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Abstract--This paper considers an H2 optimization problem 
via state feedback for discrete-time systems. The class of 
problems dealt with here has a left invertible transfer matrix 
function from the control input to the controlled output. The 
paper constructs and parameterizes all the static and dynamic 
HE-optimal state feedback solutions. Moreover, all the 
eigenvalues of an optimal closed-loop system are charac- 
terized. All optimal closed-loop systems share a set of 
eigenvalues which are termed the o p t i m a l f i x e d  modes .  Every 
HE-optimal controller must assign among the closed-loop 
eigenvalues the set of optimal fixed modes. This set of 
optimal fixed modes includes a set of optimal fixed 
decoupling zeros which shows the minimum absolutely 
necessary number and locations of pole-zero cancellations 
present in any HE-optimal design. Most of the results 
presented here are analogous to, but not quite the same as, 
those for continuous-time systems. In fact, there are some 
fundamental differences between the continuous and 
discrete-time systems reflecting mainly the inherent nature 
and characteristics of these systems. 

1. In troduct ion 
OPTIMIZATION THEORY IS one of the corner stones of modern 
control theory. In a typical control design, the given 
specifications are at first transformed into a performance 
index, and then control laws are sought which would 
minimize some norm, say the //2 or H= norm, of the 
performance index. This paper considers discrete-time 
systems, and focuses on HE-optimal control theory or 
otherwise known as Linear Quadratic Gaussian (LQG) 
control theory. For discrete-time systems, optimal control 
theory based on the/42 norm was heavily studied in the 70s 
and early 80s (see, e.g. Athans, 1971; Dorato and Levis, 
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1971; Kucera, 1972; Molinari, 1975; Pappas et al., 1980). 
Some of these a.spects of discrete-time HE-optimal control 
theory can be found in most graduate text books on control 
(see, e.g. Anderson and Moore, 1979; Kwakernaak and 
Sivan, 1972). Although a lot of research effort has been spent 
during the 70s and 80s, the conditions for the existence of 
optimal solutions for a general discrete-time HE-optimal 
control problem, and a way of determining an optimal 
solution if it exists, were not known until the very recent 
work of Trentelman and Stoorvogel (1992). Trentelman and 
Stoorvogel, not only obtained a set of necessary and 
sufficient conditions for the existence of optimal solutions to 
a general discrete-time HE-optimal control problem, but also 
constructed one such solution. This paper explores, among 
other things, several issues associated with the construction 
of all HE-optimal solutions for a general discrete-time 
HE-optimal control problem while utilizing state feedback 
controllers. 

The motivation for the present work comes from the 
recent work of Chen et al. (1993) on continuous-time 
systems. The work done by Chen et al. concentrates on three 
different aspects of HE-optimal control problems: 

(1) it parameterizes and then constructs the set of all static 
as well as dynamic Hz-optimal state feedback 
controllers; 

(2) it introduces the notion of optimal fixed modes which 
are the complex numbers that every optimal state 
feedback controller must assign among the closed-loop 
eigenvalues. Moreover, it identifies and constructs the 
set of all optimal fixed modes; and 

(3) it introduces the notion of optimal fixed decoupling 
zeros which are either the input or the output 
decoupling zeros (or both) of an Hz-optimal 
closed-loop transfer function for every optimal 
controller the given system uses. Moreover, it identifies 
and constructs the set of all optimal fixed decoupling 
zeros. 

Evidently, all three aspects of Hz-optimal control problems 
described above need to be studied for discrete-time systems 
as well. The intention of this paper is to do exactly this. The 
development given here for discrete-time systems is 
analogous to, but not quite the same as, that- for 
continuous-time systems. In order to preserve the thought 
process and the conceptual analogy, we use here the same 
notation as in continuous-time systems for several objects 
such as vectors, matrices, subsystems etc. However, the 
objects introduced here are different from those in 
continuous-time systems in the sense that they are produced 
differently and, moreover, might have different properties. 
Undoubtedly, such differences reflect the specific nature and 
characteristics of discrete-time systems. That is, due to the 
nature of discrete-time systems, an tt2 optimization problem 
for them is bound to be different from that of 
continuous-time systems. 

The paper is organized as follows. Section 2 gives a clear 
mathematical statement of the problem, while Section 3 deals 
with some preliminary results. Section 4 recalls the necessary 
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and sufficient conditions under which a static ol a dynamic 
I/e-optimal state feedback controller exists. Section 5 
considers static l;eedback controllers. Here an algorithm 
called "optimal gains and fixed modes '  (abbreviated as 
O G F M )  is developed. Section 6 considers the case of 
dynamic controllers, where the well known Q- 
parameterizat ion technique is used to characterize all the 
possible He-optimal solutions. Finally, the conclusions arc 
given in Section 7. 

Throughout  the paper,  A '  denotes  the t ranspose of A, / 
denotes  an identity matrix while 1~ denotes  the identity 
matrix of dimension k × k. Also, C, C" ,  C and C O+ , 
respectively denote the whole complex plane, the open unit 
disc, the unit circle, and the set of complex numbers  outside 
the unit circle. A matrix is said to be stable if all its 
eigenvalues are in @ .  Im [V] denotes  the image of V. Given 
a stable transfer function G(z) ,  as usual, its tt, norm is 
detined by 

IIGII~:= 1 f j ~  " 2re tr {G'(c .... )G(eI,,,)} dw" 

Also, RH ~ denotes  the set of real-rational transfer  functions 
which are stable and strictly proper. R H ~ denotes  the set of  
real-rational transfer functions which are stable and proper. 

2. Problem statement 
Consider  the following discrete-t ime system .~, 

characterized by, 

f x ( k  + 1) + + = A x ( k )  Bu(k) Ew(k ) 
Y~ : / y ( k  ) = x ( k )  (1) 

[.z(k) = (\v(k) + Du(k) 

where x E R" is the state, u E R"  is the control input, w E R~; 
is the unknown disturbance and z E Eq is the controlled 
output .  Also, consider an arbitrary proper  controller 

u F(z )~. (2) 

A controller u - F(z)x is said to be admissible if it provides 
internal stability of the resulting closed-loop system. Let 
T:,,.(F) denote  the closed-loop transfer function from w to z 
after applying an admissible controller u = F(z)x to ~ .  Then  
the H2 optimization state feedback problem for ~ is to find 
an admissible state feedback controller F(z) which minimizes 
II T~,,.(F)II2. 

For future use. we also define another  system ~ ,  related 
to E, 

S, Ix(k + 1)=Ax(k)+Ba(k) .  
* : [,z(k) = Cr (k)  + Du(k). (3) 

The following definitions will be convenient  in the sequel. 

Definition 2.1. (The infimum of He optimization. ) For a given 
system ~ ,  the infimum of the ~ norm of the closed-loop 
transfer function T:w(F) over all the stabilizing proper 
controllers F(z) is denoted by y*, namely 

3'* : -  inf{ll "/),,.(F)ll: t u := F(z)x internally stabilizes ~}. (4) 

Definition 2.2. (The He optimal controllers.) A stabilizing 
proper controller F(z) is said to be an He-optimal controller 
if II T:w(F)II2 = 7". The sets of all optimal static and dynamic 
state feedback controllers are, respectively, denoted by F* 
and F~. Obviously, F* c F~. 

Definition 2.3. (The He optimal fixed modes. )A scalar 
a e C ° is said to be an H2-optimal fixed mode if a is a pole 
of  the closed-loop system for every H2-0ptimal controller of a 
particular type, say static or dynamic,  that one uses. The sets 
of  all the H2-optimal fixed modes  corresponding to 
the static and the dynamic controllers are, respectively, 
denoted by f2* and f ~ .  

Definition 2.4. (The H2 optimal fixed decoupling zeros.) A 
scalar A e C ~ is said to be an H2-optimal fixed decoupling 

zero if a is either an input dccoupling zero, or an output  
decoupling zero, or an inpu t -ou tpu t  dccoupling zero 
(Rosenbrock,  1970) of the closed-loop system for every 
t/2-optimal controller of a particular type, say static or 
dynamic,  that one uses. The sets of all the He-optimal fixed 
decoupling zeros corresponding to the static and the dynamic 
controllers are, respectively, denoted by A* and ' ~ .  

Throughout  this paper, for simplicity of presentation,  wc 
assume that ~ ,  is left invertible. As in Chen el aL (1993). the 
goals of this paper are: 

1. to present  explicit design methods  to determine the sets 
of static and dynamic optimal controllers F* and F~: 

2. to determine the sets of optimal fixed modes  t2* and 

3. to determine the sets of optimal fixed decoupling zeros 
A,* and A~. 

3. Preliminaries" 
In this section we recall the special coordinate basis for a 

linear t ime-invariant nonstrictly proper system. Such a 
coordinate basis has a distinct feature of  explicitly displaying 
the finite and infinite zero structures of  a given system as well 
as other  system geometric properties. It is instrumental  in 
the derivation of the method  described in Section 5. 

Consider  the system ~ ,  as in (3). It can be easily shown 
that using a singular value decomposit ion one can always 
find an orthogonal  t ransformation U and a nonsingular  
matrix V that render  the direct feedthrough matrix d into the 
following form, 

where mo is the rank of D. Without  loss of generality one can 
assume that the matrix D in equat ion (3) has the form as 
shown in equation (5). Thus  the system in (3) can be 
rewritten as 

v(k + l ) = A x ( k ) + l B 0  B,]( a°(k)] 
\ a t ( k ) / '  

[Zll(k)'~ [('l~l . .  [1 ,, O][ao(k) (6) 

t:,(,)) : kc, l + /£  01b,,(k)) 
where Bo, B~,C o and ('~ are matrices of appropriate 
dimensions.  Note that the inputs uo and u~, and the outputs  
zo and z~ are those of the t ransformed system. Namely, 

We have the following theorem. 

Theorem 3.1. (SCB.) Let ~ ,  be left invertible. Then,  there 
exist nonsingular  t ransformations F,, V,, and Fg such that 

(,,,,) , , (u , , )  , :,, 
= x = l ' ,  x,~ =F, ,  

ltl \/gd ' "~1' 

and 

1"~ ~(A BoCo)l', 

Aaa 

o 

= o 

o 

t) o 
A~,;,, 0 

0 A 2, 

C) (I 

BdE,i" BdE% BdES, 

BaO 
B% 

1", lIB o, B~}I', = BS,~ 
BbO 

B,io 

L,~,(-'b L,n,(- d 
L',',h(.), U, Id('d [ 
L,;;,C~, L,LICd [, 
Ahh LbdC, i I 

BdE,#, Ad ! 

o 
l) 
[) 

0 

Bd 

(7) 
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LGJ L 0 0 0 C b 

and 
/,no 0 

Fol[ lo  ° ~ ] I ' i = L O  ~] ,  (10) 

where A(A~,)•C ° , A(A%)•C ° , A(A,+,)•C ®. Also, 
(Abb, Cb) is observable and the subsystem characterized by 
(Ad, Bd, Ca) is invertible with no invariant zeros. 

The proof of this theorem can be found in Sannuti and 
Saberi (1987) and Saberi and Sannuti (1990). In what follows, 
we state some important properties of the SCB which are 
pertinent to our present work. 

Property 3.1. System Y~. is invertible if and only if xb is 
nonexistent. 

Property 3.2. A(A,-,,) U A(A%) U A(A,+,) are the invariant 
zeros of ]~.. We note that A(A~) are the stable and A(A+~) 
are the unstable invariant zeros of X .  while A(A%) are on 
the unit circle. 

Property 3.3. The pair (A, B) is stabilizable if and only if 
(A . . . .  B~o,) is stabilizable where 

A c o =  A+, Lo+~C~I, rico°= so+0 Lo+~/. (11) 
0 A~t, ..I B o o  LbdJ 

Let us next recall the following definition of a weakly 
unobservable subspace (Hautus and Silverman, 1983; 
Wonham, 1985). 

Definition 3.1. We define the stabilizable weakly unobserv- 
able subspace ~ ( ~ . )  as the largest subspace °V for which 
there exists a mapping F such that the following subspace 
inclusions are satisfied, 

(A + B E ) ~  ~ _ 'F', (12) 

(C + DF)°U = {0}, (13) 

and such that A + BF I ~ is asymptotically stable. 

Property 3.4. x ,  spans 3/'g(~.). 

4. Existence of  optimal controllers 
One of our goals in this paper is to parameterize and to 

construct all the optimal static and dynamic state feedback 
controllers. Before we do so, we need to know the conditions 
under which an optimal controller exists. In this regard in 
their recent paper, Trentelman and Stoorvogel (1992), 
consider a general discrete-time H2-optimal control problem 
while utilizing proper output feedback controllers, and 
establish for the first time the necessary and sufficient 
conditions under which an optimal controller exists. In fact, 
under those conditions, Trentelman and Stoorvogel also 
construct an optimal controller. However, as stated earlier, 
among other things one of our goals here is to parameterize 
and to construct the set of all optimal controllers rather than 
a single one, for the special case when the measured output 
coincides with the state. 

To begin with, we particularize the necessary and sufficient 
conditions given by Trentelman and Stoorvogel (1992) for 
the special case when state feedback controllers are used. 
These conditions are stated in terms of an auxiliary system 
~]~ derived from the data of the given H2-optimal control 
problem. It turns out that ]~u itself is prescribed in terms of 
a solution of a linear matrix inequality (LMI). To define the 
LMI, consider a linear matrix function F(P), 

E(P) := [A'PA - P + C'C A 'PB + C'D] (14) 
L B'PA + D'C B'PB + D'DJ" 
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Let P be the largest real symmetric solution of the LMI, 

F(P)  >- O. (15) 

A similar LMI  is used in continuous-time systems as well. As 
in its continuous-time counterpart, whenever (A,B) is 
stabilizable, it can be shown that the largest real symmetric 
solution P of the LMI (15) exists and is unique. In fact, later 
on in Section 5, we construct explicitly such a solution. 
Knowing the largest real symmetric solution P of F(P) >- O, 
one can next define two matrices Cp and De satisfying, 

We can now define the following auxiliary system '~au: 

f xp(k + 1) = Axp(k ) + Bup(k ) + Ewp(k ) 
E,~ : lyp(k  ) = xp(k) (17) 

Lzr,(k ) = Cpxr,(k ) + Dpup(k ). 

We are now ready to state the following theorem which 
gives the conditions for the existence of optimal static as well 
as dynamic state feedback controllers. 

Theorem 4.1. Consider the given system ~ as in (l), and the 
auxiliary system ~;au as in (17). Define a subsystem ~p of Y~,u 
as that characterized by the quadruple (A, B, Cp, Dp). We 
have the following results: 

1. (Existence of an optimal static state feedback controller.) 
The infimum, 3'*, can be attained by a static stabilizing 
state feedback controller if and only if the pair (A, B) is 
stabilizable and Im (E) c ~ (~e ) .  

2. (Existence of an optimal proper dynamic state feedback 
controller.) The infimum, 3'*, can be attained by a 
proper dynamic stabilizing state feedback controller if 
and only if the pair (A,B) is stabilizable and 
Im (E) =_ ~(Xp).  

Moreover, the infimum, 3'*, is given by 

3'* = X/tr (E 'PE) ,  (18) 

where P is the maximal solution of F(P)>-0 for F(P) as in 
(14). 

Proof. This is an extract of Theorem 4.10 of Trentelman and 
Stoorvogel (1992) for the special case when state feedback 
controllers are utilized. • 

Remark 4.1. Whenever ~ .  has no invariant zeros on the unit 
circle C °,  it is simple to verify that ~(Y~P) = R n, and thus the 
condition Im (E)~_ ~ ( ~ p )  is automatically satisfied. Hence, 
an optimal static as well as a proper dynamic state feedback 
controller for ~ always exists whenever the pair (A, B) is 
stabilizable and whenever ~]. has no invariant zeros on C c. 

As in continuous-time systems, a key concept which led to 
Theorem 4.1 is the formulation of an interrelationship 
between the given discrete-time H2-optimal control problem 
and a Disturbance Decouplirlg Problem with internal 
Stability (DDPS) for the auxiliary system ~]au- This 
interrelationship also plays an important role in the 
development of our algorithm OGFM which is to be given in 
the following section. As such, we like to recall here this 
interrelationship. To do so, let us next consider a general 
controller F(z) and let it be applied to both Y, and Y~u- 
That is, let u = F(z)x and Up= F(z)xe. It turns out that a 
controller F(z) solves the given //2 optimization problem 
when applied to X if and only if it solves the DDPS problem 
with internal stability when applied to Y, au. This is 
emphasized by recalling the following lemma. 

Lemma 4.1. The following two statements are equivalent. 
(i) The controller u = F(z)x when applied to the given 

system ~ is internally stabilizing and the resulting 
closed-loop transfer function from w to z has the //2 
norm 3'*. 
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(it) The controller u p - F ( z ) x p  when applied to the new 
system ~,,~, is internally stabilizing and the resulting 
closed-loop transfer function from wp t~) ;p has the tt~ 
norm 0. 

Proof. It follows from L emma  3.4 of Trente lman and 
Stoorvogel (1992). • 

The next remark points out some fundamental  differences 
between the continuous- and discrete-time systems. 

Remark 4.2. As indicated in the introduction, the develop- 
ment  given here and throughout  this paper for discrete-t ime 
systems is analogous to, but not exactly the same as, that for 
continuous-t ime systems. Readers  familiar with Chen et al. 
(1993) recognize that the condition Im (E)~_ ~~,(Y,p) given in 
Theorem 4.1 for the existence of either a static or a dynamic 
optimal state feedback controller, is the same as the one 
given in Chen et al. for the cont inuous- t ime case. However,  
one has to be careful. That  is, one has to note that al though 
notationally the LMI F(P)  >- 0, the auxiliary system ~ ,  and 
the subsystem ~ p  of ~]~, are introduced for both the 
continuous- and discrete-time systems,  the definitions and 
hence the properties for the two cases are quite different, in 
particular, it turns out that the zero structure of Y,p for 
discrete- and cont inuous- t ime systems is quite different. For 
example,  for all discrete-time H2-optimal control problems 
whenever  ~ ,  is left invertible, the matrix Dp defined here is 
always nonsingular ,  and consequent ly  the ~ p  defined here 
has no infinite zeros at all. This is in contrast to the 
continuous-t ime case where the matrix Dp is in general  
singular, and moreover  ~ 7  there has the same infinite zero 
structure as that of ~ , .  As  Y~, plays a crucial role in our 
development ,  these differences between the discrete- and 
cont inuous- t ime systems are reflected in many places 
throughout  the paper. 

5. Design o f  optimal static state feedback controllers 
For discrete-time systems, so far in the literature, no 

procedure exists to construct  the set of all H2-optimal static 
feedback controllers F*, the set of  all optimal fixed modes  
~ *  as well as the set of all optimal fixed decoupling zeros 
A*. The goal of this section is to rectify this situation. In this 
regard, we present  here an explicit design procedure to 
determine the set F*,  ~ *  and .X*. 

In view of Theorem 4.1, the infimum, y*, can be attained 
by a static state feedback law if and only if (A, B) is 
stabilizable and lm (E)_~ '}~,(~e). Next, it is important  to 
comment  on the need to calculate the sets F*,D,* and A*. 
Constructing the set of  all H2-static optimal state feedback 
controllers F* is necessary for a number  of  reasons. In 
practice, IL  optimality is not the sole design goal. Some 
other  criteria come into play in the final stages of a design. 
For instance, as in Rotea and Khargonekar  (1991), one 
would like to minimize the H2 norm of a certain performance 
index while keeping, say the H~ norm of some other  
performance index below a certain value. Solutions to such 
s imultaneous H2/IL problems can be tracked easily by 
knowing the parameterizat ion and construction of all 
H:-optimal controllers. Next, an optimal design indicates that 
certain poles of the closed-loop system are always located at 
some fixed locations in the complex plane. Construct ing the 
set f~*, which is the set of all such optimal fixed modes,  helps 
a designer to learn the flexibility one has in assigning the 
closed-loop poles. In this regard, let us note that it is a 
common,  but in general a mistaken,  notion that one should 
place all the stable and the mirror imagesf  of all the unstable 
invariant zeros of ~ ,  in ~* .  It is not necessary to do so in 
general. To illustrate this, consider one extreme case when 
lm (E) -- 0. In this case, any controller which guarantees  the 
closed-loop stability is an //z-optimal controller, and hence 

t For cont inuous- t ime systems, the mirror image of a 
complex number  a + j/3 is defined as a + j~ ,  whereas in 
discrete-time systems,  the mirror image of a complex number  
re ~° is defined as ( l /r)e i°. 

tile set fL~* is an empty set. That  is, in this case, none of the 
stable invariant zeros and none of the mirror images of the 
unstable invariant zeros of ~ ,  need to be in ~* .  On the 
other  hand, consider another  extreme case when tm(E) : : :  
l'~,(~p). In this case, as will be seen shortly, all the stable 
invarianl zeros and all the mirror images of the unstable 
invariant zeros of ~ ,  must  be in ~* .  However,  in general 
when lm (E) is strictly included in 'l~(]~p), only some, but 
not all, of the stable invariant zeros and only some, but not 
all, of the mirror images of the unstable invariant zeros need 
to be in ~* .  Let us also emphasize that as will be computed 
later on, besides those related to the invariant zeros of ~ , ,  
there could also be other e lements  in ~* .  Next. let us 
emphasize one more  aspect of tt2-optimal control. Namely, 
one encounters  often certain pole-zero  cancellations in an 
optimal design. In practice, one tries to avoid pole-zero 
cancellations close to the unit circle. Thus,  constructing the 
set A* which shows the min imum absolutely necessary 
number  and locations of pole-zero  cancellations present in 
any H~-optimal design, is of immense  importance in practice. 

As in Chert et al. (1993), a basic component  of  our design 
procedure here is an algorithm called 'optimal gains and 
fixed modes '  which is abbreviated as OGFM. The matrix 
quintuple ( A . B ,  C, D, E) is a set of input parameters  to 
OGFM,  while the outputs  of O G F M  are, F*, ~* ,  ~*, and 
the infimum, y*. Besides these, O G F M  also calculates the 
maximal solution P of the inequality F(P)>O,  and checks 
whether  the condition, Im (E)~_-l~(~p),  is satisfied by the 
given problem or not. The leading component  of  the 
algorithm is the isolation of a pair of matrices (A:. B:)  from 
the input data (A. B, C, D, E). A gain matrix F which 
renders A ~ - - B : F .  asymptotically stable, is a parameter  by 
varying which appropriately the entire set of static optimal 
feedback gains is constructed. In what follows, a step-by-step 
description of the algorithm O G F M  is given. As in Chen et 
al. (1993), a key tool used for all the main calculations in 
O G F M  is the construction of appropriate SCBs of some 
subsystems.  A software tool box for constructing SCBs is 
given by Lin et al. (1992). Also, a software package in 
Matlab for the O G F M  algorithm is developed by Chen et al. 
(1991). 
Step 1. (Computation o f  the pair (A~, B,)): In this step, wc 
compute  a pair (A:. Bz) which leads to the parameterization 
of the set of  all optimal static state feedback gains. Our  
computat ions  are divided into several substeps. 
Step l(a).  Construction o f  the SCB o f  ' ~ , :  Transform the 
subsystem Y~, into the SCB as given in (7)-(10) of Section 3. 
For future development ,  let us compute  

['~ 'E -~ [(E,, )', (Eli) ', (E,;)'. (Eh)', (Ed)'] '  (19) 

and define E~ = [(E,] )', (Eb)', (Ea) '] ' .  
Step l(b). Construction o f  the subsystem ~p:  An explicit 
construction of the subsystem Y,p is purused in this step. 
Define a matrix quadruple,  

A.,. := ) At, i, LI, dCdl,  
LB~EG BdEdh Ad I 

B x : = | B h 0  0 C , : = F , ,  0 Cd , (20) 

LBdo Bd Ch 0 

i ,o] D~ := 0 . F,, 0 

0 0 

Then  solve the following algebraic Riccati equation.  

P, = A" R,A~ + C'~C~ - (B',P~A~ + D'~C~)' 

× (D'~D, + B'~P~B~) ~(B'~PxA~ + D'C~) (21) 

for Px > 0. Note that such a solution p~ always exists because 
the quadruple  (A,,  B~, C,, D~) is left invertible and has no 
invariant zeros in the closed disc C ° U  C c~. As  a matter  of  
fact, a non-recursive procedure that  solves the above Riccati 
equat ion can be found in Chen et al. (1993). 
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Now, by some algebraic manipulations,  it can be shown 
that  the maximum solution of LMI F(P) >- 0 is given by, [i00  P =  (F21) 0 0 r; ' .  (22) 

o P~3 

Thus, we have 

3"* = ~ (E'PE) (23) 

and 
Cr, = (B'PB + D'D)-UZ(B'PA + D'C), 

Dr, = (B'PB + D 'D) '/2. (24) 

Step l(c).  Construction of the SCB of ]~r,: Here we transform 
the system ]~r, into an SCB as given in Section 3. Following 
the procedure of Chen et al. (1992), we note that  ]~r, is 
invertible with no infinite zeros (i.e. Dr, is nonsingular),  and 
moreover  ]~r, does not have any invariant zeros in C ®. 
Notationally, to all the submatrices and transformations in 
the SCB of Y~r,, we append a subscript r, to signify their 
relat ion to the system ~r,. To facilitate the construction of 
the SCB of ~r,, first compute the or thogonal  t ransformation 
matrix Up and a nonsingular t ransformation matrix Vr, such 
that  

BVr, = Bop, Ur,Cr, = Cop and Ur,Dr,Vr, = L (25) 

Then  construct the nonsingular t ransformations F~r, such that  

r~(a_Bor,Cor,)F,p=[Aoar, 0 ] 0 A a a r ,  

C°~r , l .  

From the property of SCB (e.g. Property 3.4), it is simple to 
see that Im (E)  =_ ~g(]~r,) implies that 

F~-) E = [ EoP]. (26) 

If F ~ E  is not  of the form (26), the infimum 3'* is not 
attainable and the procedure of O G F M  stops at this point. 
Otherwise it continues to the next step. 
Step l (d) .  Decomposition of  ] ~ :  In this step, ] ~  is 
decomposed into two parts, one part  being controllable via 
the disturbance w and the other  not. Consider the pair 
(A~-~r,, E,Tr,). This pair need not  be controllable, that  is, the 
disturbance w with its coefficient matrix as E~-p need not  
affect all the modes of A~r,. Compute  a nonsingular 
t ransformation Tar, such that 

, - _ [A,o, 12 P AaaP] 
TapAaar,Tar, - 22 

AaaP.] 
and 

r - , = -  _ re'or,1 ar ,~ar , -L  0 ] '  (27) 

where the pair (Aalalp, Elap) is completely controllable. Also, 
let us parti t ion 

1 _,  _ [ B a o r , l  
rar,Baor,=~ .~ / and Co, r,Tar,=tC~r, C~r,]. 

L ~ a O r , J  

Finally, form the matrices A z and B z as follows: 

0] r,:or,-i (28) 
Az:= A0"r, A%r, ' B~ := LBOovJ. 

Again, from the property of SCB (e.g. Property 3.3), it is 
simple to verify that  the pair (Az, Bz) is stabilizable if and 
only if the pair (A, B) is stabilizable. Thus, whenever  (A, B) 
is stabilizable, a gain F~ exists such that A(A~ - B ~ F ~ ) ~  C °. 
Step 2. (Parameterization and construction of  the sets F*, ~* 
and AS*): in this step F*, X'2~* and As* are parameter ized in 
terms of F~ which renders A~ - B z F  z asymptotically stable. 
Let us define the set 

• ~z := {F~ I A(A~ - BzFz) = CO}. (29) 

Let  us also parti t ion F z • 
parti t ions of A z and B~ as, 

F z = [FZ0r F%r,]. 

Let 

where 

to be compatible with the 

(30) 

= Co~p + F%p]T,.p, (31) F -Vr,[C~p C2p+F]op o 1 

Also, let 

F * : = { F ~ R  " x "  I F is given by (31) withFz z ~z}, (32) 

f~* := A(A~p) U {input decoupling zeros of (A~, Bz)}, (33) 

and 

As* := {A(Ala~r,) A A(A~a)} 

m {input decoupling zeros of (A z, B z)}. (34) 

This concludes the description of OGFM. 
We have the following theorem. 

Theorem 5.1. Consider the given system S'. as in (1). Let Y.. 
be left invertible. Also, assume that  the pair (A,B)  is 
stabilizable, and that  Im (E)  ~_ ~(~]p) .  Then we have: 

(1). (Optimal static state feedback controllers). Any 
member  of the set F* is an optimal state feedback 
controller,  i.e. the state feedback law u = Fx where F 
is of the form (31) with F z E if;z, when applied to ]~ is 
stabilizing and the closed-loop//2 norm is equal to 3'*- 
Conversely, any state feedback law u = Fx which is 
stabilizing and yields a closed-loop H2 norm equal to 
3'* is such that F is of the form (31) with F~ E ~;z- 

(2). ( Optimal fixed modes). The set of all H2-optimal fixed 
modes under  a static state feedback is given by D~*. 
That  is, any optimal static state feedback controller 
must assign the elements  of D.~* among the closed-loop 
eigenvalues. The rest of the closed-loop eigenvalues 
can be assigned arbitrarily in C ° as long as they are 
symmetric with respect to the real axis, by an 
appropriate selection of a static state feedback 
controller from F*. 

(3). (Optimal fixed decoupling zeros). The set of all 
H2-optimal fixed decoupling zeros under  a static state 
feedback is given by A*. That  is, regardless of the 
choice of F from F*, the absolutely minimum number  
and locations of pole-zero  cancellations in the 
optimal closed-loop transfer functions are given by 
the set A*. 

(4). (Other pole-zero cancellations in optimal closed- 
loops). For any F E F*, define 

Aidz(F) := A(A + BF)/f~*. 

Then for any h e A~dz(F), h is an input decoupling 
zero of the closed-loop system comprising of ]~ and 
the static state feedback controller u = Fx. Moreover,  
by varying F over the set o~*, the elements of A~z(F) 
can be assigned arbitrarily in C G as long as they are 
symmetric with respect to the real axis. 

Proof. It is omit ted due to space limitations. Conceptually, it 
follows along the same lines as the proof  of Theorem 4.1 of 
Chen et al. (1993) when specific characteristics of 
discrete-time systems are taken into account. Details can 
be found in an extended version of this paper  (Chen et al., 
1993). • 

Given the quintuple (A, B, C, D, E), it is clear that the 
algorithm O G F M  explicitly yields the sets F*, f~*, and A*. 
Let us note that  in the given quintuple (A, B, C, D, E), the 
quadruple (A, B, C, D)  prescribes the dynamic model ~ .  of 
the given plant, while the matrix E prescribes how the 
disturbance w is coupled to the plant. Obviously, for any 
fixed dynamic model ]~.  of the plant, the sets FS*, x'~* and A* 
have a definite relationship with the matrix E. To examine 
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this, let us recall first the condition for the existence of an 
H2-0ptimal state feedback controller, namely Im(E)~_ 
~(]~p).  It is interesting to note that the size of the set F* 
decreases while the size of the set f~* grows as lm (E) varies 
from {0} to ~'~(]~p). Hence,  the sizes of F* and f2* obtained 
for Im (E) = {0} are, respectively, the largest and the smallest 
possible ones, whilc the sizes of the same obtained for 
I m ( E ) =  ~(Y~p) arc, respectively, the smallest and the 
largest possible ones. Moreover, both the sets F* and ~ *  
have a nested property as stated and formalized in the 
following proposition. 

Proposition 5.1. Consider two different values for E, say E t 
and E2, and let Im (E~) ~_ Im (E2) -~ ~g(]~p). Let F~ and f2fi 
be the sets corresponding to F* and ~ *  for the case when 
E = E~. Similarly, let F~2 and D.~5 be the sets corresponding 
to F* and D,~* for the case when E = E2. Then, we have 

F * ~ F ~  and D.~*~_~2* 2. (35) 

Proof. Let us first consider the proof of property F~_~ F~.  
Given that Im(EO~_Im(E2),  we note that there exists a 
matrix X such that E~ = E2X. Then for any F c F*2, i.e. 

( C p + D p F ) ( z l - A - B F )  IE 2=0, 
we have 
(Cp+  D p F ) ( z l -  A - BF) tE 1 

- (Cp + DpF)(zl  - A - BF) 1E2X = O, 

which implies that F ~ Ffi. Hence,  F ~  ~_ F~.  
Let us next consider the proof of property f~*~ ~_ f ~ .  By 

definition, we know that the input decoupling zeros of  (A, B) 
are always the optimal fixed modes for any E. Thus, for the 
sake of simplicity but without loss of any generality, we 
assume that the pair (A, B) is controllable. Also, let A~p~ 
and Aallap2 be the corresponding A ~ p  defined in (27) for 
E = E~ and E = E2, respectively. Then it is trivial to see from 
Step l(d)  of the OGFM algorithm that A(A~p~) ~_ A(A~e2). 
Hence the result. • 

Next, let us consider the set of optimal fixed decoupling 
zeros A*. It turns out that for the general case, A* does not 
have any kind of nested property as F*  and ~ *  do. To see 
this, let us first consider a simple example characterized by 
the quadruple (A, B, C, D) = (0, 0,1, 0) with E ~ = 0  and 
E2=  1. It is then easy to show that the corresponding 
A~={0} and A~=I~. As such, here A ~ = A ~  for 
Im (E 0 ~_Im (E2). Next consider another simple example 
characterized by the quadruple (A, B, C, D) = (1, 1, 1, 1) 
with E~ = 0  and E2 = l. Again, it is easy to show that the 
corresponding A*I = ~ and A~ = {0}. As such, here A~*l ~ A~ 
for Im(EO~_Im(E2).  This shows that in general A* does 
not have any nested property. However,  A* does have the 
nested property for a special case when (A ,B)  is 
controllable. The following proposition deals with such a 
special case. 

Proposition 5.2. Assume that (A, B) is controllable. 
Consider two different values for E, say E~ and E2, and let 
Im(EO~_Im(E2)~_ ~(Y~p). Also, let Aft and A~ be the sets 
of optimal fixed decoupling zeros corresponding to E = E~ 
and E = E2, respectively. Then, we have Aft _~ A*e. 

Proof Let A~]p~ and A ~ p :  be the corresponding A ~ p  
defined in (27) for E = E~ and E = E2, respectively. Then, 
under the assumption that (A, B) is controllable, it is trivial 
to see from Step l(d) of the OGFM algorithm that 
A(A~p0 ~-A(A~v2). Hence the result. • 

Having noted the results of Propositions 5.1 and 5.2, we 
now move on to study ff/~* and As* for two extreme values of 
E, namely for Im ( E ) =  ~Vg(]~p) and Im ( E ) =  {0}. For the 
case when I m ( E ) =  ~ ( ~ p ) ,  f~* contains all the stable 
invariant zeros of Y.. and moreover all the mirror images of 
the unstable invariant zeros of ]~.. In fact, in this case, f~* is 

the union of all the stable invariant zeros of ~ .  and 
A(A, - B,F,) where 

t~:=(B~P~B, +D~D,) ~(B~P,A~ + D~(~) (3~) 

Here, we note that ( A ~ - B ~ E , )  has n, ::: n n,~ n',l 
eigenvalues where n ,  and n ° are, respectively, the number of 
stable invariant zeros of Y., and the number of invariant 
zeros of ~], which are on the unit circle C ~-~. Furthermore, we 
note that A(A~ - B,E~) includes the mirror images of all the 
unstable invariant zeros of S~,. Similarly, for the case when 
I m ( E )  = 7~(~,p), A * -  A(A,,,,), i.e. A* consists of all the 
stable invariant zeros of ~ , .  On the other hand, for the case 
when Im (E) = {0}, both the sets ~)* and A* contain only the 
input decoupling zeros of Y~,. That is, for the case when 
Im ( E ) =  {0}, f2* and A* do not necessarily contain all the 
stable invariant zeros of Y~,, and moreover D.~* and A* never 
contain any mirror images of the unstable invariant zeros of 
~ , .  

Next, following the same lines of Propositions 5.1 and 5.2, 
it is easy to show that, in general whenever Im (E) ~ ~ ( ~ p ) ,  
D.~* consists of only some but not necessarily all the stable 
invariant zeros, and only some but not necessarily all the 
mirror images of the unstable invariant zeros of ~ , .  
Similarly, in general whenever Im (E) c °Ve(Y.p) , A* consists 
of only some but not necessarily all the stable invariant zeros 
of Z , .  

As formalized in Theorem 5.1, the algorithm OGFM 
constructs the set of all static state feedback controllers F*. 
An important question that arises next is under what 
conditions F* is a singleton. The following proposition gives 
these conditions. 

Proposition 5.3. (Uniqueness of  a static state feedback 
solution). Consider the given system Y. as in (1). Let Y~, be 
left invertible. Also, assume that the pair (A ,B)  is 
stabilizable, and that Im ( E ) c  ~(]~p).  Then, an /L-optimal 
static state feedback law is unique if and only if ~ .  left 
invertibte with no invariant zeros on the unit circle, and the 
pair (A - BDp tCp, E) is completely controllable. Moreover. 
under these conditions, 

(1) F~ = {-D~JCp}, which is a singleton; 
(2) A* = {stable invariant zeros of ~ .} ;  and 
(3) f ~ * = A ( A - B D p I C p )  which is the union of all the 

stable invariant zeros of ~ .  and A(A~-  BxFx). Note 
that A(A~ - B~F,) contains the mirror images of all the 
unstable invariant zeros of Y~.. 

Proof It is simple to see under the conditions given in the 
proposition that the matrices A z and B z as in (28) of the 
OGFM algorithm are nonexistent. Thus the result is obvious 
from the construction procedure of OGFM. • 

Remark 5.1. In continuous-time systems, it is necessary 
(though not sufficient) that the given H2-optimal control 
problem be a regular one (i.e. D is injective and (A, B, C, D) 
do not have any invariant zeros on the imaginary axis) in 
order  that an He-optimal static state feedback law be unique. 
For discrete-time systems, it is not necessary that D be 
injective in order that an H2-optimal static state feedback law 
be unique. 

Remark 5.2. An interesting case is when lm (E) = ~n. In this 
case, since (A - BDpICp, E) is completely controllable, an 
He-optimal static state feedback solution is always unique. 
However, as Proposition 5.3 alludes, there are cases when a 
solution to the /42 optimization problem is unique even if 
Im (E) ~ R ". 

6. Design o f  optimal dynamic state feedback controllers 
In this section, we characterize all the possible H2-optimal 

dynamic state feedback control laws using the well-known 
Q-parameterization technique. From Lemma 4.1, it follows 
that there exists an H2-optimal state feedback law for ]~ if 
and only if there exists a state feedback law which when 
applied to ~au of (17) achieves disturbance decoupling. 
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Then, in view of the necessary and sufficient conditions given 
in Theorem 4.1 under which the disturbance decoupling 
problem with internal stability (DDPS) of ~au is solvable, 
we know that whenever an optimal solution to the original 
system exists, there exists a constant gain F such that A + B F  
is stable and that 

(Cp + DpF ) ( z l  - A - B F ) - I E  -~ O. (37) 

Next, following the results of Chen et al. (1993), it can be 
shown easily that any proper dynamic controller F(z) that 
stabilizes the system ~au can be written in the following 
form, 

{~(k + 1) = (A + BF)~(k )  + By, (k) ,  
(38) 

u(k )  = Fxp(k) + y~(k), 

where 
y~(k ) = Q(z)[xr,(k ) - sC(k)], (39) 

for some proper and stable Q(z ) ,  i.e. Q ( z ) •  RH ~, with 
appropriate dimensions. The following theorem qualifies 
Q(z )  so that the controller F(z) is H~-optimal for the given 
system 32. 

Theorem 6.1. Consider the given system Y, as in (1). Let ~ ,  
be left invertible. Also, assume that the pair ( A , B )  is 
stabilizable, and that Im (E) ~_ ~g(~e). Defne a set d as, 

~7:= {a(z)  • RH ~ I Q(z )  = W ( z ) ( l  - EE*) 

× ( z l  - A - BF),  W ( z )  • RH~}, (40) 

where E* is the generalized inverse of E, i.e. EE*E = E. 
Then a proper controller F(z) stabilizes ~ and achieves the 
infimum, 3'*, i.e. F(z) • F~', if and only if F(z) can be written 
in the form of (38) and (39) for some Q(z )  • (2. 

Proof. It is omitted due to space limitations. Conceptually, it 
follows along the same lines as the proof of Theorem 5.1 of 
Chen et aL (1993) when specific characteristics of 
discrete-time systems are taken into account. Details can 
be found in an extended version of this paper (Chen et al., 
1993). • 

We have the following result regarding the uniqueness of a 
dynamic state feedback solution. 

Proposition 6.1. (Uniqueness o f  a dynamic state feedback 
solution). Consider the given system ~ as in (1). Let ~ ,  be 
left invertible. Also, assume that the pair ( A , B )  is 
stabilizable, and that Im (E)~_ ~g(~p). Then, an H2-optimal 
dynamic state feedback law is unique if and only if ~ ,  is left 
invertible with no invariant zeros on the unit circle and 
Im (E) = I~". Moreover, under these conditions, 

(1) F$ = {-Dp1Cp}, which is a singleton; 
(2) A* = {stable invariant zeros of ~ ,} ;  and 
(3) f ~ * = A ( A - B D ~ I C p )  which is the union of all the 

stable invariant zeros of ~ ,  and A(Ax-  BxFx). Note 
that A(A~-  BxFx) contains the mirror images of the 
unstable invariant zeros of ~ , .  

Proo f  The  fact that F~' is a singleton implies that Q(z)=-O. 
By (40), we have Im (E) = R n. It is then simple to show that 
this and the condition Im (E) ~_ ~ ( ~ p )  imply that ~ ,  is left 
invertible with no invariant zeros on the unit circle and 
Im ( E ) =  R n. Next, the converse part is obvious. Also, the 
remaining results follow directly from Proposition 5.3. • 

The following remarks are in order. 

Remark  6.1. It is interesting to note that the condition under 
which an optimal dynamic state feedback controller is 
unique, is stronger than the condition for which a static 
optimal control law is unique (see Proposition 5.3). 

Remark  6.2. It is easy to show that an H2-optimal 
closed-loop transfer function from z to w, denoted here as 

T*~(z), is unique whatever the type of optimal controller 
used, i.e. whether the controller is an element of F* or F] .  
Moreover, T*w(z) is given by 

T*:w(Z) = (C~ - OxF~)(z I - Ax + B~Fx) IEx. (41) 

It is simple to verify that the set of poles of the irreducible 
transfer function T*w(z) is equal to D.~*/A*, i.e. the optimal 
fixed modes that are not the optimal fixed decoupling zeros. 

Next, the following theorem shows that the optimal fixed 
modes and the fixed decoupling zeros remain unchanged 
regardless of what type of controller is used. 

Theorem 6.2. Consider the given system 32 as in (1). Let ~ ,  
be left invertible. Also, assume that the pair ( A , B )  is 
stabilizable, and that Im (E)_~V~(~p). Then we have (i) 
f~'  = ~*,  and (ii) A~' = A*. 

Proof  It follows along the same lines as the proof of 
Theorem 5.2 of Chen et al. (1993). • 

7. Conclusions 
This paper is a continuation of our earlier work (Chen et 

al., 1993) which concerns itself with continuous-time systems. 
Here discrete-time problems are considered. As in our 
earlier work, all the static and dynamic H2-optimal state 
feedback solutions are explicitly constructed and para- 
meterized. Moreover, the necessary and sufficient conditions 
for the uniqueness of an H:-optimal solution for both the 
cases of static and dynamic state feedback controllers are 
established. Also, it turns out that all the optimal controllers 
must include certain fixed modes among the closed-loop 
eigenvalues, and moreover, must inherently involve certain 
pole-zero cancellations. The set of optimal fixed modes, 
which is a set of complex numbers that every optimal state 
feedback controller must assign among the closed-loop 
eigenvalues, is identified and constructed. Similarly, the set 
of optimal fixed decoupling zeros, which shows the minimum 
absolutely necessary number and locations of pole-zero 
cancellations present in any H2-optimal solution is identified 
and constructed. It is also seen that the sets of optimal fixed 
modes and optimal fixed decoupling zeros do not vary 
depending upon whether the static or the dynamic controllers 
are used. Most of the results presented here are analogous 
to, but not quite the same as, those of our earlier results for 
continuous-time systems. In fact, there are some fundamental 
differences between the continuous and discrete-time systems 
and these are pointed out. 
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