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Abstract: A simple and noniterative procedure for
the computation of the exact value of the infimum
in the singular H_-optimisation problem is pre-
sented, as a continuation of our earlier work. Our
problem formulation is general and we do not
place any restrictions in the finite and infinite zero
structures of the system, and the direct feed-
through terms between the control input and the
controlled output variables, and between the dis-
turbance input and the measurement output vari-
ables. Our method is applicable to a class of
singular H _-optimisation problems for which the
transfer functions from the control input to the
controlled output and from the disturbance input
to the measurement output satisfy certain geomet-
ric conditions. In particular, the paper extends the
result of earlier work by allowing these two trans-
fer functions to have invariant zeros on the jow-

axis.
Notation
A* — transpose of A
AH = complex conjugate transpose of 4
I = identity matrix
R = set of real numbers
C = whole complex plane
& = open left-half complex plane
L B = open right-half complex plane
2 = imaginary axis jw
OmaxlA) = maximum singular value of 4
A(A) = set of eigenvalues of 4

Amax(A) = maximum eigenvalue of A where A(4) = R
p(A) spectral radius of A

Ker (V) = kernel of V

Im (V) = image of V

We define the following subspaces:
¥ %A, B, C, D) is the maximal subspace of R" which is
(A + BF)-invariant and contained in Ker (C + DF)
such that the eigenvalues of (4 + BF)| ¥ are con-
tained in C, < C for some F.
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Y9 A, B, C, D) is the minimal (4 + KC)-invariant sub-
space of R" containing Im (B + KD) such that the
eigenvalues of the map which is induced by (4 + KC)
on the factor space R"/#* are contained in C, < C for
some K.

For the cases C,=C, C,=C~ and C,=C°uU C" we
replace the index g in ¥"? and .7 by *, — and +, respec-
tively.

1 Introduction

This paper is a continuation of our earlier work [1-3] in
noniterative computation of the infimum in H_-
optimisation problem. In our most recent work [3], a
noniterative algorithm to compute the infimum (hereafter
denoted by y¥) for a class of H_-optimisation for which
the transfer functions from the control input to the con-
trolled output and from disturbance input to the meas-
urement output have no invariant zeros of the jw-axis
and also satisfy certain geometric conditions. In this
paper, we extend our previous work in Reference 3 by
removing the contraints on the invariant zeros of these
transfer functions. A similar attempt has been made in a
very recent paper [4], however, the results reported are
basically restricted to the case of H_-optimisation
problem using state feedback. This work complements
the one in Reference 4 by considering the general case of
H _ -optimisation via measurement output feedback. We
show that the infimum y¥* is equal to the square root of
the maximum eigenvalues of a constant matrix, which
can be easily obtained from the data of the given H -
optimisation problem. Our algorithm for the computa-
tion of y* has been implemented efficiently in a Matlab-
software environment for numerical solutions [5].

2 Problem formulation
Consider the linear system

X=Ax + Bu+ Ew
Tyy=Cix + D,w (1)
z=Cyx+Dyu

This work is supported in part by Boeing Com-
mercial Airplane Group and in part by NASA
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where x € R" is the state, u € R™ is the input, w € R? is
the disturbance, y € R" is the measurement output and
z € R? is the controlled output. Without loss of gener-
ality, assume that both [C,, D,] and [E”, DT] are of full
rank. Let T,,(s) denote the transfer function matrix from
the disturbance w to the controlled output z. The stand-
ard H_-optimal control problem is concerned with the
construction of stabilising feedback control laws that
minimise the H -norm of T_,(s). Define

y*:=inf {| T, (s)l|, where u(s)= F(s)y(s) for any
proper transfer function matrix F(s) which inter-
nally stabilises the system of eqn. 1}

For the case that y = x, i.e. H_-optimisation via state
feedback, relabel 9% as y¥* to signify that the infimum is
taken over all stabilising state feedback laws. We give a
simple and noniterative procedure for determining 7.
The method is applicable to the general system of egn. 1
satisfying the following assumptions:

Al: (A, B) is stabilisable
A2:Tm(E)c ¥ (A, B,C,,D,)+ ¥ (A, B,C,, D,)
Bl1: (A, C,)is detectable
B2:Ker(C,)2% (A, E.C\D\)n ¥ (A, E,Cy, Dy)

Assumptions A1 and Bl are necessary for any total prob-
lems, hence assumptions A2 and B2 are basically the
main conditions in this paper. If (4, B, C,, D;) and (4, E,
C,, D,) are, respectively, right- and left-invertible, then
assumptions A2 and B2 are automatically satisfied.

Remark 2.1: 1t might be helpful to interpret our condi-
tions A2 and B2 in the context of ‘block characterisation’
of the H_, optimal control problem, which stems from the
frequency-domain approach in early 1980s. This block
characterisation in the frequency-domain approach was
considered to be an indicator of the degree of the ‘com-
plexity’ of the problem, although in our opinion, such a
block characterisation is dependent on proof technique
and cannot be used as a true measure of the complexity
of the problem. At any rate, first recall the definition of
this block characterisation. We denote P(s) and P,(s) as
the Rosenbrock system matrices of the systems (4, B, C,,
D,) and (4, E, C,, D,) respectively, namely,

: siI—A B sT—A E
ro=|"ct o) =2 5]

The H_, optimum control problem is said to be

(a) general one block if both P,(s) and PI(s) have
maximal row normal rank

(b) general two block if precisely one of the matrices
P,(s) and PI(s) has maximal row normal rank

(c) general four block if none of the matrices P(s) and
PI(s) has maximal row normal rank.

Finally, the definition of so-called one, two and four-
block Nehari H,, control problem is the same as the pre-
ceding definitions with the exception that no zeros in
C° U {0} in the systems (4, B, C,, D,) and (47, C{, E”,
DT) are allowed. Now it is easy to verify that the class of
H_, optimal control problems considered here, namely
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the class of problems that satisfy conditions A2 and B2
are in fact a subset of the general four-block problem.
Moreover, they subsume as special cases the one block
Nehari problem and the general one block problem.

3 Special co-ordinate basis

We recall the definition of the special co-ordinate basis
(SCB) for a linear time-invariant nonstrictly proper
system [6]. Such a co-ordinate basis has a distinct feature
of explicitly displaying the finite and infinite zero struc-
tures of a given system as well as other system geometric
properties. It is instrumental in the derivation of the
method described in Section 4.

In what follows, we recapitulate the main results in a
theorem and some properties of the special co-ordinate
basis while leaving detailed derivation and proofs to be
found in References 6 and 7. Consider the system
described by

z=Cx+ Du )

{)‘(:Ax+Bu+Ew
It can be easily shown that using singular value decom-
position one can always find an orthogonal transform-
ation U and a nonsingular matrix V that put the direct
feedthrough matrix D into the following form

D=UDV = Imy 0 3
=upy=|"m | ()

where m, is the rank of D. Without loss of generality one
can assume that the matrix D in egn. 2 has the form as
shown in eqn. 3. Thus the system in eqn. 2 can be rewrit-
ten as

% = Ax + [B, BIJ[EO] + Ew
1

Zo . CO I?ﬂ(j 0 Uy
)-[ee {5 o] ®

wvhere By, By, Cy and C, are the matrices of appropriate
dimensions. The inputs uy and u, and the outputs z, and
z, are those of the transformed system, namely

i V[“”] and [20] =l
U i

The H_-norm of the system transfer function T,(s) is
unchanged when an orthogonal transformation is applied
on the output z, and under any nonsingular transform-
ations on the states and control inputs. We have the fol-
lowing main theorem:

Theorem 3.1 (SCB): There exist nonsingular transform-
ations I',, I', and I'; such that

a
T T .
[zg, 2{1" = T, [z5, 2f, 231"

[ug, u{]" = T'[ug, uf, ul1"

x = TN, x5, 97, (x.)7, xI, x717
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and

B - 0 60 L5
0 Ay 0 0 0 L€
= 0 | A i AS 0 0 L2 C
—pet — B . CI. = ab ~ b aa af “ f {5}
A =T (A= BoColls 6 izg, © 4L 0 L0
Bc Ec: ch Cb Bc Ega Br Ec:i Atc ch C}'
| B;E;, ByE; B;E}, B;E;, ByE; A; |
B, 0 0]
By 0 O
B=r7'tR, B F=|% & (©)
; B, 0 0
B,, 0 B, Property 3.4:
| Boy By 0 X, ®x2@ x; ® x. spans ¥ *(A4, B, C, D)
x, @x,spans ¥ (A, B, C, D)
Cy Coa Cop Coa Coa Co. Coy x°@® x; @ x, spans ¥ (4, B, C, D)
E=TI '|: ]F =| B 0 0 0 0 cC
e [™ ! x, @ x, spans S*(A, B, C, D)
' 0 ¢ 0 0 0 0 £5P (
) X, @ x, @ x, spans ¥ (A, B, C, D)
x2@® x,; ®x, @ x, spans & (A4, B, C, D)
and
I, 0 0
D=T;'Dli=[0 0 0 (8) 4  Computational algorithm for y}
0 0 0

where A(A4,) e C™, MA3)eC AMA,)eC™, (4., B,) is
controllable, (4,,, C,) is observable and the subsystem
(A,,, B;, C/)is invertible with no invariant zeros.

The proof of this theorem can be found in References
6 and 7. In what follows, we state some important
properties of the SCB which are pertinent to our present
work. For further details regarding SCB and its proper-
ties, see Reference 8.

Property 3.1: The given system (4, B, C, D) is right-
invertible if and only if x; and hence z, are nonexistent,
left-invertible if and only if x, and hence u_. are non-
existent, invertible if and only if both x, and x, are non-
existent.

Property 3.2: MA,)eC~, AA%)eC’ and M4, )eC”
are respectively the stable, jeo and unstable invariant
zeros of (4, B, C, D).

Property 3.3: The pair (A, B) is stabilisable if and only if
(Acon » B,n) 1s stabilisable where

AL LG 0 By, L;;
Acou = O Abb 0 Br_‘nn = B{)b Lbf (9}
0 Ll&:b Cb A:n ‘60 sz

There are interconnections between the SCB and various
invariant and almost invariant geometric subspaces. In
the following we list the geometrical interpretations of
some state vector components of SCB.
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In this Section, we present our main result, namely, the
noniterative algorithm for computational of the infimum
in H_-optimisation for plants with invariant zeros on the
jw-axis. First, we denote X, and X, respectively, as the
subsystems (4, B, C,, D,) and (4”7, C], E*, D]) to
conform with the notations in our previous work and the
work of Stoorvogel [9, 10], which plays a significant role
in the development of our results in References 1-3. In
what follows, we introduce a step-by-step procedure to
compute y¥.

Step I: Transform the system (4, B, C,, D,) into the
special co-ordinate basis (SCB) described in Section 3. To
all submatrices and transformations in the SCB of Z,, we
append the subscript , to signify their relation to the
system X,. Next we compute

rs}IE L] [{Ea_pl)T (EBP)T {EZP}T (Ea_P)T (EcP)T (EfP)T]T
(10)

It is simple to verify from the properties of SCB that
assumption A2 implies E,» = 0. Then define the matrices

A;:P ;;:PCbP 0
Ap=| 0 Appp 0
. 0 Lop Cop Adar
B L
BxP= BﬂbP LbfP
| Bowr  Lige
£
Ep = | Epp (11)
L Eap
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and
(0 0 o0
CIP = l—ap 0 0 0
[0 Gy O
Lior 0
Dyp =T, O Crp C_:]:P
12
TR (12)

By some simple algebra, it is straightforward to show
that

CIP[I . D:-:P(DIP Dx.P] 3 lD.IP] CxP

0 0 0
0 0 0

for some full row rank C,p,
AIP m BxP{DEP DJ:.P)_ ID;‘P CxP
A&:‘IP E:bp CI‘:P 0

= 0 Avbbp 0 { 1 4)

0 Lovp CIJP AZap
and
BxP(DIP DxPJ & lB.I.P
Bgar E:::rp Bgap .‘:fP a
i beP {-_fz rp || Bobp {:b fP (15)
il L{J

QaP ‘afP OaP ‘af P.

for some appropriate Lp, Loyp, Liyp, Lypp and I5,p. It
can easily be verified that the pair (4, C,p) is obser-
vable provided that (4,,p, C,p) is observable.

Step 2: Define

= Lo

A= aaP at:’ bP:l
? [ 0 Appp
gy =[BT
p = )

Boyp LbfP

and

Cr=1[0 ébl’] (16)

Then solve for the unique positive definite solution S, of
the algebraic matrix Riccati equation,

ApSp+ SpAf — BpBf + S, CFCpSp =0 (17)
together with the matrix T, defined by

T 0
T g aaP
=%

where T,,p is the unique solution of the algebraic matrix
Lyapunov equation,

A;P T::ar e T:Ja}’(A:aP]T = E;P{E:P)T {13)
It is simple to verify from the properties of SCB that
under assumption Al, (4,, Bp) is stabilisable and (— A,
C,) is detectable since A(A4))eC* and (4,,p, C,p) is
observable. Hence the existence and uniqueness of S, and

T,.r follow from results of Reference 11. Next, solve the
unique solution ¥, of the following Sylvester equation,

(Ap+ Sp CECp)Yp + Yo(d2,p)T + 85 CHILp)T
— Be[Bop L3pp]™ =0 (19)
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Denote the set of eigenvalues of AJ,, with nonnegative
imaginary part as {jo,, ..., jo,,} and for i=1, ..., kp,
choose complex matrices Vp, whose columns form a
basis of the eigenspace {x e C"F|xH(jw,I — A°,p) = 0}
where njp is the dimension of 42,,. Then define

Fip=Vii[Boar Lopl[Bour Lirp]" + Lop(Lon)”
— [(Zsp)" + Co Y1 [(Lpp)" + Cp o ))Vip  (20)
fori=1,...,kp,and
Fp = blockdiag {Fyp, ..., Fy,p} (21)
It is shown in Reference 12 that F), > 0. Also, define
Gp = blockdiag {[ Vs EZp(Esp) Vipl, -
[Vir E2p(E2p) Vippl}  (22)

Step 3: Transform the system (A7, C], E”, D) into the
special co-ordinate basis (SCB) described in Section 3.
Here we add the subscript 4 to all submatrices and trans-
formations in the SCB of the system X, . Next compute

T5'0h = (B B (B (BT (B (Bt
(23)

It is simple to show from the properties of SCB that
assumption B2 implies E,, = 0. Then define the matrices

A:::Q a-'.;JQ CbQ 0
AxQ = 0 Abe 0
L 0 Lsz CbQ AﬁaQ
o
B(;aQ L;}Q
Big =| Bosg Lysg
| DOaQ zfQ
| Exo
Eo=|E (24)
| E%o
and
(0 0 0
Cio=T400 0 0
[0 Cyp O
0
qu = roQ 0 Cfe C}Q (25)
| 0 0

By some simple algebra, it is straightforward to show
that

C.{Q[I = DxQ(DIQ DxQ) N IDIQ]CxQ

0 0 0
0 0 0
for some full row rank €y,
Axg = Big(D3o Do) Do Crg
A;t@ E:bg CbQ O
0 LooCho Ao
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and
B,o(DiyD,5) " 'BY,
Bowo Liso || Bowo Lire |
=|Bose Luso || Bose Luro (28)
va0  Laroll Boag sza

for some appropriate Ly, L. L an_. Ly and LTI
can easily be verified that the palr [Abbqs%bQ) is obser-
vable provided that (4,,o., Cpo) is observable.

Step 4: Define

Ao Lo Cio
4=| o I
bbO
Bl Jie
B - QaQ an:I
€ [BOBQ f‘be
and

then solve for the unique positive definite solution S, of
the algebraic matrix Riccati equation,

together with the matrix T, defined by

T O
TQ:[ OQ 0]

where T,,, is the unique solution of the algebraic matrix
Lyapunov equation,

Ao Tao + T;aQ(A:;Q)T = aQ(E )" (31)

Again, the existence and uniqueness of S, and T,,, follow
from assumption B2 and the properties of SCB. Next,
solve the unique solution Y, of the following Sylvester
equation,

(Ag + Sp Cg Co)Yy + YQ{AjaQ)T + 8, CQ(L"hQ)T
- BQ[B:ZJ)aQ Lan]T =0 (32

Denote the set of eigenvalues of A47,, with non-negative
imaginary part as {jo,, ..., joy,} and for i =1, ..., ko,
choose complex malrices Vig, whose columns form a
basis of the eigenspace {x e C"2|x"(jw,I — A%) = 0}
where nj,, is the dimension of 4;,,. Then define
Fig=Vig[Blwo Liol[Blao Lisol" + Lino(Lind)”
— (B39 + Co Yol (Lo + CoYolVig  (33)
fori=1,..., ky.and
Fgy = blockdiag {F,g, ..., Fy,0} (34)
Again, it can be shown that F, > 0. Also, define
G = blockdiag {[V, ESo(ESQ)TV 10l -
[Vi ExglE2) Vigol}  (35)
Step 5: Define
np = dim {R"/¥"(A, B, C,, D,)} — np
and
ﬂQ = dil‘l‘l {V“"(A, E, Cl’ Dl)} - n“Q

We introduce a matric I' of dimension np x ng that
satisfies the following

. | B
e 36
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and define a constant matrix

Gy Fp! 0 0 0
N — 0 TSp'+TISz'S;! —ISy! 0
— 1T Q- —1
-1
0 0 0 GoFp
(37)

We have the following main theorem.

Theorem 4.1: Consider the system X given by egn. 1
Then under assumptions Al, A2, Bl and B2, the infimum
of H_-optimisation for  is

Yo = v/ [Amar(M)] (38)

Proof: Following the results of Scherer [4] (e.g. Theorem
6), it can be shown that

y > 78 = maxX {\/Dima(Tp S5 )]s / Dmasl G Fi D1} (39)
if and only if the following algebraic Riccati inequality,
[Acp — Bup(Dgp Dip) 'Dyp Cop) X
+ X[A.p — Bup(DIp Dyp) ' Dyp Copl”
+9 2EpELp + XC o[l — Dop(Dfp D.p) ' D3y
§CipX — BulD D) B 0

has a positive definite solution. Then it follows from the
results of References 4 and 12 and some simple algebraic
manipulations that for y > y¥, the positive semidefinite

matrix P(y) given by
PO) = (rs;')f[{SP g g]r (o)
is the lower limit point of the set
{P>0|3F: (A + BF)'P + P(A + BF)
+ 9 2PEETP + (C, + D,F)"(C, + D, F) < 0}

Moreover, such a P(y) does not exist when y < y3. By
dual reasoning, one can shown that

7> 75 = max {/[Lma(ToSg )]s V[ Amas(Go Fg )]} (41)
if and only if the following algebraic Riccati inequality,
[A.o — Bio(Dig Do) "Dy CiolZ
+ Z[Ao — Bo(Dg D) 'Dyg Ciol”
+ 7 2EgElp + ZC o[l — Dyo(D35 Do) ' D3]
x CopZ — Bo(DipD,o) 'Blp <0

has a positive definite solution. And for y > %, the posi-
tive semidefinite matrix Q(y) given by

o() = (TSE‘)T'[(SQ . ”0 K. g]rs;; (42)
is the lower limit point of the set
{Q>0]|3K:(4+ KCy)Q + Q(4 + KC))"
+7720CIC,0 + (E + KD, XE + KD,)T < 0}

Again, such a Q(y) does not exist when y <73
define

?PQ = max {\/[Amax(TP S}; 1)]1 \/[Amax(TQ Sél)]} (43)

and

. Now

Yeou = SUP {7 € (7pgs 20) | p[P(1)Q()] < 7%} (44)
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where P(y) and Q(y) are as given in egns. 40 and 42,
respectively. Then following the results of Scherer [4], it
can easily be shown that

}': = max {}'mu ] \/[j"mux[GP F; I]]’ \"x["lma.‘((GQ Fél)]}
(45)
Also, using the results of Chen, Saberi and Ly [2, 3], it

can be shown that
TS+ IS, IT8; =TS e
:')cou = {) max|: e G : T S—QI (46)
22

— Ty 85 'TTs; !
Hence, the result of Theorem 4.1 follows.

5 Example

We illustrate our main result in the following example.
Consider a given system characterised by

(0 1 1 —1 1

000 01
A=]01 0 0 1

E o2 i 0 1

i | 1 0

[0 0 1 1

0 0 00
B=|1 0| E=]|0 0

00 2 1

[0 1 T 2
G [ -1 11 —21.876238 —4.2239 —2.425699
1=l 1 2 3 2 |
D1=]0]

0 0

(0 0 1 0 0 1 0

00 0 0 1 00
C‘: =

27lo 1 0 00 D, 0 0

001 00 00

Step I: Tt is simple to verify that the subsystem (A, B,
C,, D,) is left-invertible with two invariant zeros at +j
and assumption A2 is satisfied. Applying SCB transform-
ation to (A, B, C,, D3),

0 0 0 —1 0
1.3660254 0.3660254 0 0 0O

[, =|0.1988066 19900945 0 0 0
0 0 1 0 0
0 0 0 0 1

y _ [ —o01614784  0.2246812

P71 0.6026457 —0.8385216

g, _ | 06040578  —0.1762197

P 104723969  0.4878984

. [ 1.3544397  0.2665382

" 10.2665382  2.0058434
0 0 [ [

E = a —

bP [0 0:| AaaP [.I 0]

po [ 09489977 10485243

“@P 1 —0.9489977 —1.0485243
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and

5 T < - 3.
[B?]al‘ LafP:l: | Elp = =1 it

Following the procedure in Section 4,

- [ 06180716 —0.2516670
P —02516670  0.7339429
[0 0
b= | 0 OJ
y, | —06928337 —0.0822109
P71 —-03161228  0.3068152
and

Fp=23885733 Gp=135

Step 2: The subsystem (A, E, C,, D,) is invertible and
of nonminimum phase with invariant zeros at {0.078944,
+j2.302011, —4.095803}. Hence, assumption B2 is auto-
matically satisfied. Applying the SCB transformation to
(47, C1, E, D),

0.2148444 0.0018481
0.5503097 0.6645646
Iy =1 —0.7990597 —0.7456317
—0.0941402 —0.0440333
—0.0603521 0.0210926
0.2169145 0.0698280 0.2
—0.6352193 0.8023543 04
—0.5938518 —0.5805731 0.6
0.3437855 0.0892284 04
—0.2803500 —0.0795282 0.2
By = [2.3596219 —0.1725085]

E.o = [0.1593412 0.0009204 0.0116587 0.1593412]

and
. _[08733954 —14.3566212
%@ ™1 0.4222493  —0.8733953
- 13.8502316 —10.8089077
[Bou L“f‘?]_[ 0.3251762 —1‘3752299]
. —1.9958628 6.3511003
“2 | _0.5082606 0.0920508
—0.7973732 —1.9958628
—0.4908900 —0.5082606

Following the procedure in Section 4,

So = 354527292
T, = 0.3224810
Y, = [—5.2529064

and

Fo =84694885 G, = 354527292

93.6614674]
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Step 3: Evaluate

oo o o

0.2110284

1.4653098 0 0 0
0 —0.0000103 —0.0000451 0.0003744
M= 0 0.0000632 0.0002763 —0.0022958
0 —0.0002503 —0.0010946 0.0090961
0 0 0 0
and obtain

7% = /[ Aman(M)] = 1.2104998

6 Conclusion

We have extended the results of References 2 and 3 and
presented a simple noniterative algorithm for the compu-
tation of the infimum for a class of H_-optimisation
problem. We have shown that this infimum is equal to
the square root of the maximum eigenvalue of a constant
matrix that can be easily obtained from the system
matrices of Z. Our results are obtained under the
assumptions that the two subsystems Z, and Z, satisfy
certain geometric conditions. The proposed algorithm for
computing the infimum is applicable to the general case
of singular H_-optimisation problem where no
restrictions have been placed on finite zeros and infinite
zeros of 2 and X, and the direct feedthrough terms in X.
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