IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, NO. 11, NOVEMBER 1996 941

s8 s7 s6 s5 s4 s3 s2 s1 s0

v Y
E m a0

Fig. 2. A 9-b constant time detector.

detector

then we can safely initialize A to 0. By the time n/2 clock
cycles have passed, A will contain the correct prefix-and of

S.

IV. DISCUSSION

The circuits discussed in this paper create an output pulse & clock
pulses after initialization. If we need an output pulse after every k
clock pulses, then the counter should be initialized to count to & — 1,
and the output pulse should be used to reinitialize the counter.

A variation of the frequency divider is a counter that produces a
fixed sequence of output pulses. Instead of producing an output every
k cycles, the counter is required to cycle through m different output
values (Ko, K1,--+, Kn—1). A small modification to the frequency
divider in Fig. 1 allows it to perform this function. The values

(Ko, K1, -+, K1) are stored in a memory. Initially, (C,S) =
(0, o). Whenever the ith output pulse is generated, (C..5) is set
to (0, 57).

The proofs in Section III assume that every clock pulse causes
the counter to increment, but this is not necessary. Sometimes the
increment is not tied to the clock, and an input value could be zero.
This can easily be accommodated by changing the fixed “1” that is
input to the low-order half adder to an input that is zero or one. The
output pulse will now be generated when % ones have been received.
Constant time detection will still work. Indeed the worst case for
constant-time detection occurs when the input is always one — if the
input is sometimes zero then there is more time to do the detection.
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Inner-Outer Factorization of Discrete-Time
Transfer Function Matrices

Zongli Lin, Ben M. Chen, Ali Saberi, and Yacov Shamash

Abstract—The inner-outer factorization of the transfer function matrix
of a linear time-invariant system has been an important algebraic problem
in a variety of areas in electrical engineering, including systems and
control analysis and design. This paper gives an explicit state space-based
algorithm for the inner-outer factorization of the transfer function matrix
of a general discrete-time linear system. More specifically, the algorithm
applies to any discrete-time linear system whose transfer function is
proper and stable.

1. INTRODUCTION AND PROBLEM FORMULATION

The inner-outer factorization of the transfer functions of linear
time-invariant systems has been an important algebraic problem in
a variety of areas in electrical engineering, including systems and
control analysis and design (see, for example, Chen ef al., 1993;
Francis, 1987; Saberi ef al., 1993, and the references therein). For
a continuous-time linear system with transfer function matrix G(s)
belonging to RH™, the set of proper real-rational matrices analytic
in Re(s) > 0, one would like to find an inner matrix Gi(s)
and an outer matrix G,(s) such that G(s) = Gi(s)Go(s) holds,
where Gi(s) € RH™ is called inner if G7 (—=s)Gi(s) = I holds
and G,(s) € RH®™ is called outer if it has full row rank for
every Re(s) > 0. (Alternatively, Go(s) € RH™ is called outer
if it has a right inverse which is analytic in the open right-half
plane.) It is also well known that such factorization for continuous-
time results in inner and outer factors which are unique up to
multiplication by an orthogonal matrix (See Youla, 1961). There
are several papers that provide state space-based algorithms for
obtaining inner-outer factorization of continuous-time systems. Such
algorithms are applicable to transfer function matrices that satisfy
certain conditions, such as, the transfer function matrices be either
injective or sujective (see Chen and Francis, 1989) and G(jw) has
a constant rank for all w € R, which implies that the systems have
no infinite zeros (see Weiss, 1994).

In this paper we focus on the inner-outer factorization of the
transfer function matrices of discrete-time systems. The relevant
definitions in discrete time are analogous to those in the continuous-
time setting and are given below.

Definition 1.1. A discrete-time matrix function G(z) € RH®, the
set of proper real-rational matrices analytic in |z} > 1, is said to be
inner if G* (271)G(z) = I and outer if it has a right inverse which is
analytic outside the unit circle (|z| > 1). An inner-outer factorization
of a matrix G(z) € RH®™ is a factorization

G(2) = Gil2)Gol2)
with G;(z) an inner matrix and G,(z) an outer matrix.
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The goal of this brief is to provide a state space-based algorithm for
obtaining an inner-outer factorization of the transfer function matrix
G(z) € RH™ of a general discrete-time system. Here we make no
assumption on G(z).

The brief is organized as follows. Section I gives an explicit
method of constructing the inner-outer factorization while Section III
gives an illustrative example. Section IV draws the conclusions of
our work. Throughout this brief, A7 denotes the transpose of A, I
denotes an identity matrix with appropriate dimension. Similarly,
A(A) denotes the set of eigenvalues of A. The close unit disc is
denoted by C® while C®:=C\C®.

II. INNER-OUTER FACTORIZATION

In this section, we give simple and explicit expressions for the
inner Gi;(z), and the outer G,(z) of the transfer function G(z) of
a general discrete-time linear system. First, we need the following
preliminaries.

A. Preliminaries

Consider a linear discrete-time system

5. { 2(k +1) = Ax(k) + Bu(k), @.1)

y(k) = Ca(k) + Du(k).

It can be easily shown that using singular value decomposition one
can always find an orthogonal transformation U and a nonsingular
matrix V' that render the direct feedthrough matrix D into the
following form

E:ww:?? ﬂ 2.2)

0

where my is the rank of D. Thus the system in (2.1) can be rewritten
as

1(k)
(o) -[e e B 2

where By, By, C and C are the matrices of appropriate dimensions.
Note that the inputs u¢ and u1, and the outputs yo and y; are those
of the transformed system. Namely,

u = V(ua) and (yo) =Uy.
U1 Y1

We recall the following theorem of special coordinate basis (SCB)
from Sannuti and Saberi (1987) and Saberi and Sannuti (1990).

Theorem 2.1 Consider a linear time-invariant system character-
ized by a quadruple (A, B, C, D). There exist nonsingular transfor-
mations I';, "2 and I's (nonunique), respectively associated with the
state space, output space and input space, such that

o(k+1) = Ax(k) + [Bo B (ZO(k))

(2.3)

T
Tq T,
:F a = a
T 1 . s x (x;_),
Tq
Yo Uo
U
(“)zm va |, (°)=m ug 2.4)
Y1 w1
Ub Ue

and

7N (A — BoCo)ly

Ace  B:EL B.ES, LaC, LyiCy
0 AL, 0 LGy L7,Cq
= 0 0 AL, LLC, L7,Ca
0 0 0 Ay LpaCy
ByEi. BaEj, BdEja BuyEg Aq
2.5)
-BCO 0 Bc
B, 0 0
IT'By Bils=|BY 0 0 (2.6)
By 0 0
|Bso Ba O
c [(Coe Co, CF. Con Coa
r;l{co]n: 0 0 0 0 C4
' L0 0 0 ¢ 0
.7
and
Ing 0 0
r;l[I'SO 8}&: 0 00 (2.8)
0 0 0

where A(A;,) € C® and M\(AT,) € C® are, respectively, those
invariant zeros that are inside or on the unit circle and those outside
the unit circle; (A, B.) is controllable and is nonexistent if and
only if ¥ is left invertible; (Cj, Ay ) is observable and is nonexistent
if and only if ¥ is right invertible; -and the system characterized by
(A4, Ba, Cy) is invertible with no invariant zeros. Moreover, the pair
(A, B) is stabilizable if and only if the pair (A., B.) is stabilizable,
where

At,  LhCy L},Cu
A= 0 Ay LpaCy
B4E], BiEa  Ag
Bfy, 0
By:=|Bw 0 2.9)
By Bg

The proof of this theorem can be found in Sannuti and Saberi
(1987) and Saberi and Sannuti (1990). The explicit construction of
the SCB utilizes the well-understood Silverman’s structural algorithm
and is numerically stable. A software package that computes this
special coordinate basis is given by Lin et al., (1992).

We are now ready to present our state space-based factorization
algorithm.

B. A State Space-Based Algorithm

Given a G(z) € RH, its inner-outer factorization can be carried
out in the following steps.

Step 1. Find any state space realization (A, B, C, D) of G(z) such
that (A4, B) is stabilizable. We note here that this realization is not
required to be a minimal one.

Step 2. Transfer the state space realization (A4, B, C, D) into its
SCB form as described in the previous subsection. Form matrices A,
and B, as in (2.9). Also form matrices C,, and D, as follows:

0 0 O I 0
Cy:=T2{0 0 Cq|, D;,:=T2|0 0 (2.10)
0 C 0 00
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Step 3. Let G, (z) be the transfer function matrix of the quadruple
(Aa B7 Couter, Doutcr), i.e.,

Go<3) = CQuter(ZI - 44)713 + Douter- (211)
Here
Coutcr::
! Coe Cj, CF +Ff, Cob+ Fop Coq+ Fou -t
™ |Ew E5  Ff Fa Fua !
(2.12)
[0 0
Douter Chl Fm [0 I O]Fg (213)
where
I, =(DID,+BIP,B,)™"/? (2.14)
and
Fo= Ft Fo Foa
CT\EY Fu Fu
=(DID, +B'P.B.y Y(BIP,A, + DI C,)
(2.15)

and P, is the positive definite solution of the algebraic Riccati
equation,
Po=aAlP A, +CYC, — (BYP.A, + DIC,)T
A(DTD, + BYP.B,)"Y(B'P,A, + DY C,)

(2.16)
Step 4. Let
Gz(z) = [DJ: + (CI - DJJFI)(;/I - A:r + BIFZ)_lBL‘lF?n'
2.17)

We have the following main result of this brief.
Theorem 2.2. Given a discrete-time transfer function matrix
G(z) € RH*. Then an inner-outer factorization of G(z) is given by

G(2) = Gi(2)Go(2)

where G,(z) and G;(z) are given respectively in Steps 3 and 4 of
the above algorithm.
Proof: We prove the theorem by showing that

a) G;(z) as given by (2.17) is inner;

b) G,(z) as given by (2.11) is outer;

c) G(z) = Gi(2)Go(2).

To show a), we first note that, for (A., B.,C., D,), the pair
(Ae, B;) is stabilizable, and all the eigenvalues of A, which are
inside or on the unit circle are observable. Hence, it follows from
Richardson and Kwong (1986) and Chen et al (1994) that (2.16) has
a unique, symmetric and positive definite solution, i.e., P, = Pr'>0
such that A, — B, F, is a Schur stable matrix. Hence, G;(z) € RH*.
We next show that G7 (:7')G(z) = I and hence G;(z) is inner. It
follows from (2.15) that

DIC, = (DID.+ B!l P,B.)F, — B] P: A,
and hence
pl(c,-D,F,)=DIC, - D'D.F,
=BI(P.B.F, — P, A,)
Also, it follows from (2.16) that
P, — AL P.A, — CfCo+ F[(DI D, + B P,B,)F, =0

Hence, we have

Gl (z1)Gi(=)
=Tn[B; (z7' - Ay + F/B])™!
(C; = F/D{)+ D]]
X [Dy 4+ (Cy — D Fy)
(2 = Ay + B, F,) 7' Bl
=15(DID, + BIP,B,)Tm
+ LBl (7' — AT + F/ B
(F.B] P, — A P.)B,
+ Bl (z'1- A} + FfBI)~'(cT - FI'D)
-(Co — Do F)(2I — Ay + B.F.) " 'B,
— BIP.B, + Bl (P.B,F, — P A,)
. (ZI - Az + BIFI)_lBa:]Fm
=I+4+TLBY (' T - AT + FTBT)™!
=P+ AP A, + CLC,
-FI'Dlc, -CI'p,F, - ALP.B,F.
-FIB'p,A, + FTBYP,B,F,
+F/ D} D, Fy]
x (21 — Az + BoF,) "' B.T',
=I+T,Bl(z7'T1- AL 4+ FFBIY™
‘ [_Pz + AZPzAz + CITCI
— F/ (DI D, + B] P.B,)F,]
(2l = Az + B.F,) ' B,T,,
=1
We now proceed to show that G,(z) is outer. Noting that A is
Schur stable, we see that Go(z) € RH. The fact that Go(z) is
right invertible follows from the fact that the matrix D, is of full row
rank, which also implies that (A4, B, Couter, Douter) has no infinite
zeros. It remains to show that the right inverse of G,(z) is analytic
for |z| > 1, which is equivalent to the fact that all the invariant zeros
of (A, B, Couter, Douter ) are inside or on the unit circle. To this end,
without loss of generality, we assume that the given system X is in
the form of SCB as described by Theorem 2.1. It follows from the

properties of SCB that the invariant zeros of (4, B, C’o_ut2 Doyter)
are exactly the same as the input decoupling zeros of (A4, B), where

Bo 0
BL, 0
XZ=A—B(]CD— B:E) 0
By 0
Bygo By
To 0 Ff, Fo Fod}
[Edc E;, F} Fu Fu
A.. B.ES *
=10 AL, *
0 0 A, - B, F,
and
B.
B=|0
0

Since (Acc, B.) is controllable, it is obvious that the input decoupling
zeros of (A, B), or the invariant zeros of (A, B, Couter, Douter ), are
given by M A;,)UA(A; — B F.), and hence are all inside or on the
unit circle due to the fact that all the eigenvalues of A,, are inside
or on the unit circle and that A, — K, C is a Schur stable matrix.
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Finally, we show that G(z) = G;(2)G,(z). Let us define Co+ Cro
= | 0 I 4 (Co = Do Fa)®a(2)
AL 0
EO = B?I-Z X Ed = 0 . BIFnzCoutcr + (Cr - DfFI)gz(Z)
Buo 0 .
Buo B, I (zI - A)
Co:=[Ces Cog CH  Cho Cao) -
Tro:=[0 0 F. Fu Fod X (zIC— A)6 B+D
— _ + 0+ Cpo
Cri:=|Esc Ej, Fj, Fan Fa =T, 0 [T +(Co — Do F)®,(2)
Ch:= [O 00 Cv 0] 0
Ca:=[0 0 0 0 Cy ‘ R — Co Cp
®,(2):= (2] — A, + B.F,)™", '<[B° Bd](ﬁ } * EFIDD

D,.(2):=[0 0 ®,(2)]
+ r;%;]@)} (:I-A)'B+D

Co+Cro
Iy 0
0

and (see the first matrix at the bottom of the page). It then follows that

Co+Cro
Dz chouter = FQ 0

D74+ (Co = DLF)®,(2)
0

D.I'Doster =D

@,(2)Bu T Douter == (2)I7' B - (BoCro + BaCry + ®(2))I7" | (21 = A)7
®,(2)B, =%.(2)[Bo B4 D
F: outer = ([500} + gm})rfl Co+ Cro
4 1 = [T 0 {4+ (Co = D)
—gFo 0
(Ce = DF)[0 =Ty gd
Cy 0 A0t (zI-A)'B4D
and
Co Co + Cro ~Cro
C=T,|Cy|TT! = | 0 I+, Cy |TT?
z 0 Cy
(zI-A)"'B+D
‘We then have (= B+
Co
Gi(2)Go(z) =T Fd}rl (z21-A)"'B+D
=D, + (Cp — Dy Fy) (2] — A, + B,F,) "' B,] Co 1
° I\m [Couter(z-[ - A)_lB + Douter] C(ZI A) B + D
= Dzr;lcouter(Z[ - A)_IB + DszDouter = G(Z) n

+ (Cx - D‘tFx)@x(Z)BzrmCouter(ZI — A)_IB
+ (Cx — Der)éz(Z)BmeDoutcr
Co + Cro
=T, 0 i - A7t
0

-1
+(C: = Do F. I)_qDI (2)BuTm Couter (21 — A)™' B In this section we present an example that illustrates our results.
(Cy — Do Fy)®.(s)TT'B+ D Consider the transfer function matrix G(z2) of a system = character-

III. AN EXAMPLE

2l —A.e ~B.E, —B.Ef, —L,C, —Ly,Cy

0 2 — Az, 0 —La_be -L;d(}d
B(z) = 0 0 2l — Ay, —LN,C, -L},Cq
0 0 0 2l — Appy  —LpaCy

—BgFEgj. —BdE;l ~BdE;; —ByEg, =zI - Ay

—0.001944 0.001944  0.206749 —0.158263 0.033402
—0.323808 0.323808 —0.307107  0.825649 1.164639

Couter =
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ized by a matrix quadruple (A, B, C, D) with

[' 05 0 0 02 02
0 0 0 1 1
A= 0 0 11 0 1
0 0 0 1 1
-0.2 0.2 -0.2 -0.1 0.1
M 0 1
000
B={1 0 0
00 0
0 1 0
060000 100
c=100 00 1|, D=0 0 0
00010 0 00

It is simple to verify that (A, B) is stabilizable and that the above
system is neither left nor right invertible with two invariant zeros
at z = 0 and z = 1.1 and one infinite zero. Moreover, it is in
the form of SCB. Following the factorization algorithm proposed in
Section III, we obtain

1.1 0 1 1 0
A, = 0 1 11, B.= 1|0 0],
-0.2 -0.1 -0.1 0 1
0 0 0 1 0
Cy:=10 0 1|, D,=1]0 0
010 0 0
With these data, solving (2.16), we obtain
0.208722 —0.163321 0.026426-‘
P, = | -0.163321 2.745830 1.597356
0.026426 1.597356  2.621380 |

[ = | 0-909655 —0.005462
™7 |—-0.005462  0.617683 |
0.189747 —0.148474 0.024024]

Fe |—0.190824  0.510854 0.719196 |

it

and (see matrix at the bottom of the previous page).

1.099376 0.009721 0}

D"“‘“:[o.oogm 1.619038 0

and hence
Gi(2) = [Ds + (Co ~ Do Fo) (2] — Ay + BoF) ' B,T;)}
and
Go(2) = Coutex(zI = A) "' B + Doutor

It is easy to verify that G;(z) € RH*® with GT (:7')G:(z) = I and
hence is an inner, G,(z) € RH is right invertible and of minimum-
phase with four invariant zeros at {0,0,0.381966,0.909091} and
hence is an outer, and G;(2)Go(z) = G(z).

IV. CONCLUSION
An explicit and simple expression for the inner-outer factorization
of the transfer function matrix of a general discrete time system has
been obtained in this paper. Such a factorization is useful in several
applications in control thoery, including loop transfer recovery and
H; optimal control.
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On the Design of Positive Real Functions

Jif{ Gregor

Abstract— Construction of all rational positive real functions with a
given denominator is described. Examples showing how to respect various
requirements on the degrees of the resulting polynomials are given.

I. INTRODUCTION

Positive real functions are analytic functions, which map the open
right half plane onto itself and the positive real half-axis onto itself.
For any positive real function f € B there is lims—. o ! :) = p, >
0. Therefore if f € B is a rational function, then

q(s)
f(s) =ns+ 2G)
and p, ¢ are (nonstrict) Hurwitz polynomials (i.e., poles and zeros on
the imaginary axis are allowed).

In [2] the following problem has been addressed. Given a strictly
Hurwitz polynomial p, € H°® of degree n, find all polynomials
q € H® with degq < n such that ¢/p is a positive real function

2> 0,degg < degp
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