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CHARACTERIZATION OF ALL CLOSED-LOOP
TRANSFER FUNCTION MATRICES IN
H..-OPTIMIZATION"

A. A. StoorvoGeL! A. SaBeriz AND B. M. CHen?

Abstract. In this paper, we derive a characterization of all stable closed loop
systems with H .-norm strictly less than 1 which we can obtain via a suitable
stabilizing feedback. We give an exact characterization. However, this characteriza-
tion contains relatively implicit constraints on the free parameter. We also
introduce an “approximate” characterization parameterized via a stable system X
with H.-norm less than 1 (and no other conditions on X). A element of this
approximate characterization can be arbitrarily well approximated by a closed loop
system we can obtain via a suitable stabilizing feedback.
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1. Introduction

In H. control (see e.g., Doyle et al., 1989; Stoorvogel, 1991; Tadmor, 1990)
it is well-known that suitable controllers are not unique. This is in part because
we in general investigate suboptimal design (make the H. norm less than
some a priori given number y) and also because even optimal controllers are in
the MIMO case non-unique.

An interesting question one might therefore ask is the following: character-
ize all closed loop systems with H. norm less than y that we can obtain via a
suitable stabilizing feedback. In several papers (see e.g., Doyle et al., 1989;
Tadmor, 1990) a characterization is given of all time-invariant controllers which
stabilize a given linear time-invariant system and result in a closed loop system
with H. norm strictly less than y. This can be used in a straightforward man-
ner to characterize the closed loop systems these controllers generate. Howev-
er, this is done under some assumptions on the direct feedthrough matrices of
the system (the so-called regular case). Without these conditions (the singular
case) necessary and sufficient conditions for the existence of a suitable control-
ler are available (see Stoorvogel, 1991). On the other hand, for this singular
case relatively little is known about closed loop systems one can obtain.
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In this paper, we derive a characterization of all stable closed loop systems
with H. norm strictly less than 1 which we can obtain via applying a suitable
stabilizing feedback to the given system X. We can replace 1 by y via simple
scaling. The closed-loop systems are parameterized via a stable system X with
H .-norm less than 1. However, these systems X have to satisfy two other, rela-
tively implicit, extra conditions. Therefore, we also give an approximate charac-
terization. It is the same characterization except that X does not have to satisfy
these extra two conditions; the system X is an arbitrary stable system with H..
norm strictly less than 1. The trade-off is that it is an approximate characteriza-
tion. For each stable system X with H. norm less than 1 we generate a system
which can be arbitrarily well approximated with a closed loop system which we
obtain by applying a suitable stabilizing controller to our system . Conversely
any closed loop system with H. norm strictly less than 1, which we can obtain
by applying a stabilizing controller to X, is identical to a system we obtain for a
suitable choice of the parameter X in our characterization.

In other words, we find a simpler characterization of the “closure” (the
approximate set is not actually closed but lies between the set itself and its clo-
sure) of the set of attainable closed loop systems. Finally, we would like to note
that this approximate characterization and the actual characterization are equal
in the regular case.

The formal problem statement will be given in the next section. In Sec. 3,
we will recall some preliminary results. In Sec. 4, we will give an exact charac-
terization of all closed loop systems. Finally, in Sec. 5, we give the much sim-
pler approximate characterization. We conclude with some final remarks in Sec.
6.

2. Problem Statement
We consider the linear, time-invariant, finite-dimensional system

£ =Ax + Bu + Ew,
2:yy=Cx+Dw, (2.1)

z2=Cyx+ Dyu,

where x € #” is the state, ¥ € #™ is the control input, w € #' is the un-

known disturbance, y(t) € #? is the measured output and z € 47 is the un-

known output to be controlled. A, B, E, C,, C,, D, and D, are matrices of

appropriate dimensions. The following assumptions are made:

(@) (A, B) is stabilizable and (A4, B, C,, D,) has no invariant zeros on the jw-
axis, and

(b) (A4, C,) is detectable and (A, E, Cy, D,) has no invariant zeros on the jw-
axis.

Throughout this paper, we will assume that there exists an internally stabilizing

controller of the form

v = Kv + Ly,
2 (2.2)

u = Mv + Ny,

such that the H.-norm of the closed-loop transfer function from z to w, T5,(s),
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is strictly less than 1. To be precise, let us define the sets
CA4{3;|%xZ; isstableand | Tpp|-< 1} (23)
and
TAtTw ]| € B (2.4)

Elements of the sets C and T will sometimes be called suitable controllers
and suitable closed loop systems, respectively. The goal of this paper is to char-
acterize the set T, i.e., all the closed-loop transfer function T,,(s) satisfying
| T [| = < 1.

3. Preliminary

In this section, we recall some results from Stoorvogel (1991). A central
role in our study of the above problem will be played by the quadratic matrix
inequality. For matrix P € ®"*" we consider the following matrix:

F(P) 4 A™P+ PA + CiC, + PEE'P PB + C]D,
= B™P + DI C, D}D, '

If F(P) = 0, we say that P is a solution of the quadratic matrix inequality.
We also define a dual version of this quadratic matrix inequality. For @ €
A" we define the following matrix:

Q) 4 [AQ+ QAT + EET + QC}C,Q QC'{+ED{}

C,Q + D,ET D, DT

If G(Q) = 0, we say that @ is a solution of the dual quadratic matrix inequality.
In addition to these two matrices, we define two matrices pencils, which play
dual roles

L(P, s) 4 [sI - A - EE'"P - B],

SI—A- chcz]
M@, 5) 4 [ _¢c, ;

Finally, we define the following two transfer matrices:
G (s) 4 Cy(sI — A)~'B + D,,

Let o(M) denote the spectral radius of the matrix M. Then the following theo-
rem characterizes the existence of suitable controllers.

Theorem 3.1. Consider the system (2.1). Assume that both the subsystem
(A, B, Cy, D,) as well as the subsystem (4, E, C,, D,) have no invariant ze-
ros on the imaginary axis. Then, the following two statements are equivalent:
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1. For the system (2.1) there exists a time-invariant, finite-dimensional dynamic
compensator X, of the form (2.2), such that the resulting closed-loop sys-
tem, with transfer matrix T,,(s), is internally stable and has H. norm less
than 1, i.e., || Ty [« < 1.

2. There exist positive semi-definite solutions P € of the quadratic matrix in-
equalities F,(P) = 0 and G(Q) = 0 satisfying ¢(P&) < 1, such that the fol-
lowing rank conditions are satisfied:

(a) rankF(P) = rankg, G,
(b) rankG(Q) = rankg G,

L(P, s)| _ 5 4
(c) rank FP) | ="+ rankp, G, w € C'UCTH,

(d) rank[M(Q, s) G(Q)] = n + ranky, G, v € C'UCH.

Our goal is to characterize the set of all closed loop systems with H. norm
less than 1 which we can obtain by applying a suitable stabilizing controller. By
the above theorem, this set is empty if the conditions in part 2 are not met.
Therefore, in the remainder of this paper we will assume that there exist ma-
trices P and @ satisfying the conditions in part 2 of the above theorem. We can
now start with the derivation of the characterization of all suitable closed loop
systems.

Next, we construct a new system,

Xpg = Apg¥pg + Bpottpg + Epquw,
2ot Yee = Ciptpg + Dpow, (3.1)
2pg = CopXpg + Dpitpg,
where

CT

2P EQ T T
F(P) = DT [Cop Dpl, G(Q) = D2y [Eo DP.Q]’

such that [C,p Dp] and [E], Dj,] are both surjective. Moreover,
Apo 4 A+ EE'P+ (I - QP)7'QCL,C,p,
By, 4 B + (I - QP)~'QC}, Dy,
E,, 4 I-QP)'E,
Cip d Cy+ D E™P

It has been shown in Stoorvogel (1991) that this new system has the following
properties:

1. (Apg Bpg, Cyp, Dp) is right invertible and minimum phase.

2. (Apo Epg, Cip, Dpy) is left invertible and minimum phase.

In Stoorvogel (1991), the transformation to X, is done in two stages. In
the first stage (the transformation into a system ZX,), a system X, is
constructed which connects X and X, i.e., the following systems have the
same realization except for some extra stable uncontrollable dynamics on the
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right hand side (Fig. 1). Here the system X, is given by

%» = (A + EE'P)tp + Bup + Ewp,

Zp = Czyxp + DP“P‘

and X, given in Appendix, is due to its complexity. Moreover, it is shown in
Stoorvogel (1991) that X, is inner, i.e., the system is stable and the transfer
function of X from (wy, uy) to (24, y,), say Gy, has the following property:

GE( T 80) GU(SU) = GU(SD) GZ{( ! 80) = I,

for any s, € C which is not a pole of the system G(s). Finally, the subsystem
from w, to y, has a stable inverse. Similarly, we can connect 3, and 3;, via
some system X, which can be defined using a dual argument of X .

In this way, we can derive that the original system X in (2.1), and the new
system X, have a similar connection. In other words, we can construct a sys-
tem X (which is simply the interconnection of X, and %), such that the fol-
lowing two interconnections have the same realization for every controller 2
except for some extra stable uncontrollable or unobservable dynamics on the
right hand side (Fig. 2).

Due to the properties of X, and X, it can be easily shown that X is inner.
Moreover, by applying Redheffer’s lemma (see Doyle et al., 1989) and its dual
version we can derive the following theorem.

Zy Wy
i
% w u
¥l =p | e
Fig. 1.
Z¢ We
e s
Ze
z w =
- 5 e yC_ wp.g[ ]“C—ZPQ
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Theorem 3.2. For any given compensator X, of the form (2.2) the follow-
ing two statements are equivalent;

(i) X, applied to the system X defined by (2.1) is internally stabilizing and the

resulting closed loop transfer function from w to z has H.-norm less than

L ie; || Tl <L

(ii) X'y applied to the new system X,, defined by (3.1) is internally stabilizing
and the resulting closed loop transfer function from wpq to 250, T,, ,, (5,
has H.-norm less than 1, i.e., owpoll=< 1. n

Next, we denote the system insuie the dashed box of Fig. 2 by X(s). We can
then simplify the picture (Fig. 3).

Our goal of this paper is to characterize all suitable closed-loop systems
2 X Zpas in the left of Fig. 3, i.e., the set T as defined in the previous section.
By the previous theorem if the closed loop system on the left in Fig. 3 is stable
and has H.-norm strictly less than 1 then X, defined to be equal to the dashed
box in Fig. 2, is stable and has H.-norm strictly less than 1. Our goal is to
show the “converse”: for any stable system X with H.-norm strictly less than 1
the interconnection on the right hand side of Fig. 3 is asymptotically stable and
has H.-norm strictly less than 1. Moreover, we can find a system X, such that
the two interconnections in Fig. 3 are both stable and arbitrarily close in
H . -norm. In the next section, we will show for which systems X we can make
the interconnections equal. In Sec. 5, we show that for all strictly proper X
which are stable and have H.-norm strictly less than 1 we can always make
the interconnections arbitrarily close in H .-norm.

We would like to conclude this section by stressing that the construction of
2. is an straightforward application of the results in Stoorvogel (1991). It is
only because of space limitations that we do not give this explicit construction
in this paper.

Fig. 3.
4. Exact Characterization

In this section, we will characterize the set T defined in (2.4). We first give
the following result which is a straightforward application of the results in the
previous section.

Lemma 4.1. Let X be a stable system described by

X, = Ayx, + Byw,,
X:{ o (4.1)

2y = Cxxx + Dx Wy,

where A, is stable and the transfer matrix of X has H.-norm strictly less than
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1. Then the interconnection X, x X as given on the right hand side in Fig. 3 is
internally stable and the resulting closed-loop transfer function from w, to z
has H .-norm less than 1.

For a system X satisfying the conditions of the above lemma we define the
following auxiliary system:

) ¢« 0 0 B,
Xqg = 0 AP_Q Xg + BRQ - EP,Q w,

Tyt (4.2)
y=1[0 Cyplxg + Dpow,

z2=[C; - Cyplxs — Dput + D,w.

For economy of notation, let us define

and
C;=10 Csl, Dy=Dps Cy=16 -Gyl Dy=—Dy

In order to proceed we need a number of definitions.

Definition 4.1. Let X = (A, B, C, D). By T,(2), we denote the smallest
subspace T of #” for which there exists a linear mapping K, such that the
following conditions are satisfied:

(A-KOTCT, Im(B-KD)CT,

and such that A — KC| 2"/T is asymptotically stable. Similarly, by V,(Z) we
denote the largest subspace V for which there exists a mapping F, such that
the following conditions are satisfied:

(A-BF)VCV, (C-DF)V={0},

and such that A — BF|V is asymptotically stable.

Definition 4.2. Let X, denote the set of systems X satisfying the conditions
of Lemma 4.1, such that the corresponding auxiliary system X, satisfies the
following conditions:

L T2 S V2,

2. There exists a matrix N, such that

4 B [Blew . ] _
(Cz .| *| 5, P1% Dll)(Tg(Ed;)EB%QJQ(Vg(zd)ea{m). (4.3)

Here 3, 4 (4, B, C,, D,)and 3, 4 (4, E, C,, D,).

Next, we note that since the matrix A, is asymptotically stable and because
of the properties of X, as given in the previous section, it is simple to verify
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that
1. (A B, Cz» D ,) is right invertible and minimum phase, and
2. (A, E, Cy D 1) is left invertible and minimum phase.
This 1mmedlately implies that (A, B) is stabilizable and (4, C 1) is detectable.
Moreover, these conditions combined with the Conditions 1 and 2 given in Defi-
nition 4.2 guarantee (see Stoorvogel and van der Woude, 1991) that for the sys-
tem X, the disturbance decoupling with measurement feedback and internal
stability is solvable. In other words, there exists a compensator X of the form
(2.2), such that the interconnection X, x X is internally stable and its transfer
matrix is equal to 0.

Therefore, if we define the set

T 41T, |XE€X.,), (4.4)

then we have the following result.

Theorem 4.1. The set T defined by (2.4) and the set T, defined by (4.4)
are equal, ie., T = T,

Proof. (=): Let T,,(s) € T. Hence, by definition, there exists a controller
2 € C, which makes the closed-loop system on the left of Fig. 2 internally
stable. It then follows from Theorem 3.2 that such a controller makes the
closed-loop system inside the dashed box on the right of Fig. 2 internally stable
and yields || 7%, u,, ||« < 1. Next, define X to be equal to the dashed box of Fig.
2. It is trivial to see that || X ||..= |« < 1 and that this system X solves
the disturbance decoupling problem with measurement feedback and internal
stability for the related auxiliary system 2. It then follows from Stoorvogel
and van der Woude (1991) that X must be, such that the corresponding auxilia-
ry system X, satisfies the two conditions in Definition 4.2. Hence, X € X, and
Tz thy = Ty © T

(¢=) Conversely, assume that 7, , € T,. By definition, there exists a sys-
tem X of the form (4.1), such that || s [[»< 1 and the conditions in Definition
4.2 hold. Hence, by Stoorvogel and van der Woude (1991), the disturbance de-
coupling problem with measurement feedback and internal stability is solvable
for the corresponding auxiliary system X,. Hence, there exists a stabilizing
controller X, such that the resulting system inside the dashed box of Fig. 2 is
equal to X. By Theorem 3.2, we have X, € C. Moreover, the corresponding
] Tzcwc eT

5. ‘Almost’ Characterization

It turns out that it is easier to define a bigger set T, which contains set T
and transfer matrices that are not in T are arbitrarily close to the set T. To be
more precise, for each element of T, and for any positive scalar, say ¢, there
exists an element of T, such that the difference between these two transfer
matrices has H.-norm less than £. Next, we will give a precise definition of the
set T,.

Definition 5.1. Let X, denote the set of systems X of the form (4.1) where
< land D, = D, ND, for some constant ma-

trix N.
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Moreover, define the set T, by,
T, 4 {Tszch e X, (5.1)

Now we can derive the following theorem.

Theorem 5.1. The set T of (2.4) and the set T, of (5.1) has the following
relationship:

TCTER (5.2)

where the closure of the set T is with respect to the topology induced by the
H ..-norm. In other words, for any ¢ > 0 and for any Zr"szlC e T,, there exists a
T. € T, such that || T, — TszC =< €.

Proof.

(Part 1) It is trivial to verify that X, C X,. Hence, by definition, T = T,
T,

(Part 2) For any Tzﬁ_wc € T,, again by definition, there exists a system X of
the form (4.1) with A, stable, | X|.. < 1 and, moreover, there exists a matrix
N, such that D, = D, ND,. Since the range of D, and Dp are equal and since
the kernel of D,, and D, are equal there exists a matrix N, such that

Finally, recall the following properties:

1. (A, B, C,, D,) is right invertible and of minimum phase, and

2. (A, E, C,, D) is left invertible and of minimum phase.

It follows from Ozcetin et al. (1991; 1992) that the H .-almost disturbance de-
coupling problem with internal stability for the corresponding auxiliary system
3, is solvable. Hence, there exists X, such that the corresponding closed-loop
system inside the dashed box of Fig. 2, which we denote by Xj, is internally
stable and is arbitrarily close to X in H.-norm. Let T},(s) and TZC“,C(S) be the
closed-loop transfer matrices of the systems on the left and right respectively in
Fig. 2. It is straightforward since X is stable that by making the difference
Xr— X small enough that T,,(s) is also arbitrarily close to 7, , (s) in
H_.-norm. More specifically, for any ¢ > 0, there exists X, such that the cor-
responding T, satisfies || Tpw — T, |« < €. Furthermore, | Ty |~< 1 and
hence, T, € T. This completes the proof of the theorem.

6. Conclusion

In this paper, we have given a characterization of all stable closed loop sys-
tems we can obtain via a suitable feedback. The closed loop systems are pa-
rameterized via a stable system X with H.-norm less than 1. An exact
characterization requires an extra constraint on X which is relatively difficult.
However, if we are satisfied with an approximate characerization then the sys-
tem X has to satisfy only one extra constraint which is very simple.

No explicit characterization of all suitable controllers is given. It is our be-
lief that a simple characterization of all controllers as given in Doyle et al.
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(1989) and Tadmor (1990) cannot be given in the singular case. This still re-
mains an interesting open problem.

Construction of suitable controllers in the singular case can be done via
solving an almost disturbance decoupling problem. Algorithms can e.g., be
found in Ozcetin et al. (1991; 1992).
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Appendix: Construction of X,
It is well-known that there exist orthogonal transformations U and V of ap-

propriate dimensions (for example, using singular value decomposition tech-
nique), such that

where D is invertible. Because these orthogonal transformations do not change
the norm || z ||, hereafter without loss of generality, we assume that D, is in the
above form. Moreover, let us partition B and C, as

€,
Let
B _ a _1 n
It is easy to see that

|
mﬁ> o
I_—..l
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We now choose a basis of the state space #”. Let A" =X, @ X, D X;
with X, = T,(Z,) N {v]C,v € Im(D,) }, X, ® X; = Tg(Z,) and X, arbitrary,
where X 4 (A, B, C,, D,). It is shown in Stoorvogel (1991) that in this new
coordinate,

Ay 0 Ap By 0 E,
A+ BF,=|Ay Ay Ayp|, B=|By By|, E=|E)|,

Ay Ay Az By By E,
P00
g o 0 = |
Cz+D2FO_[C21 0 CzJ’ P_|:g 8 8]

Then system X, is given by

x‘y = ber + [Ell EIZ]“L’ + El Wi,

yy = — ETPyxy + wy,

¢ I 0
= \G v t\o 1)%

DI

A 4 Ay~ A(Ch Cy) HAL Py + C33 Cyy) — By (D'D) 7B, P,

C, 4 - (D")'B P,

B, 4 Buﬁ_lr
él? 4 A5(Ch Cog) 71Ch — PJ{C&” — Cy(C3 Cyp) ~1CH, 1.

Here T denotes the Moore-Penrose inverse.
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trates on H. and robust control.
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