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The Discrete-Time H_, Control Problem
with Strictly Proper Measurement Feedback

Anton A. Stoorvogel, Ali Saberi, and Ben M. Chen

Abstract—This paper is concerned with the discrete-time H ., control
problem with strictly proper measurement feedback. We derive necessary
and sufficient conditions for the existence of a strictly proper compensator
which achieves a given Hoo norm bound. Note that contrary to the
continuous time, in discrete time there might exist a suitable proper
compensator but no suitable strictly proper compensator. Finally, we
given an explicit formula for one controller which achieves this bound.

1. INTRODUCTION AND PROBLEM FORMULATION

The Ho, control problem has been studied extensively in literature
over the past decade. It was first introduced in continuous time (see
e.g., [5], [6], [12], [13]) and later in discrete time (see e.g., [1], [7], [9],
[147). For a more extensive reference list, we refer to two recent books
[2] and [15]. In a recent paper [16], we have studied the discrete-
time Ho, control problem with measurement feedback under a fairly
general setting. We have obtained a set of necessary and sufficient
conditions under which an H. norm bound can be achieved by an
internally stabilizing measurement feedback controller. Moreover, the
structure of such a controller is also explicitly given. The controller
given in [16] is in general nonstrictly proper. In this note, we would
like to derive a set of necessary and sufficient conditions for the
discrete time H.. control problem with strictly proper measurement
feedback controllers. This problem has been studied before in [17].
Our assumptions are much weaker, however, and we are able to
impose arbitrary restrictions on the direct feedthrough matrix of the
controller.

There are several reasons for restricting our attention to strictly
proper compensators. Nonstrictly proper compensators can have a
lack of robustness regarding discarded parasitic dynamics (see [8]).
Also in the study of a simultaneous Ha/Ho control problem we
have to restrict attention to strictly proper compensators (see [10]). A
last example is the sampled data control problem (where we design
a discrete time controller for a continuous time plant which are
connected via sample and hold devices, see, e.g., [3], {4]). Here also
requirements on the direct feedthrough matrix of the controller come
in very naturally. In fact, in [4], a rather special block structure was
required for the direct-feedthrough matrix. We will show that our
technique also enables us to treat that case. It is interesting to note that
for the continuous time H, optimal control problem, the conditions
for satisfying an H, norm bound whether we require strictly proper
controllers or when we allow for general proper controllers are the
same (except when the open-loop direct feedthrough matrix from
disturbance to output is too large). For the discrete time problem,
they are different in general.
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The notation in this note will be fairly standard. By A" and R we
denote the natural numbers and the real numbers, respectively. By o
we denote the shift

(cx)(k):==x(k+1) VKEN

rankx denotes the rank as a matrix with entries in the field K. By
R(z) we denote the field of real rational functions. By X1 we denote
the Moore-Penrose inverse of the matrix X . Finally, by p(X) we
denote the spectral radius of the matrix X.

We consider the following time-invariant system

ocx = Az + Bu + Fw,

X y=C’1x+D12w,
z= Cgil,' + Doiu + Dosw

(1.1)

where for all & € N, z(k) € R" is the state u(k) € R™ is the
control input, y(k) € R' is the measurement, w(k) € R? is the
unknown disturbance, and z(k) € RP? is the output to the controlled.
A, B, E, Cy, Ca, D12, D2y, and Djo are matrices of appropriate
dimension.

If we apply a dynamic feedback law v = F'y to ¥ then the closed-
loop system with zero initial conditions defines a convolution operator
Y, r from w to z. We seek a feedback law u = Fy which is
internally stabilizing and which minimizes the Ls-induced operator
norm of ¥, F over all internally stabilizing feedback laws. We will
investigate dynamic feedback laws of the form

- ,{rfp = Kp+ Ly,

SFi o Mp 4 Ny, (1.2)

We will say that the dynamic compensator ¥, given by (1.2), is
internally stabilizing when applied to the system ¥, described by
(1.1), if the following matrix is asymptotically stable
A+BNC: BM

( e, K ) (-
i.e., all its eigenvalues lie in the open unit disc. Denote by Gr the
closed-loop transfer matrix. The L»-induced operator norm of the
convolution operator ., ¢ is equal to the Ho, norm of the transfer
matrix Gr and is given by

6
IGrlloo: = sup [|Gr(eT)]
6€[0, 27

:Sup{ulnz |'U/‘E£lz« w#O}

llwll2

where the L;-norm is given by

. 1/2
llpllo: = (ZpT<k>p<k>)
k=0

and where || - || denotes the largest singular value. We shall refer to
the norm ||GF||e as the Ho, norm of the closed-loop system.

In this paper we will derive necessary and sufficient conditions for
the existence of a strictly proper dynamic compensator ¥ ¢ which is
internally stabilizing and which is such that the closed-loop transfer
matrix G satisfies [|Gr |l < 1. By scaling the plant we can thus, in
principle, find the infimum of the H ., norm of the closed-loop system
over all stabilizing controllers. This will involve a search procedure.
Furthermore, if a stabilizing ¥7 exists which makes the H norm
of the closed-loop system less than one, then we derive an explicit
formula for one particular F' satisfying these requirements.
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In the development of our main result we will need the concept
of invariant zero. Recall that zp is called an invariant zero of the
system (A4, B, C, D) if

ra.nkn (2015A —C-,B) < rankn(z) (ZIC—A _DB)

II. MAIN RESULTS

In this section, we will derive sets of necessary and sufficient
conditions under which two special structured H., <y-suboptimal
controllers exist. The first controller structure considered is a strictly
proper one, i.e., its direct feedthrough term N = 0, while the second
structure has a direct feedthrough matrix N that must satisfy some
arbitrary constraints. We first recall in the following a theorem from
[16].

Theorem 2.1: Consider system (1.1). Assume that
(A, B, Cz, D) and (A, E, C1, D12) have no invariant zeros on
the unit circle. The following statements are equivalent.

1) There exists a dynamic compensator £ of the form (1.2) such
that the resulting closed-loop system is internally stable and the
closed-loop transfer matrix Gr satisfies ||Gr|loo < 1.

2) There exist symmetric matrices P > 0 and @ > 0 such that

a) We have R > 0 where
V:=BTPB + DL Do,

R:=1I1-DLDy - ETPE
+(E"PB + D% Dy )V (BT PE + DL, D).

b) P satisfies the discrete algebraic Riccati equation

T T BTPA+DLC\T
P=A"PA4C;Cs — (ETP.4+D§202
) t(BTPA+ D, C,
GP)'\ gTpa +DLC, @n
where
._(D5iDyy  DiiDy \ (BT
G(P):= (DszDn DLDoy — 1 ET P(B E).

2.2)
¢) Forall z € C with |z| > 1, we have the equation found
at the bottom of the page.
d) We have S > 0 where

W:= D,D%, + C.QCT,

S:=1 — Dyy DL — C2QCy
+(C2QCT + Do DLYWH(C1QCT + D12 DE).

e) @ satisfies the following discrete algebraic Riccati equa-
tion

— A0 AT r_ (CiQAT + D, ET\T

Q=AQA" + EE —(CzQAT+D22ET
T T

CiQA” + D2 E ) @3)

i
H@Q) (CzQAT + Do ET

1937

where

L D12 DL, D12D%, Cy C T
Q)= (D22Df2 DyDL -1 + C, Q Cy

f) Forall z € C with |z| > 1, we have

2I—-A AQCT + EDE, AQct + EDL,

rankg —-C1 ClQC1T + D12Df2 CIQC2T + DmD%;
—Cs;  CoQCT + DDy CQCT + Doy DL, ~ T
=n-+ q + rankR(,)Cl(zI - A)_lE + D12.
9 p(PQ <L m

The above result finds a characterization for the existence of a
general proper compensator. Conditions a) and b) have the standard
form except that some of the inverses are replaced by generalized
inverses. Condition c¢) is nothing else than the requirement that P
must be a stabilizing solution of the Riccati equation. A similar
comment can be made about conditions d)-f). In [16] we showed how
to reduce these very general algebraic Riccati equations appearing in
the above lemma to classical Riccati equations which can be solved
using standard techniques.

In the following theorem, we find an additional condition which
together with the conditions of the previous theorem guarantees the
existence of a suitable strictly proper dynamic compensator.

Theorem 2.2: Consider system (1.1). Assume that (A, B, Ca,
Ds1) and (A, E, Cy, D12) have no invariant zeros on the unit circle.
The following statements are equivalent.

1) There exists a strictly- proper dynamic compensator X5 of the
form (1.2) with N = 0 such that the resulting closed-loop
system is internally stable and the closed-loop transfer matrix
Gr satisfies ||Gr|le < 1.

2) There exist symmetric matrices P > 0 and @ > 0 such that
the conditions a)-g) are satisfied. Moreover

Dos, pDga p+ Co,p(I—QP)'PCy p <1 (25

where
Ag:=A— BVI[B"PA+ DL, Ca),
Cai=Cs — Dy VBT PA+ DL Cy),
Co, pi= (V) (BT PA + DI,Cs + [BY PE + D%, Dy
-RY[ETPA, + DLC.)),
Daa. pi= (VY)Y (BT PE + DY, Day)R™/2.

Suppose we allow for a direct feedthrough matrix N which is not
arbitrary but has to satisfy some additional requirements, say N € V.
We have the following theorem. We would like to note that, under
more restrictive assumptions and for one particular set V, a similar
result was derived in [4], [11] using a frequency domain approach.

Theorem 2.3: Consider system (1.1). Let }V be some arbitrary sub-
set of RP*™. Assume that (4, B, C2, Do) and (A, E, C1, D12)
have no invariant zeros on the unit circle. The following statements
are equivalent.

1) There exists a strictly proper dynamic compensator Xz of the
form (1.2) with N € V such that the resulting closed-loop

z2I—-A -B
rankg | BTPA+ DL,C, BTPB+ DI Doy
ET'PA+ DLC, ETPB+ DL D,y

—-E
BTPE + DI, Dss
ETPE+DLDy - I

=n4+qg+ rankR(Z)Cz(zI — A)_lB + Doy,
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system is internally stable and the closed-loop transfer matrix
Gr satisfies ||Grllo < 1.

2) There exist symmetric matrices P > 0 and @ > 0 such that
the conditions a)-g) are satisfied. Moreover there exists N € V
such that

| D22, p, v + D21, P,y NDia, P y|leo < 1 (2.6)

where we use the definitions of Theorems 2.1 and 2.2 together
with
Yi=(I-QP)7'Q,
Cy, pi=C1 + DizR Y (ETPA, + D3,C.),
Dyg, pi= DR,
Wp:= Dia2, pD5y p + C1, pYCT p,
Sp:=1-— Dzz,PD1T2,P - CZ,PYC;[:P
+ (Co, PYCII: P+ D22,PD1T2, P)
WGy, pYCE p + D1, p D% p),
Dy, p:= V1/27
Dis, p,y:= W
Do, py:= 5;1/21721,13

Doz p,v:= S5'/*(Ca, pYCY, p + D2, p D1, P)(W;/Q)t-

III. PROOFS OF MAIN RESULTS

Before we proceed to prove our results, we first recall a system
transformations from [16]. Assume that part 2 of Theorem 2.1 is
satisfied, which guarantees that Y: = (I — QP)~'Q > 0. We define
an auxiliary system Ep, y

oxpy = Ap,yzpy + Bpyupr,y + Ep,ywp,v,

yp,y = C1,pepy + Di2,p,ywp v,

zp,y =Co P,y Xp,v + Do, p,yup,y + D22, P ywp v
3.1

Ypvy:

where we use the definitions of Theorems 2.1, 2.2, and 2.3 together
with
Ap:= A+ ER"Y(ETPA, + DLC,),
Ep:= ER™'/?,
Ayi= Ap — (ApYCT p + EpDYy p)WCh p
Ey:= Ep — (ApYCY p + EpDYy p)W}Dia, p
Apy:=Ap + (A,YC35 p + E,Di, p)Sp'Ca,p
Ca pyi= S;l/ZC'z,P
Bpy:= B+ (4,YCS p 4+ E,D3; p)Sp D1, p
Epy:= (APYCEP + EPDTL P+ [AYYCQT:P + EyDgz, PISE!
[Ca, pYCL p + Doy D% pWYHT.

The rest of the matrices are as defined in Theorems 2.1 and 2.2 and
the matrices P and () satisfy the conditions of Theorem 2.1.

It is shown in [16] that a compensator is internally stabilizing and
makes the Ho norm of the closed-loop system less than one for the
system X if and only if the same compensator is internally stabilizing
and makes the Ho, norm of the closed-loop system less than one for
our transformed system p, y. Moreover, Ep, v has a very special
property:

There exists an internally stabilizing compensator which
makes the closed-loop transfer matrix equal to zero, i.e., w
does not have any effect on the output of the system z. This
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Fig. 1.

property of £p, v has a special name: “the Disturbance De-
coupling Problem with Measurement feedback and internal
Stability (DDPMS) is solvable.”

We now recall a key lemma from [16].

Lemma 3.1: Let P satisfy Theorem 2.1.a)—). Moreover let an
arbitrary linear time-invariant finite-dimensional compensator £ be
given, described by (1.2). Consider the following two systems, where
the system on the left is the interconnection of (1.1) and (1.2) and
the system on the right is the interconnection of (3.1) and (1.2) as
shown in Fig. 1. Then the following statements are equivalent.

1) The system on the left is internally stable, and its transfer matrix

from w to z has Ho, norm less than one.

2) The system on the right is internally stable, and its transfer

matrix from wp,y to zp,y has He norm less than one. [

The above lemma tells us that we can completely focus our
attention on the new system X p, y-. To construct controllers for this
new system, the following lemma from [16] shows the existence of
a suitable state feedback and a suitable output injection.

Lemma 3.2: There exists a matrix Fy such that if we define

Fipyi= D}, pCsr+(I+D} pDor p)Fs

then we have
1) Ap,y + Bp,yE1, p v is stable,
2) Co,p,y + Dar,p,yF1, Py = 0.
Moreover, there exist a matrix Ko such that if we define

K py =-Ep, YDL‘p,y + Ko(I = Di2, p, YDLVPV y)

then we have

1) Apy + K1, p,vCh,p is stable,

2) Ep,y + K1,p,vyD12, P,y =0. O

Now, we are ready to prove our results.

First the implication 1 = 2 in Theorem 2.2. In view of Theorem
2.1, we only need to prove the additional conditions (2.5). Since,
however, there exists a strictly proper compensator for ¥ (and hence
for ©p, y') which results in an Ho. norm strictly less than one, it is
straightforward that we must have || D22, p, v|| < 1. This is equivalent
to condition (2.5).

The implication 2 = 1 of Theorem 2.2 follows from the following
lemma which constructs a strictly proper compensator that makes
the Hoo norm of the closed-loop transfer matrix from w to z less
than one, provided that the conditions in part 2 of Theorem 2.2 are
satisfied.

Lemma 3.3: Assume the condition in part 2 of Theorem 2.2 are
satisfied. Let ¥ be given by

L lor= Kpyp+Lpvyyr v, (G.2)
“\up,y = Mp,vp )
where
Mp,y:=Fi,py
Lpy:=-Kipy

Kpy:= Ap,y + Bp,yMp,y + K1,p,yC1, P.
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Then the interconnection of ¥z and ¥ is internally stable and the
closed-loop transfer matrix from w to z has He norm strictly less
than one. 0

Proof: 1t is trivial to check that if ¥ is applied to Xp v, the
closed-loop transfer matrix from wp, y to zp, v is equal to D22, p, v,
and we know that this matrix has a norm strictly less than one.
Moreover, from the stability conditions in Lemma 3.2 it is also
immediate that this compensator is internally stabilizing. Therefore
the results follow from Lemma 3.1. O

Again the implication 1 = 2 in Theorem 2.3 is straightforward.
Clearly we must be able to make the closed-loop direct-feedthrough
matrix from w to z less than one via a static output feedback from
our restricted set V.

We will now prove the reverse implication. We first apply a
preliminary static output feedback v = Ny -+ v where N is such that
(2.6) is satisfied. After this preliminary output feedback we apply the
compensator as constructed in Lemma 3.3. It is easily checked that the
resulting closed-loop system will achieve our objectives. Combining
the preliminary feedback with this strictly proper compensator then
yields the desired (and admissible) compensator for the original
system ¥.

IV. CONCLUSION

We have shown in this paper that if we impose arbitrary constraints
on the direct feedthrough matrix then we can still find necessary and
sufficient conditions for the existence of a stabilizing compensator
which achieves the desired H, norm bound. A suitable choice for the
direct feedthrough matrix is obtained via a related static optimization
problem. In particular we found necessary and sufficient conditions
for the existence of a suitable strictly proper compensator.
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Harmonic Generation in Adaptive
Feedforward Cancellation Schemes

Marc Bodson, Alexei Sacks, and Pradeep Khosla

Abstract—The paper investigates the generation of harmonics in adap-
tive feedforward cancellation schemes. Specifically, it is shown that an
algorithm designed to reject a certain number of frequency components
may in fact be capable of reducing higher-order harmonics as well.
This effect originates in the time-variation of the adaptive parameters.
A consequence is that the adaptive system may perform better than the
algorithm with the fixed, ideal parameters. Surprisingly, the response
to higher-order harmonics can be calculated precisely, using a Laplace
transform analysis. The origin of the numerical procedure is in the
equivalence between the adaptive feedforward cancellation scheme and a
control scheme based on the internal model principle. The implication of
the results on design and implementation issues is discussed.

I. INTRODUCTION

Periodic disturbances occur in a variety of engineering applications.
In data storage systems, for example, the eccentricity of the track on
a disk requires a periodic movement of the read/write head at the
frequency of rotation of the disk. This disturbance is particularly
large if the disk is removable, such as in compact disc players. In
electric motors, the so-called cogging torque (in dc motors) and detent
torque (in stepper motors) create torque pulsations at the frequency
of rotation of the motor, due to the tendency of permanent magnets
to align themselves along directions of minimum reluctance.

In some cases, the frequency of the disturbance is not precisely
known. In many others (including those mentioned above), the
fundamental frequency of the disturbance originates from some
variable that is independently regulated and/or easily measurable.
Unless the disturbance is purely sinusoidal, the harmonics also have to
be compensated for, with magnitudes and phases unknown. Because
of the low-pass properties of physical systems, at most a handful of
harmonics needs to be considered in general.
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