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of 

Abstract-A simultaneous finite- and infinite-zero assign- 
ment problem via sensor selection for linear multivariable 
systems is proposed. By sensor selection we mean an 
appropriate choice of the output matrix C. Here, by utilizing 
the well-known Bumovsky canonical form for a linear system 
characterized by the matrix pair (A, B), we obtain an explicit 
construction algorithm that generates a non-empty set Q of 
output matrices such that for any member C of this set, the 
corresponding system characterized by the triple (A, B, C) 
has the prescribed finite- and infinite-zero structures. Two 
examples are also given to illustrate our results. 

1. Introduction and problem statement 
The problem of finite-zero (invariant-zero or transmission- 
zero) assignment of linear multivariable systems has attracted 
considerable attention from many researchers during the last 
two decades (see e.g. Emami-Naeini and van Dooren, 1982; 
Karcanias et al., 1988, Kouvaritakis and MacFarlane, 19776; 
Patel, 1978; Vardulakis, 1980). Recently, Syrmos and Lewis 
(1993) re-examined this problem using semistate descrip- 
tions, while Syrmos (1993) re-solved it by squaring down a 
system from the outputs to the inputs. The results reported 
by these authors are valid for a certain special class of 
systems, i.e. the resulting systems are always of uniform rank 
with relative degree one. Also, in what is called a squaring 
down approach, similar but general results were reported 
earlier by Sannuti and Saberi (1987). Their results are more 
general in the sense that the systems considered by them are 
allowed to have any fixed infinite-zero structure (see e.g. 
Theorem 4.1 of Sannuti and Saberi, 1987). 

Next, it is important to point out that all the results 
reported in the literature so far, including the ones 
mentioned above, deal solely with the finite-zero assignment 
problem. That is, the infinite-zero structure of the resulting 
system is either always fixed or of not much concern. To 
date, to the best of our knowledge, there are no published 
methods for dealing with simultaneous finite- and infinite- 
zero assignment. In this regard we emphasize a point the 
recent research has brought out, namely that the finite- and 
infinite-zero structures of a given system play dominant roles 
in a number of control theoretical problems such as H2 or H, 
optimal control, disturbance decoupling, loop transfer 
recovery, and flexible eigenstructure assignment. The 
problem of finite- and infinite-zero assignment and its 
solution thus have a number of important consequences for 
several other control theoretical problems. In view of this, in 
this paper, we propose for the first time an explicit method 
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that assigns simultaneously both the finite- and infinite-zero 
structures in linear multivariable systems. In particular, given 
a matrix pair (A, B) we develop an explicit construction 
algorithm that generates a non-empty set Q of output 
matrices such that for any member C of this set, the 
corresponding system characterized by the matrix triple 
(A, B, C) has the prescribed finite- and infinite-zero 
structures. We note that selecting an output matrix C 
corresponds to selecting a set of sensors that define the 
measured output. 

It is useful to compare in detail our method with the 
squaring down method of Sannuti and Saberi (1987). The 
latter method starts with a system characterized by a given 
matrix triple (A, B, C), and then designs pre- and 
post-compensators such that the compensated system has 
some additional finite (invariant) zeros at chosen locations 
while keeping it infinite zero structure fixed. On the other 
hand, in this paper, we start with a given matrix pair (A, B) 
while the choice of the matrix C is completely free. 
Accordingly, we choose a matrix C such that the 
corresponding system characterized by the matrix triple 
(A, B, C) has the prescribed finite- and infinite-zero 
structures. The physical applicability of our method is quite 
different from the squaring down method of Sannuti and 
Saberi (1987). 

We first recall the definitions of invariant zeros and infinite 
zeros of a linear multivariable system. Consider a system Z 
characterized by 

.f=Ax+Bu, y=Cx, (1) 

with A E R”““, B E R”“” and C E Rpx”. Let H(s):= 
C(sl, - A)-‘B be the transfer function of Z. Then a complex 
scalar z is said to be an invariant zero of the system 2 or 
H(s) if 

-B 0 1 <n + normal rank {H(s)}, (2) 
where the normal rank of H(s) is defined as the rank of H(s) 
over the field of rational functions. We refer interested 
readers to Saberi et nl. (1993) for a complete study of 
invariant zeros and the associated algebraic and geometric 
multiplicities as well as zero directions. The infinite-zero 
structure of H(s) can be defined from the point of view of 
Smith-McMillan theory. To define the zero structure of H(s) 
at infinity, one can use the familiar Smith-McMillan 
description of the zero structure at finite frequencies. 
Namely, a rational matrix H(s) possesses an infinite zero of 
order 4 when H(l/z) has a finite zero of precisely that order 
at z = 0 (see e.g. Commault and Dion, 1982; Hung and 
MacFarlane, 1981; Pugh and Ratcliffe, 1979; Rose&rock, 
1970: Veruhese. 1978). The number of zeros at infinitv 
together with their orders indeed defines an infinite-zero 
structure. Note that the invariant zeros and the orders of the 
infinite zeros of I: are also respectively related to the 
structural-invariant index lists 9, and 9d of Morse (1973). As 
is well known, both these structures of linear systems play 
extremely important roles in modern control theory. 
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i - R.ri + uu. (3) 

with A t Iw”“’ and B e R”““. Without loss 01 generality. WC 
assume throughout this paper that B is of maximal rank. Our 
goal, as mentioned earlier. is to find an output matrix C such 
that the resulting system (A, B. C) has the desired linite- and 
infinite-zero structures. As will be seen shortly, our 
construction method in fact yields a set 6 of output matrices 
such that for all elements of E, the corresponding system are 
square-invertible with the same desired invariant zeros and 
the same desired infinite-Lero structure. 

In this paper, we consider a simultaneous finite- and 
infinite-zero assignment problem from the system 

infinite-zero structures of a given system. We have the 
following theorem. 

/&oretn 2.2. (The special coordinate basis.) Consider a 
linear time-invariant system 2 of (1). Then there exist 
nonsingular state, input and output transforms I‘, E R”““. 

I‘<, E [wpx” and T, E R”“” such that 

r A,,,, L,,,Ch 0 L‘/ cbl 

This paper is organi;led as follows. In Section 7. WC recall 
some background material that is used in the derivation 01 
our results. Section 3 gives our main results, while Section 4 
draws some concluding remarks. 

Throughout the paper, A’ denotes the transpose 01 A, 0 
denotes a scalar zero or a zero matrix with appropriate 
dimension while 4 denotes the identity matrix of dimension 
k X k. With a slight abuse of notation. 1k with k 5 0 is treated 
as an empty matrix. Also. * denotes some constant matrix 
with appropriate dimension that is not of much interest in the 
given context. A set 74’ of complex scalars is said to bc 
self-conjugate if for any MJ F ‘U”, its complex conjugate 
iG E ‘MY 

(6) 

where the pair (Ahh, C,,) is completely observable and in fact 
(Ah,. CA) is in the Brunovsky canonical form, (A,,, B,.) is 
completely controllable and in the Brunovsky canonical form 
as well, and the triple (A,,<,, B,!. C,) has the special form 

(7) 

In this section. WC recall the well-known Brunovsky 
canonical form of a constant pair (A, B). and the special 
coordinate basis for a linear time-invariant system (A. H. C’) 
from Sannuti and Sabcri (1987). The former plays a central 
role in the development of our construction algorithms. while 
the latter is the key to the proofs of our results. 

2.1. The Brunovskv canonical .form. The Hrunovsky 
canonical form for a iinear system or simply for a constant 
matrix pair (A, B) can be summarized in the following 
theorem. 

0 

0 

0 

0 

Theorem 2. I. (The Brunousk_v crmonicul form.) Consider a 
linear system (3) or a pair (A, B) with A F R”“” and 
B E I?%“““‘. There exist nonsingular state and input 
transformations 7: F R”“’ and 7: F KY”““’ such that 

0 

I 

0 

Lo 0 

A,. (1 

0 0 

* * 

0 (I 

* * 

0 (I 

* ..* 

iI.. 0 0 0 0 I : 0 0 0 0 I 1% 

0 

I) 

* 

I b 1 

* 

where k, >O. I ~ I, , m. A,, IS of dimension ir,, := 
n - C:” , k,, and its cigenvalues are the uncontrollable 
modes of the pair (A, B). The set of integers. ‘C := 
{n,,. k,, , k,,,}. is called the controllability index of the pair 
(A. B). 

Proof. This is well known. WC refer to Saberi (1985) for a 
construction algorithm for 7; and 7;. Also. an m-tile that 
realizes such a canonical form can be found in a 
commercially available software package, Linear Systems 
Toolbox (Lin et ol.. 1991). n 

2.2. A sp~iul coordinare hasis. In this subsection we recall 
the special coordinate basis for a linear time-invariant svstem 
from Sannuti and Saberi (1987). Such a coordinate basis has 
a distinct feature of explicitly displaying the finite- and 

lor 5omc y, > 0. I ~z I, , m,,. and some appropriate 
dimensional matrices L,,, and Eric,. 

Proof. See Sannuti and Saberi (1987). Again, an m-file that 
realizes such a special coordinate basis is also reported in the 
Linear Systems Toolbox of Lin et al. (1991). n 

In what follows, we state some important properties of the 
special coordinate basis that are pertinent to our present 
work. 

The invariant zeros of the given system 2 of are given by 
the eigenvaues of A,,,, which correspond to the 
structural-invariant index list .a, of Morse (1973). 
The infinite-zero structure of IX is fully specified by the 
set of integers, Q:= {9,. , q,,}, which corresponds to 
the structural-invariant index list .a, of Morse (1973). 
The controllability index of (AA,,. CL) corresponds to the 
structural-invariant index list .a, of Morse (1973). 
Moreover, the system 2: is right-invertible if and only if 
the .$ list is an empty set. 
The controllability index of (A,, , B,.) corresponds to the 
structural-invariant index list 9, of Morse (1973). 
Moreover, the system I: is left-invertible if and only if the 
.$ list is an empty set. 
The system is invertible if and only if both the & and & 
lists of Morse (1973) are empty sets. 

Next, we introduce the following theorem, which is mainly 
due to Chen et al. (1992) and which is crucial to the 
development of our main results in this paper. 

7‘1re~~renl 2.3. Consider an invertible linear system charac- 
terized by a matrix triple (A, B, C). It follows from Theorem 
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2.2 that there exist appropriate nonsingular transformations 
I,, I?,, and Ii such that 

r;,Ar,= Aaa C LodCd , 
B&a Ati I 
r;m,=[o cd], 

(9) 

where h(A,) corresponds to the invariant zeros of 
(A, B, C), while the triple (Add, Bdr Cd) is in the form of (7) 
and (8). Let 

KO B:=r, B [ 1 r;' d (10) 

Then the new triple (A, b, C) is also invertible and has the 
same infinite-zero structure as the giyen system (A, B, C). 
Moreover, the invariant zeros of (A, B, C) are given by the 
eigenvahres of the matrix A,, - &Ed,,. 

Proof The theorem follows from the proofs of Theorems 2.1 
and 3.1 of Chen et al. (1992). n 

3. Simultaneous finite- and infinite-zero assignment 
We present in this section the main results of this paper. 

We begin with the simultaneous finite- and infinite-zero 
assignment problem for single-input single-output (SISO) 
systems because the solution to this problem is relatively 
simple and intuitive. It is helpful in understanding the 
derivation of the result for multiple-input multiple-output 
(MIMO) systems given later in Section 3.2. Moreover, the set 
of output matrices obtained for the SISO case is complete. 

3.1. Simultaneous zero assignment for SISO systems. We 
consider in this subsection the finite- and infinite-zero 
assignment problem for the system (3) with m = 1. Note that 
for this case, the controllability index of the system is simply 
given by %:= {n,, k,}, where n, and k, are respectively the 
dimensions of the uncontrollable and controllable subspaces 
of the given system. We first have the following theorem. 
The proof of this theorem is constructive and it gives an 
explicit expression of a set 4 of output matrices for each of 
whose elements the corresponding system has the prescribed 
finite- and infinite-zero structures. 

Theorem 3.1. (The SISO case.) Consider a system charac- 
terized by (A, 6) with A E IF” and h E R?‘. Let 
‘t: := {n,, k,} be the controllability indices of (A, b). Also, let 
{U ,,.“JU,$, } be the uncontrollable modes of (A, b). Then for 
any given Integer q,, O<q, s/c, and a set of self-conjugate 
scalars, {z, , . . , z+,,}, there exists a non-empty set of 
output matrices Cs c UVx” such that for any _c E 0 the 
resulting system (A, b, _c) has n, + k, - q, invariant zeros at 
IU,,... , u,,~, z,, , z+,,} and has an infinite-zero structure 
@= {q,}, i.e. the relative degree of (A, b, c) is equal to q,. 

Proof It follows from Theorem 2.1 that there exist 
nonsingular state and input transformations T, and z such 
that (A, b) can be transformed into the Brunovsky canonical 
form (4). Next, we rewrite (4) as 

&[ i Ikrir-i ; !I, +I, (II) 

Let 
a(s) := s kl-41 + a,skl-w’ + . + ak,_‘l, (12) 

be a polynomial having roots at z,, , zk,_,,. Also, let us 
define 

@ := [ak,-4,-1 . al]. 

Then the desired set of output matrices (I is given by 

Cr:=k EIW’~” ]_c=a[d ak,-4, a 1 O]T;‘, 
o#aER,dEIR’X”~}. (13) 

In what follows, we shall proceed to prove that the resulting 

system with any _c E 4 has all the properties stated in 
Theorem 3.1. Let us define 

a,:=[; Iq;;$ cd:=[;]‘, B,:=[l 01’. (15) 

It is simple to see that the pair (a,, g,) is completely 
observable and 

&:=a,, _I?,.@& 

has eigenvalues z,, , zk -9,. Also, it is straightforward to 
verify that the system (A, _ , _c), where 6- 

[ 

A; 0 *‘cd d' ii:=ii'= 0 “_ *.r?‘, , r;:= R, , (16) 

0 B&h add 1 [I Bd 

C:=6’=[0 0 ed]. (17) 

Then it follows from Appendix B of Chen et al. (1992) (see 
also Theorem 2.3) that there exists a nonsingular state 
transformation T such that 

T-iAT= [; ;g ‘;I, T-16 = [ ;I (18) 

and 
cT=[O 0 &], (19) 

where 
&d=&d++d.*. (20) 

Note that (T-‘AT, T-‘6, CT) is now in the form of the 
special coordinate basis of Theorem 2.2. Thus it follows 
from the pro erties of this special coordinate basis that 
(PAT, T-‘&r), or equivalently (A, b, c), has an 
infinite-zero structure @= {q,} and has invariant (finite) zeros 
at 

GJb) u A(&.) = {U,, > +,, ZI, . , &-q,]. (21) 

This completes the proof of Theorem 3.1. H 

The following corollary shows that Cs of (13) is complete. 

Corollary 3.1. The set of output matrices B in (3.3) is 
complete, i.e. any output matrix _c for which the resulting 
system (A, b, c) has all properties listed in Theorem 3.1 is a 
member of 0. 

Proof: Let _c be such that the resulting system (A, _b, _c) has 
invariant zeros at {u,, . , uno} and {z,, , z*,-~,} and has 
relative degree 4, 5 k,. It is obvious that c can be written in 
conformitywith- as 

c=[d e h g ZIK’, (22) 
where 4 E Rix”o, e E R, !i E R’X(kl-41-‘), g E R and 
z E Rix@~‘). Note that 

[A%1, . . AC, b]= 7JA@ ;ib 1;]T;’ 

(23) . . . . . . . . * 1 . . . 1 0 

* . . . * 1 

Then it is simple to verify that the fact that (A, 4, c) has a 
relative degree q,, i.e. 

&=_cAb = ...=CA41-‘b=0 (24) 

and _cA+b # 0, implies z = 0 and g # 0. Thus we have 

_c=o[d/a e/ff h/a 1 O]T;‘, 

where (Y = l/g. Following the same procedure as in 
(14)-(20), it can be shown that the invariant zeros of 
(A, b, c) are given by A(A,) = {u,, . , uno} and 

A(&, - [e/a h/o]‘E&) ={zi,. , zkl-q,}. (25) 

Since (A,,, B,) is a single-output system, [e/o h/a]’ is 
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determined uniquely by the closed-loop eigenvalues 
{zl, , zkl J. Hence 

lcld h/al= I%, l,, al (26) 

and _c t ti. n 

Remark 3.1. We should like to point out here that in 
Theorem 3.1, we are able to assign an infinite zero or relative 
degree of any arbitrary order between 1 and k, for the 
resulting system (A, b, c). Obviously, this is much more 
widely applicable in most practical situations. The result of 
Syrmos (1993), for example, can only generate a _c such that 
the relative degree of the resulting system is equal to one, i.e. 
4, = 1. 

We illustrate the above result in the following example. 

Example 3.1. Consider a system characterized by 

.?++“U=[; ; $+[#,. (27) 

It is simple to see that the pair (A, b) is already in the form 
of the Brunovsky canonical form with a controllability index 
V = {0,3}. Then it follows from Theorem 3.1 that one is free 
to choose output matrices such that the resulting systems 
have 
(1) infinite-zero structure Q= (3) with no invariant zero: 
(2) @= (2) with one invariant zero: 
(3) &= {l} with two invariant zeros. 
The systems with the following output matrices respectively 
have such properties: 

(‘, = a[ 1 0 01, 

where Of cy E R. ‘This can easily be verified by computing 
the corresponding transfer functions. We have 

Ly 
H,(s):=c,(sI,-A) ‘b=------ 

s(s* - I) ’ 

a0 + a,) 
H,(s):=c,(d-A) ‘b =p 

S(S 2-l)’ 

Note that only cj or the system Hs(s) can be obtained from 
Syrmos’ approach. 

3.2. Simultaneous zero assignment for MIMO systems. 
Next, we proceed to solve the simultaneous finite- and 
infinite-zero assignment problem for MIMO systems. As in 
the SISO case, we shall first state our result in a theorem and 
then give a constructive proof that generates an explicit 
expression for a non-empty set K of output matrices such 
that for any C E 6. the resulting system (A, B. C) is 
square-invertible and has the chosen finite- and infinite-zero 
structures. A construction procedure is also summarized as 
an easy-to-follow algorithm. 

Theorem 3.2. (The MIMO case.) Consider a system 
characterized by (A, b), with A E W”“” and B E UP”“, with 
B being of full rank. Let %:= {n,, k,. , k,} be the 
controllability index of (A, B). Also, let {u,, . IL,,>} be the 
uncontrollable modes of (A, B). Then, for any given set of 
integers. @:= {q,, , q,}, with O< q, 5 k,. i = 1,. , m, 
and a set of self-conjugate scalars {z,, , z,}. where 

I := 2 (k, ~ q,), there exists a non-empty set 6 E R”‘“” of 
1=1 

output matrices such that for any C E K, the corresponding 
system (A, B, C) is square-invertible with n,, + I invariant 
zeros at {u,, , u,,,. 2,. , z,} and has an infinite-zero 
structure @= {q, , , q,,}. 

Proof Again, it follows from Theorem 2.1 that there exist 
nonsingular transformation r, and 7; such that the pair 

(A, B) can be transformed into the Brunovsky canonical 
form (4). Next, we rewrite A and B as 

A<> 0 0 0 0 

0 0 &, I 0 0 
0 0 0 1 0 

0 0 0 0 I,, 

A=? * * * _:.. 

0 0 0 0 0 ,.. 

0 0 0 0 0 

0 0 0 0 0 

* * * *It... 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 1 
* * * * 

3 (28) 
. 

o I,_ -qn, I o o 

and we define 

A,, := 

0 0 

0 0 

* * 

’ Ihal 
0 0 

0 0 

0 0 

/ 

0 0 

1 . . 0 

L,,:= ; ‘., j I 
0 0 

0 1 

1 0 

0 1% 1 
* * 1 

(29) 

Note that (A,,, tad) is completely controllable, and in fact is 
in the Brunovsky canonical form. Let us also define 

F, := {i;; E Rmx’ 1 A(& - L,,rt,) = {z,, . , z,}}. (30) 

Then, we partition any t, E F, in conformity with (29) as 

[ 

fi, F:, F:‘,, F], 
F;,,= i j .._ ; i , 1 (31) 

r;l;,, Fj,,, F;, FL,,, 

and define a corresponding m X n matrix, in conformity with 

(28). 

4 F:‘, Ft, 1 0 F’j,, F],, 0 0 
. 

iI ti, Fi, 0 ; _’ FJI,,, Fi,, ; il 
(32) 
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where 

is any arbitrary matrix of dimension m X no. Then the 
desired set & of matrices is given by 

6 := {C E fPxrn ( C = I’C’T;‘, with b E Wmxno, 

i;b E F,,, I- E R”‘x”’ and det (I) # 0). (34) 

We now proceed to prove the properties of the resulting 
system (A, B, C) for C E 4. We note that the finite- and 
infinite zero-structures of (A, B, C) are equivalent to those of 
(A, A, C) because they are related by some nonsingular 
transformations T,, T and I’. Noting the structure of 
(A, 8, C), it is simple to see that there exists a 
permutation matrix P E Wx” such that 

p-‘Ap= $ 

[ 

o j; L;:]. P-Ii3 = [J (35) 

and 

where 
(36) 

r o z,,_, . . . o 0 1 

I 
* * 

A &:= ; f 

0 0 

* * 

I- 

. . . * * 

. . . . . . . . . p 

. . . 0 4&-, 

. . * * 1 
(37) 

A, := 

0 . . . 0 
1 . . . 0 
. . . 

: I . . 

0 . . . 

CO._[ d. . . . 1 1 : . 

. I 0 . 

1 0 0 : . . . . ..: . . 0 1 . 0 0 . :. ] (38) 

Again, as was done in the SISO cab, by taking the dual 
result to Theorem 2.3, it can be shown that (A, B, C). or 
equivalently the system (A, B, C), has an infinite-zero 
structure Q= (q,, . . . , qm} and has invariant zeros at 

A(&) u A(A, - L,FO, = {u,, . . . ) U”,, 21, . , z,}. (39) 

This completes the proof of Theorem 3.2. n 

The following remarks are in order. 

Remark 3.2. 
(1) The uncontrollable modes of (A, b) are automatically 

included in the set of invariant zeros of (A, B, C) for any 
C such that (A, B, C) is square-invertible. Hence the 
invariant zeros at ur, . . , u, , in both Theorems 3.1 and 
3.2, cannot be re-assigne& However, they can be 
excluded from the invariant zeros of a left-invertible or 
non-invertible system. 

(2) In order to have a square-invertible system (A, E, C), the 
set Q must not have zero elements. However, if one 
wishes to have a non-invertible system then the elements 
of Qmight be set to zero. 

(3) By selecting Q= (1,. . . , 1) in Theorem 3.2, we recover 
the result of Syrmos (1993). In this case we obtain a set 
of uniform-rank systems with relative degree of one. 
Obviously, our result in Theorem 3.2 is much more 
general than that of Syrmos. 

(4) Unfortunately, it can be shown by some examples that 6 
of (34) is not necessarily complete for m > 1. That is 
there exists an output matrix C such that the resulting 
system (A, B, C) has all the properties listed in Theorem 
3.2, but C f 6. 

Remark 3.3. Note that the procedure for the construction of 
the desired set (5 of output matrices is buried in the proof of 
Theorem 3.2. We should like to summarize as follows an 
easy-to-follow step-by-step algorithm that generates this 6. 

Given (A, B), compute nonsingular transformations 7, 
and Z such that (T;‘AT.,T:‘Bz) is in Brunovsky 

(1) 

(2) 

(3) 

(4) 

. I 

canonical form and obtain ihe controllability index 
h, kl, . , k,Z 
Soecifv a desired infinite-zero structure for the resulting 
systems in a set of integers {q, , . . , q,,J with 0 < qi 5 kir 
i=l,...,m. 
Specify a set of desired invariant zeros {z,, . . , z,}, where 

1 = ;$, (ki - qJ, which must be self-conjugate. 
. 

Define (A,,, L,) as in (29) and compute the set F, as in 
(30). 

(5) Finally, compute the desired set of output matrices 6 as 
in (34). 

We illustrate Theorem 3.2 by the following example. 

Example 3.2. Consider a system characterized by 

i=Ax+Bu=[ ‘/ -; -i j]x+K _;]u. (40) 

Using the software package of Lin et al. (Ml), we have 
found that 

rl -2 1 01 

and the Brunovsky canonical form of (A, B) as 

ro 1 cl 01 

ii = Ty .‘AT,= ’ I 1 -2 1 

I 0 0 01’ 

Ll -2 1 1-l 

ro 07 
1 0 

B = T;‘B = o o I I , 

(42) 

Lo 11 
with a controllability index % = {0,2,2}. Employing the 
procedure as in the proof of Theorem 3.2, we obtain the 
following set of output matrices: 

q= I[ r a, 1 a2 
0 

a3 0 4 +a4 a4 1 1 T,’ 1 
= ala4 - a2a3 = 2, I E Rzx2 with det (I) # 0 , 

such that for any C E O,, the resulting system (A, B, C) has 
an infinite-zero structure Q= (1, 1) and two invariant zeros at 
-1 f jl. The following is another set of output matrices that 
we obtain: 

1 1 0 0 G=[fa o 1 O]i‘Y’la~R 
I E Rzx2 with det (I) # 0 

1 

It is simple to verify that for any C E C2, the corresponding 
system (A, B, C) has an infinite-zero structure Q= {1,2} and 
one invariant zero at -1. 

4. Concluding remarks 
We have proposed an explicit method that assigns 

simultaneously both the finite- and infinite-zero structures in 
linear multivariable systems by an appropriate selection of 
the output matrix. Selecting an output matrix corresponds to 
selecting a set of sensors that define the measured output. 
The computations involved in our method are rather simple. 
The required computations for the transformation matrices 
of the Brunovsky canonical form can easily be done by an 
m-file brun0vsk.m in a commercially available software 
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package, Linear Systems Toolbox (Lin et al., 1991). We 
should like to note that our current method deals only with 
the assignment of finite and infinite zeros, i.e., in terms of the 
terminology of Morse (lY73), only with the lists 9, and Sh. In 
other words, the systems that result from our current method 
always have $ and & as empty lists. We believe that our 
method can be extended to yield systems having all desired 
structural invariant index lists 9,. &, 9, and -a,. This is the 
subject of our future research. 
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