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Non-iterative computation of infimum in discrete-time H_-optimization
and solvability conditions for the discrete-time disturbance decoupling
problem

BEN M. CHENTY, YI GUOT and ZONGLI LIN}

A non-iterative method for the computation of the infimum for a class of discrete-
time H_ optimal control problems, and the solvability conditions for the general
discrete-time disturbance decoupling problem are given in this paper. The method for
the computation of the infimum is applicable to systems where the transfer functions
from the disturbance input to the measurement output and from the control input to
the controlled output are free of unit circle invariant zeros and satisfy certain
geometric conditions. The solvability conditions we obtained for the general discrete-
time disturbance decoupling problem are also necessary and sufficient conditions.

1. Introduction and problem statement

A great deal of work has been done on the study of the H_ optimal control
problem in both continuous-time setting (see for example, Doyle et al. 1989, Francis
1987, Glover 1984, Kimura 1989, Khargonekar et al. 1988, Stoorvogel 1992), and
discrete-time setting (see for example, Basar and Bernard 1989, Stoorvogel 1992,
Stoorvogel et al. 1994), since the original formulation of the problem by Zames (1981).
On the other hand, the disturbance decoupling problem was first introduced by
Willems in the early 1970s (see Weiland and Willems 1989, and Stoorvogel and van der
Woude 1991, for recent results and related references). Recently, Stoorvogel (1992)
has obtained a very interesting interconnection between the H_ optimal control
problem and the disturbance decoupling problem. By performing certain system
transformations, he was able to transform the solution of an H_ optimal control
problem to the solution of an auxiliary disturbance decoupling problem.

In this paper, we first address the problem of the computation of the infimum in
discrete-time H_ optimization. The algebraic Riccati equation, or ARE-based
approach to this problem (see for example Stoorvogel et al. 1994) provides an iterative
scheme of approximating the infimum (denoted here by y*) of the H_-norm of the
closed-loop transfer function. As is well-known, this kind of search procedure is
exhaustive and can be very costly. More seriously, as y gets close to y*, numerical
solutions for these AREs can become highly sensitive and ill-conditioned. So, in
general, the iterative procedure for the computation of y* based on AREs is not
reliable and thus should not be used to determine the infimum y*. Recently, Chen
(1995b) proposed a non-iterative method for computing this y* for a class of discrete-
time H _-optimization problems in which the transfer function from the disturbance to
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the measurement output is left invertible, and the transfer function from the control
input to the output to be controlled is right invertible. In this paper, we extend his
result by replacing the above conditions by certain weaker geometric conditions.
The second result of the paper deals with the problem of discrete-time disturbance
decoupling. We would like to point out that most of the results on disturbance
decoupling in literature are in continuous-time setting. To the best of our knowledge,
there has been no report in the literature that deal with the necessary and sufficient
solvability conditions for the general discrete-time disturbance decoupling problem.
We will derive for the first time a set of solvability conditions for this problem.

We consider in this paper the following standard linear time-invariant discrete time
system X characterized by

x(k+1) = Ax(k)+Bu(k)  +Ew(k)
(k) = C, x(k) +D,, w(k) (1.1)
2(k) = Cy x(k)+ Dy, (k) + Dy (k)

where xe R" is the state, ue R™ is the control input, ye R’ is the measurement, we R?
is the disturbance and zeR” is the output to be controlled. 4, B, E, C,, D,,, C,, D,
and D,, are constant matrices of appropriate dimension. Throughout this paper, we
assume that (4, B) is stabilizable and (4, C,) is detectable and, as in most of the H_,
control literature, we also assume that both the subsystems (4,B,C,,D,;) and
(A4, E, C,, D,,) are free of unit circle invariant zeros. Without loss of generality but for
simplicity of presentation, we further assume that matrices [C, D,,] and [B" Dj},] are
of maximal rank. The H_, optimal control problem is to find an internally stabilizing
causal controller such that the H_-norm of the overall closed-loop system is
minimized. To be more specific, we will investigate dynamic feedback laws of the form

5 { X (k+1) = Kx (k) + Ly(k)

(1.2)
u(k) = Mx(k)+ Ny(k)

We will say that the controller £, of (1.2) is internally stabilizing when applied to the
system 2., if the following matrix is asymptotically stable

[A +BNC, BM]
d,=

LC K (13)
1

i.e. all its eigenvalues lie inside the open unit disc of the complex plane. Denote by G,
the corresponding closed-loop transfer matrix. Then the H_ norm of the transfer
matrix G, is given by

”Gcl”cc. = Sup Gma.x[Gul(ejm)]

wel0,21]

where o, [*] denotes the largest singular value. The infimum y* can now be formally
defined as

y*¥ =inf{| G, | £, internally stabilizes X} (1.4)

Given a y > y*, the H_ optimal (or more precisely suboptimal) control problem is to
find an internally stabilizing controller 2, such that the resulting ||G,,[|,, < . Also, X,
is said to be a y suboptimal controller for X if the corresponding |G,/ <. The
discrete-time disturbance decoupling problem for X of (1.1) is rather easy to define at
this stage. It is simply to find an internally stabilizing controller X, such that the
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resulting G, = 0 and hence y* is equal to zero. The goals of this paper are to present
a non-iterative method that computes exactly this y* for X' under assumptions (A1)
and (A2) given in §3, and to derive a set of necessary and sufficient conditions under
which the disturbance decoupling problem for X' is solvable.

The remainder of this paper is organized as follows. In §2, we recall some
background material, i.e. the special coordinate basis of linear systems, which is
instrumental to the derivation of the main results of the paper. Section 3 gives non-
iterative algorithms for computation of y* for three common cases, i.e. the full
information, the output feedback and the state feedback cases, while §4 derives a set
of necessary and sufficient conditions under which the disturbance decoupling problem
for X is solvable. Finally, concluding remarks are made in §5.

For a system characterized by a matrix quadruple (4. B, C, D), we define the
following two geometric subspaces.

(1) " (A, B, C, D) is the maximal subspace of R” which is (4 + BF)-invariant and
contained in Ker (C + DF) such that the eigenvalues of (4 + BF)|¥"~ are inside
the open unit disc of the complex plane for some F.

(2) ¥ (A4, B, C, D) is the minimal (4 + KC)-invariant subspace of R" containing
Im (B + KD) such that the eigenvalues of the map which is induced by (4 + KC)
on the factor space R”/%~ are contained inside the open unit disc of the
complex plane for some K.

Obviously, ¥ (4,B,C,D) = R"/% (4’,C’, B’, D"). Throughout this paper, the fol-
lowing notation will also be used:

X’ = transpose of matrix X
X7 := generalized inverse of matrix X
I = identity matrix with appropriate dimension
Ker(X) = kernel of X
Im (X):=image of X
A(X) = set of eigenvalues of a real square matrix X
Aan(X) = maximum eigenvalue of X where A(X) < R
O pax( X)) == maximum singular value of matrix X’
CYZ ) :={x|CxeX}, where Z is a subspace

2. Background material

In this section, we recall from Sannuti and Saberi (1987) and Saberi and Sannuti
(1990) the special coordinate basis for linear systems. Consider the system described by
x(k+1) = Ax(k)+ Bu(k)+ Ew(k) }

_ 2.1)
z(k) = C, x(k)+ D,, u(k)

It can be easily shown that using singular value decomposition one can always find an
orthogonal transformation U and a non-singular matrix ¥ that put the direct
feedthrough matrix D,, into the following form

I 0
UDMV:[O 0] 2.2)

where r is in the rank of D,,. Without loss of generality one can assume that the matrix
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D,, in (2.1) has the form as shown in (2.2). Thus, the system in (2.1) can be rewritten
as

(k)
(k)

Zo(kJ) |iC2 o] I:Ir 0:’ (“e(k))

= k)

(Gw)=lce=o+ (s o]

where B,, B,, C,, and C,, are matrices of appropriate dimensions. Note that the
inputs u, and u,, and the outputs z, and z, are those of the transformed system. Namely

u= V(““) and (20) = Uz
Uy 4

Also, note that the H_-norm of the system transfer function from w to z remains
unchanged when we apply an orthogonal transformation on the output z, and under
any non-singular transformations on the states and control inputs. We have the
following theorem.

x(k+1) = Ax(k)+[B, B,] ( ) + Ew(k)

(2.3)

Theorem 2.1:  Consider the linear system as given in (2.1). Assume that (A, B, C,, D,,)
has no invariant zeros on the unit circle. Then, there exist non-singular transformations
I, I', and I, such that

x(‘
X, Uy Zo
x=T,| x|, (““):ri u, |, z="r,| z, (2.4)
Xa T U, Zn
Xy
and
4. B.E, BE, L,C;, L,GC,
0 il 0 LG, L,G
F;l(A _Bo Cz,o) Fs = 0 0 A;a L;d Cd L:b Ch
BﬂEdc BdEEa BdE;a Add BdEd.b
0 0 0 L,C, A,
E,
E
re=|Et| 29
E,
E,
B,, 0 B,
B, 0 0
(B, BII,=|B, 0 0 (2.6)
B,, B, 0
B, 0 0
Coe Co Coa Cuu Cp I

r;l[C ]F5= 0o 0 0 C, 0
21 o 0 0 0 c
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where the pair (A, B.) is completely controllable, the pair (A,,,C,) is completely
observable, while the subsystem (A, By, C,) is invertible and free of invariant zeros.
Also, A(A}) and A A,,) are respectively the sets of unstable and stable invariant zeros of
(A4, B, C,, D,,). Moreover, the pair (A, B) is stabilizable if and only if the pair (A ., B,on)
is controllable, where

A LGy Ly G B, 0
AL‘.UU = Bd E;a Add Brl Erlh and ‘Bcon = ‘Bl}d Bd (2‘8)
0 L0 # B,, 0

Also, (A,B,C,,D,,) is left invertible if and only if x, is non-existent; it is right
invertible if and only if x, is non-existent, it is invertible if and only if both x, and
x, are non-existent. Furthermore, x; ® x, spans the subspace ¥"~(A,B,C,, D,,) and
X! @®x, @ x, spans the subspace ¥ (A,B,C, D,,). For further use, we define
n, = dim (x])+dim (x,) +dim (x,).

Proof: For the proof see Sannuti and Saberi (1987), and Saberi and Sannuti (1990),
where the continuous-time counterpart was proven and the state variables x, and x
were not separated. The separation of x; and x for discrete-time systems can be easily
done using the algorithm given by Chen (1995a). One can slightly modify the m-file,
scb.m, in the toolbox of Lin ez al. (1991) to yield a Matlab function that realizes the
above special coordinate basis. O

3. Non-iterative procedures for computing infimum

We present in this section our first result, i.e. the non-iterative algorithms for
computing the infimum y* of discrete-time H_ optimization for X of (1.1). For the
sake of simplicity, we will first assume that D,, = 0. The case when D,, & 0 will be
discussed later. It is then without loss of generality to assume that[C, D,,]and[E" D;,]
are of maximal rank. Throughout this section, we also assume that the following two
conditions are satisfied

(Al): Im(E) < ¥ (A, B, C,, D,))+ % (A, B, C,, D,,), and
(A2): Ker(C,) 2 ¥ (4, E, C,, D)) N ¥~(4,E,C,,D,,)

Note that these assumptions are not essential and might be further relaxed. Moreover,
they are automatically satisfied if (4, B, C,, D,,) is right invertible and (4, E, C,, D,,) is
left invertible. The general interpretations of the above conditions are rather simple
under the special coordinate basis and will be given later.

This section is divided into three subsections. The first subsection deals with the full
information case, while the second subsection deals with the general output feedback
case. The full state feedback problem is then treated as a special case in the second
subsection. A numerical example that illustrates our algorithms for the computation
of the infimum y* is given in §3.3.

3.1. The full information case

We assume that y = [x'w’]’, which implies that the condition (A2) is automatically
satisfied. Without of loss generality but for simplicity of presentation of our results, we
also assume that D, is in the form of (2.2). In what follows, we state a step-by-step
algorithm for the computation of the infimum y*.
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Step 1. Transform the following system

x(k+1) = Ax(k)+ Bu(k)+ Ew(k) }

(3.1
2(k) = C, x(k)+ Dy, u(k)

into the special coordinate basis as given by Theorem 2.1 and define 4,, B,, B,,, B,,,
E,, C,and D, as follows

A Gy LT By 0 E:
A= B,Eg, Aaq ByEy, |, B,=[B,, B,l=| By By|. E,=|E,
0 Ly, Cy Ay B,, 0 E,
(3.2)
and
0 0 0 I 0
c,=r,|0 ¢, 0|, p,=r,[0 0 (3.3)
g 0 ¢ 0 0

b

Note that assumption (A1) implies and is implied by the fact that E in (3.2) is always
equal to zero. Also, it follows from the property of the special coordinate basis that the
pair (4,, B,) is completely controllable.

Step 2. Find a matrix F, such that 4, + B, F, has no eigenvalues at —1. Then define 4,
B,E.C.,D, and D,, as

A, =(4,4+B,F,+I)*(4,+B,E—I)

B, =2(4,+B.E+D)7*B,
E =2A,+B.FE+I)?E, 54
C.=C,+D,.E | (34)

o

= Dx_(Cz+D1F;:)(Az+BIEr+I)_IBz
D~22 :=—(CI+D1E)(A5+BA‘F;+!)‘1E;

Step 3. Solve the following continuous-time algebraic Riccati equation and algebraic
Lyapunov equation, both independent of y

0=(4,-B.D.D,)" D,C18,+5,I4,~B(D. D)y D.CY
—B(D,D)" B,+8IC,C,~C.D.(D,D,)* D,C]S, (3.5)
0=[4,-BD,D,)*D,C1T,+T[A4,-BD.D)" D,CY
—[E,—BD,D,)" D, Dy)[E,~BD, D) D, D) (3.6)
for positive definite solution S, and positive semi-definite solution T.. For future use,
we define
S, =(A,+B,E+I)S(A,+F.B,+1)/2 (3.7)
and
T,=(A,+B,F+1) T(A,+F,B,+1)/2 (3.8)
Step 4. The infimum, y*, is given by
P = Ru LS = i T S 2 (3.9)
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Proof of the algorithm: Following the results of Chen et al. (1994) and Stoorvogel et
al. (1994), it is straightforward to show that the following three statements are
equivalent.

(1) There exists a y suboptimal controller for 2 of (1.1) with C, = (;) and

()

(2) There exists a y suboptimal controller for the following auxiliary system
x,(k+1)=A,x,(k)+ B uk)+E, w,k)
0 I
v =) %00 +( o) o) (3.10)

z,(k) = C, x,(k) + D, u,(k)
where 4, B, E_, C_and D_ are defined as in (3.2) and (3.3).
(3) There exists a y suboptimal controller for the following auxiliary system

= 2);( +(é) . (3.11)

where 4,, B,, E,, C,, D, and D,, are as defined in (3.4).
We would like to note that items (2) and (3) above are also equivalent to the following.

(1) There exists a solution P, > 0 to the following discrete-time algebraic Riccati

equation
B’PA +D.C, | BiPAFDIC
P e AJ P A r T xT x x d
where
D.D 0 B,
GABY =] :
2= O+ [ Eee. £ G.13)
such that the following conditions are satisfied
V.=B.P.B,+D.D,>0 (3.14)
R, =y 1—E.PE+E_PB V'B,PE >0 (3.15)

(2) There exists a solution P, >0 to the following continuous-time algebraic
Riccati equation

=

- - 13 s ] - ﬁ D".r
P C C— kit oz —1| Jxlz Lt 16
: [E; x+D;2CjG [E;Px D;C] he

Dy [I-D (D, D,y D] D,, < I (3.17)

0=P A+

with
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and

~ [D.D D,D
G, :=|i...!z N ] (3.18)
D3y D, Dy Dyy—y°I

Furthermore, the solutions to the above Riccati equations, if they exist, are related by
P.=2A+F.B.+D)'P(A,+B . E+I)" (3.19)

Thus, it is equivalent to show that y* given by (3.9) is the infimum for system X of
(1.1) by showing that it is an infimum for the auxiliary system in (3.11). This can be
done by first showing the properties of the auxiliary system of (3.11) and then applying
the results of Chen et al. (1992b). We note that the matrix F, in Step 2 of the algorithm
is a pre-state feedback gain, which is introduced merely to deal with the situation when
A, has eigenvalues at —1 and the inverse of I+ A4, does not exist. For the sake of
simplicity but without loss of generality, we will hereafter assume that 4, has no
eigenvalues at —1 and F, = 0. We will first show the following three facts associated
with the auxiliary system (3.11): there exists a pre-disturbance feedback to the system
in (3.11) in the form of

i, =Ew, +7, (3.20)
such that

(1) D~22+‘Dx£u =0

() Im(E,+B,F)ycv(4,.B,,C,.D)+%(4,,B,,C,,D,), and

(3) (4,.B,,C,,D,)is left invertible, and is free of infinite zeros and stable invariant
zeros as well as invariant zeros on the unit circle.

In fact, we will show that such an £, is given by

E =—(D.D)'D,D,, (3.21)
In order to make our proof simpler, we first apply a pre-state feedback law
0o 0 0
u.=FEx +v,= —[E;a 0 Em;] x,+uv, (3.22)

to the system in (3.10) such that the resulting dynamic matrix 4,+ B, F, has the
following format

AL LG G
0 A, O (3.23)
0 Lbd Cd Abh

while the rest of system matrices in (3.10) remain unchanged. Hence, it is without loss
of generality to assume that A4, is already in the form of (3.23). Also, we assume that
both A4,, and A,, have no eigenvalues at — 1. Then it is simple to verify that

(A, +D)7" X, X,
(A, +I)'= 0 (Agu+1)7* 0 (3.24)
0 — (A + D)7 LyyCo(Agg + )™ (A +1)
where
X, =— AL+ D L5 — L, C(Apy+ D Ly Co(Agg + D7 (3.25)

X,=—(AL+D) L C(Ay+D)7! (3.26)
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and

P,=D,—C(4,+DB,

I 0
=T _Cd(Adﬂ+‘r)_l B, N rl(Add+I)_l B,
X, Co(Ap+ 1) Ly Cy(Age+ 1) By

where

X, =G4+ 1) Ly Cy(Age + n Byy— Cy(Ay, + n B, (3.27)
Define

1 0 0
I =T,| —Cdz+I) By —Cy(Agq+ D B, 0| (3.28
X, Coldy,+ ) Ly Ci(Aga+D7'B, 1

We note that I, is non-singular. This follows from the property of the special
coordinate basis that the triple (4,,. B,, C,) is square and invertible with no invariant
zeros, and hence C,(A4,,+1)! B, is non-singular. Then we have

I 0
D.=I 0 I (3.29)
0 0
and
0 0
Dyy=—C/4,+D'E, = —Cy A+ E, =I,| x, | (3.30)
Cy(Apy+ D)™ Ly Cy Ay + D7 E, 0
where
X, =[Co(Aga+ D)7 Byl Cy(Aga + 1) Ey (3.31)

It is now obvious to see that the following pre-disturbance feedback law to (3.11)

ar=ﬁ,mz+5z=-{0]wz+5r (3.32)
Xd—
is such that D,,+ D, E, = 0. We also have
E;
E +BE =2(A,+I)*(E,+B,E)=2A4,+I)*| E* (3.33)
0
where
E* = E,—B[Cy(Age+ D' B  Cy(Aya+ 1) E, (3.34)

This shows the first fact. Since D, is of maximal column rank, it follows that the above
F, is also equivalent to — (D, D,)™' D, D,,. Next, let us proceed to prove the second
fact, i.e.

Im(E,+B. Eyev-(i,B.C, D)+ (4,.B,C..D,)

T uw.
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We will have to apply several non-singular state transformations to the system
fi‘.‘( gl’ + EI ﬁI + (E-T + EI F:.!) ﬁ”z
=C.%,+D,7,

(3.35)

Xz
7
o -

and transform it into the form of the special coordinate basis as given in Theorem 2.1.
First let us define a state transformation

T =4+ (3.36)
In view of (3.24), it is straightforward, although tedious, to verify that
(AL +1)* = *
T = 0 (Agq+1) 0 (3.37)
0 X; (A +1)7?

where » represents matrices of not much interest and

Xy = — (A + 1) [Lyg Co( g+ D7+ (Apy + D7 Lyg Cal (Aaa + D7 (3.38)

and
A, =T A, T.=A,—-D)(A4,+I])?
o —DAL+D7 * A+ D7 L, Gy A + 1)
= 0 (Adu_l) (Add+1)_l 0
0 2(A‘ob+1)_1 Lhd Cd(Add+I)_l (Abb_” (Abb+1)_1
(3.39)
B, 0
B, =T*B,=2B,=2| By, B, (3.40)
B, 0
E;
E=TMNE +B,F)=2| E¥|, whereE, =0 (3.41)
E,
0 0 0
C.=C,T=I,| 0 ~[Cidaa+ D) B CofAga+D) 0 (3.42)
0 _Cb(Abh+1)_2 ‘Lbl:l Cd(Add'i"r)_l Cb(Ahh+I)“2
I 0
D,=D,=I,|0 I (3.43)
0 0

In order to bring the system of (3.35) into the standard form of the special coordinate
basis, we will have to perform another state transformation that will cause the (3,2)
block of C, in the right-hand side of (3.42) to vanish. The following transformation T
will do the job,

I 0 0
L=|0 I 0 (3.44)
0 Ly Co(daa+ D7 (A +1)?
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It is quite easy to verify this time that

A =Tr AT
(45, —D(AL+I)™ * AL+ D VL C( A+ 1)
= 0 (Add_l)(Add+I)_l 0
0 2+ D 2Ly ColAy+1)2 (A + D (A —1)
(3.45)
B, 0
B, =B, =T;'B,=2| B, B, (3.46)
%  — (Al S Cild+ DR,
E; E;
E =T} E,=2 E* =2| Ef (3.47)
(Anb+1)_2 [Eh_Lbﬂ Cr}(A;d-i-I)_lE:] 0
¢ 0 0 0
é_r = L_;D] = C_x Tr = fo 0 - [Cd(Add_'—I)_l Brx]_l Crl(Add +I)_2 0 (3-48)
i 0 0 C.
D,=D,=D, (3.49)
Then we have
AL—DAL+D x  2A4AL+D Ly, Cy(Ay,+1)
A—B,C,y= 0 A% 0 (3.50)
0 0 (Apy + D) (A, —1D)
where

A:a = (Adu =) (Add Ty f]'l + ZBd[Cd(Add g i 1)_1 Ba]_l Cd(Add F I)_z (3.51)

Define another non-singular state transformation

(3.52)

~ O*""i>

ad

Il
(=T =T
S ~ O

with f,'k being a solution to the following general Lyapunov equation
(- AL) U+ A7) T+ Tu( Ay + D7 (A — 1) = 245~ D7 L, C (A +1) (3.53)

It follows from Kailath (1980) that such a solution always exists and is unique if A7,
and 4,,, have no common eigenvalues. Then itis straightforward to verify that it would
transform the (1,3) block of 4,—B,,C,, in (3.50) to 0 while not changing the
structures of other blocks. Hence, 7. would also transform the system (4,,B,.C,.D,)
and E, into the standard form of the special coordinate basis as given in Theorem 2.1
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since the pair {(4,,+1)"'(4,,— 1), C,} is completely observable due to the complete
observability of (4,,, C,). It is now clear from the properties of the special coordinate
basis that

Im(E)< v (4,.B,.C,,D)+%(4,,8,,C..D,)
which is equivalent to
Im(E,+B,E) < v~ (4,,B,C,,D,)+¥(4,.5,.C.D,)

This proves the second fact. Moreover, it is also obvious from the properties of the
special coordinate basis that (4, B,, C,, D,) is left invertible with no infinite zeros and
has some invariant zeros at

HA—DAL+D7} (3.54)

which are unstable, i.e. in the open right-half complex plane, due to the fact that A(4;,)
are outside the unit disc, and the rest of the invariant zeros at A(A:;_). In that__follows,
we will show that all the eigenvalues of A% of (3.51) are at 1. As (4,, B,,C,, D,) is left
invertible, it is well-known that a complex scalar s is an invariant zero if and only if

rank SI_A; —B"I <n,+
é; D 2 TP

x

where p is the dimension of z of the given system (1.1). Noting that

sI—-A, —B,
r(s) = rank éz 51 ]
) [sI—(A,+D)*(4,—1) —2A4,+D*B,
= rank| L. D,—C,(4,+])"B,
" (s(A,+1)—(A,—1) —2(4,+1)'B,
| e D,—C(A,+I)"B,
. [(1+s)I—(1—s5)4, —(1—s5)B,
= rank i C, D,
-(1+s)f—(l-s)A; (s—1) L Cy (s—1)L;C,
0 (148 I—(1—5) Ayq 0
_ 0 (s—1)L,,C, (14+8)I—(1—s5)A4,,
= rank 0 0 0
0 C; 0
| 0 0 C,
-1B;, 0 ]
(s—1)B,, (s—1)B,
(s—1) By, 0
1 0
0 0
0 0 |
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[ (145 I—(1—s5) 4, 0 0
0 (14 5) I—(1—5) Ay 0
0 0 (1+5)I—(1—-5) 4y
= rank 0 0 0
0 & 0
j 0 0 G
0 0 |
0 (s—1)B,
0 0
I, 0
0 0
0 0

It is obvious to see that for any se A{(4}, + 1) (4., — )}, r.(s) < n,+ p, which verifies
that some invariant zeros of (4,, B,, C,. D,) are given by (3.54). The only other scalar
that causes r,(s) to drop below n,+p is s = 1 because the subsystem (4,4, B,, C,) is
invertible and free of invariant zeros, and the pair (4,,, C,) is Completely observable.
Thus, we can conclude that the remaining invariant zeros of (Ax, Bx, Cz, D ) are at 1
and hence all eigenvalues of A¥ are at 1. This shows the third fact that we have
claimed.
Next, let us apply a pre-disturbance feedback law

i, = E w,+8, =—(D, D) D. Dy, w,+5, (3.55)
to the auxiliary system (3.11). Again, this pre-feedback law will not affect solutions to
the H_ problem for (3.11) or to the solution P, of (3.16)—(3.18). After applying this pre-
feedback law, we obtain the following new system

%, =A% +B, +[E.—B(D,D,)™*D,D,,)w,

P (0))? +(;) W 3.56)
& ¥ & 0 T (
z,=C,%+D,0, +0 W,

Then it follows from the well-known results in H_ control theory (see for example,
Stoorvogel 1992) that the existence condition of a y suboptimal controller for (3.56) is
equivalent to the existence of a P, > 0 such that

0=PA+AP+C.C—(PB, +c"’ D)WD. D)y (B.B,+C.D,y
+PlE,—B (D, D) D.D,,]|E,—B(D,D,)* D, D,,] B.Jy* (3.57)
is satisfied. Note that the solution P, to the above Riccati equation is identical to the
solution that satisfies (3.16)—(3.17).
Now, in view of the properties of the auxiliary system of (3.56), i.e. the second and

third facts that we have proved earlier, it satisfies the conditions of Chen et al. (1992b).
In fact, following the results of Chen et al. (1992b), we can show that

P* = (Rael T, ST (3.58)
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and for any y > y*, the positive definite solution 2, of (3.16)~(3.18) is given by
B=(S -1/ (3.59)

It then follows from (3.19) that for any y > y*, the positive definite solution P, of
(3.12)—(3.15) is given by

P =24+ S~ T/7) (4, +D)* (3.60)
and hence y* can also be obtained from the following expression,
7* = (nae(T, ST (3.61)
where S, and 7, are as defined in (3.7) and (3.8), respectively.

Finally, note that (Az, Bz, o Dz) is left invertible, and is free of infinite zeros and
stable invariant zeros as well as invariant zeros on the unit circle. It follows from
Richardson and Kwong (1986) that the solution S, to the Riccati equation (3.5) is
positive definite because (4,, B,) is controllable, and the solution ﬁ to the Lyapunov
equation (3.6) is positive semi-definite. In fact, both of them are unique. This
completes the prrof of our algorithm. =

The following remark deals with the case when the direct feedthrough term from
the disturbance to the controlled output of (1.1) is non-zero, i.e. D,, = 0.

Remark 3.1: For the case when D,, + 0, the assumption (A1) should be replaced by

the following conditions:

(1) D,,:=D,,—C(A,+1I)" E, is in the range space of D, = D,—C(4,+1)" B,
and

() Im[E,—B(D. D) D.D,l < v (4 C.DY+ (A R,,C..D)

T :’! x? J‘s

Then our algorithm would carry through without any problems. We would also like
tonote thatif (4, B, C,, D,,) is right invertible, then (A, B - C D } isinvertible and D,
is square and non-singular, and ¥"~(4,, B,,C,, D,) + ¥ (4,, B,, C,, D,) = R"=. Hence,
the above two conditions will be automatically satisfied. Also, in this case, our result
will be reduced to that reported by Chen (1995b). O

3.2. The output feedback case

This subsection deals with the general measurement feedback problem. Again, we
will first consider the given system of (1.1) with D,, = 0 and assume that (A1) and (A2)
are satisfied. As in the previous subsection, we will give a step-by-step non-iterative
algorithm for the computation of y*.
Step A. Define an auxiliary full information problem for

x(k+1) = Ax(k)+ Bu(k) + Ew(k)

y(k) = (?) x(k) +(é) w(k) (3.62)

2(k) = C, x(k) + Dy, u(k)

and perform Steps | to 3 of the algorithm given in the previous subsection. For future
use and in order to avoid notational confusion, we rename the state transformation of
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the special coordinate basis for this subsystem as I, and the dimension of 4, as n,..
Also, rename S, of (3.7) and T, of (3.8) as S, and T, respectively. For later use in §4,
we rename E, and B, respectively as E,, and B,,;.

Step B. Define another auxiliary full information problem for

x(k+1) = Ax(k)+ C;u(k) + Cow(k)
0 I
¥k) = (1) x(k) + (0) w(k) (3.63)

2(k) = E’x(k)+ D, u(k)

and again perform Steps 1 to 3 of the algorithm given in §3.1 one more time but for
this auxiliary system. We also rename the state transformation of the special
coordinate basis for this case as I',, and the dimension of 4, as n,,, and S, of (3.7) and
T, of (3.8) as S, and T, respectively. Again, for later use in §4, we rename E, and B,
respectively as E,, and B,

Step C. Partition
ey [ S
raey -[* 1] (.64

where I"is a n,, x n,, matrix, and define a constant matrix

DSt ISATSE =T858
= | T B 3 3.65
N [ —ToSol"Se ToSa B
Step D. The infimum y* is then given by

7* = (max (M) (3.66)

Proof of the Algorithm: Once the result for the full information case is established,
the proof of this algorithm is similar to the one given by Chen ez al. (1992a, 1992b).
O

As was pointed out by Stoorvogel et al. (1994), for discrete-time H_, control, the
infimum for the full information problem is, in general, different from that of the full
state feedback problem. For the state feedback case, i.e. C; = 7 and D,, = 0, we note
that the subsystem (4, E, C,, D,,) is always free of invariant zeros (and hence free of
unit circle invariant zeros) and left invertible. Thus, as long as (4, B, C,, D,,) is free of
unit circle invariant zeros and satisfies assumption (Al), one can apply the above
algorithm to get the infimum, y*. As is reported in Chen (1995b), for this special case,
I N,qs S.q and T, in Step B of the above algorithm can be directly obrained using
the following simple procedure. Compute a non-singular transformation I, such that

0
g BE= a 3.67
s5Q [ E] ( )
where Eis a N,q X M, non-singular matrix. Then S, and T, are respectively given by

S =(EYE? and Tu=0 (3.68)
and hence
7 = lnad Tp S+ 1S o IS )" (3.69)
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Again, the following remark deals with the case when the direct feedthrough term
from the disturbance to the controlled output of (1.1) is non-zero, i.e. D,, + 0.

Remark 3.2: For the case when D,, £ 0, the assumptions (A1) and (A2) should be
replaced by the conditions given in Remark 3.1, which is associated with the full
information system of (3.62), and a similar set of conditions as in that remark but for
the full information system of (3.63). Then our procedure would again carry through
and yield a correct result. Note that if (4, B, C, D,,) is right invertible and
(A, E, C,, D,,) is left invertible, then all these conditions will be automatically satisfied.
The result will then reduce to that of Chen (1995b). O

3.3. An illustrative example

In this subsection, we will use a numerical example to illustrate our computational
procedures developed in the previous subsections. We consider a given system
characterized by

O O 00 1 1

00011 00 0 1

A=|0 011 1|, B=|1 0 0of, E=]1

11111 010 1

R i O 0 0 0 0

and

00 —1 0 0] 1 0 0 0
C,=[00 01 0|, Dy=|00 0|, Dy=|0
00 00 1] 00 0 0

Itis can be verified that (4, B) is controllable and (4, B, C,, D,,) is neither right nor left
invertible, and is of non-minimum phase with two invariant zeros at 0 and 2,
respectively. Moreover, it is already in the form of the special coordinate basis as given
in Theorem 2.1, and assumption (A1) is satisfied as E, = 0.

Case 1: The full information problem. We first consider the computation of y* for the
full information case. Following the algorithm in §3.1, we obtain

I,=1I, n,=3
2 1 i1 10 1
A,=|11 1|, B.=|0 1], E,=|1
0 1 1 0 0 0
000 10
c,=|0 10|, D,=]|0 0
0 0 1 0 0
025 025 025
A =| 05 —-050 050
—025 075 —025
03125 —0-1875 0-125
B,=| —06250 13750 |, E,=| 0750

04375 —1-0625 —0-625
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and
1:000  0:000 0-00
C.=C, D,=| 025 —0750 |, D,;=| —0:50
—0125 0375 025

It is simple to verity that (4., B,, C,. D,) is left invertible with two invariant zeros at 1
and 1/3, respectively. Solving Riccati equations (3.5) and (3.6), we obtain

0-227615 —0-207890 0-019725
S, =1 —0207890 1-202254 —1-005636
0019725 —1-005636 1-014089

0-09375 —0-062500 0-031250
T.=| —0:06250 0-041667 —0-020833
0-03125 —0-020833 0-:010417

Finally, we get

0-562306 —0-145898 —0-145898 1/3 0 0
§,=| —0-145898 0-618034 —0-381966 =10 00
—0-145898 —0-381966 0-618034 0 0 0

and

y* = 0934173

Case 2: The full state feedback problem. Following the algorithm and the simplified

procedure for the state feedback problem given in §3.2, we obtain those matrices as in
the full information case and

1 1 1 0 1]
-1 0 0 0 0
= 0 =1 00 0, ng=1
0 0 —1 0 0
0 0 01 0
[ 1
Bo=l Ta=D, F=|2
0
and
y* = 3-181043

Case 3: The output feedback problem. Now, we consider the computation of y* for the
given system with an output measurement characterized by

C,=[0 0 0 0 1], D,=0
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It can be shown that (4, C,) is detectable and (4, E, C,, D,,) is invertible with three
invariant zeros at 0, 0:618 and — 1618, respectively, and one infinite zero of order 2.
Hence, Assumption (A2) is automatically satisfied. Following the algorithm of §3.2,
we obtain those matrices as in the full information case and

—0-455504 —0-563227 0-191811
—0-455504 0-226419 0-191811

I',= 0-737020 —0-366354 0-118545
0-173987 0-703162 —0-502167 1

0-107530 —0-053450 0-812523 —4

o o o

0
0
0], nge=3
0
1

23:027553 3:772507 —2-331538

So=| 3772507 1 0
—2.331538 0 1
3359675 0 —1-440970
T = 0 0 0
— 1440970 0 2
2331538 1 2
= 01 4
00 1

52:087460 76:552500 66:462330
92-575462  138-464005 120-137767
28-034442 42-124612 36-888544

M= 19202703 29-289490 24-966581
0 0 0
| —46:978714 70777088 —61-6869177
—0:959053 2:618034 —4-236068 |
— 1653030 5236068 —7-854102
—0:693977  2-618034 —2-618034
0 0 —1-440970
0 0 0
0-959053 —3-618034  4.236068 |
and finally

y* = 1516907

4. Solvability conditions for the discrete-time disturbance decoupling

We now present a set of necessary and sufficient conditions under which the well-
known disturbance decoupling problem for the discrete-time systems is solvable.
Again, as in the previous section, we will first assume that the D,, matrix in the given
system of (1.1) is equal to zero. We will tackle the case when D,, = 0 later in the final
remark. We first have the following result for the full information case.
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yi 0
Theorem 4.1: Consider the given system of (1.1) with, C, = (0), P = (f) e

D,, = 0. Then the following two statements are equivalent.

(1) There exists a controller of the form (1.2) such that the closed loop system is
asymptotically stable and such that the closed loop transfer function from w to z
is equal to 0.

(2) (A.B) is stabilizable and Im (E) = ¥ (A4, B, C,, D,,)+ BKer (D,,).

Proof: In view of the proof of the algorithm in §3.1, we note that the existence of a

I

such that the resulting closed loop transfer function from w to z is equal to 0, is
equivalent to the existence of a stabilizing proper controller for the auxiliary system
(3.10), such that the resulting closed loop transfer function from w, to z, is equal to 0.
It is also equivalent to the existence of a stabilizing proper controller for the
continuous-time auxiliary system (3.11), such that the resulting closed loop transfer
function from W, to Z, is equal to 0. Again, following the proof of the alogrithm in §3.1,
it is clear that the latter and hence all the above three statements are equivalent to the
existence of a stabilizing proper controller for the following auxiliary system

stabilizing proper controller for the given system (1.1) with C, = (é) and D, = (0)

X=A,X,+B. 0, +E W,
W

E
(o). (Ne
y.r“"Ix:r Oz

5~ DY

where Aﬁz‘, B\,&, Ex, C*x and 151 are as defined from (3.45) to (3.49). Due to the fact that
(A4,.B,,C,,D,)is left invertible with no infinite zeros and has only unstable invariant
zeros, we have ¥ (4., B,,C,.D,)+ B, Ker(D,) = {0}. It then follows from the result
of Stoorvogel and van der Woude (1991) that the existence of a stabilizing proper
controller for (4.1) which solves the disturbance decoupling problem, is equivalent to
(A, B) being stabilizableand £, = 0,i.e. E; =0, E, = 0and E* = 0, where E* is defined
in (3.34). What we need to show next is to prove the fact that E‘z = 0, which implies,
and is also implied by, 7. = 0, if and only if Im (E) < ¥ (4, B, C,, D,,) + BKer (D,,),
which is equivalent to Im (E,) < Im (B,,). In view of the structures of £,, E, and B,,,
it is sufficient to show that E¥ = 0 if and only if Im(E,) < Im(B,). Clearly, by the
definition of E¥ in (3.34), i.e.

(4.1)

E:; =E,— Bd[cd(Add + 1)_1 Bd]_l Ca(Arm +I)™ E, (4.2)
if E¥ =0, then we have
Ed = Bu[Cu(Aau + 1)_1 Bd]_l Ci(Auat I)_I E, (4.3)

Hence, E, is in the range space of B,. Conversely, if E, is in the range space of B, i.e.
E, = B, X for some appropriate X, then we have

E* = B,X—B,[Cy(Au+D) "B Cy(Ay+I) B, X =0 (4.4)

This completes the proof of Theorem 4.1. O
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The following theorem is for the general output feedback case.

Theorem 4.2: Consider the given system of (1.1) with D,, = 0. Then the following two
Statements are equivalent.

(1) There exists a controller of the form (1.2) such that the closed loop system is
asymptotically stable and the closed loop transfer function from w to z is equal
to 0.

(2) (A, B) is stabilizable, (A, C)) is detectable, and
(a) Im(E)= v (4,.B,C,,D,,)+BKer(D,,).
(b) Ker(Cy) 2 ¥ (4,E, C,, Dy,) N C7Y(Dyy),
(6) F~(A,E CiDs) S¥ (4,B.C,,Dy).

Proof: The first statement is equivalent to (4,B) being stabilizable, (4,C,)
detectable, and y* = 0. Hence 4, (M) = 0, and the infima for the auxiliary systems
(3.62) and (3.63) should be zero as well. The proof then follows from Theorem 4.1 that
T, = 0, which is equivalent to condition 2(a), and T, = 0, which is equivalent to

z

condition 2(b). Furthermore, M reduces to

M [FS;éF’S;; —I'S34

0 0 (4.5)

Since both S, and S, are positive definite, it is obvious that 4, (M) = 0 if and only
if I' = 0. Using a similar argument as in Chen et al. (1992a), one can show that /' =0
if and only if condition 2(c) holds.

Conversely, if conditions 2(a)-2(c) hold, it is obvious that T, =0, T, = 0 and
I' = 0 and hence y* = 0. In fact, it is quite straightforward to construct a controller of
the form (1.2) that yields a zero closed loop transfer function from w to z. O

Remark 4.1: The following remarks are in order.

(1) It is interesting to note that the necessary and sufficient conditions for the
solvability of a discrete-time disturbance decoupling problem are identical to
its continuous-time counterpart as given by Stoorvogel and van der Woude
(1991). However, as noted in the next item, one can test these conditions
without computing any geometric subspaces using our approach.

(2) It follows from the proofs of Theorem 4.1 and Theorem 4.2 that the solvability
conditions given in Theorem 4.2 are equivalent to the following

Im(E,;) < Im(B,,;), Im(E,)<Im(B,,) and I'=0 (4.6)

where E,p, B,p, E,q, B,1q and I' are defined in Step A to Step C of §3.2.
Obviously, the above conditions are computationally simple to verify.

(3) For the case that D,, # 0, following the result of Stoorvogel and van der
Woude (1991), one can show that the solvability of the disturbance decoupling
problem implies the existence of a matrix S such that

D22+D215D12=0 4.7)

Next we apply a pre-output feedback u = Sy + v to the system of (1.1). The new
system we thus obtain will have a zero direct feedthrough matrix from w to z.
O
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5. Conclusions

We have presented in this paper non-iterative procedures that compute the H_
optimization infimum jy* for a class of systems that satisfy certain geometric
conditions, and a set of solvability conditions under which a solution to the general
discrete-time disturbance decoupling problem exists. The algorithms for computing y*
involve only the solutions of some y independent algebraic Riccati equations and
Lyapunov equations and the computation of the maximum eigenvalue of a constant
matrix. We should also note that the geometric conditions imposed on the given
systems are not essential and can be relaxed. This can be shown by some numerical
examples. Hence, it leaves some room for improving our results. On the other hand,
the solvability conditions of the disturbance decoupling problem. which are also
necessary and sufficient, can be easily tested without computing any geometric
subspaces. Note that the numerical computation of geometric subspaces is, in general,
quite difficult.
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