
INT. 1. CONTROL, 1993, VOL. 58, No.2, 337-348

Necessary and sufficient conditions under which an H2 optimal
control problem has a unique solution

BEN M. CHENt and ALl SABERI:!:

1

A set of necessary and sufficient conditions under which a general H 2-optimal
control problem has a unique solution is derived. It is shown that the solution
for an H 2-optimal control problem, if it exists, is unique if and only if (i) the
transfer function from the control input to the controlled output is left
invertible, and (ii) the transfer function from the disturbance to the measure-
ment output is right invertible.

I
I
j.
~

1. Introduction

This paper deals with the issue of uniqueness of the solution, whenever
existent, to a general Hz-optimization problem. During the last two decades the
Hz optimal control problem and its stochastic interpretation, the linear quad-
ratic Gaussian (LQG) control problem, have been thoroughly investigated (see
e.g. Anderson and Moore 1989, Fleming and Rishel 1975, Geerts 1989, Kailath
1974, Kwakernaak and Sivan 1972, Saberi and Sannuti 1987, Schumacher 1985,
Stoorvogel 1990, Stoorvogel et al. 1992, Willems 1978 and Willems et al. 1986
and the references contained therein). The Hz-optimization problem can be
divided into two groups. The first group consists of those problems that satisfy
the following essential assumptions.

(i) The subsystem from the disturbance to the measurement output should
not have invariant zeros on the jw axis, and its direct feedthrough matrix
should be surjective.

(ii) The subsystem from the control input to the controlled output should not
have invariant zeros on the jw axis, and its direct feed through matrix
should be injective.

This group of problems is referred to as the regular Hz-optimization problem.
The second group is called the singular Hz-optimization problem (contrary to
the regular one) and refers to those problems which do not satisy at least one of
the two above assumptions. Most of the research in Hz-optimization problems is
restricted to regular problems (see for example Doyle et al. 1988 and the
references therein). However, more recently, a number of papers have dealt
with the singular Hz-optimization problem (see for example Chen et al. 1992,
Geerts 1989, Stoorvogel1990, Stoorvogel et al. 1992 and Willems et al. 1986). It
is well known that the solution to a regular Hz-optimization problem is unique
(Doyle et al. 1988). However, this is not true for the singular case. In this paper
we develop a set of necessary and sufficient conditions for the uniqueness of the
solution to a general Hz-optimization problem. Our results indicate that a large
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class of singular H roptimization problems, contrary to common belief, have a
unique solution. These results would shed more light on some mixed H 2/H 00

problems such as the simultaneous H 2/H 00 problem that was proposed in Rotea
and Khargonekar (1991).

The paper is organized as follows. In § 2, we introduce the problem
formulation of the H roptimal control problem, while in § 3, we briefly review
the conditions of the existence of H roptimal controllers. We state our results in
§ 4 and give the proofs in § 5. Finally, in § 6 we draw the conclusion.

Throughout this paper, A' denotes the transpose of A and I denotes an
identity matrix with appropriate dimensions. Ker [V] and 1m [V] denote, re-
spectively, the kernal and the image of V. We say a matrix A is of maximal
rank if it is either injective or surjective. We will denote, for a given subspace X
and a matrix Cb by C[lX the set {xlC1x E X}. Given a strictly proper and stable
transfer function G(s), as usual, its H rnorm is defined by IIGlb. Also, RH2
denotes the set of real-rational transfer functions which are stable and strictly

proper. RHoo denotes the set of real-rational transfer functions which are stable
and proper.

2. Problem statement

Consider the followingstandard plant,

I x = Ax + Bu + Ew

1

y = c1x + D3u + D1W

Z = c2x + D2u + D4w

where x E IRn is the state, u E IRm is the control input, WE 1R1is the unknown
disturbance, Y E IRPis the measured output and z E IRqis the controlled output.
Without loss of generality, we assume that the matrices [C2, D2, D4], [Cb'D3,
Dd, [B', D3, D2]' and [E', Di, D4]' are of maximal rank. Also, consider an
arbitrary proper controller 17pgiven by,

{

iJ= Iv + Ly
17p:

u = M v + Ny

The controller 17pis said to be admissible if it provides internal stability for the
closed loop system comprising 17 and 17p. Let T zw(17p)denote the closed-loop
transfer function from w to z after applying a dynamic controller 17p to the
system 17. The H 2-optimization problem for 17is to find an admissible control
law which minimizes II T zwlb. The following definitions will be convenient in the
following.

Definition 2.1 The regular H2-optimization problem: A regular H roptimization
problem refers to a problem for which the given plant 17satisfies:

(i) D1 is surjective and D2 is injective;

(ii) the systems (A, B, C2, D2) and (A, E, Cb D1) have no invariant zeros
on the jw axis. 0

17: (2.1)

(2.2)

Definition 2.2. The singular Hroptimization problem. A singular H roptimiza-
tion problem refers to a problem for which the given plant 17 does not satisfy
either one or both of the conditions (i) and (ii) in Definition 2.1. 0
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Definition 2.3. The infimum of Hz-optimization. For a given plant 2:, the
infimum of the Hz-norm of the closed~loop transfer function T zw(2:F)over all
the stabilizing proper controllers 2:p is denoted by y*, namely

y* := inf {IITzw(2:p)llzl2:p internally stabilizes 2:} (2.3)
D

Definition 2.4 H2-optimal controller. A stabilizing proper controller 2:p is said
to be an H 2-optimal controller for 2: if liTzw(2:p)11z= y*.

Definition 2.5 Geometric subspaces. Given a system 2:* characterized by a
matrix quadruple (A, B, C, D) we define the detectable strongly controllable
subspace 2Tg(2:*)as the smallest subspace 2Tof IRn for which there exists a linear
mapping K such that the following subspace inclusions are satisfied:

(A + KC)2T ~ 2T, 1m (B + KD) ~ 2T (2.4)

and such that A + KCllRn/2T is asymptotically stable. We also define the
stabilizable weakly unobservable subspace "Ifg(2:*) as the largest subspace "If for
which there exists a mapping F such that the following subspace inclusions are
satisfied:

(A + BF)"If ~ "If, (C + DF)"If = {O}

and such that A + BFI'V is asymptotically stable.

(2.5)

D

To facilitate exposition, throughout this paper we assume that:

D3 = 0 and D4 = 0 (2.6)

These assumptions are without loss of generality but for simplicity of presenta-
tion. We justify these in the following. If D3 is non-zero, one can define a new
output

Yn := Y - D3u = C1x + D1w (2.7)

Let the controller u = Cn(s)Yn be such that the resulting closed-loop is intern-
ally stable and the infimum y* is attained. Then, it is simple to verify that the
controller

u = Cn(s)[I + D3Cn(S)r1y (2.8)

also attains the infimum and stabilizes the closed-loop system provided that the
closed-loop system is well-posed. On the other hand, if D4 is non-zero, it is
simple to see that there must exist a static output pre-feedback law u = Sy + Un

to our system such that

D4 + D2(I - SD3)-lSD4 = 0 (2.9)

and thus the resulting new system has no direct feedthrough term from w to z.
Otherwise, y* = 00and this is not the case we are interested in for this paper.

The goal of this paper is to derive a set of necessary and sufficient conditions
under which 2: has a unique Hz-optimal controller.

3. Existence of optimal controllers

Our intention in this section is to recall from Stoorvogel (1990) and
Stoorvogel et al. (1992) the necessary and sufficient conditions under which an
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H roptimization problem has a solution. These conditions can be expressed as
some geometric subspace inclusions of two auxiliary systems Ip and IQ, which
are respectively characterized by the matrix quadruples (A, B, Cp, Dp) and
(A, EQ, Cb DQ) with Cp, Dp, EQ and DQ satisfying: (i) [Cp, Dp] and
[Eb, Db]' are of maximal rank; and (ii)

F(P) = [gt][Cp Dp] and G(Q) = [;~] [Eb Db]
(3.1)

where

F(P) := [A' P + PA + C2Cz
B'P + DzCz

PB + C2Dz
]DzDz (3.2)

and

G(Q) := [AQ + QA' + EE'
ClQ + DlE'

Qq + EDt
]DlDt (3.3)

Furthermore, here P and Q are the largest solutions of the respective matrix
inequalities F(P) ~ 0 and G(Q) ~ O. It is shown in Stoorvogel (1990) and
Stoorvogel et at. (1992) that Ip and IQ have no invariant zeros in the open
right-half plane, and are respectively right and left invertible.

The following theorem taken from Stoorvogel et al. (1992) gives the
necessary and sufficient conditions under which the infimum, y*, can be
attained.

Theorem 3.1: Consider the given system I as in (2.1). Then the infimum, y*,
can be attained by a proper controller of the form (2.2) if and only if

(1) (A, B) is stabilizable,

(2) (A, Cl) is detectable,

(3) Im(EQ)~"Vg(Ip)+BKer(Dp)

(4) Ker (Cp) d 5"g(IQ) n Cll 1m (DQ),

(5) 5"g(.l'Q)~ 'Vg(Ip).

Proof: For the proof see Stoorvogel et at. (1992). (0)

4. Statement of Results

We state in the following theorem the set of necessary and sufficient
conditions under which a given plant I has a unique H roptimal controller,

Theorem 4.1: Consider a plant I given by (2.1). Then the Hz-optimal controller
for .l' is unique if and only if the following conditions hold:

(1) (A, B) is stabilizable,

(2) (A, Cl) is detectable,

(3) 1m (EQ) ~'Vg(Ip) + BKer(Dp),

(4) Ker (Cp) d 5"g(IQ) n Cll 1m (DQ),

(5) 5"g(IQ) ~ 'Vg(Ip,
(6) (A, B, Cz, Dz) is left invertible,

(7) (A, E, Cb Dz) is right invertible.
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Moreover, the unique optimal controller is given by

~= (A + BF + KC1 - BNC1)S + (BN - K)Y

}u = (F - NC1); + Ny
(4.1)

where F and K are any constant matrices that satisfy the conditions

A(A + BF) ~ C-, Ker[(Cp + DpF)(sI - A - BF)-I] = Vg(.~:'p) (4.2)

and

A(A + KC1) ~ C-, 1m [(sI - A - KC1)-I(EQ + KDQ)] = 2Jg(.l'Q) (4.3)

respectively, and N is given by

N = -(B' X' XB + DpDp)-I[B' X' Dp]

[XAY XEQ
] [

Y'Ci ] (c YY'C' + D D' )
-1

X CpY 0 Db 1 1 Q Q
(4.4)

Here X and Yare any constant matrices such that Vg(.L'p)= Ker (X) and
2Jg(.L'Q)= Im (Y). Also, note that there always exist F and K such that (4.2) and
(4.3) hold provided that (A, B) is stabilizable and (A, C1) is detectable (seefor
example the constructionalgorithmin Chen et al. 1992).

Remark 4.1: We would like to note that conditions (1)-(5) are necessary and
sufficient for the existence of the Hz-optimal controller for 2:. The additional
conditions, namely (6) and (7), are required for the uniqueness. 0

The following are two interesting corollaries.

Corollary 4.1. R~gular case: If 2: satisfies the conditions of regular case, then 2:
has a unique Hz-optimal controller if and only if

(1) (A, B) is stabilizable,

(2) (A, C1) is detectable.

Moreover, in this case, the unique Hz-optimal controller for 2: is given by

~= (A + BF + KC1); - Ky

}u = F;

where F = -(DzDz)-I(DzCz + B' P) and K = -(QCi + EDl)(DtDl)-1 with
P ~ 0 and Q ~ 0 being respectively the stabilizing solutions of the algebraic
Riccati equations:

(4.5)

PA + A' P + qcz - (PB + qDz)(DzDz)-I(DzCz + B' P) = 0 (4.6)

and

QA' + AQ + EE' - (QCi + EDl)(D1Dl)-I(D1E' + C1Q) = 0 (4.7)

This coincides with the result of Doyle et al. (1988) when the orthogonality
assumptions are made, i.e. CzDz = 0 and DIE' = O.
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Remark 4.2. Consider the standard LQG problem (see e.g. Doyle 1983)

i = Ax + Bu + Gd

y = Cx + Nn, N > 0

z = [::J, R > 0, w = [~J

where x is the state, u is the control, d and n white noise with identity
covariance, and y the measured output. It is assumed that (A, B) is stabilizable
and (A, C) is detectable. The control objective is to design a linear controller 2'F
that minimizes 'jg[lzlz]. It was shown by Doyle (1983) that the above LQG
problem can be solved via the Hz optimal control problem for the following
auxiliary system

2'LQG:

!

i = Ax + Bu + [G O]w

y = Cx + [0 N]w

z = [~Jx + [~Ju

Utilizing the above auxiliary Hz optimal control problem, it follows from
Corollary 4.1 that the standard LQG problem has a unique solution provided
that all the input decoupling zeros of (A, G) and output decoupling zeros of
(A, H) are not on the jw axis. 0

Corollary 4.2. State feedback case: If C1 = I and Dl = 0, i.e. the state feedback
case, then 2' has a unique Hz-optimal controller if and only if the following
conditions hold:

(1) (A, B) is stabilizable,

(2) Dz is injective,

(3) (A, B, Cz, Dz) has no invariant zeros on the jw axis,

(4) 1m (E) = ~n

Moreover, in this case, the unique Hz-optimal controller for 2' is given by

u = -D;lCpx = -(DzDz)-l(DzCz + B' P)x (4.8)

where P ;:?:0 is the stabilizing solution of (4.6). This result coincides with the o~ne
obtained by Chen et a1. (1992).

Remark 4.3. For the standard LQR case, the system to be controlled is given
by the state-space time-domain equations (see e.g. Wilson 1989)

i = Ax + Bu + Gw

y=x

where w is an external white noise with unity intensity. The performance index,
which contains the errors, z, to be regulated, is given by

J = lim 'jg[z'(t)z(t)]t-->00
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where ~ denotes the expectation operator and

[
H 1/2X

]z = R1/2U ' H ~ 0, R > 0

It was shown by Wilson (1989) that such a problem can be solved via the H 2
optimal control problem for the followingauxiliarysystem,

.1'LQR:

j

i = Ax + Bu + Gw

~: [H;~} + [R~~] u

Utilizing the above auxiliary H 2 optimal control problem, it follows from
corollary 4.2 that the LQR problem has a unique solution if and only if the
following conditions hold:

(1) (A, B) is stabilizable,

(2) (A, H1/2) has no output decoupling zeros on the jw axis,

(3) 1m (G) = ~n. D

5. Proofs of results

5.1. Proof of Theorem 4.1: Our proof of Theorem 4.1 involves two stages. In
the first stage we obtain a special parameterization of all H roptimal controllers,
whenever existent, for the given plant .1'. The second stage involves the
examination of the set of all optimal solutions, which are identified and
parametrized in the first stage, to derive the necessary and sufficient conditions
for the uniqueness of the solution of the H roptimal control problem. Our
development utilizes an interesting reformulation of the H roptimal control
problem which was proposed by Stoorvogel (1990) and Stoorvogel et al. (1992).
In Stoorvogel (1990) and Stoorvogel et at.. (1992) it was shown that the
H roptimal control problem for a given plant .1' can be cast as a disturbance
decoupling problem via measurement feedback with internal stability for an
auxiliary system .1'PQ,where

f

iPQ = AXpQ + BUpQ + EQwpQ

.1'PQ: YPQ = C1xPQ + + DQwpQ

zpQ = CpxpQ + DpupQ

where Cp, Dp, CQ and DQ are as defined in (3.1). The following lemma which
is recalled from Stoorvogel et at. (1992) states precisely such a reformulation of
the H 2-optimal control problem.

Lemma 5.1: The following two statements are equivalent.

(5.1)

(i) The controller .1'p as in (2.2) when applied to the system .1' defined by
(2.1) is internally stabilizing and the resulting closed-loop transfer function
from w to Z is strictly proper and has the H rnorm y*.

The controller .1'pas in (2.2) when applied to the new system .1'PQdefined(ii)
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by (5.1) is internally stabilizing and the resulting closed-loop transfer
function from WpQto zpQ is strictly proper and has the Hz-norm O.

Proof: For the proof see Stoorvogel (1990). 0

The above lemma shows that obtaining all the H 2-optimal controllers for J:
is equivalent to obtaining all the controllers that achieve disturbance decoupling
with internal stability (DDS) for the auxiliary system J:PQ.It turned out that the
characterization of the controllers that achieve DDS for J:PQis easier than the
characterization of the Hz-optimal controllers for J:. It is well known (see for
example Maciejowski 1989) that the general class of stabilizing controllers for
J:PQcan be parametrized as

~= (A + BF + KCl)~ - Ky + BYI

}U = F~ + Yl
(5.2)

and
Yl = Q(s)(y - Cl~)

where F and K are any fixed gain matrices that satisfy

(5.3)

A(A + BF) C C- and A(A + KCl) C C- (5.4)

respectively, and Q(s) E RHoc with the appropriate dimension is a free para-
meter. In order for controller (5.2) and (5.3) to achieve DDS for J:PQ, the free
parameter Q(s) must satisfy some additional conditions. Before attempting to
state such additional properties of Q(s), we need to recall the following lemma
which reinterprets the conditions of Theorem 3.1.

Lemma 5.2: Let X and Y be full rank matrices such that "V g(J:p) = Ker (X) and
~g(J:Q) = 1m (Y). Then conditions (3)-(5) of Theorem 3.1 are equivalent to the
following conditions: ~g(J:Q) k "Vg(J:p)and there is a matrix N such that

[X O
J [A EQ

J [
B

J [
y °

J
-

0 I Cp 0 + Dp [N (Cl DQ)] 0 I - 0 (5.5)

Moreover, matrix N in any controller of form (2.2) that achieves DDS for J:PQ
satisfies (5.5).

Proof: For the proof see Stoorvogel and van der Woude (1991) and Stoorvogel
et al. (1992). 0

It turned out that with the choice of F and K that satisfy (4.2) and (4.3),
respectively, the controller (5.2) and (5.3) achieves DDS for J:PQif and only if
Q(s) E Q, where

Q := {Q(s) = Qs(s) + NIQs(s) E Qs and N EN} (5.6)
and where

Qs := {Qs(s) E RH21[(Cp + DpF)(sI - A - BF)-l B + Dp]

Qs(s) [Cl(sI - A - KCl)-l(EQ + KDQ) + DQ] = O} (5.7)
and

N := {N E ~mxPIN satisfies Equation (5.5)}

This claim is proved in the following lemma.

(5.8)



Unique solutions for Hroptimal control problem 345

Lemma 5.3: Consider the auxiliary system .l'PQ given by (5.1). Assume that the
conditions in Theorem 3.1 are satisfied. Then, any controller .l'p that achieves
DDS for .l'PQ if and only if it can be written in the form of (5.2) and (5.3) with F
and K satisfying (4.2) and (4.3), respecti~ely, and some Q(s) E Q.

Proof: Let (Aq, Bq, Cq, N) be a state-space realization of Q(s). It can be
shown by some simple algebraic manipulations that controller (5.2) and (5.3)
when applied to .l'PQyield the closed-loop transfer function from wpQ to zpQ as,

TZpQwpQ(.l'p)= Ce(s1 - Ae)-l Be + De (5.9)

where

[

A + BF
Ae= 0

0

BCq
Aq
0

BNCl

.

- BF

]
-

[

EQ + BNDQ

]
BqCl , Be - BqDQ

A + KCl EQ + KDQ
(5.10)

and

Ce = [Cp + DpF DCq DpNCl - DpF], De = DpNDQ (5.11)

Thus, it is trivial to see that the closed-loop system is internally stable if and
only if (5.4) holds and Q(s) E RH"'. It is also simple to verify that

TZpQwpQ(.l'p) = To - Tq
where

To = (Cp + DpF)(sI - A - BF)-l(EQ + BNDQ)

-(Cp + DpF)(sI - A - BF)-l(sI - A - BNCl)

x (sI - A - KCl)-l(EQ + KDQ)

+ (Cp + DpNCl)(sI - A - KCl)-l(EQ + KDQ) + DpNDQ
and

Tq = [(Cp + DpF)(sI - A - BF)-l B + Dp]Qs(s)[Cl(sI - A - KCl)-l(EQ

+ KDQ) + DQ]

It follows from Lemma 5.2 that whenever the controller achieves DDS for .l'PQ,
then N must belong to the set N. Moreover, it was shown in Stoorvogel and
van der Woude (1991) that To == 0 provided the conditions in Theorem 3.1 are
satisfied and F and K are such that (4.2) and (4.3) hold. Hence,
TZPQwPQ(.l'p)= 0 (i.e. .l'p achieves DDS for .l'PQ) is equivalent to Tq = 0 or
Qs(s) E Qs. The result follows. 0

Now we are ready to move to the second stage of the proof of Theorem 4.1.
The following lemma, which characterizes the conditions under which (5.5) has a
unique solution, plays a crucial role in our development.

Lemma 5.4: If equation (5.5) has at least one solution, then it is unique if and
only if the matrix quadruples (A, B, Cz, Dz) and (A, E, Cb Dl) are respectively
left and right invertible. Moreover, in this case, the unique solution N is given by
(4.4).
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Proof: Rewrite (5.5) as

[~~J N[ClY DQ] = -[~~i X~QJ (5.12)

It is simple to verify that (5.12) has a unique solution, whenever existent, if and
only if both

[;:J and [ClY DQ]

are of maximal rank. Now, it follows from the results of Saberi and Sannuti
(1990) that there exist non-singular transformations rl and r3 such that

r;lBr3 = [BOlO Bl

JBoz Bz 0

Dpr3 = [Do, 0, 0]
and

Vg=Im{rl[~J}

where Do, Bl and Bz are of maximal rank. Moreover, .l'p is invertible if and
only if B 1 is non-existent. Thus,

x = [0,I]r1l

Then, it is straightforward to verify that [B' X', Dp]' is of maximal rank if and
only if Bl is non-existent, i.e. (A, B, Cp, Dp) is invertible, which is equivalent
to (A, B, Cz, Dz) being left invertible (see Chen et ai. 1992). From this line of
reasoning, one can show that [Cl Y DQ] is of maximal rank if and only if
(A, E, Cb Dl) is right invertible. Hence, the first part of Lemma 5.4 follows.
The unique solution N of (4.4) follows from (5.5) by some simple calculations. D

The final step of the proof of Theorem 4.1 proceeds as follows.

(~): If the Hz-optimal controller for .l' is unique, i.e. there exists a unique
controller that achieves DDS for .l'PQ, then by Theorem 3.1 conditions (1)-(5)
hold. It also implies that the set N is a singleton. By Lemma 5.4, conditions (6)
and (7) hold.

(<=): Conversely, if conditions (1)-(5) hold, then Theorem 3.1 implies that
there exists at least one Hz-optimal controller for .l', which is equivalent to the
existence of controllers that achieve DDS for .l'PQ. Also, following the result of
Chen et al. (1992) it can be shown that conditions (6) and (7) imply that both
(A, B, Cp, Dp) and (A, EQ, Cb DQ) are invertible. Hence, it follows from
(5.7) that the set Qs = {O} and from Lemma 5.4 that the set N is a singleton
and is given by (4.4). Then, by Lemmas 5.1 and 5.3, the Hz-optimal controller
for .l'is unique.

Finally, it is now trivial to verify from the
Hz-optimal controller for .l' is given by (4.1).
Theorem 4.1.

above proof that the unique
This concludes the proof of

D
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5.2. Proof of Corollary 4.1: It follows from Chen et al. (1992) that .l'p is of
minimum phase and invertible with no infinite zeros if Dz is injective and
(A, B, Cz, Dz) has no invariant zeros on the jw axis. Hence, 'Vg(.l'p) = ~n.
Also, Dz being injective implies that (A, B, Cz, Dz) is left invertible. From this
line of reasoning, one can show that ~g(.~'o) = {O} and (A, E, Clo Dl) is right
invertible provided Dl is surjective and (A, E, CloDl) has no invariant zeros on
the jw axis. Hence, the first part of Corollary 4.1 follows trivially from Theorem
4.1.

Next, it is simple to verify that 'Vg(.l'p) = ~n and ~g(.l'o) = {O}imply

(1) X = 0 and Y = 0 and hence by (4.4), N = 0;
(2) Cp + DpF = 0 and hence F = - DplCp; and

(3) Eo + KDo = 0 and hence K = -EoDc/.

Following (3.1) and (3.2), we obtain

F = - DplCp = -(DpDp)-l D~Cp = -(DzDz)-l(B' P + DzCz)

where P;=:0 is the largest solution of F(P) ;=:0, which is equivalent to the
stabilizing solution of (4.6) when the conditions of the regular Hz-optimization
problem hold. Using the dual arguments, we have

K = - EoDc/ = -(QCJ. + EDD(D1DD-l

where Q ;=:0 is the stabilizing solution of (4.7). Thus, (4.1) reduces to (4.5). 0

5.3. Proof of Corollary 4.2: From the proof of Corollary 4.1, we know that
conditions (2) and (3) of Corollary 4.2 imply that (A, B, Cz, Dz) is left
invertible and 'Vg(.l'p) = ~n. Also, the facts that Cl = I and 1m (E) = ~n imply
that (A, E, Clo Dl) is invertible, and Dl = 0 implies that Do = 0 and thus
Cll 1m (Do) = Ker (Cl) = {O}. Then by straightforward verifications and
Theorem 4.1, it can easily be verified that .l' has a unique Hz optimal controller.

Conversely, if .l' has a unique Hz optimal controller, by Theorem 4.1 we
have:

(a) Condition (1) of Theorem 4.1 holds, i.e. (A, B) stabilizable;

(b) Condition (7) of Theorem 4.1, Cl = I and Dl = 0 imply that 2Jg(.l'Q)=
1m(E) = ~n;

(c) Condition (5) of Theorem 4.1 and (b) imply that 'Vg(.l'p)= ~n, whichis
equivalent to (A, B, Cz, Dz) having no infinite zeros and no invarient
zeros on the jw axis;

(d) Condition (6) of Theorem 4.1 and (c) imply that Dz is injective.

Hence, Conditions (1)-(4) of Corollary 4.2 hold.
It is easy to show that 'Vg(.l'p)= ~n and ~g(.l'o) = 1m(E) imply that

F = N = - DplCp. Thus, (4.1) reduces to (4.8). This completes the proof of
Corollary 4.2. 0

6. Conclusion
In this paper we have derived a set of necessary and sufficient conditions for

the uniqueness of the solution to a general Hz-optimization problem. We have
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shown that the solution for an Hz-optimal control problem, if it exists, is unique
if and only if the systems (A, B, Cz, Dz) and (A, E, Cb D1) are respectively
left and right invertible. Moreover, such a unique Hz-optimal control law has
been obtained.
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