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Yacov Shamash, Senior Member, IEEE

Abstract—This paper considers an H, optimization problem
via state feedback. The class of problems dealt with here are
general singular type which have a left invertible transfer matrix
function from the control input to the controlled output. This
class subsumes the regular H, optimization problems. The
paper constructs and parameterizes all the static and dynamic
H, optimal state feedback solutions. Moreover, all the eigenval-
ues of an optimal closed-loop system are characterized. All
optimal closed-loop systems share a set of eigenvalues which are
termed here as the optimal fixed modes. Every H, optimal
controller must assign among the closed-loop eigenvalues the set
of optimal fixed modes. This set of optimal fixed modes includes a
set of optimal fixed decoupling zeros which shows the minimum
absolutely necessary number and locations of pole-zero cancella-
tions present in any H, optimal design. It is shown that both the
sets of optimal fixed modes and optimal fixed decoupling zeros do
not vary depending upon whether the static or the dynamic
controllers are used.

[. INTRODUCTION

PTIMIZATION theory is one of the corner stones

of modern control theory. In a typical control de-
sign, the given specifications are at first transformed into
a performance index, and then control laws are sought
which would minimize some norm, say H, or H, norm, of
the performance index. This paper focuses on the H,
optimal control theory using state feedback controllers.
H, optimal control theory was heavily studied in 1960’s
and early 1970’s as a Linear Quadratic Gaussian (LQG)
optimal control problem in which the performance index
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consists of an integral of a quadratic function of errors in
controller output variables as well as in control variables.
The development of H, optimal control theory in the
above mentioned LQG setting can be found in most
graduate text books on control. In recent years, H, opti-
mal control problems have been considered in a different
setting than the traditional LQG setting. The interest in
this new setting is to minimize the H, norm of a transfer
matrix function from an exogenous disturbance to the
controlled output of a given linear time-invariant system
by an appropriate selection of a controller. In this setting,
most of the works are confined to so called regular prob-
lems (see e.g., [4] and the references therein). However,
some of the recent works (see e.g., [5], [17], and [18]) pay
attention to singular problems as well.

It is known that, in general, for either a regular or a
singular problem, an optimal control is not necessarily
unique. Then, for a variety of reasons, one would like to
characterize or construct the set of all H, optimal con-
trollers. This is typically true since, in practice, minimiza-
tion of the H, norm of a chosen transfer matrix function
is not necessarily always a sole design goal. Several other
secondary considerations also come into play in the final
stages of a controller design. Recent papers on some
mixed H, and H, norm minimization problems (see e.g.,
[1], (2], [10], and [12]) are examples of such a design
philosophy. In the mixed setting of H, and H, norm
minimization, knowing the parameterization of all H,
optimal controllers plays a significant role. Next, a query
that arises in general in parameterizing all the H, optimal
controllers is about the architecture of a controller. In
this connection, the most desired architecture from the
practical point of view is the use of static state feedback.
However, in the general mixed H, and H, control prob-
lems, as demonstrated by an example of [12], a static state
feedback controller may not exist while a dynamic state
feedback controller may exist. This implies that one needs
to study dynamic state feedback controllers as well. Thus,
one of the goals of this paper is to characterize the set of

1993 IEEE



CHEN et al.: STATE FEEDBACK SOLUTIONS, OPTIMAL FIXED MODES, FIXED DECOUPLING ZEROS

all H, optimal static as well as dynamic state feedback
controllers.

Having recognized the need to characterize the set of
all H, optimal state feedback controllers, let us now look
at what has been accomplished so far in the literature. A
recent work by Stoorvogel, Saberi, and Chen [17] investi-
gated the H, control problems in their most general form
without making any assumptions on the given plant, and
unified all the existing results. However, [17] succeeds
only partially in characterizing and constructing the set of
all optimal controllers. To date, no complete characteriza-
tion of the set of all H, optimal static state feed back
controllers exists. Regarding the set of all H, optimal
dynamic state feed back controllers, the only characteri-
zation that exists so far is the work of Rotea and
Khargonekar [12] which, however, considers only the class
of regular problems. Thus the construction of the set of
all optimal state feedback controllers of either static or
dynamic type, is still an open research problem for the
case of general systems whether they are regular or singu-
lar. One of our intentions here is to solve this problem.

In recent years, two other aspects of optimal designs
have sprouted out. These aspects are of much concern
and need to be examined carefully. The first aspect relates
to some inherent pole-zero cancellations present in any
optimal design, not necessarily H, norm minimization but
other optimal designs such as H, designs. That is, every
optimal controller inherits an inverse of certain part of
the given plant dynamics. Some of the H, optimal con-
trollers cancel all the stable invariant zeros of the plant,
while some others cancel out only some stable invariant
zeros. A primary concern of a designer is not to have
pole-zero cancellations close to the imaginary axis. Be-
sides the pole-zero cancellations, the second aspect of
concern relates to placing some of the closed-loop eigen-
values at the mirror images of some unstable invariant
zeros which are close to the imaginary axis. Some optimal
controllers induce the mirror images of all the unstable
invariant zeros among the closed-loop eigenvalues, and
some others do not. In other words, in general, it is not
necessary to induce the mirror images of all the unstable
invariant zeros among the closed-loop eigenvalues. In
fact, it turns out that there exists a set of fixed complex
numbers which are among the closed-loop eigenvalues
under any H, optimal state feedback law. Such complex
numbers can be called as the optimal fixed modes. The set
of optimal fixed modes includes also a set of optimal fixed
decoupling zeros (both input and output decoupling zeros)
of the closed-loop system. The set of optimal fixed decou-
pling zeros indeed contain as its elements those closed-loop
eigenvalues which should be involved in pole-zero cancel-
lations whatever may be the H, optimal control one uses.
Obviously, there is a definite need to study and to con-
struct the set of optimal fixed modes along with identifying
the included set of optimal fixed decoupling zeros, in order
to help a designer ascertain what can and what cannot be
assigned as closed-loop eigenvalues while still preserving
optimality. Such a study has not yet been undertaken in
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the literature for a general problem, although Stoorvogel
et al. [17] identified the set of optimal fixed modes for a
particular case. Thus, another intention of this paper is to
undertake the study of optimal fixed modes as well as
optimal fixed decoupling zeros for regular or singular
problems.

In view of the above discussion, we can summarize our
goals in this paper as follows. Given an H, optimal
control problem, the first goal is to construct or to charac-
terize the set of all optimal state feedback controllers of
either static or dynamic type. For each such a set of
optimal controllers, the next goal is to characterize the set
of optimal fixed modes which every optimal controller
must assign among the closed-loop eigenvalues; and to
identify the set of optimal fixed decoupling zeros which is a
subset of the set of optimal fixed modes, and which shows
the minimum absolutely necessary number and locations
of pole-zero cancellations in any H, optimal design. We
confine ourselves here with general singular H, optimiza-
tion problems where the transfer matrix function from the
control input to the controlled output is left invertible.
This class subsumes the regular H, optimization prob-
lems. An H, optimization problem where the transfer
matrix function from the control input to the controlled
output is not left invertible, can however be converted to
an equivalent H, optimization problem where the trans-
fer matrix function from the control input to the con-
trolled output is in fact left invertible. We do not show
this conversion here as it requires clarification of some
technical issues that need lengthy discussions.

The paper is organized as follows. Section II gives a
clear mathematical statement of the problem, while Sec-
tion III deals with several needed preliminary results.
Section IV considers static feedback controllers. The heart
of it is a step by step development of an algorithm what
we appropriately term as algorithm ‘Optimal Gains and
Fixed Modes’ or OGFM to be short. The algorithm OGFM
takes as its input parameters a set of five matrices which
characterize the given H, optimal control problem. After
ensuring that an optimal static state feedback controller
exists, the OGFM algorithm proceeds to construct explic-
itly, the set of all H, optimal static state feedback gains,
and the corresponding set of all H, optimal fixed modes.
The set of all H, optimal fixed decoupling zeros is also
identified. Section V considers the case of dynamic con-
trollers. Here, the well known Q-parameterization tech-
nique is used to characterize all the possible H, optimal
solutions. It is also shown here that the set of optimal
fixed modes and optimal fixed decoupling zeros do not vary
depending upon whether the static or the dynamic con-
trollers are used. Finally, Section VI draws the conclu-
sions of our work.

Throughout the paper, A’ denotes the transpose of A,
I denotes an identity matrix while I, denotes the identity
matrix of dimension k X k. C, C, C°, and C* respec-
tively denote the whole complex plane, the open left-half
complex plane, the imaginary axis, and the open right-half
complex plane. A matrix is said to be stable if all its
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eigenvalues are in C™. Ker[V] and Im [V/] denote respec-
tively the kernel and the image of V. Given a stable
transfer function G(s), as usual, its H, norm is defined by

IG1E = [ “Trace {G'(—jw)G(jw)} dw.

Also, RH? denotes the set of real-rational transfer func-
tions which are stable and strictly proper. RH* denotes
the set of real-rational transfer functions which are stable
and proper.

II. PROBLEM STATEMENT
Consider the following system 3 characterized by,
X =Ax + Bu + Ew
2:{y=x
z=Cx +Du + Gw

(2.1)

where x € R” is the state, u € R™ is the control input,
w € R! is the unknown disturbance and z € RY is the
controlled output. Also, consider an arbitrary proper con-
troller

u = F(s)x. (2.2)

A controller u = F(s)x is said to be admissible if it
provides internal stability of the resulting closed-loop
system. Let T, (F) denote the closed-loop transfer func-
tion from w to z after applying an admissible controller
u = F(s)x to =. Then the H,-optimization state feedback
problem for X is to find an admissible state feedback
controller F(s) which minimizes ||7,,(F)l,.
For future use, let us define a system X,

(2.3)

s x = Ax + Bu,
**\z=Cx + Du.

The following definitions will be convenient in the sequel.

Definition 2.1 (The regular H, optimization problem): A
regular H, optimization state feedback problem refers to
a problem in which the given system %, satisfies, i) D is
injective, and ii) the system X, has no invariant zeros on
the jo axis.

Definition 2.2 (The singular H, optimization problem): A
singular H, optimization state feedback problem refers to
a problem in which the given system X does not satisfy
either one or both of the conditions i) and ii) in Definition
2.1

Definition 2.3 (The infimum of H, optimization): For a
given system 3, the infimum of the H, norm of the
closed-loop transfer function T, (F) over all the stabilizing
proper controllers F(s) is denoted by y*, namely

y* = inf {| T, (F)ll,|u = F(s)x internally stabilizes 3}.
(2.4)

Definition 2.4 (The H, optimal controller): A stabilizing
proper controller F(s) is said to be an H, optimal con-
troller if || T,,(Fll, = y*. The sets of all optimal static and
dynamic state feedback controllers are respectively de-
noted by F* and Fj. Obviously, F* C F}.

5

Definition 2.5 (The H, optimal fixed modes): A scalar
A € C is said to be an H, optimal fixed mode if A is a
pole of the closed-loop system for every H, optimal
controller of a particular type, say static or dynamic, that
one uses. The sets of all the H, optimal fixed modes
corresponding to the static and the dynamic controllers
are respectively denoted by Q7 and QF.

Definition 2.6 (The H, optimal fixed decoupling zeros): A
scalar A € C™ is said to be an H, optimal fixed decou-
pling zero if A is either an input or an output decoupling
zero (or both) [11] of the closed-loop system for every H,
optimal controller of a particular type, say static or dy-
namic, that one uses. The sets of all the H, optimal fixed
decoupling zeros corresponding to the static and the dy-
namic controllers are respectively denoted by A% and A%.

Throughout this paper, without loss of generality, we
assume that the direct feedthrough matrix from w to z is
zero, i.e., G = 0. Otherwise, it is simple to verify that the
closed-loop system comprising X and any arbitrary stabi-
lizing proper controller F(s) is nonstrictly proper and
hence y* = o, Certainly, in this paper, we are not inter-
ested in the case of y* being infinity and as such G is
assumed zero. We also assume that X, is left invertible.

The goals of this paper are:

1) To present explicit design methods to determine the
sets of static and dynamic optimal controllers F;* and F;.

2) To determine the sets of optimal fixed modes %
and Q3.

3) To determine the sets of optimal fixed decoupling
zeros A% and A%.

ITI. PRELIMINARIES
A. A Special Coordinate Basis (SCB)

In this subsection we recall the special coordinate basis
for a linear time-invariant nonstrictly proper system [13].
Such a coordinate basis has a distinct feature of explicitly
displaying the finite and infinite zero structures of a given
system as well as other system geometric properties. It is
instrumental in the derivation of the method described in
Section IV.

Consider the system 2, as in (2.3). It can be easily
shown that using singular value decomposition one can
always find an orthogonal transformation U and a nonsin-
gular matrix V" that render the direct feedthrough matrix
D into the following form, ,

!
ol

where m, is the rank of D. Without loss of generality one
can assume that the matrix D in equation (2.3) has the
form as shown in (3.1). Thus the system in (2.3) can be
rewritten as

_ I
D =UDV = [ g" (3.1)

. Uy
x =Ax + [B, Bl](ul)’

20\ _ L, 0ffuy
(21 - Tlo ollw)

c, (3.2)

c *
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where By, B, C,, and C, are the matrices of appropriate
dimensions. Note that the inputs u, and u,, and the
outputs z, and z, are those of the transformed system.
Namely,

u z
u=V[u(:] and [ZT]=UZ.

We have the following theorem.

Theorem 3.1 (SCB): Let 3, be left invertible. Then,
there exist nonsingular transformations I, T, and T} such
that

x =[x, (x8), (x), 6, x7]

(2%, 2] = T l20, 2 ), (g, ui]” = Glug, up ]’

and
rs_l(A - BOCO)FS
[ A4, 0 0 L,C, LG
0 A%, 0o L%, L%C;
= 0 0 A:a L:bcb L;fcf 3
0 0 0 A, LyC
BiE;, B/Ej, B/E; BE, A,
(3.3)
By 0
BY 0
FS‘I[BO,BI]I‘,-= B;O 01, (3.4)
B, O
B, By
CO C(;a C[())a C1J+a COb CO/
ro—l[cl]rﬁ 0 0 0 0 G (35
0o 0 0 C 0
and

o O 2|y (3.6)

4 0 0 i 0 .
0
where MA;) e C, M49) e C° AM4[) e CH,
(A4,,,C,) is observable and the subsystem characterized
by (A4 # Bps Cf) is invertible with no invariant zeros.

The proof of this theorem can be found in [13], [14]. We

also note that the output transformation T, is of the form,
r L, 0

o T,f

or

0
0l
0

(3.7)

In what follows, we state some important properties of the
SCB which are pertinent to our present work.

Property 3.1: System 2., is invertible if and only if x, is
nonexistent.

Property 3.2: MA;,) U MA5,) U A(A},) are the invari-
ant zeros [9] of 3. We note that A(A4;,) are the stable

(left hand s-plane) and A(A/,) are the unstable (right
hand s-plane) invariant zeros of 3, while A(4%,) are on
the imaginary axis.

Property 3.3: The pair (A, B) is stabilizable if and only
if (A.,,, B,,,) is stabilizable where

A% 0
AC()n = 0 A;a
0 0

Lg,C,
LGy |
Apy

By Ly,
B}, L. (3.8)
By, Ly

B =

con

Let us recall the following definition of weakly unob-
servable subspace [6] and [19].

Definition 3.1: We define the stabilizable weakly unob-
servable subspace 7,(X ) as the largest subspace 7 for
which there exists a mapping F such that the following
subspace inclusions are satisfied:

(A+BF)7c7,
(C + DF)7 = {0},

and such that 4 + BF | 7" is asymptotically stable.
Property 3.4: x, spans 7(Z,).

(3.9)
(3.10)

B. Existence of Optimal Controllers

In this section, we recall from [17] the necessary and
sufficient conditions under which an optimal state feed-
back control law of either static or dynamic type exists.
The conditions under which an optimal controller exists
are formulated in terms of an auxiliary system 3, con-
structed from the data of the given H, optimization
problem. The auxiliary system 3, is as given below:

Xp =Axp + Bup + Ew,,

2t Y =Xps (3.11)
zp = Cpxp + Dpup.
Here C, and D, satisfy
Ce Cp, D
FP) = | pi|[Cr D], (3.12)
where
. |AP+PA+C'C PB+C'D

and where P is the largest solution of the matrix inequal-
ity F(P) > 0. It is known that under the condition that
(A, B) is stabilizable, such a solution P exists and is
unique. Later on in Section IV, a procedure for the
computation of such a P is given.

Consider a controller F(s) and let it be applied to both
3 and 3,,. That is, let u = F(s)x and u, = F(s)x,. A key
idea of [17] is that a controller F(s) solves the given H,
optimization problem when applied to X if and only if it
solves a Disturbance Decoupling Problem with internal
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Stability (DDPS) when applied to X,,. We recall the
following result.

Lemma 3.1: The following two statements are equiva-
lent:

i) The controller u = F(s)x when applied to the given
system 2 is internally stabilizing and the resulting closed-
loop transfer function from w to z is strictly proper and
has the H, norm y*.

ii) The controller up, = F(s)x, when applied to the
new system 3,,, is internally stabilizing and the resulting
closed-loop transfer function from w, to z, is strictly
proper and has the H, norm 0.

Proof: See [16]. [ ]

The above lemma and the existing literature on DDPS,
enabled [17] to generate the following theorem.

Theorem 3.2: Consider the given system 2 as in (2.1),
and the auxiliary system 3, as in (3.11). Define a subsys-
tem 3, of 3, as that characterized by the quadruple
(A,B,Cp, D). We have the following results:

1) (Existence of an optimal static state feedback controller):
The infimum, y*, can be attained by a static stabilizing
state feedback controller if and only if the pair (A, B) is
stabilizable and Im (E) C 7,(3,).

2) (Existence of an optimal proper dynamic state feedback
controller): The infimum, y*, can be attained by a proper
dynamic stabilizing state feedback controller if and only if
the pair (A, B) is stabilizable and Im (E) C Wg(zp).

Moreover, the infimum, y*, is given by

vy = yTrace (E'PE) ,

where P is the maximal solution of the matrix inequality
F(P) = 0 for F(P) as in (3.12).
Proof: See [17]. ]

Remark 3.1: If 3 satisfies the conditions of regular
case, then it is simple to verify that 7,(3,) = R", and
thus the condition Im (E) € 7,(3,) is automatically satis-
fied. Hence, an optimal static and a proper dynamic state
feedback controller for a regular H, problem always exist
whenever the pair (A, B) is stabilizable.

Remark 3.2: An algorithm for verifying the existence
conditions of Theorem 3.2 are incorporated in the algo-
rithm OGFM discussed in the next section.

(3.14)

IV. DESIGN OF OPTIMAL STATIC STATE FEEDBACK
CONTROLLERS

In this section, we present a design procedure to deter-
mine the set of all optimal static state feedback con-
trollers F;* and the resulting set of optimal fixed modes
Q¥ as well as the set of optimal fixed decoupling zeros
A%. Clearly, in view of Theorem 3.2, the infimum, y*, can
be attained by a static state feedback law if and only if
(A,B) is stabilizable and Im(E) C Wg(EP). Let us look at
two extreme cases of the condition Im (E) C #7,(Z;). For
the case of E = 0, that is for the case when no exogenous
disturbance affects the system, every controller that guar-
antees the internal stability of the resulting closed-loop
system is obviously an H, optimal controller. The other

—7*

A,B,C,D,E -
bl b k ki F
~—— OGFM "
— A

l

Fails, if Im (E) € V,(Z¢)

Fig. 1. A block diagram interpretation of OGFM.

extreme case, namely when Im (E) = 7,(3,), is referred
to in [17] as the ‘worst case’ since it corresponds to the
situation when a disturbance signal can affect the dynam-
ics of the given system in the worst way while still satisfy-
ing the geometric subspace inclusion condition Im (E) C
7,(3p). For this worst case, the set of all H, optimal
controllers has been constructed by [17]. For the general
case when Im (E) is strictly included in 7,(X,), the set of
all H, optimal controllers includes the corresponding set
for the worst case. Construction of all the H, optimal
static feedback controllers, the set of otpimal fixed modes
as well as the set of optimal fixed decoupling zeros, has
not been done so far in the literature, and the goal of this
section is to do exactly that.

A basic component of our design procedure to con-
struct all the static state feedback controllers, is an algo-
rithm called ‘Optimal Gains and Fixed Modes’ which is
abbreviated henceforth as OGFM. As depicted in Fig. 1,
the matrix quintuple (A4, B,C, D, E) is a set of input
parameters to OGFM, while the outputs of OGFM are, a)
the set of all H, static optimal state feedback controllers
F*,b) the set of all H, optimal fixed modes %, ¢) the set
of all H, optimal fixed decoupling zeros A*, and d) the
infimum, y*. Besides these, OGFM also calculates the
maximal solution P of the inequality F(P) > 0, and checks
whether the condition, Im(E) C %(2,,), is satisfied by
the given problem or not. The leading component of the
algorithm is the isolation of a pair of matrices (A4,, B,)
from the input data (A4, B,C, D, E). A gain matrix F,
which renders A, — B,F, asymptotically stable, is a pa-
rameter by appropriately varying which the entire set of
static optimal feedback gains is constructed. In what fol-
lows, a step-by-step description of the algorithm OGFM is
given. The aim of the description here is to present a step
by step computation of various matrices. The explanation
of intuition behind these computations and the proofs of
certain existence statements made in the algorithm are
delegated to the appendix. A key tool used for all the
main calculations in OGFM is the construction of appro-
priate SCB’s of some subsystems. A software tool box for
constructing SCB’s is given by Lin et al. [8].

Step 1 (Computation of the Pair (A,, B,)): In this step,
we compute a pair (A4, B,) which leads to the parameter-
ization of the set of all optimal static state feedback gains.
Our computations are divided into several substeps.

Step 1(a) (Construction of the SCB of 3, ): Transform
the subsystem X, into the SCB as given in (3.3) to (3.6) of
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Section III. For future development, let us compute
LE = [(ED) S (ED.(EDY (B, (Ep)]'

and define E, = [(E})' (E,)'].

Step 1(b) (Construction of the Subsystem 53,): An ex-
plicit construction of the subsystem 3, is pursued in this
step. Define a matrix quadruple,

A = A:a L:bcb B = BJD :f
* 0 Ay | ! By, Ly
0 0 1 0
Cx = Fo 0 0 4 Dx = 1—‘o 0 (ij‘f£ (41)
0 C 0 0
and partition
rr, = [T x| (4.2)
(2] * *

where T, is of dimension (dim z, + dim z,) X (dim z, +
dim z,), and % denotes a matrix of not much interest to
us. Then solve the following algebraic Riccati equation,

P A, +A,P. +C.C,
~(P.B. + C;D,)(D;D,)” (B[P, + D|C,) =0 (43)

for P, > 0. Note that such a solution P, always exists (see
for example [17]). Define

FY F
20 b0 , 1, '
+ = (D;D,) (BxPx+DxCx) (44)
Fal Fbl
and
Co=T CO_a C(())a C()+a+Fa+0 C0b+Fl70 Cof r-!
A I R F}, Fy, G
I 0
Dp=T,| " Olp-t 45
I )

As explained in the proof of Lemma A.1 of the Appendix,
the above defined matrices C, and D, satisfy (3.12). Thus
the subsystem X, is characterized by (4, B, C,,, D ») where
Cp and D, are as in (4.5). Moreover, the maximum
solution of F(P) > 0 is given by,

0
0 -1
p It

P= (7Y (4.6)

=

oS oo o

0 0
0 0
0 0
0 0

0
Thus,

v* = yTrace(E'PE) . 4.7

Step 1(c) (Construction of the SCB of 3,): Here we
transform the system 2, into a SCB as given in Section
III. We note that, as shown in Appendix, 3, is invertible
and does not have any invariant zeros in C*. To all the
submatrices and transformations in the SCB of 3p, We
append a subscript , to signify their relation to the system
3. To facilitate the construction of the SCB of 3.p, first

compute the orthogonal transformation matrix U, and a
nonsingular transformation matrix ¥}, such that

Cop]

BV, = [BOP BlP], UpCp = [C]P

0

0 2
where m, is the rank of D,. Then construct the nonsingu-
lar transformations T, I}, and T,, such that

and

Im
Uy DV, = [ o (4.8)

Agap 0 LaipCrp
Fs;’l(A = BypCop)Typ = 0 Agal’ Lg/PCfP >
BipEjup BpEfp  Apyp
By, O
rs;’l[BOPv Bipllip = BI?OP 0,
Brop  Byp

[~
- 1 COP .= COHP CSIZP COfP
oP CIP sP 0 0 Cfp

and

[ Ol _[Ene O]
oP 0 0_ iP 0 0

From the property of SCB (e.g., Property 3.4), it is simple
to see that Im(E) C 7,(3,) implies that

Egp
(4.9)
0

If T,;'E is not of the form (4.9), the infimum y* is not
attainable and the procedure of OGFM stops at this
point. Otherwise it continues to the next step.

Step 1(d) (Decomposition of X,,): In this step, 3, is
decomposed into two parts, one part being controllable
via the disturbance w and the other not. Consider the pair
(A,,p, E,). This pair need not be controllable, that is,
the disturbance w with its coefficient matrix as E;, need
not affect all the modes of A4;,,. Compute a nonsingular
transformation 7,, such that

All A12 El
T AgpTp=|" 2" " 27| and T, 'E;, = ||,
aP“*aaP*aP [ 0 Aﬁip aP ~aP 0

where the pair (A}, El,) is completely controllable.

Also, let us partition

L B!
— afP _ alP
TaiPlLa P = ’ TaPlBa_OP =
! LzafP BZOP
and

Ef_aPTaP = [EfIaP EfzaP]’ CoapTop = [CéaP CgaP]'
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Finally, form the matrices 4, and B, as follows:

Ap 0 L3pCrp
A, = 0 Asp LopCrp |,
BfPEfz”P BfPE/U"P A/f”
Bip O
B,=|B%, O (4.10)
Brop By

Again, from the property of SCB (e.g., Property 3.3), it is
simple to verify that the pair (A4,, B,) is stabilizable if and
only if the pair (A4, B) is stabilizable. Thus, whenever
(A, B) is stabilizable, a gain F, exists such that M A, —
B,F)cC".

Step 2 (Parameterization and Construction of the Sets F¥,
0% and A*): In this step, F*, Q% and A* are parame-
terized in terms of F, which renders A, — B_F, asymptot-

ically stable. Let us define the set
F,={F,|AMA, - B,F,) cC™). (4.11)

Let us also partition F, € F, to be compatible with the
partitions of A, and B, as,

Faz()l’ Fa(:)[’ F[O[’
F, = o p | (4.12)
afP afpP ffP
Let
F==Vplp
Coap Coap+Fiop Coapt+Fap Coppt Frop 1
: spP
Ejp Ep Fore Fip
(4.13)
where
T,, 0 0
Tp=Lp|l 0 T 0
0 0 I
Also, let
F¥ == {F € R™*"|F is given by (4.13) with F, € F,},
(4.14)
QF = M A'L ) U {input decoupling zeros of (A4,, B,)},
(4.15)
and
A% = {MAp) N ACAL)}
U {input decoupling zeros of (A4,, B,)}. (4.16)

This concludes the description of OGFM.

We have the following theorem.

Theorem 4.1: Consider the given system 2, as in (2.1).
Let X, be left invertible. Also, assume that the pair
(A, B) is stabilizable, and that Im (E) € 7,(Z,). Then we

have:

1) (Optimal static state feedback controllers): Any mem-
ber of the set F* is an optimal state feedback controller,
i.e., the state feedback law u = Fx where F is of the form
(4.13) with F, € F,, when applied to 3 is stabilizing and
the closed-loop H, norm is equal to y*. Conversely, any
state feedback law u = Fx which is stabilizing and yields a
closed-loop H, norm equal to y* is such that F is of the
form (4.13) with F, € F,.

2) (Optimal fixed modes): The set of H, optimal fixed
modes under a static state feedback is given by €. That
is, any optimal static state feedback controller must assign
the elements of Q% among the closed-loop eigenvalues.
The rest of the closed-loop eigenvalues can be assigned
arbitrarily in C~ as long as they are symmetric with
respect to the real axis, by an appropriate selection of a
static state feedback controller from F}*.

3) (Optimal fixed decoupling zeros): The set of H, opti-
mal fixed decoupling zeros under a static state feedback is
given by A*%. That is, regardless of the choice of F from
F*, the absolutely minimum number and locations of
pole-zero cancellations in the optimal closed-loop transfer
functions are given by the set A%.

4) (Other pole-zero cancellations in optimal closed-loops):
For any F € Fj, define A%*(F) = M(A + BF)/Q}. Then
for any A € A*(F), A is an input decoupling zero of the
closed-loop system comprising of ¥ and the static state
feedback controller u = Fx. Moreover, by varying F over
the set F*, the clements of A“*(F) can be assigned
arbitrarily in C~ as long as they are symmetric with
respect to the real axis.

Proof: See Appendix A. [ ]
Remark 4.1: 1f Im(E) = 7,(2,), then Q7 consists of:
1) All the stable invariant zeros of X,

2) All the mirror image of the unstable invariant zeros
of %,,and

3) Some fixed locations in the open left half plane
which can be calculated using the system data of % ,. In
fact, these locations are given by M—A,, — SC,;C,), where
S is the unique positive definite solution of the following
algebraic Riccati equation ( ARE),

SAyy, + AyyS + SC;CyS — ByByy — LysLpy = 0. (4.17)

On the other hand, if Im(E) = {0}, Q% contains only the
input decoupling zeros of %, . In general, only some but
not all the stable invariant zeros and only some but not
all the mirror image of the unstable invariant zeros of 3,
are contained in QF if Im(E) is strictly included in
7i(5,).

The importance of Theorem 4.1 cannot be over empha-
sized. The knowledge of the entire set of optimal feed-
back controllers F,*, makes it easier to take into account
design criteria other than H, optimality. Also, the set of
fixed modes Q% clearly points out what every optimal
closed-loop system must include among its eigenvalues.
The set of fixed decoupling zeros A* includes both the
fixed input and output decoupling zeros of the closed-loop
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system, and it shows the minimum absolutely necessary
number and locations of pole-zero cancellations present in
any H, optimal design. We emphasize that an arbitrarily
chosen H, optimal design may induce pole-zero cancella-
tions beyond that given by the set A*. Thus having the
knowledge of Q} and A*, a designer can easily ascertain
whether any unwanted pole-zero cancellations or as a
matter of fact any unwanted closed-loop eigenvalues, are
to be necessarily involved or not in a final design.

The following example illustrates our results.

Example 4.1: Consider a given system 3, characterized

by

-1 0 o0 o 1

0 -00001 0 0 0
A=lo 0o 1 o 1|

0 0 0 0001 0

1 o 1 0 o0

0 0 1 0

10 0 0

B=|o o, E=|o 1|

10 0 0

0 1 0 —2
00 0 0 0 1 0
C‘[o 0 0 0 1] and D‘[o o]'

It is simple to verify that the given system 3, is invertible
and of nonminimum phase with one infinite zero of order
1 and four invariant zeros at { — 1, —0.001, 1, 0.001}. More-
over, it is already in the form of SCB. Following Step 1(b)
of OGFM, we obtain

[0 0 o 0002 o 1 o0
=lo 0o 2 o 1] and DP‘[O 0]’

0 0 0 0 0

0 0 0 0 0

P=10 0 2 0 0],

0 0 0 0002 0

0 0 O 0 0

and thus

y* = yTrace (E'PE) = V2.

Using the software package of Lin et al. [8] to compute
the SCB for 3, and following the algorithm of OGFM,
we obtain,

e=Lo=[5 9

1 0 0 0 0

0 0 1 0 0
T,=|0 -04472 0 0 o],

0 0 01 0

0 08%4 0 0 1

Tp' (A = BypCop)T,p
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-1 0.8944 0 0 1
0 -1 0 0 —2.2361
=10 0 —-0.001 -0.002 0 )
0 0 0 —-0.001 0
1 04472 0 0 2
0 0] 1 0
0 0 0 —2.2361
['Bl,,=[1 0|, T3;E=]0 0 ,
1 0 0 0
0 1] 0 0
_ [0 0 0 0002 0
1 —
Lo Crlip = 0 0 0 0 1]’
- 1 0
1—‘K;I’I)Pl—‘ilp - [0 1]’
-1 0.8944 0 0
A- 0 -1 0 0
aaP 0 0 -0.001 -0.002
0 0 0 —0.001
1 0
_ 0 -2.2361
EaP = 0 0 ’ TaP = 14’
0 0
n _[—-1 0.8944 1 _[1 0
Aaar = [ 0 -1 ] Ear = [0 —2.2361]’
42 _ [ —0.001 -0.002
aaP 0 —-0.001 )

-0.001 -0.002 0 1 0
A4,=| o0 ~0.001 0| and B,=(1 0.
0 0 2 0 1

Thus we get the set of static feedback controllers F* as,

Fri= {FIF =
[0 0 Fy E,+0002 F, -
1 04472 F,, F,,, Fos P~
(4.18)
where
F = le] leZ le3
‘ 1:221 1:222 F223
is such that M(A, — B,F,) € C~. We also have,
0 ={-1,-1} and A*={-1).

We note that the set F* is parameterized in terms of F,
which assigns A(A4, — B,F,) in C~. Now, let us pick two
optimal static state feedback controllers having gains, F,
and F,,

Fo— 0 0 0 -0.002 0
! -1 0 -5 0 -3
and
F. = 0 4.9011 0 —-5.1011 0
2 -1 0 -5 0 -3

MA + BF)) = {—1, -1, -1, —0.001, —0.001}
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and
AMA + BF,) ={-1,-1,-1, -0.1, -0.1}.

The gain F, induces a closed-loop eigenvalue at —0.001
in order to cancel the stable invariant zero at —0.001, and
it also assigns as a closed-loop eigenvalue the mirror
image of the unstable invariant zero at 0.001. Conse-
quently, the closed-loop system with F, as a state feed-
back gain, inherits a double eigenvalue at —0.001. This
double eigenvalue at —0.001, for obvious reasons, is not
practically acceptable. On the other hand, F, does not
induce closed-loop eigenvalues close to the imaginary
axis, and as such is perhaps practically acceptable. Fur-
thermore, the optimal closed-loop transfer function is
given by

0 0
* —
L) =lo —2/¢s+ 1|
It is simple to verify that || T% ], = V2. i

As formalized in Theorem 4.1, the algorithm OGFM
constructs the set of all static state feedback controllers
F;}. An important question that arises next is under what
conditions FJ* is a singleton. The following proposition
gives these conditions.

Proposition 4.1 (Uniqueness of a Static State Feedback
Solution): Consider the given system X as in (2.1). Let X,
be left invertible. Also, assume that the pair (A, B) is
stabilizable, and that Im (E) € 7,(2,). Then, an H, opti-
mal static state feedback law is unique if and only if 2,
satisfies the conditions of regular case as in Definition 2.1
and the pair (4 — BD, 'C,,, E) is completely controllable.
Moreover, under these conditions:

1) F* ={~D;'C,}) which is a singleton;

2) A* = {stable invariant zeros of %,};

3) QFf = XA — BD,'C,) which is the union of all the
stable invariant zeros of X, all the mirror images of the
unstable invariant zeros of %, and M—A4,, — SC;C,),
where § is the unique positive definite solution of the
ARE (4.17).

Proof: It is simple to see under the conditions given
in the proposition that the matrices 4. and B, as in
(4.10) of algorithm OGFM are nonexistent. Thus the
result is obvious from the construction procedure of
OGFM. ]

Remark 4.2: An interesting case is when the problem is
regular and when Im (E) = R". In this case, since (A —
BD,'Cp, E) is completely controllable, an H, optimal
static state feedback solution is always unique. However,
as Proposition 4.1 alludes, there are cases when a solution
to the H, optimization problem is unique even if Im(E)
# R"

V. DESIGN OF OPTIMAL DYNAMIC STATE FEEDBACK
CONTROLLERS

In this section, we characterize all the possible H,
optimal dynamic state feedback control laws using the
well-known Q-parameterization technique. From Lemma
3.1, it follows that there exists an H, optimal state feed-

back law for % if and only if there exists a state feedback
law which when applied to 3, of (3.11) achieves distur-
bance decoupling. Then, in view of the necessary and
sufficient conditions given in Theorem 3.2 under which
the disturbance decoupling problem with internal stability
(DDPS) of %,, is solvable, we know that whenever an
optimal solution to the original system exists, there exits a
constant gain F such that 4 + BF is stable and that

(Cp+DyF)(sI —A~BF) 'E=0. (5.1)

Next, following the results of Rotea and Khargonekar
[12], it can be shown easily that any proper dynamic
controller F(s) that stabilizes the system X, (which is not
necessarily regular) can be written in the following form,

&= (A+BF)é+ By,

5.2
u="Fx,+y,, (5-2)

where
yi=Q0s)(xp— &)

for some proper and stable Q(s), i.e., Q(s) € RH", with
appropriate dimensions. The following theorem qualifies
Q(s) so that the controller F(s) is H, optimal for the
given system X.

Theorem 5.1: Consider the given system 2 as in (2.1).
Let X, be left invertible. Also, assume that the pair
(A, B) is stabilizable, and that Im(E) %(EP). Define a
set @ as,

(5:3)

0= {Q(s) € RH"|Q(s) = W(s)(I—EE")(sI —A — BF),
W(s) € RH2 }, (5.4)

where ET is the generalized inverse of E, i.e., EE'E = E.
Then a proper controller F(s) stabilizes 3 and achieves
the infimum, y*, i.e., F(s) € F}, if and only if F(s) can be
written in the form of (5.2) and (5.3) for some Q(s) € Q.

Proof: In view of Lemma 3.1, it is sufficient to prove
Theorem 5.1 by showing that F(s) when applied to X,
achieves disturbance decoupling with internal stability if
and only if it can be written in the form of (5.2) and
(53) for some Q(s) € Q. Let a matrix quadruple
(A4,,B,,C,, D, correspond to a state space realization of
Q(s). After some simple algebraic manipulations, it fol-
lows then that the controller (5.2) and (5.3) when applied
to X,, yields the closed-loop transfer function from w, to
zp as,

T..(F)=C(sl —4,) 'B, (5.5)
where
A+BF BC, BD, E
A, = 0 A, B, |\ B.,=|0], (56)
0 0 A+ BF E
and
C,=[Cp+ DpF D,C, D,D,]. (5.7)
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Then it is simple to verify that

T, ,(F) =(Cp+DpF)(sI —A — BF) 'E

+[(Cp + DpF)(sI = A~ BF) "' B + D, |
-Q(s)(sl —A — BF) 'E
= [(Cp + DpF)(sI — A — BF)™'B + D,

-Q(s)(sl —A — BF) 'E. (5.8)
By the assumption that 3, is left invertible, it follows
from Lemma A.1 that 3, is invertible and so does (C, +
DyFXsl — A — BF)"'B + D,. Hence, it is simple to see
that 7, , (F) = 0 if and only if

QO(s)(sl —A —BF) 'E =0. (5.9)
We next show that (5.9) is equivalent to Q(s) € Q. We
note that if Q(s) € @, it is trivial to see that Q(sXsI —
A — BF)'E = W(sXI — EE")E = 0. Hence, (5.9) holds.

Conversely, if (5.9) holds, we let W(s) = Q(sXsl — A —
BF)™! € RH% Then we have W(s}I — EE') =
O(sXsl — A — BF)™!, which implies that Q(s) = W(s)(J
— EE")(sI — A — BF) € Q. This completes the proof of
Theorem 5.1. [ |

We have the following result regarding the uniqueness
of a dynamic state feedback solution.

Proposition 5.1 (Uniqueness of a Dynamic State Feedback
Solution): Consider the given system 3 as in (2.1). Let 3,
be left invertible. Also, assume that the pair (A, B) is
stabilizable, and that Im (E) C 7;(3;). Then, an H, opti-
mal dynamic state feedback law is unique if and only if
3, satisfies the conditions of regular case as in Definition
2.1 and Im(E) = R". Moreover, under these conditions:

1) F} ={—D,'Cp} which is a singleton;

2) A* = {stable invariant zeros of 3,};

3) Q@ = XA — BD,'Cp) which is the union of all the
stable invariant zeros of %, all the mirror images of the
unstable invariant zeros of %, and M—A4,, — SC;C,),
where § is the unique positive definite solution of the
ARE (4.17).

Proof: The fact that Fj is a singleton implies that
0O(s) = 0. By (5.4), we have Im(E) = R". It is then simple
to show that this and the condition Im(E) c 7,(3,),
imply that 3, satisfies the conditions of regular case.
Next, the converse part is obvious. Also, the remaining
results follow directly from Proposition 4.1. n

The following remarks are in order.

Remark 5.1:

1) It is simple to verify that, in connection with the H,
optimal dynamic state feedback control laws, our results
are equivalent to those of Rotea and Khargonekar [12] if
3 is regular.

2) It is interesting to note that the condition under
which an optimal dynamic state feedback controller is
unique, is stronger than the condition for which a static
optimal control law is unique (see Proposition 4.1).
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Remark 5.2: Tt is easy to show that an H, optimal
closed-loop transfer function from z to w, denoted here
as T},(s), is unique whatever may be the type of optimal

controller used, i.e., whether the controller is an element
of F} or F}. Moreover, T} (s) is given by

w

TX(s) = C*(sI — A*) "' B*, (5.10)
where
A* = A, - B.D{(D,D,)”'(B;P, + D,C,)
B*=E, C*=C,-D.DDi(DD,) (BP, +D|C,),

and where A4,, B,, C,, D, E,, and P, are as defined in
Step 1 of OGFM algorithm. It is simple to verify that the
set of poles of the irreducible transfer function 7*(s) is
equal to Q¥ /A%, ie., the optimal fixed modes that are
not the optimal fixed decoupling zeros.

Next, the following theorem shows that the optimal
fixed modes and the fixed decoupling zeros remain un-
changed regardless of what type of controller is used.

Theorem 5.2: Consider the given system 3 as in (2.1).
Let 3, be left invertible. Also, assume that the pair
(A, B) is stabilizable, and that Im(E) € 7;(2 ;). Then we
have i) Q% = Q% and i) A% = A%

Proof: See Appendix A. [ ]

VI. CONCLUSIONS

An H, optimization problem in a general setting while
using either a static or a dynamic state feedback con-
troller is considered. All the static and dynamic H, opti-
mal state feedback solutions are explicitly constructed and
parameterized. Moreover, the necessary and sufficient
conditions for the uniqueness of an H, optimal solution
for both the cases of static and dynamic state feedback
controllers, are established. Also, for a general problem, it
turned out that all the optimal controllers must include
certain fixed modes among the closed-loop eigenvalues,
and moreover, must inherently involve certain pole-zero
cancellations. The set of optimal fixed modes which is a
set of complex numbers that every optimal state feedback
controller must assign among the closed-loop eigenvalues,
is identified and constructed. Similarly, the set of optimal
fixed decoupling zeros which shows the minimum abso-
lutely necessary number and locations of pole-zero cancel-
lations present in any H, optimal solution, is identified
and constructed. It is also shown that the sets of optimal
fixed modes and optimal fixed decoupling zeros do not vary
depending upon whether the static or the dynamic con-
trollers are used. Also, although an H, optimal control
law need not be unique, the resulting H, optimal closed-
loop transfer function is shown to be unique.

A constructional algorithm called OGFM plays a cen-
tral role in our development. Given a matrix quintuple
which characterizes the given optimal control problem,
the algorithm OGFM constructs, a) the set of all optimal
static state feedback gains, b) the set of optimal fixed
modes, ¢) the set of optimal fixed decoupling zeros, and d)
the infimum, y*. Besides these, OGFM also checks
whether the geometric subspace inclusion condition,
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Im(E) € 7,(3p), is satisfied by the given problem or not.
All these tasks of OGFM require the, computation of the
maximal solution P of the inequality F(P) > 0, construc-
tion of 2, and its special coordinate basis (SCB), as well
as construction of 7,(3). A key step of OGFM is the
isolation of a matrix pair (4,, B,) from the given input
data. The gain F, which renders A4, — B,F, asymptoti-
cally stable, acts as a parameter by appropriately varying
which one obtains the entire set of static feedback gains.
On the other hand, for the case of dynamic state feedback
controllers, the well known Q-parameterization technique
is instrumental in characterizing all the possible H, opti-
mal solutions.

APPENDIX
A. PROOFS OF THEOREMS 4.1 AND 5.2

In this appendix, we prove certain facts mentioned in
the algorithm OGFM and Theorems 4.1 and 5.2. The
concepts behind the algorithm OGFM are rooted in
Lemma 3.1 which enables the study of an H, optimal
controller problem for the given system 3 as a study of a
DDPS problem for the new system =,,,. This implies that
one can construct all the H, optimal controllers by con-
structing all the solutions of a DDPS problem for 3. To
do so, one constructs first 3, and then 3,,. By studying
3, one recognizes that a certain subsystem X, namely
the one characterized by the pair (A,, B,), is not affected
by the disturbance at all and as such can be separated
from the rest of X_,. Thus, letting F, as the gain which
stabilizes 3,,, and taking into account the interconnections
between 3, and the rest of X, one can easily parameter-
ize the set of all static state feedback controllers F* that
solves the DDPS for I ,.

Before proceeding to the proof of Theorem 4.1, we first
introduce the following lemma which details the proper-
ties of the subsystem 3, of 3,,,.

Lemma A.1: Consider the given system 3 as in (2.1).
Assume that (A4, B) is stabilizable. Then the subsystem
3.p characterized by (4, B,C,, D;,) with Cp and D, as in
(3.12), has the following properties:

1) X, is invertible.

2) 3, has the same infinite zero structure as 3,

3) 3, has a total number of n — n; invariant zeros,
where n; is the number of infinite zeros of ¥,. The
invariant zeros of 3, are given by:

a) the stable invariant zeros of 3, ;

b) the jw axis invariant zeros of 3, ;

c) the mirror images of the unstable invariant zeros
of 3,; and

d) M—4,, — 8C;C,), where S > 0 is the unique so-
lution of the ARE (4.17).

Proof: See [17]. Also, see [3] and [7] for the dual
version of the above lemma. O

We next introduce the following lemma.

Lemma A.2: Consider a left invertible system 3, char-
acterized by (A4, B,C, D). Then all the unobservable
modes of (4 + BF,C + DF) for any appropriate dimen-
sional F, are the invariant zeros of 3.
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Proof: Let A be an unobservable mode of (A4 +
BF,C + DF) and let v# 0 be the corresponding right
eigenvector of A4 + BF, ie., (Al — A — BF)v=0 and
(C + DF)v = 0. Then it is simple to verify that

v
Fv

AMl-A -Bjl[v] _ 0
C D [|Fv] ™
Hence, by definition, A is an invariant zero of X, as 3,

is assumed to be left invertible. a
Now we are ready to prove the theorems.

# 0 and [

A.l. Proof of Theorem 4.1

Part 1: 1t is straightforward to verify by some simple
calculations that for any F as in (4.13), we have (C, +
D,F)XsI — A — BF) 'E = 0. Hence, it follows from
Lemma 3.1 that the control law u = Fx with F as in
(4.13) attains the infimum y*.

Conversely, if a state feedback u = Fx achieves the
infimum, it follows from Lemma 3.1 that F is such that
A + BF is stable and (Cp + D, FXsl — A — BF) 'E = 0.
Without loss of generality but for simplicity of presenta-
tion, we assume that X, is in the form of SCB with A,
partitioned in Step 1(d) of OGFM. Let us define 7, = (A4
+ BF [Im(E)),i.e., 7, isthe smallest (4 + BF)-invariant
subspace containing Im (E). Thus, 7; € Ker(Cp + D, F)
and by definition 7; ¢ 7,(X,), which is given by

7,(3p) = span

SO ~O

1
0
0
0

Hence, there exists a similarity transformation 7 such
that

Apoe Ap, E
T (A + BF)T = ° “ T E=|""Fe
ATBOT= 0 4, TE [ 0 ]
(A1)
and

(Cp +D,F)T=[0 Cp]l, 7, =span {T[(I)]} ,
(A2)
where (Ap.., Ep.) is completely controllable. It is now

straightforward to verify that 7 can be chosen as the
following form,

T, 0 0
T=|0 1 0} (A3)
0 0 I

where T, is of dimension dim 7(3,) x dim Z¢(2p). Let
F— _[COP] B Fap  Fap
0 Fu]fP Fasz

0
Faop FfOP

Fir  Fyp

}. (A.4)
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We note that (A.1)-(A.4) imply that

1 _ pi 1
T_l AaaP BaOPFHOP
* _BZ Fl
a0P* a0P

12 _ pl 2
AaaP BaOPFaOP

2 _ p2 2 *
AaaP BaOPFaOP

APcc AT’CE
O

E! E
e Il Il G A6
* [ 0 ] [ 0 ] (A.6)
and

F, F}

10P 1 20P 2 T*=[0 *],
Byp(Ejup — Fapp)  Bpp(Efp — Flpp)

(A7)

where again % denotes a matrix of not much interest.
Here we note that (A.5)—(A.7) imply that the system
characterized by the matrix triple,

Awp  Allp El,
0 Az [lo]

F, alOP F, a20P
Byp(Efer = Fap)  Byp(Efp — Flp)
does not have any infinite zeros. Then the controllability

of the pair (A}, ,, E.p) implies that F), = 0. Noting that
By is injective, it follows that F,, = Ej,, and thus F

> (A8)

must be of the form given by (4.13). o
Part 2: Tt follows simply from the construction algo-
rithm OGFM. O

Part 3: In view of the algorithm OGFM, it is trivial to
verify that for any F € F}*, the set of input decoupling
zeros of the corresponding closed-loop system come from
MAS), where AS = A, — B,F,. Also, it is obvious that
only the uncontrollable modes, or the input decoupling
zeros, of (4,, B,) are in the set A*, while the rest of the
eigenvalues of A¢ are not in the set A* as they can be
assigned arbitrarily in C~ by appropriately selecting the
static state feedback controller F from the set F*. On the
other hand, it follows from the construction algorithm
OGFM and the properties of SCB that the stable invari-
ant zeros of 3, contained in A(ALL,), ie., AM(AL,)N
A(A4;,), are the output decoupling zeros of the closed-loop
system for any F € F*. Also, in view of Lemma A.2, we
know that the rest elements of A(All,) cannot be the
output decoupling zeros of the closed-loop system for any
F € F}. Moreover, we note that AM(A!L,) cannot be the
input decoupling zeros either for any F € F* as
(AL, ELp) is controllable. Hence, the result follows. CI

Part 4: 1t is trivial (see also the proof of Part 3). [ |

A.2. Proof of Theorem 5.2

By the definitions, it is trivial to see that Q% c Q* and
Ay C A%

Conversely, let us consider any given optimal dynamic
controller with the state space realization,

v=4,,,v+B

F(s): u= Ccmpv + Dcmpxp,

cmpxP’

(A.9)
Le., F(s) is such that 7, w(F) = 0. Then it is simple to
verify that

u = Fdxd = [Ccmp Dcmp]xd

(A.10)

is an optimal static state feedback law for the following
auxiliary system,

Cfxa=Aux, + Bau + Egw,
2 gud’ {zp — Cots+ Do, (A.11)

where

v Acm ch

YT el Ad:[ 0 Ap]’
0 0

5= |pl == [g]

and
C,=[0 Cp], D,=D,.

We first observe that the input decoupling zeros of the
pair (A, B) are also among the input decoupling zeros of
(A4, B,). Next, without loss of generality, we again as-
sume that the matrix quadruple (A4, B,Cp, D;) is in the
form of SCB with Aj,, partitioned as in Step 1(d) of
OGFM, i.e., we have

A0~ myl0 w]

ey By By By Bl
0 Anp ALy 0 LipCp
=] 0 0 AL 0 LipCp |,
0 0 0 Abr LipCpp
| 0 BypEjy BipEjp BpEp Ay
0 0
Bl 0 g
B, = BazOP 0 S E,= 6 y
BBOP 0 0
Bsop  Bpp 0
o _[0 G Chr Chr Co)
0 0 0 0 Cp
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Then following the results of Sannuti and Saberi [14] (e.g.,
Appendix A.2) and some simple algebra, one can compute
a nonsingular state transformation T, such that

’7’4‘:‘;11) 0
0 Af.,;p
0 0 0
_l _
Fd (Ad_[BUP][O COP])FA_ 0 0
0 0
0 0
(B, 0] .
B:(;P 0 [)
Byp O E!
I,'B, = R I'E, = ab
¢ BfoP 0 ¢ 0
By 0 :
Bf*P pr
and
CT, = C(‘)laJrP 31;1’ C(l)aP C(%aP C(()JuP (Tfl’
ad 0 0 0 0 0 Cpl

where MA{L ) cCTUCY and AA9, ) c C”. More-
over, the transformed system is in the form of SCB. Then
following the same line of reasoning as in Part 1 of
Appendix A.1, it can be shown that szw(F) = 0 implies

that
FdFd = [Ccmp Dcmp]rd

* * C(%al’
* ok Ej,

* K *x
* x K

and hence QF c XA, + B,F,). Similarly, following the
same arguments as in Part 3 of Appendix A.1, one can
show that the elements of A* are among the decoupling
zeros of the closed-loop system. Since F(s) can be any
member of Ff, it follows that Q% € Q% and A* C A%,
This completes the proof of Theorem 5.2. n
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