[EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 2, FEBRUARY 1994 355

Approach Al: Forming A™ ™" () requires O(2n). v needs
an additional O(n?) flops. u"~") needs only O(3n) more. Forming
§; requires n flops. Each element requires approximately 5 flops (see
(3.6)). Thus, since there are n — 1 additional rows, to form all the
elements we need O(2.5n?) flops. Stability is checked by inspection
only.

Approach A2: A™ ™ ™) required to find F(z) needs O(2n)
flops. Getting F'(z) (premultiplication of A F™ by an upper
triangular matrix) requires an additional O(n®) flops. The first
two rows need (0(0.5n) plus O(2n) flops (there is a deconvolution
operation in forming the second row). 5‘, requires n flops. Next,
each element requires approximately 3 flops. Thus, since there are
n — 1 additional rows, to form all the elements we need O(1.5n%)
flops. Since it suffices to compute only half the entries, actually
we need ((0.75n) flops. Stability is checked by looking at the
sum of each row. This requires ©(0.5n2) flops.

V. CONCLUSION AND FINAL REMARKS

If the polynomial’s coefficients have numerical values, widely
available root locations algorithms may be utilized. However, as
mentioned in Section I, tabular methods are indispensable when-
ever literal parameters are present. Moreover, they may be used to
determine the maximum possible parameter(s) perturbation(s) of an
initially stable system. In fact, the table developed above provides the
required critical stability constraints directly [15]. Also, incorporating
the polynomial array technique [6]-[8], one may easily develop
systematic procedures that are easily programmable in software.

The tabular method developed above provides a direct check of sta-
bility with no recourse to transformations to a more familiar stability
region. The desirability of such direct stability checking is apparent
from the results developed. This is especially the case when the
sampling frequency is high relative to the system bandwidth. The re-
lationship of the tabular method with the Routh-Hurwitz table is also
indicated [14]. These constitute the motivation and value of this work.

The note also compares the computational time of the direct
method (approach Al), with that of applying BT to the transformed
polynomial (approach A2). Both approaches are quadratic in n. In
forming the table entries, approach A2 fairs better because only
about half the entries are needed. However, due to poor coefficient
sensitivity properties, with high sampling frequency, it may not be
suitable. Note that, in approach Al, stability is determined by simple
inspection.

Only polynomials with real coefficients are dealt with here. Stabil-
ity of g-systems with complex coefficients is in [17]. The extension
of this to 6-systems is under present investigation. This of course is
useful in stability investigations of multidimensional §-systems.
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A Reduced Order Observer Based
Controller Design for Hxo-Optimization

Anton A. Stoorvogel, Ali Saberi, and Ben M. Chen

Abstract—In this note the Hoo control problem with measurement
feedback is investigated. It is well-known that for this problem, in general,
we need controllers of the same dynamic order as the given system.
However, in the case that some entries of the measurement vector are
not noise-corrupted, we show that one can find dynamic compensators
of a lower dynamical order. Note that this implies that the standard
assumptions on the direct feedthrough matrices, as made in most papers
on Hoo control, are not satisfied. Our result can be derived by using
reduced order observer based controllers.
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I. INTRODUCTION

The H.. control problem attracted a lot of attention in the last
decade. It started with the paper [15]. After that several techniques
were developed:

* Interpolation approach: e.g., [8]

* Frequency domain approach: e.g., [4]

* Polynomial approach: e.g., [6]

¢ J-spectral factorization approach; e.g., [5]

¢ Time-domain approach: e.g., [3].

The above list is far from complete. In our view the time-domain
approach yielded the most intuitive results, Moreover, the conditions
were easily checkable: there exists a stabilizing compensator which
makes the Ho, norm less than 1 if and only if there exist positive
semidefinite stabilizing solutions of two algebraic Riccati equations,
which satisfy a coupling condition (the spectral radius of their product
should be less than 1). However, all the techniques mentioned above
had one major drawback. The systems under consideration should
satisfy a number of assumptions,

* The subsystem from control to the to be controlled output should
not have invariant zeros on the imaginary axis and the direct
feedthrough matrix of this system should be injective.

¢ The subsystem from disturbance to the measurement output
should not have invariant zeros on the imaginary axis and the
direct feedthrough matrix of this system should be surjective.

Note that identical conditions were assumed in the linear quadratic
Gaussian control problem. The above assumptions for the Ho. control
problem were removed in [10]-[13]. In this note we will assume that
the conditions on the invariant zeros are still satisfied but we do not
make assumptions on the direct feedthrough matrices. This will be
called the singular case (contrary to the regular case).

In general (even without any assumptions) it turns out that if we
can find a stabilizing controller which makes the Ho, norm less than
1 (a so-called suitable controller) then we can always find a suitable
controller of McMillan degree n (where n is the McMillan degree
of our system). This controller has the standard form of an observer
interconnected with a state feedback. In the regular case, the direct
feedthrough matrix from the disturbance to the measurement output
is surjective and hence we cannot observe any states directly: the
measurement of each state is perturbed by the disturbance. On the
other hand, in the singular case, we can measure, say k, states directly
without any disturbances. In principle it then suffices to built a
observer for the remaining n — k states which would yield a controller
of McMillan degree n — k. However, the separation principle does
not hold in H. control, in the sense that suitable state feedbacks
and observers can not be chosen independently. Moreover, it is in
general hard to show formally that we can attain the same level of
performance with reduced order observers as we could with full order
observers. Therefore, we introduce a transformation which simplifies
these problems considerably. In this note we will formalize the above.

In Section I we will give the problem formulation. Then, in
Section IIT, we will present a preliminary factorization needed in the
construction of the controller. Finally, in Section IV, we will present
our main result and give a constructive method to derive a suitable
controller of the required McMillan degree. We conclude in Section
V with some concluding remarks.

II. PROBLEM STATEMENT
Consider the following system
{:i': Az + Bu + Ew,
X:

y=Ciz + Dyw,
z = Chz + Dau,

2.1

where « € ™ is the state, u € R™ is the control input, w € R’ is
the unknown disturbance, y € 9P is the measured output and z € R?
is the controlled output. The following assumptions are made:
1) (A, B, Ca, D2) has no invariant zeros on the jw axis, and
2) (A, E, C1, D) has no invariant zeros on the jw axis.
Remember that invariant zeros are points in the complex plane
where the Rosenbrock system matrix loses rank.
The basic objective of the H. control problem is to find a
stabilizing compensator of the form

R I e @2

=% = Cemp? + Dempy.

for ¥ such that the resulting closed-loop system has an Ho, norm
strictly less than an, a priori given, bound ~. In [3], [14] it has been
shown that if a suitable controller, that is a controller satisfying the
above objectives, exists then there always exists a suitable controller
of McMillan degree n. We show in this note that in some cases
we can reduce the order of the controller even more without loss of
performance. This is described in the following theorem.

Theorem 2.1: Let ¥ be given by (2.1) such that assumptions a)
and b) are satisfied. Let v > 0 be given. The following conditions
are equivalent:

1) There exists a stabilizing controller of the form (2.2) which,
when applied to £, yields a closed loop system with He, norm
strictly less than +.

2) There exists a stabilizing controller of McMillan degree

n—rank(Cl D1)+rankD1 S n

which, when applied to X, yields a closed loop system with

H, norm strictly less than ~.
It is easily seen that we only need to derive this result for y=1.

The general result can be easily obtained via scaling. Hence, in the
remainder of this note, we will always assume that v = 1.

The implication b) = a) is trivial. The objective for the rest of this
paper is to assume a suitable controller exists satisfying part a) and
to give a constructive proof of the existence of a suitable controller
satisfying part b).

III. PRELIMINARY FACTORIZATIONS
In this section, we recall a result from [12], {13]. Let the original
system (2.1) be given. For P € ™ *" we define the following matrix:
F(P):= ATP+PA+CJCy+---PEE"P PB+CID,
T BTP 4+ DIc, D7 D, )
If F(P) > 0, we say that P is a solution of the quadratic matrix

inequality. We also define a dual version of this quadratic matrix in
equality. For any matrix Q@ € "™ we define the following matrix:

Q)= (49+ QAT + EET + QCFC,Q QCT + EDT
" Ci1Q+ D,ET D, DT :

If G(Q) > 0, we say that Q is a solution of the dual quadratic matrix
inequality. In addition to these two matrices, we define two matrix
pencils, which play dual roles:

L(P, s):=(sI-~ A~ EE"P - B),

M@, s):= (3’ —A-QCIC )

-G

Finally, we define the following two transfer matrices:
Gei(8):= Ca(sI — A)"*B + D»,
Guai(8):= C1(sI - A)"'E + D;.
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Let p(M) denote the spectral radius of the matrix M. By rankg(,) M
we denote the rank of M as a matrix with elements in the field of
real rational functions 9R(s). We are now in a position to recall the
main result from [13].

Theorem 3.1: Consider the system (2.1). Assume that both the
system (A, B, C3, D,) as well as the system (A, E, Cy, D;) have
no invariant zeros on the imaginary axis. Then the following two
statements are equivalent.

1) For the system (2.1) there exists a time-invariant, finite-
dimensional dynamic compensator X.,, of the form (2.2)
such that the resulting closed-loop system, with transfer matrix
G, is internally stable and has Ho. norm less than 1, ie.,
|Gallo < 1.

2) There exist positive semi-definite solutions P, Q of the
quadratic matrix inequalities F(P) > 0 and G(Q) > 0
satisfying p(PQ) < 1, such that the following rank conditions
are satisfied

a) rank F(P) = rankm(,) Gei,
b) rank G(Q) = ranke(,) Gai,

L(P, s
¢) rank ( 15,(})))) =n+rankm(,) G Vs € euet,

d) rank (M(Q, s) G(Q)) = n + rankm(,) Ga;Vs € €° U
ct. O

Note that the existence and determination of P and @ can be
checked by investigating reduced order Riccati equations. For details
we refer to [14].

Next, we construct a new system,

Zp,Q = Ap,@zp,@ + Bp,qupr,@ + Ep,Qu,
Zpq: Syr,@=C1,P2PqQ + Dp, qu,
zp,q = C2, pzp,@ + Dpup q,
@3.1)
where
Cip
F(P) = D’I‘ (CZ,P DP),
P
6@=(p2 )EZ Do)
Dp,q '
and

Ap,g:=A+EE*P+(I-QP)™'QCy pCa,p
Bp g:=B+(I-QP)™'QCy pDp

Ep q:=(I-QP) 'Eq

Ci p:=Ci+ D,ETP.

It has been shown in [13] that this new system has the following
properties:

1) (Ap q, Bp,q, C2,p, Dp) is right invertible and minimum
phase.

2) (Ap,q, Ep,q, C1,p, Dp, q) is left invertible and minimum
phase.

Moreover, in [13] the following theorem has been proven.

Theorem 3.2: Let an arbitrary compensator Zcmp, of the form

(2.2) be given. The following two statements are equivalent:

i) The compensator X.mp applied to the original system X as
in (2.1) is internally stabilizing and the resulting closed loop
transfer function from w to z has He norm less than 1.

ii) The compensator X.mp applied to the new system Xp g as
in (3.1) is internally stabilizing and the resulting closed loop
transfer function from w to zp, ¢ has H., norm less than 1. O

We will show that there exists a time-invariant, finite-dimensional
dynamic compensator X.mp of the form (2.2) and with McMillan
degree n — rank [C1, D1] + rank (D;) for T such that the resulting
closed loop system is internally stable and the closed loop transfer
function from z to w has Ho norm less than 1. Moreover, we give
an explicit construction of such a reduced order compensator. More
specific, we design a reduced order observer based control law for
H . -optimization problem. By the above theorem we can devote all
our attention to our new system X p, o and design controllers for this
system.

IV. REDUCED ORDER OBSERVER BASED CONTROLLER DESIGN

In this section, we construct explicitly a reduced order observer
based controller of order n — rank [C}, D;] + rank (D;) for Tp q.
However, it is evident from Theorem 3.2 that such a controller will
yield the same performance when applied to the original system
¥. Note that in H.. control we have, like in for instance Linear
Quadratic Gaussian control, controllers which have the structure of
a state feedback interconnected with an observer. However, in the
H,, control problem the matter is more complicated since we cannot
choose the state feedback and the observer independently. This is due
to the fact that we have a suboptimal design and because for an Hoo
observer, the observer gain depends on the part of the state space we
would like to estimate.

We will eliminate states which can be directly observed and
concentrate on those states which still need to be observed. In order
to do this we choose suitable basis. Without loss of generality but
for simplicity of presentation, we assume that the matrices C', p and
Dp, g are transformed in the following form:

C1,P=[0 Coz] and DP,Q=[D0:|~

I, 0 0 @D

Thus, the system £p, ¢ as in (3.1) can be partitioned as follows:

T — Al A= + B, " + E, w

&2 A2 Az | [z B, PQ Ey|™

w|_[0 Cozl||z Dy 4.2)

ni| Ik O ||z + +I: 0 ]w,
z="Cq,pzp,@ + Dpup q,

where [z, 23]T = zp, ¢ and [yg, ¥1]|T = yp, @. We observe that
y1 = @ is already available and need not be estimated. Thus, we
need to estimate only the state variable x2. We first rewrite the state

equation for z; in terms of the output y; and state z; as follows:
U1 = Any + Areze + Birup @ + Eyw, 4.3)

where y1 and up, @ are known signals. Equation (4.3) can be rewritten
as

§ = Aw2z2 + Eyw = §1 — Aniz1 — Biup, q- (4.4)
Thus, observation of x; is made via (4.4) as well as by
yo = Cosz2 + Dow.

Now, a reduced order system suitable for estimating the state o is
given by

&2 = A2z2 + [A21 Ba] [HZIQ] + Epw,

¥ ’
vo| _ |Coz Dy
R S

Before we proceed to construct the reduced order observer, we present
in the following a key lemma which plays an important role in our
design.

4.5)
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Lemma 4.1: Let I,. be denoted the subsystem characterized by

matrix quadruple
Coz| |Do
(An, Es, L‘hz ], [El ])

Then we have

1) Z,. is minimum (nonminimum) phase iff
(Ap, @, Er @, C1,p, Dp,q) is minimum (nonminimum)
phase.

2) X, is detectable iff (AP, Q> EP,Q, Cy, p, Dp, Q) is de-
tectable.

3) Invariant zeros of . are the same as those of (4p, ¢, Ep, o,
C1,p, Dp,q).

4) Orders of infinite zeros of X,. are reduced by one from those
of (AP’Q, EP'Q, CI,P, DP,Q).
5) Zr. is left invertible iff (Ap, @, Ep @, C1,p, Dp,q) is left
invertible. O
Proof: We will not proof part 4) since this will not be explicitly
needed in the remainder of this paper. For a proof of part 4) we
refer to [9].
We have the following relationship between the Rosenbrock system
matrices for I, and (Ap, @, Ep, q, C1,pP, Dp,q):

rank (31 511’4: Q _D]if’qq ) (4.6)
sl — Ay —Aj2 -E,
—Ay1 sl - Ay -E,
= rank 0 Co2 Dy
I 0 0
(SI il A22 —Ez
= rank Co2 Dy | +k. 4.7
Ar2 E,

Invariant zeros of (Ap,q, Ep, g, C1, P, Dp, q) are, by definition,
points s € € where the rank in (4.6) drops. Similarly invariant zeros
of ¥, are those points s € € where the rank in (4.7). The above
equality then immediately implies that the two systems have the same
(finite) invariant zeros, which proves part 3).

A system is minimum-phase if and only if all finite invariant zeros
are in the open left half plane. Hence, part 3) immediately implies
part 1).

A system is left-invertible if and only if the Rosenbrock system
matrix has full column rank for all but finitely many s € €. Hence
the above equality also immediately proves part 5.

Similarly part 2) is a direct consequence of the following equality:

I—A SI—A22
rank(s o P'Q)=rank Cos +k n
1, P El

Now, based on (4.5), we can construct a reduced order observer

of z2 as,
22 = Ag2%2 + Aa1y1 + Baup, g + K- Yol - Co2 22
' ¥ Arz
and

. 0 1. I,

Tp,Q = [I _k]-’rz + [;]yh
where K. is the observer gain matrix for the reduced order system
and is chosen such that

Co2
Ag2 — K, [A12 ]

is asymptotically stable. In order to move the dependency on 71, let
us partition K. = [K,o, Kr1] to be compatible with the dimensions
of the output [yf)r, y;r]T. Then (see e.g., [7]), one can define a new
variable v: = #; — K131 and obtain a new dynamic equation,

v = (Az2 — KrCo2 — K;1412)v+ (B2 — K1 B1)up,q
+ [Kvo, A21 — K1 An

+ (422 = K;0Coz — Kr1A12)K 1] [Z‘l)] (4.8)
Thus, by implementing (4.8), £2 can be obtained without generating
y1.

The following theorem, when coupled with Theorem 3.2, yields
the proof of the implication a) => b) of Theorem 2.1.

Theorem 4.1: Let T p, g be given described by (4.2). Then there
exist for every ¢ > 0 a state feedback gain F and a reduced
order observer gain matrix K, such that the following reduced order
observer based controller, as shown in (4.9) at the bottom of the
page, when applied to p, q is internally stabilizing and yields an
Ho norm of the closed loop transfer matrix from w to z strictly less
than e. O

Remark: Let I be given by (2.1). Assume there exists a stabilizing
dynamic compensator of the form (2.2) for T (of arbitrary order).
In that case there exist matrices P and @ satisfying the conditions
of Theorem 3.1. We can then define £p, g by (3.1). Via a suitable
basis-transformation we can bring Tp, g in the form (4.2). The
above theorem guarantees the existence of a reduced-order, stabilizing
compensator L,cmp for the system (4.2) which yields a closed loop
system with Ho, norm strictly less than 1. After reversing the effect of
the basis transformations (which included a basis change for the space
of measurements y) we find a reduced-order, stabilizing compensator
$remp for the system (3.1) which yields the same H.. norm of the
closed loop system and hence this H.. norm is still strictly less
than 1. According to Theorem 3.2 this compensator Zrcmp will also
stabilize ¥ and result in an Ho, norm of the closed loop system
strictly less than 1.

One point might need clarification. We can via a stabilizing
compensator applied to Xp, g, as defined by (3.1), make the Hoo
norm of the closed loop system arbitrarily small. Theorem 3.2
guarantees that this same compensator when applied to & will be
stabilizing and will also have an Ho norm strictly less than 1. But
you can not say more about the resulting closed loop H., norm; it
might be arbitrarily close to 1. In general it will not be possible to
find stabilizing compensators for ¥ which make the resulting Ho
norm arbitrarily small.

¥ = (A22 — K;0Co2 — K1 A12)v + (B2 — Kr1Bi)up,q
s +[Kro, A21 — Kr1 A1 + (Ag2 — KroCoz — K1 A12) Keilyp, o, 4.9)
remp ur o= —Fipo e —F 0 rl0 I ’
PQ = rp,Q = Ik v - 0 K, yP,Q,
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Proof: It is straightforward to verify that the closed-loop system
comprising ¥p, ¢ and the reduced order observer based controller
(4.9) is given by

Ga = (Ca,p — DpF)(sI - Ap,q + Br,oF) 'Er.q
+[(C2,p — DpF)
x «(sI - Ap,q + Br,oF) ™' Bp,q + DF]

p(or-an s [32]) " (- [2])]

(4.10)

X

where F: = (Fy, F%) is partitioned compatibly with the partitioning
of A. Now, it is well known that for left invertible and minimum

phase system,
Coz2 | [Do
(42 (32 [2])

(see Lemma 4.1), for any given e; > 0, there exists a gain matrix
K, such that

Coa]\! Dy
(-t [52]) (5[]

Moreover, the explicit methods for the construction of such a K,
are summarized in the appendix. Similarly, for right invertible and
minimum phase system (Ap, g, Bp,q, C2, P, Dp), for any given
e2 > 0, the exist a gain matrix F such that

|(C2,p — DpF)(sI - Ap,@ + Bp,oF)7'||_ < €.
Again, such a F' can be constructed by dualizing the results of the

<e. @11

4.12)

appendix
In view of (4.10) to (4.12), as well as Theorem 3.2, the result of
Theorem 4.1 can easily be verified by some simple algebra. n

Remark 4.1: In the case that the given system ¥ is regular (i.e., in
additions to the assumptions a) and b), the feedthrough matrices D,
and D, are surjective and injective, respectively), then the controller
(4.9) reduces to the well-known full order observer based control
design for the regular H-optimization as given in [3].

V. CONCLUSION

In this note we presented a technique of finding stabilizing con-
trollers of a dynamical order lower than the dynamical order of the
plant which make the Ho, norm of the closed loop system strictly
less than 1. If p states of a system with McMillan degree n are
measured without noise, then we find a compensator with McMillan
degree n — p.

We think that the technique presented in this paper is quite general
and can for instance also be applied to the linear quadratic Gaussian
control problem in the case that states are measured without noise.
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APPENDIX

DESIGN ALGORITHMS
For economy of notation, in this appendix we will consider the

following system X,,
s . [#= A&+ Bi,
¢ l& = Cz% + Da,
where z € A", u € M™ and y € RP. Throughout this Appendix
we will assume that X, is left invertible and minimum phase. The

(A.D)

goal is to introduce an algorithm of designing for any given ¢ > 0
a parameterized gain matrix K. (o) for which there exists a " such
that for all ¢ > ¢™ > 0, A — K. (o)C is asymptotically stable and

NisIn — A+ K.(6)C]™'[B — Ke(0)D}|los < e.

Without loss of generality but for simplicity of presentation, we
assume that matrices [C, D] and [BT, DT|T are of maximal rank
and matrix D is in the form of

where my is the rank of D. Thus, T, can be partitioned as follows:

# = A# + [Bo, Bi] z;’ s

go| _ [Col~, [Tmo O]]tio
]G] U o)
where Bg, B; and Cq, C; are partitionings of the matrices B and
C of appropriate dimension. First we have the following simple
observation.
Observation A.1: Assume that rank(B;) > 0 and let A; =
A — BoCp. We have the following:
1) (A1, Bi, C1) is left invertible and of minimum phase iff
(A, B, C, D) is left invertible and of minimum phase.
2) Invariant zeros of (A;, Bi, Ci) are the same as those of

(A2)

(4, B, C, D). m|
Proof: Completely similar to the proof of Lemma 4.1. For
details see [1]. ]

In the following we present a design algorithms for the computation
of K.(o), based on a cheap control approach or ARE-based design.
An alternative method can be based on the asymptotic time-scale
and eigenstructure assignment (ATEA) design. In ARE-based design
the asymptotic behavior of the fast eigenvalues of A — K(o)C are
fixed by the infinite zero structure of the system X,. However, in
ATEA design one can assign arbitrarily the asymptotic behavior of
these eigenvalues. For a detailed discussion and comparison between
ARE-based and ATEA design the interested readers are referred to
[91.

THE CHEAP CONTROL APPROACH
Step 1) Solving the following algebraic Riccati equation,

AP + PA] — PCTC,P 4+ ¢*B, BY =0, (A3)
for the positive solution P.
Step 2) Calculate
Ki(o) = PCY.
Step 3) Let
K. (o) = [Bo, K1(0))]. A4)

We have the following lemma.

Lemma A.1: Consider a system X, as in (A.1) which is left
invertible and which is of minimum phase. Let K(¢) be computed
via the above algorithm. Then for any given € > 0, there exists a
a* > 0 such that for all ¢ > ¢, A — K.(0)C is asymptotically
stable and

(l[8Tn — A+ K (6)C]™'[B = K(0)D]||o < €.
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Proof: Since (A1, By, C') is of minimum phase and left invert-
ible, it is shown in [2] that K; (o) calculated in the above procedure
has the following properties: as ¢ — oo,

[sI, — Ay + K1(6)C1]™" B1 — 0 pointwise in s

and A; — K1(0)C\ is asymptotically stable. Hence, for any given
€ > 0 there exists 0™ > O such that for all ¢ > ¢*, A; ~ K, (0)C; =
A — K.(0)C is stable and

[sIn — A1 + K1(0)C1] " Bi}jos < ¢,
which implies

lsln — A+ K (0)C] ' [B — Ke(0)D]f|oo < €.
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A Large Deviations Analysis of Range Tracking Loops

Amir Dembo and Ofer Zeitouni

Abstract—Large deviations theory is applied to the analysis of a discrete
time range tracking loop. It is shown that the resulting asymptotics differ
from those of the continuous time diffusion limit.

I. INTRODUCTION AND MAIN RESULTS

In the design of tracking loops in the presence of noise, two
performance measures are of outmost importance: the steady state
error (“accuracy of the loop”) and the time till lock is lost (“stability”
of the loop). While the analysis of the loop accuracy may usually be
performed by considering a linearized version of the loop, it is well
known that this is not a good approach for studying stability. At least
when the tracking loop may be modeled as a Markov process, analytic
solutions for the latter question exist. Those solutions are hardly ever
explicitly computable. Since often one is interested in systems where
some natural parameter ¢ is small (for example, the “Noise to Signal”
ratio, or the bandwidth), an asymptotic study of the stability question,
which hopefully yields explicit expressions, is of interest.

In recent years, large deviations methods have been applied exten-
sively to the latter problem. Beginning with the pioneering work of
Freidlin and Wentzell [11], it became clear that in many cases the
question of loss of lock (“problem of exit from a domain”), which
involves longer and longer (in ¢) time intervals, may be reduced to the
analysis of fixed intervals large deviations estimates. Such analysis
has been carried out for many Markov processes, and in particular, for
diffusion processes (see [7] and, in the context of tracking systems,
[6], [8], [12]). It seems that the discrete time version of this problem
has not received much attention in the literature. An often used
approach, namely the use of the diffusion limit of the discrete time
chain as an intermediate step in the exit problem analysis, may lead
to completely wrong estimates if the process noise is not Gaussian
(see remark c) below).

In this article we focus on a discrete time model for a range tracking
loop. As will be clear from our exposition, the approach presented
is quite general, but we chose to present it in the simplest possible
situation which still captures the main features of the problem. A
related discussion and some other examples appear in the book [4].

There exists a vast literature on tracking systems and algorithms.
For a guide to the literature, we refer the reader to [1]. The model we
discuss here is as follows. By transmitting a pulse s(t) and analyzing
its return from a target s(t — 7), a radar receiver may estimate T,
the time it took the pulse to travel to the target and return. Dividing
by twice the speed of light, an estimate of the distance to the target
is obtained.

A range tracker keeps track of changes in 7. Since the range of the
target is unknown to the tracker, and fluctuates, it is common to model
it, or actually its representation by 7, as a random process. In order
to keep the analysis simple, and yet to provide a meaningful model,
we describe the range of the target as a first order AR process. That
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