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Abstract: A set of necessary and sufficient conditions under which a general discrete timeH,-

optimal control problem has a unique solution is derived. It is shown that the solution for a discrete

time H,-optimaLcontrol problem ,if it exists,is unique if and only if i) the transfer function from

the control input to the controlled output is left invertible, and ii) the transfer function from the

disturbance to the measurement output is right invertible.
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1 Introduction

Optimization theory is one of the corner stones of modern control theory. In a typical

control design, the given specific~tions are at first transformed into a performance index,

and then control laws are sought which would minimize some norm, say the Hz or H=

no;m ,of the performance index. This paper considers discrete-time systems ,and focuses on

Hz optimal control theory or otherwise known as linear quadratic gaussian (LQG) control

theory. For discrete-time systems ,0ptimaA control theory based on the Hz norm was heavily

studied in the 70's and early SO's (see. e g. ,[1J, [2J, [3J, [4J and [5J and references

therein), This development of Hz optimal control theory can be found in most graduate text.

books on ~c6ntrol (see e. g. , [6J and [7J). Although a lot of research effort has been spent

in 70's and SO's,the conditions for the existence of optimal solutions for a general discrete_-

time Hz optimal control problem ,and a way of determining an optimal solution if it exists

(again for a general problem), were not known until the very recent work of [S]. Trentel-

man and Stoorvogel in [8J, not only obtain a set of necessary and sufficient conditions for

the existence of optimal solutions to a general discrete-ti~e Hz optimal control problem,

but also construct one such solution. This paper deals with the issue of the uniqueness of

the solution to the discrete time Hz optimal control problem. We develop a set of necessary
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and sufficient conditions for the uniqueness of the solution to the above mentioned prob-

lem. The results obtained here are analogous to those of [9J for the continuous time Hz op-

timal cOntrolprobiem. <

The .paper i_sorganized as follows. In Section 2, we introduce the problem formulation
of the discrete time Hz-optimal control problem. while in Section 3, we briefly review the
conditions of the existence of discrete time Hz-optimal controllers. The main results of this

paper are given in Section 4. Finally ,in Section 5 we draw the conclusions.
Throughout this paper, A' denotes the transpose of A and I denotes an identity ma-

trix with appropriate dimension. COand CGrespectively denote the unit circle and the open
unit disc of the complex plane. Ker [V] and 1m [V] denote ,respectively, the kernel and the

image of V. Given a strictly proper and stable discrete time transfer function G (z) , as

usual,its Hz-norm is defined by II G IIz. Also,RH' denotes the set of real-rational transfer

functions which are stable and strictly proper. RH= dentoes the set of real-rational transfer

functions which are stable and proper.

2 Problem Statement
Consider the following standard discrete linear time invariant system,

{

X(k + 1) = Ax(k) + Bu(k) + Ew(k),
2:: y(k) = Clx(k) + Dlw(k),

z(k) = Czx(k) + Dzu(k)
where x E Rn is the state, u E Rm is the control input, w E R1 is the unknown disturbance,

y E RP is the measured output and z E Rq is the controlled output. Without loss of generali-

ty,we assume that the matrices [Cz,Dz],[CpDl],[B',D'z] and [E' ,D~l] are of maximal
rank. Also, consider an arbitrary proper controller 2:1':given by,

~.
{

~(k + 1) = Jf;(k) + Ly(k),
F. u(k) = Mf;(k) + Ny(k).

(2. 1)

(2.2)

The controller 2:Fis said to be admissible if Itprovides internal stability for the closed loop

system comprising 2: and 2:F. Let Tzw (2: X 2,F) denote the closed-loop transfer function

from w to z after applying a dynamic controller 2:Fto the system 2:. The Hz-optimization

problem for the discrete time system 2: is to find an admissible control law which minimizes

II T zwC2:X2:F)IIz. The following definitions will be corivenientin the sequel.

Definition 2; lCThe regulaT discrete time Hz-optimization problem) A regular dis-

crete time Hz- optimization problem refers to a problem for which the given plant 2: satis-

fies:

1) (A,B,Cz,Dz) is left invertible and has no invariant zeros on C;

2) (A,E,CpD1) is right invertible and has no invariant zeros on C.
Definition 2. 2(The singular discrete time Hz-optimization problem) A singular dis-

crete time Hz- optimization problem refers to a problem for which the given plant 2: does

not satisfy either one or both of the conditions 1 and 2 in Definition 2. 1.

We note that the regular vs singular characterizations for the discrete time Hz-opti-

mization problem precisely correspond to those for the continuous time Hz-optimization

problem under a bilinear mapping.

Definition 2. 3(The infimum of Hz-optimization) For a given plant 2:, the infimum of



No.6

Necessary and Sufficient Conditions under which an Discrete

Time H,-Optimal Control Problem Has an Unique: Solution 747

the Hrnorni of the closed-loop transfer function T rW (4 X 4F) over all the stabilizing proper

controllers 4F is denoted by Y* , namely Y' : = in£{ II Tzw (4 X 4F) II Z14F internally stabi-

lizes 4}.

Definition2.!4(The Hz-optimal controlled A stabilizing proper controller 4F is said

to be an Hz-optimal controller for 4 if II Tzw(4X4)i) II z=Y*.
Definition 2. 5 (Geometric subspaces) Given a system 4. characterized by a matrix

quadruple ( A ,B,C ,D), we define the detectable strongly controllable subs pace Sg(4. ) or

Sg(A,B,C,D) as the smallest subs pace S of Rn for which there exists a linear mapping K

such that the following subs pace inclusions are satisfied:
(.A + KC)S c S, lni(B + KD) c S (2. 3)

and such th~t (A + KC) IR"f S. is asymptotically stable. We also define the stabilizable

weakly unobservable subspace o/g(2:.) or o/g(A,B,C,D) as the largest subs pace 0/ for
which there exists a mapping F such that the following subs pace inclusions are satisfied:

. (A + BF)<'YC 0/, (C + DF)V = {OJ (2.4)

and such that (A + BF) 10/ is asymptotically stable.

The goal of this paper is to derive a set of necessary and sufficient conditions under
which 4 has Ii unique Hz~optimal controller.

3 Existence of Optimal Controllers
Our intention in this section is to recall from Trentelman and Stoorvogel[8] the neces-

sary and sufficient conditions under which an Hz-optimization problem hai>;a solution. We

first define the matrices Cp,Dl',EQ and DQ that satisfy the following conditions: D. [Cl',

DpJ and [EQ' ,DQ'J are of maximal rank,andii)

[
c/ '

J

. , ,

[

EQ

JF(P) = D/ [Cp Dp] and G(Q) = . DQ [EQ' DQ'J,
. (3. 1)

where

[

AI PA - P + C'C
'P - z z

F ( ): - D IC + B' P Az z .

Cz'Dz+ A' PB'
]D/Dz + B' PB

and

[
AQA' - Q + EE' ED/ + AQC/

]G(Q):= DIE'+ CIQA' DIDI'+ CIQC/ '. (3. 3)

Furthermore, here P and Q are the largest solutions of the respective matrix inequalities

F(P) > 0 and G(Q) > O. Also,let

R': = (D/)+ (DP'CrQCI'+ B'PED/HDQ')+,

where ( . )+ denotes thegeneralized'inverse of ('. ').

The following theorem, which is slightly simplified from the one in Trentelman and

Stoorvegel[8], gives the necessary and sufficient c'onditions under which theihfimum, Y' ,
can be attained. . .

Theorem 3.1 Consider the given.system 4 as in (2.1) '. T-henthe infimum, Y' ,can

be attained by a proper controller of the form (2.2) if and only if

1) (A,B) is stabilizable,

2) (A,CI) is detectable,

3) Im(EQ - BDt R') C o/g(4p),

(3.4)
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.4) Ker(Cp - R* D(!;C1) => Sg(J;Q),

5) Sg(J;Q) co/gap),

6) (A - BD: R* D(!;C1)Sg(J;Q) co/gap),

where J;p and J;Qare respectively, characterized by (A,B ,Cp "Dp) and (A ,EQ ,CpDQ).

Proof It follows from Trentelman and Stoorvogel[8]that the infimum, 1* ,can be at-
tained by a proper controller ofthe form (2.2) if and only if

1) (A,B) is stabilizable,

2) (A,C1) is detectable,

3) 1m (EQ - BDt R*) C Cj/g(A + BNCpB,Cp + DpNC ,Dp),

4) Ker(Cp - R* D(!;C1)=>Sg(A + BNCpEQ + BNDQ,CI'DQ),

5) Sg(A + BNCl'EQ + BNDQ,CI'DQ) C o/g(A + BNCI'B,Cp + DpNCpDp),
6) (A - BDtR* D(!;C1)Sg(A+ BNCI'EQ+ BNDQ,CpDQ)C Vg(A + BNCpB,Cp

+ DpNCpDp).
On the other hand,it is straightforward to see in view of their definitions that

o/g(A + BNCl'B,Cp + DpNCpDp) = o/g(A,B,Cp,Dp) = Vg(~p)
and

Sg(A + BNCI'EQ + BNDQ,CI'DQ) = Sg(A,EQ,CI'DQ) = Sg(~Q)
since o/g is invariant under a state feedback and Sg is invariant under an output injection,
Hence the result of Theorem 3. 1 follows. Q. E. D.

4 Main Results
We state in the following theorem the set of necessary and sufficient conditions under

which a given plant ~ has a unique Hz-optimal controller.

Theorem 4.1 Consider a plant ~ given by (2.1) . Then Hz- optimal controller for ~

is unique if and only if the following conditions hold:
1) (A ,B) is stabilizable,

2) (A,C1) is detectable,

3) 1m (EQ - BDtR*) C o/g(J;p),

4) Ker(Cp - R* D(jCj) => Sg(J;Q),

5) Sg(J;Q) co/gap),

6) (A - BDtR*D(!;C1)SgaQ) cO/g(J;p),

7) (A,B,Cz,Dz) is left invertible,

8) (A,E,CpD1) is right invertible,

where ~p and ~Q,as before ,are respectively characterized by the quadruples (A,B ,Cp ,Dp)

and (A,EQ,C1 ,DQ) . Moreover, the unique optimal controller is given by

{

E;(k + 1) = (A + BF + KC1 - BNC1)E;(k) + (BN - K)y(k),

u(k) = (F - NC1)E;(k) + Ny(k),

where F and K are any constant matrices that satisfy the conditions

ACA + BF) C CG, Ker[(Cp + DpF)(zJ - A - BF)-l] = o/g(J;p)

(4.1)

(4.2)

and

A(A + KCj) C CG, Im[(zI - A- KC1)-I(EQ + KDQ)] = Sg(J;Q),

respectively, and N is given by

(4.3)

N =- DplR* DQl. (4.4)
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Also ,note that there always exist F and K such that (4.2) and (4.3) hold provided that

(A, B) is stabilizable and (A ,C1) is detectable (see the construction algorithm in Chen et al
D~ .

Proof Our proof involves two stages. In the first stage we obtain a special parameter-

ization of all H2-optimal controllers (whenever at least one of them exists) for the given

plant 2:. The second stage involves the examination of the set of all optimal solutions,

which are identified and parameterized in the first stage, to derive the necessary and suffi-

cient conditions for the uniqueness of the solution of the H2-optimal control problem. Our

development utilizes an interesting reformulation of the Hz-optimal control problem which

was proposed by Trentelman and Stoorvogel[8]. Let us first define an auxiliary system 2:PQ

characterized by

{

XPQ(k+ 1) = AXpQ(k) + BUpQ(k) + EQwpQ(k),

2:PQ: YpQ(k) = C1xpQ(k) + DQwpQ(k),
zpQ(k) = CpxpQ(k) + DpupQ(k),

, ,

where Cp,Dp,CQ and DQ are as defined in (3.1) . In Trentelman and Stoorvogel[8] ,it was

shown that the controller 2:Fof (2.2) is an optimal controller for the given plan~ 2: if and
only if 2:Fwhen applied to the new system 2:PQdefined by (4. 5) is internally stabilizing and

the resulting closed-loop transfer function from WpQ to ZpQ is - R * , a const~nt matrix. The
following lemma states precisely such a reformulation of the H2-optimal control problem.

Lemma 4.1 The following two statements are equivalent:

1) The controller 2:Fas in (2.2) when applied to the system 2: defined by (2. 1) is in-

ternally stabilizing and the resulting closed-loop transfer function from W to Z is strictly

proper and has the H2-norm- Y*. Moreover ,matrix N in (2.2) must satisfy DpNDQ=-

R* .

(4.5)

2) The controller 2:Fas in (2.2) when applied to the new system 2:PQdefined by (4.

5) is internally stabilizing' and the resulting closed-loop transfer function from WpQto ZpQis

equal to
-R*.

Proof See Trentelman and Stoorvogel[8].

The above lemma shows that obtaining all the H2-optimal controllers for 2: is equiva-

lent to obtaining all the controllers that achieves a constant closed-loop transfer matrix -

R * . It turned out that the characterization of the controllers that achieve - R * for 2:PQ is

easier than that of the H2-optimal controllers for 2:. It is well-known (see for example Ma-

ciejowski[ll], that the general class of stabilizing proper controller~ for 2:PQcan be parame-
terized as,

{

~(k + 1) = (A + BF + KC1)~(k) + BYI(k) - Ky(k),
u(k) = F~(k)+ Yl (k)

(4. 6)

and

'Yl(k) = Q(z)[y(k) - C1~(k)J,

where F and K are any fixed gain matrices that satisfy

A(A + BF) C CO and A(A + KC1) C Co,

(4. 7)

(4.8)

respectively ,and Q(z) E RH~with appropriate dimension is a free parameter. In order that
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the controller (4. 6) and (4. 7) achieves a constant closed-loop transfer matrix -:- R * for

4l'Q, the free parameter Q(z) must satisfy some additional conditions. .

It turned out that with the choice of F and K that satisfy (4.2) and (4.3) ,respective-

ly, the controller (4. 6) and (4. 7) achieves constant closed-loop transfer matrix for 4l'Q if

and only if Q (z) E Q , where

Q: = {Q(z) = Q,(z) + NIQ,(z) E Q, and N E N} (4.9)
and where

Q.,: ={Q(z) E RH'I[(Cl' + Dl'F)(zI ~ A - BF)-IB + Dl'J

. Q(z)[CI(zI - A ~ KCI)-l(EQ + KDQ) + DQJ = O} (4. 10)
and

N: = {N E RmxPIDl'NDQ =- R*}.

This claim is proved in the following lemma. .

Lemma 4.2 Consider the auxiliary system 4l'Q given by (4.5). Assume that the con-

ditions in Theorem 3. 1 are satisifed . Then, any controller 4F that achieves a constant

closed-loop tarnsfer matrix - R * for 4PQ if and only if it can be written in the form of (4.

6) and (4.7) with F and K satisfying (4.2) and (4.3), respectively, and some Q(z) E Q .
Proof Let (Aq ,Bq ,cq ,in be 'a state space realization of Q(z) . It can be shown by

some simple algebraic manipulations that the controller (4.6) and (4.7) when applied to

4PQ yields the closed-loop transfer function from Wl'Qto Zl'Qas,

Tz W (4PQ X 4F) = Ce(zI - Ae)-IBe + De>PQ}'Q .

(4. 11)

" (4.12)

where

-

[

A + BF BCq BNCI - BF

]

Ae - 0 Aq BqCI ,

0 0 A + KCI

-

[

EQ + BNDQ
-

Be - BqDQ ,
EQ + KDQ

(4. 13)

and

Ce = [Cl' + DpF DCq Dl'NCj - Dl'FJ, De = Dl'NDQ. (4.14)

Thus, it is trivial to see that the closed-loop system is internally stable if and only if (4. ID

holds and Q(z) E RH=. It is also simple to verify that

TZ}'QwpQ(4PQX 4F) = To - Tq + Dl'NDQ

where

To = (Cl' + Dl'F)(zI - A - BF)-I(EQ +BNDQ)

+ (Cl' + DpNCI)(zI - A - KC1)-I(EQ + KDQ)

- (Cl' + DpF)(zI -:- A - BF)-I(zI - A - BNCI)(zI -A-KCI)-I(EQ+ KDQ)

and

= [(Cl' + DpF)(zI - A - BF)-IB + Dl']Q,(z) [C1(zI - A - KC1)-I(EQ + KDQ) + DQ].
It follows from Lemma 4. 1 that whenever the controller achieves a constant closed-

loop transfer matrix' - R * for 4PQ, N must belong to the set N. Also, it was shown in

Trentelman and Stoorvogel[8) that the conditions 3~6in Theo~em 3. 1 are equivalent to the

following:

1) 1m (EQ + BNDQ) C '7g(4p),

2) Ker (Cl' + DpNC1) :::)Sg(4Q),
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3) Sg(2:Q) C o/g(2:p),

4) (A + BNC1)Sg(2:Q) C crg(2:p).

Thus, following the procedures of Stoorvogel and van der W oude [IZJ, it follows that

To = 0 provided the conditions in Theorem 3. 1 are satisfied and F and K are such that (4.

2) and (4.3) hold. Hence, Tz w (2:PQX 2:F) = DpNDQ =- R* is equivalent to that T q
=

PQ PQ

0 or Q,(z) E Q, Then the result follows.

Lemma 4. 3 If equation DpNDQ= - R * has at least one solution, then it is unique if

and only if the subsystems characterized by the matrix quadruples (A,B,CpDz)and (A,

E ,C1 ,D1 )are respectively left and right invertible. Moreover ,in this case, the unique solu-

tion N is given by (4.4).

Proof It is simple to verify that DpNDQ =- R* has a unique solution;whenever it

exists, if and only if both Dp and DQare respectively of maximal column and row rank. Fol-

lowing the results of Chen et al. [10] , it is simple to show that the systems 2:p and 2:Qare

respectively right and left invertible with no infinite zeros. These imply that Dp and DQ are

respectively of maximal row and column rank. Hence, Dp and DQ are both invertible. Fol-

lowing the results of Chen et al [IJit is straingtforward to show that (A "B ,CpDz) and (A,

E ,CpD]) are respectively left and right invertible.

The final step of the proof of Theorem 4. 1 proceeds as follows:

(='» :If the Hz-optimal controller for 2: is unique ,i. e. , there exists a unique controller

that achieves a constant closed-loop transfer matrix 2:PQ,then by Theorem 3. 1 conditions 1

~ 6 hold. It also implies that the set N is a singleton. By Lemma 4. 3, conditions 7 and 8
hold.

(<=): Conversely,if conditions 1)~6) hold, then Theorem 3.1 implies that there ex-

ists at least one Hz-optimal controller for 2:, which' is equivalent to the existence of con-

trollers that achieve a constant closed-loop transfer matrix - R * for 2:PQ.Also, following
the result of Chen et al [IOJ,it can be shown that the conditions 7) and 8) imply that both

Dp 'and Dp are invertible. Hence, it follows from (4. 10) that the set Q, = {O} and from Len-

ma 4.3 that the set N is a singleton and is given by (4.4). Then ,by Lemmas 4.1 and 4. 2,

the Hz-optimal controller for 2: is unique.

Finally, it is now trivial to verify from the above proof. that the unique

controller for 2: is given by (4.1). This concludes the proof of Theorem 4.1-

The following are some interesting corollaries.

Corollary 4. 1 (The regular case) Consider the given system (2.1). If the following
conditions are satisfied:

1) (A,B) is stabilizable,

2) (A,C1) is detectable,

3) (A,B ,Cz ,Dz) is left invertible with nojnvariant zeros on CO,

4) (A,E ,CUD1) is right invertible with no invariant zeros on CO,

then the optimal controller exists. Moreover, it is uniquely given by

{

~(k + 1) = (A + BF + KC1 - BNC1)~(k) + (BN - K)y(k),
u(k) = (F - NC])~(k) + Ny(k),

Hz-optimal
Q.E.D.

where
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F =- (B'PB + Dz'Dz)-I(B'PA + Dz'C2),

K =- (ED/ + AQC/) (D1D/ + C1QC/)-1

(4. 15)

(4. 16)
and

N =- (B' FB + Dz'Dz)-I[(B' PA + Dz'D2)QCi + B' PED/](D1D/ + C1QC/)-I.

(4. 17)
Here P and Q are respectively the unique positive semi-definite solutions of the Riccati e-
quations,

p.= A'PA + Cz'C2 - (Cz'Dz+ A'PB)(Dz'D2 + B'PB)-I(Dz'C,,+ B'PA)
(4. 18)

and
',.

Q = AQA' + EE' - (ED/ + AQC/)(D1D/ + C1QC/)-I(D1E'+ C1QA').
(4.19 )

We note that the solutions to the above Riccati equations can be obtained using the non-re-

cursive algorithm of Chen et al[13].

Proof For the system satisfying the above conditions, it is straighforward to show
that all the conditions in Theorem 4. 1 are automatically satisfied. The results follow then

from some simple manipulations. Q. E. D.. -

Corollary 4. 2(The state feedback.case) Consider the given system (2. 1) with C1=1

and Dl = 0, i. e. , the state feedback case. there exists a unique Hz-optimal controller for 2:

if and only if the following conditions hold:

1) (A,B) is stabilizable,

2) (A,B ,Cz,D2) is left invertible and has no invariant zeros on Co,

3) 1m (E) = Rn,.

Moreover ,in this case, the unique Hz-optimal controller for 2: is given by

u(k) = - DplCpx(k) = - (B'PB + JVD2)-j(B' PA + Dz'C2)x(k), (4.20)
where P is the unique and positive semi-definite solution of (4.18). This result coincides

with the ~ne obtained by Chen et al[lO].

Proof It follows from Theorem 4.1 and the result of Chen et al[IO]

5 Conclusions
.In this paper we have derived a set of! necessary and sufficient conditions. for the u-

niqueness of the'solution to a general discrete time Hz-optimization problem. We have

shown that the solution for a discrete time Hz-optimal control problem, if it exists is u-

nique, if and only if the systems characterized respectively by quadruples (A,B ,Cz,D2) and

(A,E,CpDj) ,are respectively left and right invertible. Moreover,such a unique H2-opti-
mal control law has been obtained.

References

[1J Athans,M.. The Role and Use the Stochastic Linear: Quadratic Gaussian Problem in Control System DesigJ:j. IEEE
Trans. Automat. Contr. .1971, AC-16: 529- 552

[2J Dorato. P. and Levis. A. H. . Optimal Linear Regulators: The Discrete- Time Case. IEEE Trans Automat. Contr. ,

1971, AC-16: 613- 620

[3J Kucera, V. . The Discrete Riccati Equation of Optimal CO'?:trol. Kybernetica, 1972,8: 430- 447



No.6

Necessary and Sufficient Conditions under which an Discrete

Time Hz-Optimal Control Problem Has an U~que Sqlution 753

[4J Molinari,B. P.. The Stabilizing Solution of the Discrete Algebraic Riccati Equation. IEEE Trans Automat. Contr.,

1975 ,AC-20: 396- 399

[5J Pappas, T. ,Laub,A. J. and Sandell Jr,N. R.. On the Numerical Solution of the Discrete Algebraic Riccati Equation.

IEEE Trans. Automat. COntr. ,1980,AC-25:631-641

[6J Anderson,B. D. O. and Moore .J. B. . Optimal filtering. Prentice Hall.Englewood Cliffs ,New Jersey .1979

[7J Kwakernaak.H. and Sivan,R.. Linear Optimal Control Systems. John Wiley.New York. 1972

[8J Trentelman. H. L. and Stoorvogel. A. A.. Sampled-Data and Discrete-Time Hz-Optimal Control. SIAM Journal on

Control &.Optimization.1995.33:834-862

[9J Chen.B. M. and Saberi. A.. Necessary and Sufficient Conditions under Which an Hz- optimal Control Problem Has a

Unique Solution. International Journal of Control .1993,58: 337 - 348

[1 OJ Chen,B. M. . Saberi.A. .Shamash. Y. and Sannuti.P.. Co?struction and Parameterization of All Static and Dynamic
Hz- optimal State Feedback Solutions for Discrete Time Systems. Automatica.1994,30:1611-1624

[llJ Maciejwski.J. M.. Multivariable Feedback Design. Addison-Wesley. Workingham,England,1989

[12J Stoorvogel. A. A. and van der Woude .J. W. . The Disturbance Decoupling Problem with Measurement Feedback and

Stability for Systems with Direct Feedthrough Matrices. System &.Control Letters, 1991,17 :217- 226

[13J Chen. B. M. .Saberi. A. i'nd Shamash. Y. . A Non-Reursive Method for Solving the General Discrete Time Aigebraic

Riccati Equation Related to the H= Control Problem. International Journal of Robust and Nonlinear Control.1994,

4:503-'519

..~H2~re~~~m~.-m~~~~~~.#

~*~
(jf1Ju~[!j3L*~II!TIW~ .jf1Ju~)

~£'~E~ ~~~..~m
(~[!j$~1ij!fH3L*~II!TffiIl!I!iliIW~i>Jt. ~[!j) (~[!jiM~ffl3L*~:pmIWffiEffl#~i>Jt. ~[!j)

too~: *)(%ill-Mtti'*i1it~ Hztt{t~ifi1JJE]iI2i:(f:tE!1fE'-.Z1t?HII~'~~flf.~{fJEt:J~:~fUI~~,tm*
-i'*i1it~ Hztt{t~ifi1HDJiI2i;ff.,~~i.;tt.~1I{E -Et:J1t?tfll ~'~~flI:j; :CDR~ifi1HtAiljfN~jfjfJWfillz ffl'
Ja1~ ~~ 1LPIj2!,:&.@R -T#t~ A:fUi!U!:tiiillz f~Ja1Pl§~~;EjPI j2!.

*-j: 1t;tr ~i 1r-
I!*-*~ 1963fp1:.1983 fp~.ill'.'FJlf1*~tt~HJ1.#~~ .1988fptlE~[!j GONZAGA*~II!TIW~.:J::1991 fp

tIE~[!j$~1ij!ffl3L*~II!Tffi II!IJi!iIWft:J:. 1983 fp!JJ 1986 fp,ffllR'F r-ffl#<mttJJm0iiJ ;1992 fp!JJ 1993 fp:t£t1J.t!J

ffl3L*~ (:pm) II!T IW~ {HbIJUi~; 1993 fp~ -t:t£~:bu~ [!j3L*~1I! T IW~ ffti" ,~1.7~~utj:JIiIi. T!if~;}\Hm:J!:~

*'~ ittl , ~t1 ~ ~J1I1ii?:.II! 1Ji!i1if11t~;fiIJ~ ~ffi m ~NUjIJ. :{E[!j iij;t1f114mffi ~i)U: ~ ~UtU\. + ikjlHi?: X;lf.!:j fp]$ ~ f'F:{E~

OOff:;~tJjlilXji,\j*1t~.

!!DIm . W'BfU § jj1J:{E~[!j$JiJi:~Ji#13L*~1I! Tffi II!I!iliIW~l>1lffti"!It. IEEE Transactions on Automatic Control

~iftfU~.
nll8-;Jc.IM,\fl 1970fptlE~m~~#~~I>1lIl!TIW~:J:;1973 fp~~m~~#~~i>Jt~1IiY~~j!!J:J:.1973 fp

* 1976:!F.:{El!1f~3'IJTEL-AVIV*~II!TIW~ffti":1976 :!F!JJ1977:!F:{E~[!j1€29~JE.JIf.*~ffi1iIDJW1J.!1!tJ:~;.M.
1977fp~ 1985:!F:{E{;!\~l[:I5*gg~*~ifti"~;l985 :!FJiJ1992:!F:{E$JiJi:1ij!ffl3L*~II!TIW~ff*.:tff;l992 :!Ffo}:
~6;-:{Et1J.t'lJ+13L*~(:PljOIW&Efflf4~~pJlffp1H~. § jj1JT!if~UH!!:J!:fI.*,~i!iu,mi*.A.ffiI.ill'. § iYJit.




