-matrix C; can be arranged as C; =[0 /]. We further partition
sub-matrices Agq, By, Boa and E,, and x; in conformity with C,; as follows:
0 x L ’
, oxa= . (3.7)
Xd1

Ay = [Addoo Add()l], B, = l:BdOjl’ Boy = l:Bodo}, Ey— {Edo
Hence, the system of (3.1) with the pre-state feedback law of (3.6) can be re-written as

Aaaro  Aaan B Boar Eqn

4L 0 0 0 L B, 0 0 Ef
0 45, 0 0 L By, 0 0 E;
x=1] 0 0 Aee 0 Leg tx+ | Bo 0 B.lv+1| E;. |w,
0 0 0 Ay Ao Boao Bao O Ego (3.8)
L0 0 0 Ausno  Aaan Bos1 Bar O Eq
[0 0 0 0 0 I, 0 0 Dao
z= x4+ v+ w
6 0 0 0 I, 0 0 O D1
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Next, we partitioned the above system (3.8) as

) v

i =Abxr +[BL LT, (x:l) +Eiw, (3.9)
i A4, 0 0 L, /x 0 0 By, E;
‘J'Cc _ 0 A, 0 Loy X N 0 B, tg N By E. vo ’ (3.10)
x40 0 0  Aggoo Agao1 | | xa0 By O ¢ Bogo Eg |\ W
Xq| 0 0 Agsio Aaan | \xa1 By 0O Boa1 En

Zy 0 + Ir 0 Vg Dzz’o
= “+ . .
(Zd> [OJ Ya 0 L) \xa * D v @10

It is then simple to verify using the properties of the special coordinate basis that the quadruple

A, 0 0 I 0 0
0 A, 0 Ley 0 B.
0 0 Ao Aso| |Bao
0 0  Agaio  Aaan By 0

,[0 0 0 71,[0 0] (3.12)

is right invertible and of minimum phase. Thus, there exists a feedback law

v - X,
( d> =F|° (3.13)
U¢ Xd0

that solves the almost disturbance decoupling problem for the system in (3.10) with an auxiliary controlled

output x4;. Following a similar procedure as in [17], where its author had proved the case when Dy, =0, one

can show that the following two statements are equivalent:

1. There exists a static feedback law u=Fx + Fw to the system (3.1) such that the resulting closed-loop
system is internally stable and the H..-norm of the closed-loop transfer function from w to z is less than 7.

2. Db, 1Dy <y*1 and there exists a static feedback law & =F1% 4+ F2W to the following auxiliary system:

¥=AL%+ B, LY+ Ew,

s [o)i L [F o, [Peo] (3.14)
= w
z 0 X 0o I, ]

such that the resulting closed-loop system is internally stable and the H.,-norm of the closed-loop transfer
function from W to Z is less than y.
By applying a pre-disturbance feedback law

Do

- Wt d (3.15)
I;'Dn,y

1N
I
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to the auxiliary system (3.14), one can show that the second statement above is equivalent to the following
two statements:
< 1. Djy Dyyy <y*I and there exists a static feedback law §=Fi% + F2W to the following auxiliary system:

¥=ALx+[BS, L} 16+ (Ef — Bf Dao — LI Doy )W,

i [0}~ [1, 0]~ 3 (3.16)
=1, i+ U+ 0w

such that the resulting closed-loop system is internally stable and the H.,-norm of the closed-loop transfer
function from W to Z is less than y.
2. Dby Dapy <y*I and there exists a positive definite solution B to the following Riccati equation:

0= (43, Bt + Pt 43, — BEIBG(BS,Y + LI, (Ll 1B,
+BHEF — BE,Dyno ~ LTy ' Do W (EF — By, Dao — LI Doy Y B Y2

Finally, following the result of [3], one can show that y* as given in (3.5) is indeed the infimum. This
completes the proof of the algorithm. [J

3.2. The output feedback case

This subsection deals with the general measurement feedback problem. Again, we consider the given system
of (1.1) and assume that (Al)—(A6) are satisfied. As in the previous subsection, we will first give a step-by-
step noniterative algorithm that calculates the infimum, y*, and leave detailed justification in the proof of the
algorithm.

Step A: Define an auxiliary full information problem for

X=Ax 4+ Bu + Ew,

_ 0 + I
y_ I X O w,
z=Cyx + Dyyu + Dpw

and perform Steps 1 to 2 of the algorithm given in the previous subsection. For future use and in order
to avoid any notation confusion, we rename the state transformation of the special coordinate basis for this
subsystem as I;p and matrix Dy as Dy 1p. Also, rename § of (3.2) and T of (3.3) as Sp and Tp, respectively.
Moreover, we denote n, the number of the unstable invariant zeros of (4, B, C2,Dy1).

Step B: Define another auxiliary full information problem for

x=A'x + Clu + Cyw,

()

z =E’x + Dllzu + Dézw

and again perform Steps 1 to 2 of the algorithm given in Section 3.1 one more time but for this auxiliary.
We also rename the state transformation of the special coordinate basis for this case as Iyq, matrix Dy as
Dy, and S of (3.2) and T of (3.3) as Sq and T, respectively. Also, denote 7, the number of the unstable
invariant zeros of (4, E, Cy,Dy2).
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Step C: Partition

-1 ~1y/ r *
e (T ) =1 e (3.17)

where I' is a njp x nj, matrix, and define a constant matrix

Déz,lpDzz,IP 0 0 0
0 Sy L+ Irss'r'syt —rss! 0
M= o -1 Q/ ~1 ’ 81 (3.18)
0 ~ToS5'I'S; ToSq 0
0 0 0 Dby 1oD22.10

Step D: The infimum y* is then given by

7" =V Amax(M). (3.19)

Proof of the algorithm. Once the result for the full information case is established, the proof of this algorithm
follows along the similar lines of reasoning as in [4]. [

The following remark is regarding with the state feedback case.

Remark 3.1. It is simple to verify that for the state feedback case, the infimum y* is given by

Y=V Amax(M), (3.20)

where

(3.21)

D,Dn, 0

0 TSy |
Obviously, the infimum under the full state feedback is in general different from that under the full information
feedback. They are identical, however, when the direct feedthrough term Dy, =0. This is a well-known fact
in H., literature. Of course, this can be easily seen from (3.4) and (3.21) as well.

We illustrate the above algorithm in the following example.

Example. Consider a system characterized by

30 0 1 1 0 0 4

1 1 0 1 0 0 1 3
A: s B= s E"—_ 5

11 0 0 01 0 2

0 0 1 O 0 0 O 1
Ci=[1 -2 3 -4}, D;=0

and

|10 00 b |1 00 oo _ |2
“lo o o 1] 1700 0 ol 27|

It is simple to verify that the subsystem (4, B,C>,D;;) is controllable and right invertible with one unstable
invariant zero at 2 and one infinite zero of order 2, and the subsystem (4,E,C;,D;) is observable and
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invertible with two unstable invariant zeros at 0.51+70.5916 and one infinite zero of order 2. Thus, Assumptions
(A1)—(A6) are satisfied. Following Step A of the algorithm for the output feedback case, we obtain
Le=IL, Twp=1, Afp=2  Bip=1 Li,=1,
El =4, Dyop=2, Dyip=1
and

nh=1, S=05 Tp=025.

Here we append a subscript p to all submatrices associated with the corresponding special coordinate basis.
Next, following Step B of the algorithm, we have

05723515 0 01 01

- [ _ | -03012376 04866643 02 07 .y

Q=5 1QT ) 49530040 03244428 03 —13| @T©

0.1204950 08111071 —04 L1
. _ [08842105 05101735 . [ 12230247 05241535
aQ™ 109753892  0.1157895 |’ Q7 11679942  0.9408842 |’
—0.6289841

Lt = . Bt =0, D=0, =[21

adQ [ 1.3756377} 0 =0 zoe =0 Duig=[21]
and

_ [0.5274947 0.5264991 _ [0.5810175 09950273

Q= 105264991 3.7365053 | Q7 10.9950273 3.2589825 |

Again, we append here a subscript Q to all submatrices associated with the corresponding special coordinate
basis. Finally, following Steps C and D, we obtain

I'=[-1.2230247 1.1679942],

0 0 0
9.7252904 3.0610640 —0.7439148
2.0766328 0.9724337 0.1292764
1.2428740 1.1820112 0.7056473
0 0 0

il
o o o o —
w o oo o

and
y* =3.2088448.

We would like to point out here that we have problems in obtaining this infimum using other approaches
such as the perturbation approach of [19].

4. Concluding remarks

We have presented in this paper a noniterative method for the computation of infimum, y*, for a class
of continuous-time H,, optimization problem in which the direct feedthrough term from the disturbance
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input to the controlled output of the given system is nonzero. For the general output feedback problem that
satisfies Assumptions (A1)—(A6), our method involves only transforming two subsystems into the special
coordinate basis and solving two pairs of y-independent Lyapunov equations. As we had mentioned in the
introduction, some of the assumptions are not essential and can easily be removed or replaced by certain weaker
conditions.

Finally, as suggested by one of the reviewers, it is interesting to compare our result with that of [9] in which
the infimum was explicitly obtained for a special class of systems using the normalized coprime factorization
approach. Following some simple manipulations, one can show that the class of systems considered in [9]
can be re-expressed in the following state space form:

%=Ax + Bu — HR?w,

y=Cx + Du+ R"w,
4.1)
0 I 0

z= C x4+ D u+ Rl/z

w,
where R=1 + DD', H=—(ZC' + BD')R™! and Z is the unique, positive definite solution of the following
Riccati equation:

(A—BD'R™'C)Z + Z(A — BD'R™'CY — ZC'R™'CZ + B(I - D'R™'D)B' =0. (4.2)

It is simple to verify that the above system (4.1) does not satisfy Assumptions (Al1)—(A6) of ours. Thus, the
class of system considered in [9] is different from that considered in this paper. This means that there are
rooms for improving or extending the results of [9] and ours.
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