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SUMMARY 
In this paper we propose a nonrecursive method for solving the general discrete-time algebraic Riccati 
equation related to the Hm control problem (Hm-DARE). We have achieved this by casting the problem 
of solving a given H,-DARE to the problem of solving an auxiliary continuous-time algebraic Riccati 
equation associated with the H ,  control problem (Hm-CARE) for which the well known nonrecursive 
methods of solving are available. The advantages of our approach are: it reduces the computation 
involved in the recursive algorithms while giving much more accurate solutions, and it readily provides 
the properties of the general Hm-DARE. 
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1. INTRODUCTION 

The discrete-time algebraic Riccati equation (DARE) has been investigated extensively in the 
literature (see, for example References 3, 7, 8, 11-13). Here, most of the work was based on 
the discrete-time algebraic Riccati equation appearing in linear quadratic control problem 
(hereafter we will refer to such a DARE as the H2-DARE). Also, recently the problem of H ,  
control and that of differential games for discrete-time systems, have been studied by a number 
of researchers including References 2, 5, 10, 15. This work gives rise to a different kind of 
algebraic Riccati equation (hereafter we call it an &-DARE). Analysing and solving such an 
H,-DARE are very difficult, primarily because of an indefinite nonlinear term and because we 
c i  mot a priori guarantee the existence of solutions. In a recent paper, l6 Stoorvogel and 
Weeren, for the first time to our knowledge, have derived a recursive method to find a 
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stabilizing solution, if it exists, to this general Hm-DARE. Their method proceeds as follows: 

(1) solve a Lyapunov equation to determine an initial condition for an H2-DARE; 
(2) utilize the recursive algorithm of Reference 3 to solve this &DARE and use the solution 

(3) compute the solution for the Hm-DARE using another recursive algorithm. 
as an initial condition for the &-DARE; 

A main drawback of the above procedure, however, is that it is in general computationally very 
expensive, as it involves two recursive steps. In this paper, we propose a nonrecursive method 
for solving this Hm-DARE. We cast the problem of solving a given Hm-DARE to the problem 
of solving a continuous-time algebraic Riccati equation associated with the H, control problem 
(H,-CARE), which can be obtained easily from the given data of Hm-DARE. Hence, one can 
utilize the well-known nonrecursive methods to solve this auxiliary problem to obtain the 
solution to the Hm-DARE. The advantages of our approach over the recursive method are 
threefold: (a) it reduces the computation involved while giving much more accurate solutions, 
(b) it brings a clear intuition to the conditions associated with the Hm-DARE, and (c) some 
of the properties of the Hm-DARE follow readily from the continuous-time counterpart. 

The outline of this paper is as follows. In Section 2, we introduce the detailed problem 
statement while in Section 3 we give our main results, namely a nonrecursive method for 
solving the &-DARES. The proofs of the main results are given in Section 4, and Section 5 
contains a numerical example that illustrates our procedure. Finally, we make the concluding 
remarks in Section 6. 

Throughout this paper A' denotes the transpose of A, and Z denotes an identity matrix of 
appropriate dimension. 

2. PROBLEM STATEMENT 

In this paper we propose a nonrecursive procedure that generates symmetric positive 
semidefinite matrices, P, such that 

(1) 

R(P):=~ZZ-DDz-E'PE+(E'PB+DiD~)V(P)-'(B'PE+DfD2) > 0 (2) 

V(P) := B'PB + DiDl> 0 

and such that the following discrete-time algebraic Riccati equation (DARE) is satisfied: 

["'PA + D;"]' 
E'PA + DiC 

[,'PA + DiC] 
E'PA + DiC P= A'PA + C'C- 

where 

G ( P ) : =  riD1 DiD2 ] + [i:]P[B El DDl  D.4D2 - y2Z 

(3) 

(4) 

The conditions (1) and (2) guarantee that the matrix G ( P )  is invertible. In this paper we are 
particularly interested in solutions P of (l), (2) and (3) such that all the eigenvalues of the 
matrix A,I are inside the unit circle, where 

The interest for this particular Riccati equation stems from the discrete-time H m  control 
theory. l 5  Also, it is simple to see that by letting E = 0 and DZ = 0, (l) ,  (2) and (3) reduce to 
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the well-known Riccati equation from linear quadratic control theory. We first recall that the 
relation between the above Riccati equation and the discrete-time H m  y-suboptimal full 
information feedback control problem (see, for example, References 5 and 15). Let us define 
a system CFI by 

( x ( k +  1) = A ~ ( k )  + B ~ ( k )  + E ~ ( k )  

( ~ ( k )  = C x ( k ) + D i  u ( k ) +  D2 ~ ( k )  

where X E  IR" is the state, u E R"' is the control input, W E  R4 the disturbance input, zE R p  the 
controlled output and y E Rn+q the measurement. The following lemma is due to Stoorvogel. 

Lemma 2.1 

zeros on the unit circle. Then the following two statements are equivalent: 
Consider a given system (6). Assume that ( A ,  B, C, 01) is left invertible and has no invariant 

1. There exists a static feedback u = Klx  + KZW, which stabilizes CFI and makes the H m  

2. There exists a symmetric positive semidefinite solution P to (l), (2) and (3) such that 

For the discrete-time Hm y-suboptimal full state feedback control problem, one of the 
conditions associated with the DARE of (3), is slightly different from those for the full 
information case. Namely, condition (2) should be replaced by 

norm of the closed-loop transfer function from w to z less than y. 

matrix A,1 of ( 5 )  has all its eigenvalues inside the unit circle. 

DiD2 + E'PE < y Z I  (7) 

To be more specific, let us consider the following system CSF, 

x ( k +  1) = A  x ( k ) +  B u ( k ) +  E ~ ( k )  i ~ ( k )  = C ~ ( k )  + Di ~ ( k )  + D2 ~ ( k )  
C S F :  y ( k )  = x ( k )  (8) 

where x,  u,  w and z are the same as the full information case. The following result is recalled 
from Stoorvogel. l4 

Lemma 2.2 

zeros on the unit circle. Then the following two statements are equivalent: 
Consider a given system (8). Assume that (A, B, C, 01) is left invertible and has no invariant 

1. There exists a static state feedback u = Kx, which stabilizes CSF and makes the Hm norm 

2. There exists a symmetric P 2 0 such that ( l ) ,  (7) and (3) are satisfied and such that matrix 

To differentiate the H ,  y-suboptimal control problems for the full information feedback 

of the closed-loop transfer function from w to z less than y. 

A,I of ( 5 )  has all its eigenvalues inside the unit circle. 

case and the full state feedback case, we introduce the following definitions. 
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Dejrnition 2.1 

The DARE of (3) with conditions (1) and (2) are referred to as the &-DARE for the full 
information problem. Moreover, a symmetric positive semidefinite P is said to  be the 
stabilizing solution of Hm-DARE for the full information problem if it satisfies (l), (2) and (3), 
and is such that the matrix ACl has all its eigenvalues inside the unit circle. 

Dejrnition 2.2 

The DARE of (3) with conditions (1) and (7) are referred to as the Ha-DARE for the full 
state feedback problem. Moreover, a symmetric positive semidefinite P is said to be the 
stabilizing solution of Hm-DARE for the full state feedback problem if it satisfies (l), (3) and 
(7), and is such that the matrix A,I has all its eigenvalues inside the unit circle. 

The following remark connects the Hm-DARE to that given in Reference 2, which appears 
in a different form. 

Remark 2.1 

Assume that that DZ = 0 and D i [ C  Dl] = [0 I ] ,  it is simple to verify that ( 1 )  is 
automatically satisfied, (2) and (7) can be rewritten as 

R ( P )  = Z -  Y - ~ E ' ( Z +  PBB')-'PE > 0 (9) 

E'PE < -yZI (10) 

and 

respectively, and (3) can be rewritten as, 

P =  C'C+A'P[Z+  (BB' - Y - ~ E E ' ) P ] - ' A  

Also, Acl as defined in ( 5 )  is equivalent to 

[ Z +  (BB' - Y - ~ E E ' ) P ]  - ' A  

Remark 2.2 

We should point out that if matrix S defined as 

is invertible, then the problem of finding the stabilizing solution to  the Hm-DARE for the full 
information problem or for the full state feedback problem basically can be reduced to that 
of solving a generalized eigenvalue problem (see Reference 16). However, if matrix S is not 
invertible, such a technique is not applicable. 

It is shown in Reference 16 that a stabilizing solution to  the Hm-DARE for the full 
information problem or Hm-DARE for the full state feedback problem, if it exists, is unique. 
Also, the existence of the stabilizing solution to the Hm-DARE for the full information 
problem is necessary, but not sufficient, for the existence of the stabilizing solution to the 
&-DARE for the full state feedback problem. Moreover, the stabilizing solution to the 
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&-DARE for the full state feedback problem is also a stabilizing solution to the &-DARE 
for the full information problem since condition (7) implies (3). 

The problem of obtaining the stabilizing solution to the &-DARE for the full state 
feedback can be easily converted to the problem of finding a stabilizing solution to &-DARE 
for the full information problem. This can be done as follows. Given an H,-DARE for the 
full state feedback problem, we form and solve the &-DARE for the full information 
problem. 

( 1 )  If the H,-DARE for the full information problem does not have a stabilizing solution, 
then the given &-DARE for the full state feedback problem does not have a stabilizing 
solution. 

(2) Suppose that the H,-DARE for the full information problem has a stabilizing solution, 
say P. If P satisfies (7), then P is the stabilizing solution to the given &-DARE for the 
full state feedback problem. Otherwise, the given H,-DARE for the full state feedback 
problem does not have a stabilizing solution. 

As such, in this paper, without loss of generality but for simplicity of presentation, we will 
focus only on the &-DARE for the full information problem. Our goal is to derive a 
nonrecursive (instead of recursive) method for solving the Hm-DARE for the full information 
problem. 

3. MAIN RESULTS 

In this section, we provide a nonrecursive method for computing the stabilizing solution to 
the Hm-DARE for the full information problem, i.e., (l), (2) and (3 ) .  We first define an 
auxiliary H,-CARE from the given system data and we connect the stabilizing solution for the 
given H,-DARE to the stabilizing solution for the auxiliary H,-CARE, for which nonrecursive 
methods of obtaining solutions are available. 

We assume that matrix A in the given H,-DARE has no eigenvalues at -1. This is without 
loss of generality since in the discrete-time H, control problem associated with the given 
H,-DARE, one can always apply a pre-feedback law to relocate the eigenvalues of A that are 
at -1, provided that ( A ,  B) is stabilizable. In what follows, we define an auxiliary &-CARE, 

with associated condition 

where 

A := ( A  + z ) - ' ( A  - Z )  

6:= C 
B1:= D' - C ( A  + I ) -  ' B  
B2:=02--C(A + z ) - ' E  

B := 2(A + Z )  -2B 
E:=  2(A + Z)-2E 

and 
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If matrix d~ is injective, then condition (14) implies d in (16) is invertible. Again, we are 
particularly interested in solution P of (13) such that the eigenvalues of Ac, are in the open 
left half plane, where 

We note that under the conditions that d~ is injective, (A, B, 6, bl) has no invariant zeros 
on the jw axis, and (14), the above Hm-CARE (13) is related to the continuous-time H m  
y-suboptimal full information feedback control problem for the following system, 

p= A x + B  u +  E w 

The following lemma is recalled from Reference 14. 

Lemma 3.1 

Consider a given system (18). Assume that dl is injective and (A, B,6, dl) has no invariant 

1. There exists a static feedback law u = K l x  + K ~ W ,  which stabilizes %I and makes the H, 

2. Condition (14) holds and there exists a symmetric P 2 0 such that (13) is satisfied and 

zeros on the jw axis. Then the following two statements are equivalent: 

norm of the closed-loop transfer function from w to z less than y. 

such that the matrix A,I of (17) has all its eigenvalues in the open left half plane. 

Now, we are ready to present our main results. 

Theorem 3.1 

Assume that A has no eigenvalues at -1 .  Then the following two statements are equivalent: 

1 .  ( A ,  B) is stabilizable and (A ,  B, C,D1) is left invertible with no invariant zeros on the unit 
circle. Moreover, there exists a symmetric positive semidefinite matrix P such that (l) ,  
(2) and (3) are satisfied along with the matrix A,I of ( 5 )  having all its eigenvalues inside 
the unit circle. 

2. (A, 8) is stabilizable, b~ is injective and ( A ,  8,6, d ~ )  has no invariant zeros on the jw 
axis, and (14) holds. Moreover, there exists a symmetric positive semidefinite solution 
of the Hm-CARE (13) such that the eigenvalues of A,I, where A,, is as in (17), are in the 
open left half complex plane. 

Furthermore, P and P are related by P= 2(A' + Z)- 'P(A + I ) - ' .  

Remark 3.1 

We should point out that the left invertibility of (A,  B, C,  01) is a necessary condition for 
the existence of the stabilizing solution to the Hm-DARE for the full information problem 
(see Reference 16). Moreover, following the proof of Theorem 3.1 in the next section and the 
properties of the continous-time algebraic Riccati equation, it is easy to show that the 
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condition that (A,  B, C,D1) has no invariant zeros on the unit circle is also necessary for the 
existence of the stabilizing solution to the &-DARE for the full information problem. 

Remark 3.2 

From Theorem 3.1, a noniterative method of obtaining the stabilizing solution P to the 

1. Obtain the auxiliary H,-CARE. 
2. Obtain the stabilizing solution P to the &-CARE using some well-known noniterative 

methods. For clarity, we recall in the following a so-called Schur method (see Reference 
9): define a Hamiltonian matrix 

&-DARE for the full information problem can be established as follows: 

1 A - [B E]G-"dl  5 2 1 ' 6 ;  - [B 81G-"B 81' 

Find an orthogonal matrix T E R 2 n x 2 n  that puts H in the real Schur form 

where SII E R n x n  is a stable matrix and S22 E R n x n  is an anti-stable matrix. Partition T 
into four n x n blocks: 

Then P is given by 

P =  T21Tfi' 

3. The stabilizing solution to the &-DARE for the full information problem is given by 

P = 2 ( A ' + I ) - ' P ( A  +z)-l  (19) 

Corollary 3.1 below shows some properties of the &-DARE for the full information 
problem. This corollary follows from Theorem 3.1 and the well-known results in the 
continuous-time H, optimal control theory (see, for example, Reference 18). 

Corollary 3.1 

Consider the &-DARE for the full information problem. Assume that ( A ,  B) is stabilizable 
and ( A ,  B, C , D 1 )  is left-invertible with no invariant zeros on the unit circle. Then we have the 
following: 

1. The stabilizing solution, if existent, is unique. 
2. If the stabilizing solution to the &-DARE for the full information problem exists for 

some yl, then the stabilizing solution exists for any y > yl. 

It is well-known that the %-DARE is the generalization of the &-DARE. Namely, by 
letting y = 00, or equivalently E = 0 and D2 = 0, we obtain the general &DARE. For the 
purpose of completeness we give the following corollary that provides a noniterative method 
of solving the general H2-DARE. 
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Corollary 3.2 

Assume that A has no eigenvalues at -1. Then the following two statements are equivalent: 

1. (A, B) is stabilizable and (A, B, C, 0 1 )  is left-invertible with no invariant zeros on the 

B’PB+ DID1 > 0 (20) 

(21) 

unit circle. Moreover, there exists a positive semidefinite matrix P such that 

P =  A‘PA + C’C- (A’PB+ C‘Dl)(D{Dl+ B’PB)-’(A’PB+ C’DI)’ 

and such that the eigenvalues of the matrix Acl are inside the unit circle, where 

Acl = A  - B(DiD1+ B’PB)-’(A’PB + C‘Di)‘ (22) 

2. ( A , B )  is stabilizable, bl is injective and (.?,8, C , b l )  has no invariant zeros on the jw  
axis. Moreover, there exists a positive semidefinite solution E3 of the following CARE 

o =  PA + ~ B + 6 ‘ 6 - ( P ~ + d ’ b * ) ( b i ~ , l ) - ’ ( P B + 6 ’ b , 1 ) ’  (23) 

such that the eigenvalues of A,] are in the open left half complex plane, where 

A,] = A - B(bib1)-1(m + d’bl)‘ (24) 

Furthermore, P and P are related by P =  2(A’ + I ) - ’ P ( A  + I ) - ’ .  

Lemmas 2.1 and 3.1, and Theorem 3.1 show the interconnection between the H m  
y-suboptimal control problem for the discrete-time system CFI and the continuous-time system 
~ F I .  This connection is formalized in the following lemma. 

Lemma 3.2 

Assume that (A,  B) is stabilizable and (A,  B, C, 0 1 )  is left-invertible with no invariant zeros 

1. The Hm y-suboptimal full information feedback control problem for the discrete-time 
system CFI has a solution. Namely, for a given y, there exists a static full information 
feedback u = Klx  + KZW such that the closed-loop transfer function from w to z has an 
&-norm less than y. 

2. The H, y-suboptimal full information feedback control problem for the continuous-time 
system ~ F I  has a solution. Namely, for a given y, there exists a static full information 
feedback u = Klx  + K ~ w  such that the closed-loop transfer function from w to z has an 
&.-norm less than y. 

on the unit circle. Then the following statements are equivalent: 

Remark 3.3 

The results of Lemma 3.2 can easily be obtained from a different route. It is well known 
that the Hankel norm and the H, norm of a transfer function are invariant under bilinear 
transformation (see, for example, Reference 4). Hence one can recast the H, y-suboptimal 
control problem for the discrete-time system CFI into an equivalent H, y-suboptimal control 
problem for an auxiliary continuous-time system obtained by performing bilinear 
transformation on CFI. It can be shown that one of the state-space realizations of this auxiliary 
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continuous-time system, CBL, is given by 

p= A x +  B u +  l? w 

( z =  6 x +  b, u +  b2 w 

where b, = -(A + Z)-'B, b 4  = -(A + Z)-'E, and A ,  B, l?, 6, bl and D z  are as defined in 
(15). Consequently the H, y-suboptimal control problem for the discrete-time CFI has a 
solution if and only if the H, y-suboptimal control problem for the continuous-time system 
CBL has a solution. However, we note that CBL is not completely in the full information form. 
This difficulty can easily be removed by redefining the measurement output in CBL as 

J:= [o z -b4 (Y - El.) = ($+ Q w  

It is now obvious that CBL with the new measurement output j is in fact the same as EFI. Also, 
it is easy to show that the H, y-suboptimal problem for CBL has a solution if and only if the 
H, y-suboptimal problem for CFI has a solution and hence the result of Lemma 3.2 follows. 
It is important to note that the bilinear transformation approach does not establish a 
relationship between the stabilizing solution of the &-CARE associated with the continuous- 
time system %, obtained by performing bilinear transformation on discrete-time system CFI 
and defining the new measurement as in (26), and the H,-DARE associated with the given 
discrete-time system CFI. In fact, the main contribution of Theorem 3.1 is to establish such 
a relationship. 

4. PROOF OF RESULTS 

Before we proceed to prove Theorem 3.1, we first introduce a nonrecursive method for solving 
the following discrete-time algebraic Riccati equation, which is even more general than the 
H,-DARE and which plays a critical role in this paper, 

(27) 

where A,  M, N, R and Q are real matrices of dimensions n x n, n x m, n x m, m x rn and 
n x n, respectively, and with Q and R being symmetric matrices. We will show that the DARE 
of (27) can be converted to a continuous-time Riccati equation. Our approach is motivated by 
that of Reference 17 in which only the result for the case R = Z, Q 2 0 and N = 0, was given 
without proof. * 

P =  A'PA - (A'PM+N)(R +M'PM)-'(M'PA + N')  + Q 

Assume that matrix A has no eigenvalues at - 1. We define 

F:= (A + Z)-l(A -Z) 

W:= R + M'(A' + Z)-'Q(A + Z)-'M - " ( A  + Z)-'M - ,'(A' + Z) 
G := 2(A + Z)-2M 
H : =  - Q ( A  + Z)-'M+ N 

We have the following lemma. 

* A  reviewer has brought to our attention that in a recent paper by Kondo and Hara,6 an attempt has also been made 
to connect CARE and DARE, again without proofs, for a special class of regular H-, problems. 
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Lemma 4.1 

equivalent. 
Assume that matrix A has no eigenvalues at -1 .  Then the following two statements are 

1 .  P is a symmetric solution to the DARE (27) and matrix W is nonsingular. 
2. 13 is a symmetric solution to the continuous algebraic Riccati equation (CARE), 

FF+ F ' F -  (FG + H )  W-'(FG + H)' + Q = 0 (29) 
and R + 2G'(I- F')- 'F(Z- F)- 'G is nonsingular. 

Moreover, P and P are related by P =  2(A' + Z)- 'P(A  + I ) - ' .  

Proof. First, let us consider the following reductions: 

A ' P A - P + Q = 2 A r ( A ' + I ) - ' P ( A  + I ) - ' A - 2 ( A r + I ) - ' P ( A + I ) - ' + Q  
= 2(A' + Z)-'A'PA(A + I ) - '  - 2(A' + I ) - ' P ( A  + I ) - '  + Q 
= (A' + I)-'(2A'FA - 2F)(A + I ) - '  + Q 

= p ( A  - I ) (A + I ) - '  + (A' + Z)-'(A' - I ) P +  Q 
= ( A ' +  Z)-'[(A'+Z)P(A - I ) + ( A ' - I ) P ( A + Z ) ] ( A + I ) - ' + Q  

= PF+ F ' P +  Q (30) 

(1. =) 2.) Let us start with the following trivial equality, 

A'PA - P + (A' + I ) P ( A  + I )  - (A' + I )PA - A ' P ( A  + I )  = 0 

which implies that 

P - PA ( A  + 0-1 + (A' + I )  -'A'P + (A' + I)-'A'PA ( A  + I )  - 1  - (A' + I )  - 'P(A + I )  - 1  = 0 

Then we have 

w =  R+M~(A~+I)-'Q(A+I)-~M-N~(A+Z)-'M-M~(A~+I)-~N 
= R+M~(A~+I)-~Q(A+I)-~M-N~(A+I)-~M-M~(A~+I)-~N 

+ M ' P M - M ' P A ( A  +I ) - 'M-M'(A'  +I ) - 'A 'PM 
+ M'(A' + I )  -'A'PA(A + I )  - 'M-  ,'(A' + I )  - 'P (A  + I )  -'A4 

= R + M'PM-  (M'PA + " ) ( A  + I )  -1, - ,'(A' + I )  - (A'PM + N) 
+ ,'(A' + I)-'(A'PA + Q - P ) ( A  + Z)-'M 

+M'(A' + I ) - ' (A 'PM+ N ) ( R + M ' P M ) - ' ( M ' P A  +")(A + Z)-'M 

x (R + M' PM) [ I -  (R + M' PM) -Wr PA + N ' ) ( A  + I )  -'MI 

(31) 

(32) 

(33) 

Here we note that we have used (27) to get (32) from (31). By the assumption that W is 
nonsingular, we have 

= R + M'PM - (M'PA + " ) ( A  + Z)-'M - ,'(A' + I )  -'(A' PM + N) 

= [I-M'(A'+I)-'(A'PM+N)(R+M'PM)-'1 

R + M'PM= [ I -  ,'(A' + I )  -'(A' PM+ N)(R + M'PM)  - ' I  -' W 
x [ I -  ( R  + M'PM)- ' (M'PA +")(A + I ) - ' M ]  -' 
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Hence, 

(A' PM + N)( R + M' PM) - ' (MI  PA + N ' )  
=(A'PM+N)[Z-(R+M'PM)-'(M'PA +")(A +Z)- 'M] W-' 

x [I-(R+M'PM)-'(M'PA+N')(A +Z)- 'Ml ' (M 'PA+N' )  
= [A'PM- (A'PM+ N ) ( R  + M'PM)- ' (M'PA +")(A + z ) - ' M +  N ]  W - I  

X [A'PM- (A'PM+ N ) ( R  + M'PM)- ' (M 'PA +")(A + Z)-'M+ N ]  ' (34) 

x [ A ' P M + ( P - A ' P A - Q ) ( A + Z ) - ' M + N ] '  (35) 
= [ A ' P M + ( P - A ' P A - Q ) ( A + Z ) - ' M + N ] W - '  

= [(A' P + P - Q )  ( A  + Z) - ' M  + N ]  W- ' [ (A' P + P - Q )  ( A  + Z )  - ' M  + N ]  ' 
= [(A' + Z)P(A + Z)(A + Z)-'M- Q ( A  + Z)-'M+ N ]  W-' 

x [(A' + Z)P(A + Z)(A + Z)-'M- Q ( A  + Z)-'M+ N ]  ' 
= ( P G + H ) w - ' ( P G + H ) '  

Again, we have used (27) to get (35) from (34). Finally, (27), (30) and (36) imply that 

PF+ F ' P -  (PG + H )  W- ' (PG + H)'  + Q = 0 

(2. * 1.) It follows from (28) that 

1 A = ( z + F ) ( z - F ) - '  

H =  - Q ( I - F ) - ' G + N  
M =  2(Z- F)-'G 

P =  ( I -  F ' ) P ( I -  F)/2 
W =  R +  G'(Z- F')- 'Q(Z- F) - 'G-N ' (Z -F) - 'G-  G'(Z-F')- 'N 

R + M ' P M =  R+2Gr(Z-F')- 'P(Z-F)- 'G 

Then we have 

R + M ' P M  
= R+G'(Z-F')-'[Q+(P-PF-Q)+(P-F'P-Q)+(PF+F'P+Q)](Z-F)-'G 
= R+G'(Z-F')-'Q(Z-F)-'G-N'(Z-F)-'G-G'(Z-F')-'N 

+G'(Z- F ' ) - ' [ P G - Q ( Z -  F ) - ' G + N ]  + [PG-Q(Z- F ) - ' G + N ]  '(Z- F ) - ' G  

+ G'(Z-F')- ' (PF+F'P+ Q)(Z-F)- 'G (38) 

+ G ~ Z -  F')- ' (PG + H )  w-'(PG + H ) ~ z -  0 - l ~  (39) 
(40) 

= W+G~(Z-F')-'(PC+H)+(PG+H)~(Z-F)-'G 

= [Z+ W- ' (PG+H) ' ( I -F) - 'G l  ' W [ Z +  W - ' ( P G + H ) ' ( Z - F ) - ' G ]  

Here we note that we have used (29) to get (39) from (38). By assumption, we have R + M'PM 
nonsingular. Thus, we can rewrite (40) as, 

W =  [Z+ G'(Z-F')- ' (PG+ H ) W - ' 1 - ' ( R + M ' P M ) [ Z +  W - ' ( P G + H ) ' ( Z -  F ) - ' G ] - '  

We have the following reductions, 

(FG + H )  w - (136 + H )  
= (PG + H )  [Z+ W-'(PG + H ) ' ( Z - F ) - ' G ]  

x ( R + M ' P M ) - ' [ I +  W- ' (PG+H) ' (Z -F) - 'G]  ' ( P G + H ) '  

x [PG+H+(ijG+H)W-'(ijG+H)'(Z-F)-'G]' 
= [PG + H + (PG + H )  W-' (PG + H )  ' ( Z  - F )  -'GI ( R  + M ' P M )  -' 
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= [PG - Q ( I  - F)-'G + (PF+ F' 13 + Q ) ( I  - F)-'G + N ]  ( R  + M'PM)- 
x [PG - Q ( I  - F) - 'G  + (PF + F'P + Q ) ( I  - F) - 'G  + N ]  ' (42) 

(43) 

Again, we have used (29) to get (42) from (41). Finally, it follows from (29), (30) and (43) that 

= [ ( I +  F') P ( I  - F)-'G + ZVl ( R  + M'PM)-' [ G'(I - F')- 'P(I+  F) + N'] 
= (A'PM + N)(R + M' PM) - (MI PA + N')  

A'PA - (A'PM+ N ) ( R  + M'PM)-'(M'PA + N')  + Q - P = 0 

This completes the proof of Lemma 4.1. 0 

Now, we are ready to prove the main results in Section 3. 

Proof of Theorem 3.1. Without loss of generality but for simplicity of presentation, we 
prove Theorem 3.1 for the case that y = 1. 

(1. = 2.) We first proceed to prove that ( A ,  8) is stabilizable, d1 is injective and (A, b, 6, d1) 
has no invariant zeros on the unit circle. For any complex scalar s, we consider 

rank [sI - A ,  81 = rank [sl - ( A  + I) - ( A  - I), 2(A + I) -'B] 
=rank[s(A+I)-(A-I),  2(A+I)-'BI 
=rank[s(A+I)-(A-I),  2(A+I)- 'B-sB+(A-I)(A + I ) - ' B ]  
=rank[(l + s ) I - ( l  -s)A,  (1 -s)Bl (44) 

which implies that (A, b) is stabilizable, i.e., all the uncontrollable modes, if any, are in the 
open left half plane, provided that (A, B) is stabilizable, i.e., all the uncontrollable modes, 
if any, are inside the unit circle. Also, noting that 

d l = D l - C ( A + I ) - 1 B = D l + c ( - I - A ) - 1 B  

together with the facts that (A, B, C, D l )  is left-invertible and has no invariant zeros on the 
unit circle, it follows that dl is of maximal column rank, i.e., dl is injective, and hence 
(A, 8, 6 , h )  is left-invertible. Now, for any s # 1, we consider 

(1 + s ) I - ( l  -s)A -(1 - s ) B  
Di 1 = rank 

= rank "1 + s)/(l; s ) l -  A 

which implies that (A, 8,6, d1) has no invariant zeros on the jo axis provided that the system 
(A,  B, C, 01) has no invariant zeros on the unit circle. 
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Next, we will show that (14) holds. Let 

M:= [B El 
N:=C' [Di  Dz] 

R := E;; g:I] 

W:= R + M ' ( A ' +  I ) - 'Q (A  + I ) - ' M - N ' ( A + I ) - ' M - M ' ( A ' + I ) - ' N  

Q:= C'C 

G := 2(A + I ) -2M 
H:= -Q(A + I ) - ' M + N  

X:= I -  (R + M'PM)-'(M'PA +")(A + I)-'M 

F:= A 

It is simple to verify that 

Then, (3) and (13) are, respectively, reduced to (27) and (29), and (5) and (17) can be written, 
respectively, as 

(46) A,' = A - M( R + M' PM) - ' (M' PA + N')  

and 
Acl = F- GW-'(PG + H)' (47) 

Noting that 

det[X] =det[I-(R+M'PM)- ' (M'PA +")(A +I)- 'M] 
=det[I-M(R+M'PM)-'(M'PA +")(A +I) - ' ]  
=det[I+A,~]det[(A + I ) - ' ]  

it follows that X is nonsingular provided that the eigenvalues of A,] are inside the unit circle. 
Recalling (33) in the proof of Lemma 4.1, we have W nonsingular and 

W-' =X-'(R +M'PM)-'(X-')' (48) 

which implies that the inertia of W-'  is equal to the inertia of (R +M'PM)- '  (see, for 
example, Theorem 4.9 of Reference 1). Again, noting that 

I Y (Diii,)-l 0 I Y '  
w-'= [o I ] [  0 [d;(I-dl(~id,)-'di)dz-I] - 4 0  I ]  

and 

where Y =  -(b{bl)-'fii& and Z =  - V(P)-'B'PE, together with (48) and the facts that 
V ( P )  > 0 and R(P)  > 0, it follows that 

&(I-B'(Bifi')-'Bi)d2 < I 

Using the fact that W is nonsingular, it follows from Lemma 4.1 that 13 is a positive 
semidefinite solution of (13). 
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Finally, we are ready to prove that A,I has all its eigenvalues in the open left half complex 
plane. It follows from (36) in the proof of Lemma 4.1 that 

ACI = F -  ~ ~ ' ( 1 3 6  + N)' 
= F -  GX-'(R+M'PM)-'(M'PA + N ' )  
= ( A  + I ) -  ' ( A  - I )  - 2(A + I ) -  2 M [ z -  ( R  + M'PM)- ' (M'PA +")(A + I ) -  'MI - ' 

= ( A  + I )  - 1  ( A  - I -  2 [ Z -  ( A  + I )  - 'M(R + M'PM)-'(M'PA + N')] - ' 
x ( A  +I)-'M(R+M'PM)-'(M'PA +")) 

=(A+I)-'(A-z-2[z+A-M(R+M'PM)-'(M'PA+N')] -' 
x M ( R  + M'PM)--'(M'PA + N') )  

= ( A  + I )  - (A,1 + I )  - [ [ I + A - M ( R  + M'PM) - ' (M' PA + N')] (A - I) 
- 2M(R + M'PM)-'(M'PA + N'))  

= ( A  + I )  - (A,, + I) - (Ad - I )  ( A  + I )  

x(R+M'PM)-'(M'PA + N ' )  

(49) 

which implies that the eigenvalues of A,I are in the open left half plane provided that the 
eigenvalues of A,I are inside the unit circle. 

(2. * 1.) Noting that 

det [I + W- ' (PG + E-I) ' (I - F) -'GI = det [I + G W-' (@G + Zf) ' (I - F) - ' I  
= det [I- F +  GW-'(FG + H)'ldet [ ( I -  F)-'I 
= det[I- A,l]det[(Z-F)-'] 

and A,I has all its eigenvalue in the open left half plane, it follows from (40) that R + M'PM 
is nonsingular. Thus, the condition in part 2 of Lemma 4.1 holds. The rest of the proof in 
reverse direction of Theorem 3.1 follows from an almost identical procedure as (1. =$ 2.). This 
completes our proof. 0 

5 .  ANEXAMPLE 

In this section, a numerical example is presented to illustrate our results with a comparison of 
our solution to that generated by recursive algorithm of Stoorvogel and Weeren.16 Let us 
consider a discrete-time H,-DARE for the full information problem with 

1 0 1 0  1 0  1' 
A = [ i  1 1 0 0  1 0 1 01, B = [ !  i], E = [  -; 

0 1 1 1  0 
- 1 0 1 1  1 0  1 

0 1 0 1 0  

and y = 1. It is simple to verify that ( A ,  B, C, D l )  is left-invertible with an invariant zero at 



SOLVING THE GENERAL DISCRETE-TIME RICCATI EQUATIONS 

0. Following (15), we obtain the auxiliary Hm-CARE with 

1 -2  6 -4  2 
-1 3 -8  6 -3  

2 -4  11 -8 4 
-1 2 -4  3 -1 

0 0 -2 2 -1 

68 -50 - 20 

16 
6 

D1 = [ -:I, D2= [-Hi!] 
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Solving (29) in MATLAB, we obtain the stabilizing solution to the auxiliary Hm-CARE as 

1 
1 P =  [ 1~o0oo0oOO o.OOOOoO00 l.OOOOOO00 0~o0ooO000 1~o0oOOOOO 

0.767 767 39 1 * 110080 84 0.180 720 33 - 0.307 295 70 - 0.617 828 10 
1.110080 84 1 -607 296 93 0.260775 49 - 0.448 622 83 - 0.897 322 14 

- 0.307 295 70 - 0.448 622 83 - 0.064 703 82 0.143 15024 0.264 284 62 [ -0.61782810 -0.89732214 -0.13931814 0.26428462 0.51164431 

P =  lo3 x 0.18072033 0.26077549 0.04634303 -0.06470382 -0.13931814 

and the stabilizing solution to the H,-DARE for the full information problem is given by, 

127.14349353 187.05748066 l*OOOOOO00 -84.671 88015 -134.86468041 
187.05748066 278.73088652 0-00000000 -124-061 41851 -201.396 15252 

-84.671 880 15 -124.061 41851 O*OOOOOO00 61.07801465 92.56971658 
147 * 982 934 55 -134.864 680 41 - 201 * 396 152 52 1 -000 OOO 00 92.569 716 58 

It is straightforward to verify that the above P satisfies (l), (2) and (3). Moreover, the 
eigenvalues of A,] are given by ( O , O ,  0,O-4125 f j0-0733), which are inside the unit circle. 

Next, we apply the recursive algorithm of Stoorvogel and WeerenI6 to our example. It turns 
out that their algorithm has some difficulties in numerical convergence as it is shown below. 
Thesc difficulties were also observed in some other examples. Following the algorithm of, l6 we 
first find a matrix KO, 

1 0'69049759 0.94309047 0.11901628 -1.27396910 -1.01216128 
-1.45340888 -1.84754325 -1,00816434 0.05019067 0.44225622 KO= [ 

such that the eigenvalues of A + BKo are placed at (0,0*2,0.4,0.6,0.8). Then solving a 
Lyapunov equation, 

Lo = ( A  + BKo)' Lo(A + BKo) + (C + DiKo)'(C + DiKo) 
we obtain 

1 99.60958006 151'727403 13 2.04298478 -38.82884610 -93.43361087 
151 -727 403 13 235 -840 929 91 1 140 376 47 - 59.166 766 51 -146.580 475 58 

2.04298478 1.14037647 1.18045587 -0.305 14413 0.42335637 
-38.82884610 -59.16676651 -0.305 14413 18.04403237 38'35832162 
-93.43361087 -146.580475 58 0.423 35637 38.358 321 62 93.002485 29 

Lo= [ 
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Using LO as an initial condition, we solve the following &-DARE by a recursive procedure, 

L = A' LA + C'C - (A'LB + C'Di)(B'LB + DiDl) - (B'LA + DiC) 

for L, 

1 L = [  1.00000000 0.00000000 1.00000000 0-00000000 1.0oO00000 

1 .[ 

20.101 11499 29.201 16123 1.00000000 -9.971 32874 -18.58624499 
29.201 16123 45.70610888 0*00000000 -14.47762395 -30.09186642 

-9.971 32874 -14.47762395 0.0000oO00 7.51218973 10.99490684 
-18.58624499 -30.091 86642 1.00000000 10.99490684 21.54338663 

Finally, by another recursive procedure, we obtain the following P for the Hm-DARE for the 
full information, which is the best solution we are able to get using MATLAB, 

127.14363741 187.05767024 1.00006027 -84.671 823 12 - 134.86471655 
187.05769951 278.731 17587 0.00009269 -124.061 33653 -201.39620985 

0.99999886 -0.00000581 1.00000000 0*00002231 1*00001406 
-84.672008 19 -124.061 595 12 -0*00005695 61.07800463 92.56977140 
- 134.86485442 -201.39638840 0.999925 18 92.569681 73 147.98299766 

Obviously, the above P is not desirable because it is even not truly symmetric. Moreover, by 
increasing the number of iterations, we observe divergence for this example. Let us define the 
solution error to the H,-DARE for the full information as 

The detailed comparison of recursive and nonrecursive methods for the above example given 
in Table I clearly shows that our approach is much better than the recursive algorithm. 

Table I. Comparison of nonrecursive and recursive 
algorithms 

Method Solution error Computing Flops 

Nonrecursive 4.7445 X 37 033 
Recursive 3.9779 x 10-3 220581 

6.  CONCLUDING REMARKS 

In this paper we have proposed a nonrecursive method for obtaining the discrete-time Riccati 
equation related to the H, control problem (&-DARE). This was done by defining an 
auxiliary Hm-CARE for the given system data and connecting the stabilizing solution to the 
given &-DARE to the stabilizing solution of this auxiliary Hm-CARE. The advantages of our 
method were also discussed. 
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