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SUMMARY

In this paper we propose a nonrecursive method for solving the general discrete-time algebraic Riccati
equation related to the Hx control problem (H--DARE). We have achieved this by casting the problem
of solving a given H»-DARE to the problem of solving an auxiliary continuous-time algebraic Riccati
equation associated with the H. control problem (H.-CARE) for which the well known nonrecursive
methods of solving are available. The advantages of our approach are: it reduces the computation
involved in the recursive algorithms while giving much more accurate solutions, and it readily provides
the properties of the general H.-DARE.
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1. INTRODUCTION

The discrete-time algebraic Riccati equation (DARE) has been investigated extensively in the
literature (see, for example References 3, 7, 8, 11—13). Here, most of the work was based on
the discrete-time algebraic Riccati equation appearing in linear quadratic control problem
(hereafter we will refer to such a DARE as the H>,-DARE). Also, recently the problem of Hx
control and that of differential games for discrete-time systems, have been studied by a number
of researchers including References 2, 5, 10, 15. This work gives rise to a different kind of
algebraic Riccati equation (hereafter we call it an Ho.-DARE). Analysing and solving such an
H--DARE are very difficult, primarily because of an indefinite nonlinear term and because we
i inot @ priori guarantee the existence of solutions. In a recent paper, !¢ Stoorvogel and
Weeren, for the first time to our knowledge, have derived a recursive method to find a
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stabilizing solution, if it exists, to this general Ho-DARE. Their method proceeds as follows:

(1) solve a Lyapunov equation to determine an initial condition for an H>-DARE;

(2) utilize the recursive algorithm of Reference 3 to solve this H>-DARE and use the solution
as an initial condition for the H.-DARE;

(3) compute the solution for the H.-DARE using another recursive algorithm.

A main drawback of the above procedure, however, is that it is in general computationally very
expensive, as it involves two recursive steps. In this paper, we propose a nonrecursive method
for solving this Ho-DARE. We cast the problem of solving a given H.-DARE to the problem
of solving a continuous-time algebraic Riccati equation associated with the H. control problem
(H--CARE), which can be obtained easily from the given data of H--DARE. Hence, one can
utilize the well-known nonrecursive methods to solve this auxiliary problem to obtain the
solution to the H.-DARE. The advantages of our approach over the recursive method are
threefold: (a) it reduces the computation involved while giving much more accurate solutions,
(b) it brings a clear intuition to the conditions associated with the H.-DARE, and (c) some
of the properties of the Ho.-DARE follow readily from the continuous-time counterpart.

The outline of this paper is as follows. In Section 2, we introduce the detailed problem
statement while in Section 3 we give our main results, namely a nonrecursive method for
solving the Ho-DARESs. The proofs of the main results are given in Section 4, and Section 5
contains a numerical example that illustrates our procedure. Finally, we make the concluding
remarks in Section 6.

Throughout this paper A’ denotes the transpose of 4, and I denotes an identity matrix of
appropriate dimension.

2. PROBLEM STATEMENT

In this paper we propose a nonrecursive procedure that generates symmetric positive
semidefinite matrices, P, such that

V(P):=B'PB+D{D, >0 (1)
R(P):=~2*I—- DjD; — E' PE + (E' PB + DiD,)V(P)~'(B' PE + D{D;) > 0 )
and such that the following discrete-time algebraic Riccati equation (DARE) is satisfied:
B'PA + D{C/ _1|B'PA + DiC
P=A'PA+C'C- G(P 3
[E’PA +Dz’C] (P) [E’PA +D2'C] ®
where
Di{D, D{D, B’
G(P):= P[B E 4
(P) [Dw, Dz’Dz—vzl] [E] [B E] @

The conditions (1) and (2) guarantee that the matrix G(P) is invertible. In this paper we are
particularly interested in solutions P of (1), (2) and (3) such that all the eigenvalues of the
matrix A are inside the unit circle, where

&)

Aa=A- (B E]G(P)“[B PA+D‘C]

E'PA + DiC
The interest for this particular Riccati equation stems from the discrete-time H. control
theory.!® Also, it is simple to see that by letting E=0 and D, =0, (1), (2) and (3) reduce to
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the well-known Riccati equation from linear quadratic control theory. We first recall that the
relation between the above Riccati equation and the discrete-time Hs, +y-suboptimal full
information feedback control problem (see, for example, References S and 15). Let us define
a system g by

xtk+1)= A x(k)+ B utk)+ E w(k)
Sa:d vk =(g) x(k) +(‘}) w(k) ©)
2k) = C x(k)+ Dy uk)+ Dy w(k)

where x € R” is the state, u € R™ is the control input, w¢€ R the disturbance input, z € R? the
controlled output and y € R"*9 the measurement. The following lemma is due to Stoorvogel. !*

Lemma 2.1

Consider a given system (6). Assume that (A, B, C, D)) is left invertible and has no invariant
zeros on the unit circle. Then the following two statements are equivalent:

1. There exists a static feedback u = K;x + K,w, which stabilizes 1 and makes the He
norm of the closed-loop transfer function from w to z less than «.

2. There exists a symmetric positive semidefinite solution P to (1), (2) and (3) such that
matrix Aq of (5) has all its eigenvalues inside the unit circle.

For the discrete-time H. +y-suboptimal full state feedback control problem, one of the
conditions associated with the DARE of (3), is slightly different from those for the full
information case. Namely, condition (2) should be replaced by

DiD, + E' PE < 4*I M
To be more specific, let us consider the following system Xg,

xtk+1)=Ax(k)+ B utk)+ E w(k)
Zsr:y y(k) x(k) ®)
z(k) C x(k)+ D1 u(k)+ Dy w(k)

where x, u, w and z are the same as the full information case. The following result is recalled
from Stoorvogel. !4

Lemma 2.2

Consider a given system (8). Assume that (A4, B, C, D) is left invertible and has no invariant
zeros on the unit circle. Then the following two statements are equivalent:

1. There exists a static state feedback ¥ = Kx, which stabilizes Xsr and makes the Hs norm
of the closed-loop transfer function from w to z less than .

2. There exists a symmetric P > 0 such that (1), (7) and (3) are satisfied and such that matrix
Ac of (5) has all its eigenvalues inside the unit circle.

To differentiate the H. vy-suboptimal control problems for the full information feedback
case and the full state feedback case, we introduce the following definitions.
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Definition 2.1

The DARE of (3) with conditions (1) and (2) are referred to as the H.-DARE for the full
information problem. Moreover, a symmetric positive semidefinite P is said to be the
stabilizing solution of H.-DARE for the full information problem if it satisfies (1), (2) and (3),
and is such that the matrix A has all its eigenvalues inside the unit circle.

Definition 2.2

The DARE of (3) with conditions (1) and (7) are referred to as the Ho.-DARE for the full
state feedback problem. Moreover, a symmetric positive semidefinite P is said to be the
stabilizing solution of H.-DARE for the full state feedback problem if it satisfies (1), (3) and
(7), and is such that the matrix A has all its eigenvalues inside the unit circle.

The following remark connects the H.-DARE to that given in Reference 2, which appears
in a different form.

Remark 2.1

Assume that that D,=0 and D{{C Di]=1[0 I], it is simple to verify that (1) is
automatically satisfied, (2) and (7) can be rewritten as

R(P)=I-~"2E'(I+PBB')"'PE>0 )
and
E'PE < %I (10)
respectively, and (3) can be rewritten as,
P=C'C+A'P[I+(BB'— vy 2EE)P]1~'A (11

Also, A as defined in (5) is equivalent to
Aa=[I+ (BB’ - 7‘2EE’)P] “l4 (12)

Remark 2.2
We should point out that if matrix S defined as

P <D;D, Di{D, )
" \DiDy DiD,—~I

is invertible, then the problem of finding the stabilizing solution to the Ho.-DARE for the full

information problem or for the full state feedback problem basically can be reduced to that

of solving a generalized eigenvalue problem (see Reference 16). However, if matrix § is not

invertible, such a technique is not applicable.

It is shown in Reference 16 that a stabilizing solution to the H.-DARE for the full
information problem or H.-DARE for the full state feedback problem, if it exists, is unique.
Also, the existence of the stabilizing solution to the Ho-DARE for the full information
problem is necessary, but not sufficient, for the existence of the stabilizing solution to the
H.-DARE for the full state feedback problem. Moreover, the stabilizing solution to the
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H.-DARE for the full state feedback problem is also a stabilizing solution to the H.-DARE
for the full information problem since condition (7) implies (3).

The problem of obtaining the stabilizing solution to the H.-DARE for the full state
feedback can be easily converted to the problem of finding a stabilizing solution to H.-DARE
for the full information problem. This can be done as follows. Given an H.-DARE for the
full state feedback problem, we form and solve the Ho-DARE for the full information
problem.

(1) If the Ho.-DARE for the full information problem does not have a stabilizing solution,
then the given H.-DARE for the full state feedback problem does not have a stabilizing
solution.

(2) Suppose that the H.-DARE for the full information problem has a stabilizing solution,
say P. If P satisfies (7), then P is the stabilizing solution to the given H.-DARE for the
full state feedback problem. Otherwise, the given Ho.-DARE for the full state feedback
problem does not have a stabilizing solution.

As such, in this paper, without loss of generality but for simplicity of presentation, we will
focus only on the H.-DARE for the full information problem. Our goal is to derive a
nonrecursive (instead of recursive) method for solving the Ho.-DARE for the full information
problem.

3. MAIN RESULTS

In this section, we provide a nonrecursive method for computing the stabilizing solution to
the Ho-DARE for the full information problem, i.e., (1), (2) and (3). We first define an
auxiliary H.-CARE from the given system data and we connect the stabilizing solution for the
given H,-DARE to the stabilizing solution for the auxiliary Ho.-CARE, for which nonrecursive
methods of obtaining solutions are available.

We assume that matrix A in the given H.-DARE has no eigenvalues at —1. This is without
loss of generality since in the discrete-time H. control problem associated with the given
H.-DARE, one can always apply a pre-feedback law to relocate the eigenvalues of A4 that are
at —1, provided that (A, B) is stabilizable. In what follows, we define an auxiliary H.-CARE,

<. =~ =~ [B'P+DI{C) s[B'P+DiC
= ' Lol dbiiibtid iryd 1
0=PA+AP+CC [E’P+D2’C]G [E'P+D2’C] (13
with associated condition
Di(I - Di(DiD1)~'Di)D2 < v*1 (14)
where
A=A+D""A-1
B:=2(A+D7’B
E=24+D3E
C:=C (as)
Di:=D\—C(A+1)"'B
Dy=D,-C(A+ID"'E
and

(16)
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If matrix D, is injective, then condition (14) implies G in (16) is invertible. Again, we are
particularly interested in solution P of (13) such that the eigenvalues of A are in the open
left half plane, where

Au=A- B E]G“[ (17)

B'P+DiC
E'P+ DiC
We note that under the conditions that D is injective, (4, B, C, D,) has no invariant zeros
on the jw axis, and (14), the above H.-CARE (13) is related to the continuous-time Hw

y-suboptimal full information feedback control problem for the following system,

= A x+B u+ E w

+ (3) w (18)

2= €C x+Diu+ D, w

The following lemma is recalled from Reference 14.

Lemma 3.1

Consider a given system (18). Assume that D, is injective and (A, B,C, D) has no invariant
zeros on the jw axis. Then the following two statements are equivalent:

1. There exists a static feedback law u = K, x + K»w, which stabilizes L and makes the Heo
norm of the closed-loop transfer function from w to z less than «.

2. Condition (14) holds and there exists a symmetric P > 0 such that (13) is satisfied and
such that the matrix Ay of (17) has all its eigenvalues in the open left half plane.

Now, we are ready to present our main results.

Theorem 3.1
Assume that A has no eigenvalues at —1. Then the following two statements are equivalent:

1. (A, B) is stabilizable and (A, B, C, D) is left invertible with no invariant zeros on the unit
circle. Moreover, there exists a symmetric positive semidefinite matrix P such that (1),
(2) and (3) are satisfied along with the matrix A of (5) having all its eigenvalues inside
the unit circle.

2. (A, B) is stabilizable, D, is injective and (A, B, C, D) has no invariant zeros on the jw
axis, and (14) holds. Moreover, there exists a symmetric positive semidefinite solution P
of the Ho-CARE (13) such that the eigenvalues of A, where A is as in (17), are in the
open left half complex plane.

Furthermore, P and P are related by P=2(A4"+ 1) 'P(A+1)".

Remark 3.1

We should point out that the left invertibility of (A4, B, C, D)) is a necessary condition for
the existence of the stabilizing solution to the H»-DARE for the full information problem
(see Reference 16). Moreover, following the proof of Theorem 3.1 in the next section and the
properties of the continous-time algebraic Riccati equation, it is easy to show that the
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condition that (A, B, C, D) has no invariant zeros on the unit circle is also necessary for the
existence of the stabilizing solution to the Ho.-DARE for the full information problem.

Remark 3.2

From Theorem 3.1, a noniterative method of obtaining the stabilizing solution P to the
H.-DARE for the full information problem can be established as follows:

1. Obtain the auxiliary Ho-CARE._

2. Obtain the stabilizing solution P to the Ho.-CARE using some well-known noniterative
methods. For clarity, we recall in the following a so-called Schur method (see Reference
9): define a Hamiltonian matrix

H- [ A-[B EG'[D: D,)'C -B EIG'[BEI ]
—-C'{I- [Dy D,1G ' [D, D,1'}C —{A- [B EG ' (D, D,1'C}’
Find an orthogonal matrix T € R2"*2” that puts H in the real Schur form

Suu Sz
T'HT =
5 8]

where Si1€ R"*" is a stable matrix and S;; € R">” is an anti-stable matrix. Partition T
into four n X n blocks:

Tll TIZ:I
T=
[TZI T2
Then P is given by
P=TyuTi!

3. The stabilizing solution to the H.-DARE for the full information problem is given by
P=2A"+D'PA+D! (19)

Corollary 3.1 below shows some properties of the Ho-DARE for the full information
problem. This corollary follows from Theorem 3.1 and the well-known results in the
continuous-time H. optimal control theory (see, for example, Reference 18).

Corollary 3.1

Consider the H.-DARE for the full information problem. Assume that (A4, B) is stabilizable
and (A, B, C, D) is left-invertible with no invariant zeros on the unit circle. Then we have the
following:

1. The stabilizing solution, if existent, is unique.
2. If the stabilizing solution to the H.-DARE for the full information problem exists for
some v1, then the stabilizing solution exists for any v > ;.

It is well-known that the Ho.-DARE is the generalization of the H>-DARE. Namely, by
letting « = oo, or equivalently £ =0 and D, =0, we obtain the general H>-DARE. For the
purpose of completeness we give the following corollary that provides a noniterative method
of solving the general H>-DARE.
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Corollary 3.2

Assume that A has no eigenvalues at —1. Then the following two statements are equivalent:

1. (A, B) is stabilizable and (A, B, C, Dy) is left-invertible with no invariant zeros on the
unit circle. Moreover, there exists a positive semidefinite matrix P such that

B'PB+ DD, >0 (20)
P=A'PA+C'C—(A'PB+ C'D\)(DiDy + B'PB)~'(A'PB+ C'Dy)’ 21

and such that the eigenvalues of the matrix A are inside the unit circle, where
Aa=A—B(DiD,+ B'PB)""(A'PB+C'D,)’ (22)

2. (4, B) is stabilizable, D is injective and (A4, B, C, D1) has no invariant zeros on the jw
axis. Moreover, there exists a positive semidefinite solution P of the following CARE

0=PA+A'P+C'C-(PB+C'D)DiD) "(PB+C'Dy) (23)
such that the eigenvalues of A are in the open left half complex plane, where
Aa= A - B(DiD)""(PB+ C'Dy)’ (24)

Furthermore, P and P are related by P=2(4'+ ) 'P(A+1)~".

Lemmas 2.1 and 3.1, and Theorem 3.1 show the interconnection between the Ho
~y-suboptimal control problem for the discrete-time system g1 and the continuous-time system
Yr1. This connection is formalized in the following lemma.

Lemma 3.2

Assume that (A4, B) is stabilizable and (A, B, C, D) is left-invertible with no invariant zeros
on the unit circle. Then the following statements are equivalent:

1. The H, vy-suboptimal full information feedback control problem for the discrete-time
system Xy has a solution. Namely, for a given v, there exists a static full information
feedback u = K1 x + K>w such that the closed-loop transfer function from w to z has an
He-norm less than .

2. The H» y-suboptimal full information feedback control problem for the continuous-time
system £r1 has a solution. Namely, for a given v, there exists a static full information
feedback u = K;x + K>w such that the closed-loop transfer function from w to z has an
He-norm less than +.

Remark 3.3

The results of Lemma 3.2 can easily be obtained from a different route. It is well known
that the Hankel norm and the H. norm of a transfer function are invariant under bilinear
transformation (see, for example, Reference 4). Hence one can recast the H. y-suboptimal
control problem for the discrete-time system Lg; into an equivalent He. y-suboptimal control
problem for an auxiliary continuous-time system obtained by performing bilinear
transformation on Zg. It can be shown that one of the state-space realizations of this auxiliary
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continuous-time system, Ipy, is given by

= A x+ B u+ E w

Ypr: y=<(1)) x+(1())3> u+<DI2)w (25)
z=éx+b1 u+b2W

where D3 = -(A+D7'B, Dy = —(A+D7'E, and A, B, E, C, D, and D, are as defined in
(15). Consequently the H. v-suboptimal control problem for the discrete-time g has a
solution if and only if the H» y-suboptimal control problem for the continuous-time system
g1 has a solution. However, we note that Tp; is not completely in the full information form.
This difficulty can easily be removed by redefining the measurement output in gL as

B Ge

It is now obvious that ;. with the new measurement output y is in fact the same as £r1. Also,
it is easy to show that the H. y-suboptimal problem for gy has a solution if and only if the
H. y-suboptimal problem for X has a solution and hence the result of Lemma 3.2 follows.
It is important to note that the bilinear transformation approach does not establish a
relationship between the stabilizing solution of the H.-CARE associated with the continuous-
time system Lr1, obtained by performing bilinear transformation on discrete-time system L
and defining the new measurement as in (26), and the H.-DARE associated with the given
discrete-time system Iy In fact, the main contribution of Theorem 3.1 is to establish such
a relationship.

4. PROOF OF RESULTS

Before we proceed to prove Theorem 3.1, we first introduce a nonrecursive method for solving
the following discrete-time algebraic Riccati equation, which is even more general than the
H.-DARE and which plays a critical role in this paper,

P=A'PA~(A'PM+N)QR+M PM)"'(M'PA+N')+Q 27

where A, M, N, R and Q are real matrices of dimensions n X n, nxm, n xm, mxX m and
n X n, respectively, and with @ and R being symmetric matrices. We will show that the DARE
of (27) can be converted to a continuous-time Riccati equation. Our approach is motivated by
that of Reference 17 in which only the result for the case R=1, Q > 0 and N=0, was given
without proof.*

Assume that matrix A has no eigenvalues at —1. We define

F=A+DH)"Y(A-D

G=2A+D)"M

H=-QA+DN"'M+N
W=R+MA+D'QUA+D"'M-NA+I)"'"M-M'A +1)"'N

(28)

We have the following lemma.

* A reviewer has brought to our attention that in a recent paper by Kondo and Hara,® an attempt has also been made
to connect CARE and DARE, again without proofs, for a special class of regular H-» problems.
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Lemma 4.1

Assume that matrix 4 has no eigenvalues at —1. Then the following two statements are
equivalent.

1. P is a symmetric solution to the DARE (27) and matrix W is nonsingular.
2. P is a symmetric solution to the continuous algebraic Riccati equation (CARE),

PF+F' P—(PG+HYW "(PG+H) +Q=0 (29)
and R +2G'(I - F')~'B(I - F)~'G is nonsingular.

Moreover, P and P are related by P=2(4'+ )" 'P(A+ D~ ".

Proof. First, let us consider the following reductions:
A'PA—P+Q=24A+D"'"P(A+D'"A-24' + D 'P(A+D '+ Q
=24 +DTTAPAA+D T =24+ DT'P(A+ D)+ Q
=(A'+D)7'QA'PA-2P)(A+D"'+Q
=A@+ DA +DPA-D+A -DPA+DI(A+D" '+ Q
=PA-DA+D)'+A@ +D'A-DP+Q
=PF+F'P+0Q (30)

(1. = 2.) Let us start with the following trivial equality,
APA-P+ A +DNHPA+D— (A +)PA-APA+I)=0

which implies that
P-PAA+D '+A@ +DT'AP+ (A +D'APAA+D'— A+ 'P(A+D"'=0

Then we have
W=R+MA +D7'QA+DN"M-NA+D"'M-M'A +1)"'N
=R+MU +D'QUA+)"'M-N'A+D)"'M-M'A' +D"'N
+M'PM-MPAA+D"'M-M'@A' +1)"'A'PM
+M'A@ + D 'APAA+D M-MA + D 'P(A+D'M
=R+MPM—-M'PA+N)YA+D)'M—-M A +1)"'(A'PM+ N)

+ M A +D'APA+Q-PYA+D'M 31
=R+MPM—-MPA+N)YA+D"'M—-MA +I)"'(4PM+N)

+M'A + DV A'PM+ NYR+MPM) ' (M'PA+N'YA+I)"'M (32)
=[I-M'A +1)"'(4'PM+N)(R+M'PM) ']

X (R+M'PM)[I—-(R+M'PM) " (M'PA+N')(A+I1)"'M] (33)

Here we note that we have used (27) to get (32) from (31). By the assumption that W is
nonsingular, we have
R+M'PM=[I-MA +1)""(A’'PM+N)(R+M PM) 1" 'w
X [I—(R+M'PM) " "(M'PA+N"YA+1)"'M]!
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Hence,
(A'PM + N)(R+ M'PM)~"'(M'PA + N')
=(A'PM+NY[I-(R+M'PM)"'(M'PA+NYA+D'Mw!
X[I—(R+M'PM)"'(M'PA+NYA+1)"'M]'"(M'PA+N")
=[A'PM—(A'PM+ NYR+M'PM)"'(M'PA+ NYA+DI)"'M+N1w!

X [A'PM—(A'PM+ N)(R+M'PM) " (M'PA+ N")(A+1)"'M+ N}’ (34)
=[A'PM+(P-A'PA-Q)(A+ D 'M+ N1Ww™!
X [A’PM+(P—A'PA—-Q)(A+I)"'M+N]’ (35)

=[(AP+P-Q)A+D)"'M+NIW ' [{AP+P-Q)(A+D"'M+N]’
=[A+DPA+DA+D’M-QA+D"'M+ N w!
XA +DPA+DA+D"M-Q(A+I1)"'M+ N}’
= (PG + HYW ™' (BG + H)' (36)
Again, we have used (27) to get (35) from (34). Finally, (27), (30) and (36) imply that
PF+F P—(PG+HYW ' (PG+H) +Q=0
(2. = 1.) It follows from (28) that
A=(I+FUI-F)!
M=2I-F)"*G
=-QU-F)'G+N
P=(I-F")B(I-F)/2
W=R+G'(I-F)'QU-F)'G-NU-F)"'G-G'UI-F)"'N
R+M'PM=R+2G'(I-F) 'PU-F)~'G
Then we have
R+M'PM N 3 N ) )
=R+G'(I-F) '[Q+(P-PF-Q)+(P-FP-Q)+(PF+FP+Q)(I-F)"'G
=R+G'(I-F) 'QU-F)"'G-N'(I-F)"'6-G'U-F)"'N
+G'(I-F) '[PG-QU-F) 'G+N] + [PG-Q(I-F)"'G+Nl'(I- F)~'G

+G'(UI-F)Y Y (PF+F'P+Q)I-F)'G (38)
=W+G'(I-F)Y " (PG+H)+(PG+H)(I-F)"'G

+G'U-F)Y (PG+H)W Y (PG+H)I-F)"'G 39)
=I+W Y PG+H)I-F)'Gl'W[I+W Y (BG+H)'(I-F)"'G] (40)

Here we note that we have used (29) to get (39) from (38). By assumption, we have R + M’' PM
nonsingular. Thus, we can rewrite (40) as,

W=[I+GU-F)Y PG+ H)YW 1" (R+MPM)[I+ W Y (PG+H) (- F) 'G]™*
We have the following reductions,
(PG + HYW~V(BG + H)'
=(PG+H)[I[+ W (PG +H) (I-F)"'G]
X (R+M'PM)™[I+ W Y(PG+ H)'(I- F)"'G]) (PG + H)’
=[PG+H+(PG+HYW Y(PG+H) (I-F)"'G](R+M'PM)!
X [PG+ H+ (PG + HYW (PG + H) (I-F)"'G]’ 41
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=[PG-QU-F) 'G+(PF+F P+Q)I-F)"'G+N](R+M'PM)~!

x [PG-QU-F)'\G+(PF+F P+Q)(I-F)"'G+N]' 42)
=[(I+F)PU-F)"'G+NI(R+M'PM)"'[G'U~-F')'P(I+F)+ N’
=(A'PM + N)(R+ M'PM)"'(M'PA + N') 43)

Again, we have used (29) to get (42) from (41). Finally, it follows from (29), (30) and (43) that
A'PA—-(APM+N)YR+MPM) 'MPA+N)Y+Q—-P=0

This completes the proof of Lemma 4.1. O
Now, we are ready to prove the main results in Section 3.

Proof of Theorem 3.1. Without loss of generality but for simplicity of presentation, we
prove Theorem 3.1 for the case that y=1.

(1. = 2.) We first proceed to prove that (A, B) is stabilizable, D; is injective and (A, B,C,Dy)
has no invariant zeros on the unit circle. For any complex scalar s, we consider

rank[s] — A, B] =rank[s]— (A +I)"'(A-1), 2(A + I) 2B}
=rank[s(A+ 1)~ (A-1), 2(A+I)"'B]
=rank[s(A+D-(A-1),2(A+D)"'B-sB+(A-N(A+I)"'B]
=rank[(1 +s)T—- (1 —s)A, (1 —s)B] 44)

which implies that (A, B) is stabilizable, i.e., all the uncontrollable modes, if any, are in the
open left half plane, provided that (A4, B) is stabilizable, i.e., all the uncontrollable modes,
if any, are inside the unit circle. Also, noting that

Di=D-C(A+D"'B=D,+C(-1-A)"'B

together with the facts that (4, B, C, D) is left-invertible and has no invariant zeros on the
unit circle, it follows that D, is of maximal column rank, i.e., D, is injective, and hence
(A, B, C, D)) is left-invertible. Now, for any s # 1, we consider
sI-A -B [sI-(A+D)""(A-1) -2A+D"’B
k ~ ~ | =rank
ran [ ¢ D,] ran c Di—-C(A+D'B

=rank

[s(A+D—-(A-1) -2A+D"'B ]
c D,-C(A+D7'B

_ (1 +s5)[-(1~-5)A —(1-5)B
= rank| c D: ]
_ [(1+s)/(1-s)[-A -B

= rank c Dl]

which implies that (A4, B, C, D;) has no invariant zeros on the jw axis provided that the system
(A, B, C, D)) has no invariant zeros on the unit circle.
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Next, we will show that (14) holds. Let

M:=[B E] A
N:=C'[D: D,)
Ri= [D,’D, DiD, ]

" \DiDy DiDy—1I
Q:=C'C > (45)
F=A
G=2A+D"*M
H=-QA+D)'M+N
W=R+MA +D'QA+D)"'M~-~NA+D'M-MA +I)"'N
X=I-(R+M'PM)y"'(M'PA+NYA+D"'M J

It is simple to verify that
) [D{b, bib, ]
DiDy DiD>~1
Then, (3) and (13) are, respectively, reduced to (27) and (29), and (5) and (17) can be written,
respectively, as
Aq=A—-M(R+M PM)"'(M'PA + N") (46)
and
Aa=F—-GW (PG + H)' @7
Noting that
det[X] =det[/— (R+M'PM) '(M'PA+ N")(A+I)"'M]
=det[/-M(R+M'PM)"*(M'PA+N")YA+D™ 1)
=det[/+ Aaldet[(A+1)71]

it follows that X is nonsingular provided that the eigenvalues of A are inside the unit circle.
Recalling (33) in the proof of Lemma 4.1, we have W nonsingular and

W-l=X"YR+M PM)"' (X ') (48)

which implies that the inertia of W~! is equal to the inertia of (R + M'PM)~" (see, for
example, Theorem 4.9 of Reference 1). Again, noting that

w= o R ° Jlo 7
“lo 1 0 (D4l - D\(DiD)~'D{)D, -1 "'[lo 1

o [1 Z][V(P) ! 0 1 z|’
(R+ M'PM) '[0 I][ 0 —R(P)"][O 1]

where Y= —(DiD,) 'DiD; and Z= - V(P) 'B’ PE, together with (48) and the facts that
V(P) >0 and R(P) > 0, it follows that

Di(I- Du(DiDy)~'DYD. < 1
Using the fact that W is nonsingular, it follows from Lemma 4.1 that P is a positive
semidefinite solution of (13).

and
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Finally, we are ready to prove that A has all its eigenvalues in the open left half complex
plane. It follows from (36) in the proof of Lemma 4.1 that
Aa=F-GW (PG + H)'
=F-GX Y(R+ M PM)"'(M'PA + N')
=(A+1)"'A-D-2A+1)"*M[I-(R+M'PM) " '(M'PA+N")YA+I)"'M] !
X (R+M'PM)"'(M'PA+N')
=(A+D"MA-T-2[I-(A+I)"'"M(R+M'PM) ' (M'PA4 + N")] !
X(A+I"'M(R+M'PM)~'(M’'PA + N")}
=(A+D""{A-IT-2[I+A—M(R+M PM) ' (M'PA + N")] !
X M(R+ M'PM)~'(M'PA + N')}
=(A+D Y (Aa+ D) [I+A-MR+M PM) "' (M'PA+N")(A-1)
—2M(R + M'PM)"'(M' PA + N")}
=(A+D"(Aa+ D" (Aa-DA+]) (49)

which implies that the eigenvalues of A are in the open left half plane provided that the
eigenvalues of Aq are inside the unit circle.

(2. = 1.) Noting that

det[/+ W' (PG + H)'(I- F)"'G] =det[/ + GW~" (PG + H)'(I- F)™ ]
=det[I- F+ GW™ (PG + H)'ldet[(I- F)~ "]
=det[I - Auldet[(/ - F)~']
and A has all its eigenvalue in the open left half plane, it follows from (40) that R + M’ PM
is nonsingular. Thus, the condition in part 2 of Lemma 4.1 holds. The rest of the proof in

reverse direction of Theorem 3.1 follows from an almost identical procedure as (1. = 2.). This
completes our proof. O

5. AN EXAMPLE

In this section, a numerical example is presented to illustrate our results with a comparison of
our solution to that generated by recursive algorithm of Stoorvogel and Weeren.!'® Let us
consider a discrete-time H.-DARE for the full information problem with

1 1 01 O 1 0 1
1 1 1 00 0 1 0
A=1]0 1 01 0}, B=|1 0], E=] -1
0 0111 01 0
0 -1 01 1 1 0 1
0 00 0O 1 0 0
C=|1 0 1 0 1}, D,=10 0}, D;=10
01010 00 0-5

and y = 1. It is simple to verify that (A, B, C, D) is left-invertible with an invariant zero at
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0. Following (15), we obtain the auxiliary H.-CARE with

| - 6 -4 2 68 —50 [ - 20
-1 3 -8 6 -3 -92 68 28
A=} 2 -4 11 -8 4], B=] 128 -94 1, E=] -40
-1 2 -4 3 -1 -52 38 16
0 0 -2 2 -1 -18 14 | 6
00000 1 0 0-0]
C=1{1 01 0 1}, D,=| 10 -8}, Dy=}-4-0
01010 -9 6 3-5]

Solving (29) in MATLAB, we obtain the stabilizing solution to the auxiliary H.-CARE as

0-76776739 1-11008084 0-18072033 —0-30729570 —0-61782810
. 1-11008084 1-60729693 0:26077549 —0-44862283 —0-89732214
P=10°x 0-18072033 0-26077549 0-04634303 —0-06470382 —0-13931814

—0-30729570 —0-44862283 —0-064703 82
-0-61782810 —0-89732214 —-0-13931814

0-14315024
0-264284 62

0-264284 62
0-51164431

and the stabilizing solution to the Ho.-DARE for the full information problem is given by,

127-14349353
187-057 48066

1-00000000
—84-67188015

P

187-057 48066 1-00000000
278-730886 52 0-00000000
0-00000000 1-00000000
—124-061 41851 0-00000000

—84-67188015

—134-864 68041

—124-06141851 —201-39615252

0-000 00000

61-078014 65

—134-86468041 —201-39615252 1-00000000

92-569716 58

1-000 000 00
92-569716 58
147-982934 55

It is straightforward to verify that the above P satisfies (1), (2) and (3). Moreover, the
eigenvalues of A are given by {0,0,0,0-4125 % j0-0733}, which are inside the unit circle.
Next, we apply the recursive algorithm of Stoorvogel and Weeren !° to our example. It turns
out that their algorithm has some difficulties in numerical convergence as it is shown below.
These difficulties were also observed in some other examples. Following the algorithm of, '¢ we
first find a matrix Ko,
-1-012161 28]

Ko =
0-44225622

such that the eigenvalues of A + BKy are placed at {0,0:2,0-4,0-6,0-8}. Then solving a
Lyapunov equation,

0-690497 59
—1-453408 88

0-943 09047
—1-84754325

0-11901628
—1:008 164 34

—1-273969 10
0-05019067

Lo=(A + BKy)' Lo(A + BKy) + (C+ DhKo)' (C + D1Ky)

we obtain
99-60958006 151:72740313 2-04298478 —38-82884610 —93-43361087
151-72740313 235-84092991 1-14037647 —59-16676651 —146-58047558
Lo= 2-04298478 1-14037647 1-18045587 —0-30514413 0-42335637
—38-82884610 —59-16676651 —0-30514413  18-04403237 38-35832162
—93-43361087 —146-58047558 0-42335637 38-35832162 93-002 48529
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Using Lo as an initial condition, we solve the following H>-DARE by a recursive procedure,
L=A"LA+C'C—(A'LB+ C'D,)(B'LB + D{D:)"'(B'LA + D{C)
for L,

20-10111499 29-20116123 1-00000000 —9-97132874 —18-58624499
29-20116123 45-706 10888 0:00000000 —14:47762395 —30-09186642

L= 1-000 00000 0-00000000 1-00000000 0-00000000 1-000000 00
-9-97132874 —14-47762395 0-00000000 7-51218973 10-994 906 84
—18-58624499 —-30-09186642 1-00000000 10-994 506 84 21-543 38663

Finally, by another recursive procedure, we obtain the following P for the H--DARE for the
full information, which is the best solution we are able to get using MATLAB,

127-14363741 187:05767024 1-00006027 —84-67182312 —134-86471655
187-05769951 278-73117587 0-00009269 —124-06133653 —201-39620985

P= 0-99999886 —0-00000581 1-00000000 0-00002231 1-000014 06
—84-67200819 —124-06159512 —~0-00005695 61-078 004 63 92:569771 40
—134-86485442 —201-39638840 0-99992518  92-56968173  147-982997 66

Obviously, the above P is not desirable because it is even not truly symmetric. Moreover, by
increasing the number of iterations, we observe divergence for this example. Let us define the
solution error to the Ho.-DARE for the full information as

B'PA + DiC}’ B'PA+DiC|
E'PA + DiC E'PA + DiC

The detailed comparison of recursive and nonrecursive methods for the above example given
in Table I clearly shows that our approach is much better than the recursive algorithm.

A'PA+C'C— [ G(P)_l[

2

Table I. Comparison of nonrecursive and recursive

algorithms

Method Solution error Computing Flops
Nonrecursive  4-7445 x 10~° 37033
Recursive 3-9779 x 1073 220581

6. CONCLUDING REMARKS

In this paper we have proposed a nonrecursive method for obtaining the discrete-time Riccati
equation related to the He control problem (Hw-DARE). This was done by defining an
auxiliary Ho-CARE for the given system data and connecting the stabilizing solution to the
given H.-DARE to the stabilizing solution of this auxiliary H--CARE. The advantages of our
method were also discussed.
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