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EXPLICIT EXPRESSIONS FOR CASCADE
FACTORIZATIONS OF GENERAL

NON-STRICTLY PROPER
SYSTEMS *

Z. LIN,1 B.M. CHEN2 ANDA. SABERII

Abstract. This paper presents explicit expressions for two different cascade
factorizations of any detectable system which is not necessarily left invertible and
which is not necessarily strictly proper. The first one is a well known minimum
phase/all-pass factorizationby which G(s) is written as Gm(s)V(s), where Gm(s)
is left invertible and of minimum phase while yes) is a stable right invertible
all-pass transfer function matrix which has all unstable invariant zeros of G(s) as
its invariant zeros. The second one is a generalized cascade factorization by which
G(s) is written as GM(s)U(s), where GM(s) is left invertible and of minimum-
phase with its invariant zeros at desired locations in the open left-half s-plane while
U(s) is a stable right invertible system which has all "awkward" invariant zeros,
including the unstable invariant zeros of G(s), as its invariant zeros, and is "as-
ymptotically" all-pass. These factorizations are useful in several applications includ-
ing loop transfer recovery, H2 and H co optimal control. This paper is an extension
of the results of Chen, Saberi and Sannuti (1992) who consider only strictly proper
left invertible systems.

Key Words-Minimum phase/all-pass factorization, inner-outer factorization, gen-
eralized cascade factorization.

1. Introduction

Cascade factorizations of nonminimum phase systems have been used ex-
tensively in the literature. The so called minimum phase/all-pass factorization
plays a significant role in several applications.The role played by it in the con-
trolliterature as well as various methods available for such a factorization are
well documented by Shaked (1989).Since then, minimum phase/all-pass factor-
ization played also a substantial role in loop transfer recovery (Zhang and
Freudenberg, 1990), H2-optimization (Chen, Saberi, Sannuti and Shamash,
1992) and H co-optimization(Saberi et aI., 1991). Traditionally, the minimum
phase/all-pass factorization has been found by spectral factorization tech-
niques, e.g., Strintzis (1972) and Tuel (1968). Recently, Chen, Saberi and
Sannuti (1992) have developed explicit expressions for such a factorization.
They have also introduced a generalized cascade factorization,which is a natu-
ral extension of the former one and which plays an important role in loop trans-
fer recovery. All the above mentioned techniques, however, are confined to
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strictly proper left invertible systems.
Following the work of Chen, Saberi and Sannuti (1992), this paper presents

explicit expressions for both cascade factorizations, the traditional minimum
phase/all-pass factorization, and the generalized cascade factorization. General
detectable systems which are not necessarily left invertible and which are not
necessarily strictly proper, are considered. To be specific, let us consider a
detectable system L7(A, B, e, D) characterized by the matrix quadruple
(A, B, e, D), i.e.,

i = Ax + BU

}y = ex + Du '
(1.1)

where the state vector x E qIln, output vector y E qIlP and input vector
u E qIlm.Without loss of generality, assume that [B', D']' and [e, D] are of
maximal rank. Let the transfer function matrix of L7(A, B, e, D) be G(s).
Then the minimum phase/all-pass factorization of G(s) is expressed as

G(s) = Gm(s)V(s), (1.2 )

where Gm(s) is left invertible and of minimum-phase, and satisfies

G(s)GH(s) = Gm(s)G:JZ<s),

while V(s) is a stable right invertible transfer function matrix satisfying

V(s)VH(s) = I. (1.3 )

Here (.)H denotes the Hermitian paraconjugate of (.). The invariant zeros of
Gm(s) include those stable invariant zeros of G(s) and the mirror image of
unstable invariant zeros of G(s). The transfer function matrix Gm(s) is some-
times referred to as the minimum-phase image of G(s). In some applications,
such as the loop transfer recovery theory, one does not necessarily require a
true minimum phase image of L7(A, B, e, D). What is required is a model
which retains the infinite zero structure of L7(A, B, e, D) and whose invariant
zeros are appropriately assigned to some desired locations in the open left-half
s-plane. With this point in view and as in Chen, Saberi and Sannuti (1992),we
develop here a cascade factorization of the form,

G(s) = GM(s)U(s). (1.4)

Here GM(s) is left invertible and of minimum-phase with all its invariant zeros
at the desired locations in the open left-half s-plane, and U(s) is stable right
invertible and "asymptotically"all-passin the sense that

U(s)UH(s) ~ I as IsI ~ 00. ( 1.5)

Furthermore, both Gm(s) and GM(s) have the same infinite zero structure as
that of G(s).
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The method of factorization that is to be presented, as in Chen, Saberi and
Sannuti (1992),has some important attributes.
1. The method assumes only detectability of 2:(A, B, e, D), Le., 2:(A, B, e,

D) need not be controllable, observable and left invertible.
2. Guided by one's application, one can seek either one of the two cascade fac-

torizations, a traditional minimum phase/all-pass factorization (1.2) and the
generalized cascade factorization (1.4). In (1.2), Gm(s) has a particular in-
variant zero structure dictated by the given system 2:(A, B, e, D) while
V(s) is a stable right invertible all-pass transfer function matrix. On the oth-
er hand, (1.4) provides flexibility to have a chosen invariant zero structure
for GM(s)but U(s), although stable and right invertible, is only asymptotic-
ally all-pass.

3. Both factorizations given here retain the infinite zero structure of 2:(A, B,
e, D). This is crucial in several applications.
We emphasize that our methods can easily be implemented on a computer.

In fact, we have already successfully implemented both of our factorization
methods in the MatIab environment (Linet aI., 1991).

The paper is organized as follows.Sections 2 and 3 respectively give explicit
methods of constructing the traditional minimum phase/all-pass factorization
and the generalized cascade factorization. Section 4 draws the conclusions of
our work. Throughout this paper, A' denotes the transpose of A, I denotes an
identity matrix with appropriate dimension. Similarly, A(A) denotes the set of
eigenvalues of A. The open left and closed right s-plane are respectively de-
noted by {ff- and {ff+.Also, gucoo denotes the set of real-rational transfer
functions which are stable and proper.

2. Minimum Phase/All-pass Factorization

In this section, we give simple and explicit expressions for the minimum
phase image Gm(s), and the all-pass factor V(s) of 2:(A, B, e, D). We first
transform the given system 2:(A, B, e, D) into the form of a special coordi-
nate basis (SCB) as in Theorem Al of Appendix A Let

Ax =
[

Ace BcE:a

]0 A+ 'aa
B =

[
0 0 Bc

]
r-1

x 0 0 0 3'
(2.1)

[

e e+

] [

I 0 0

]

Oc Oa mo _1e - D - r
x - E E+' x - 0 B' B 0 3fr ~ f f

(2.2)

and

[

rn r12 r13

]
[r

r

]

-"'
n 12 2

r;l(r:;l)' = Tl2 r22 r23 , rm = Tl2 r22 .
rb T23 r33

(2.3)

Here it should be noted that in view of the property of SCB (e.g., Property A3
in Appendix A), the pair (Ax, ex) is detectable whenever 2:(A, B, e, D) is
detectable. We have the followingtheorem.
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Theorem 2.1. Consider a detectable system 1:(A, B, C, D). Assume that
1:(A, B, C, D) does not have any invariant zeros on the jw-axis. Then, the
minimum-phase/all-pass factorization of 1:(A, B, C, D) is obtained as follows:
1. The minimum phase factor of 1:(A, B, C, D) is 1:m(A, Bm, C, Dm) which

has the transfer function Gm(s) = C(sI - A) -IBm + Dm.Here,

Bm = rl

BeO + KeO Kef

B;o + K;o K;
B;;o 0
Bbo 0

BfO Bf

[

Imo 0

]r;1, Dm= rz ~ ~ r;I,
(2.4)

where

K .;:1
[

Keo Kef

]

= (c P + D B' )
'
(D D' ) -I

x - K+ K+ x x x x x x ,aO af
(2.5)

and Px is the solution of the algebraic Riccati equation,

AxPx + PxA~ + BxB~ - (CxP~ + DxB~)'(DxD~)-l(Cxpx + DxB~)

= o. (2.6)

Also, 1:m(A, Bm, C, Dm) is left invertible and has the same infinite zero
structure as 1:(A, B, C, D), and satisfies

G(s)GH(s) = Gm(s)G1Jz(s). (2.7)

2. The stable right invertible all-passfactor of 1:(A, B, C, D) is given as

V(s) = rm[Cx(sI - Ax + KxCx)-I(Bx - KxDx) + Dx], (2.8)

and V(s) satisfies

V(s)VH(s) = I. (2.9)

Proof See Appendix B.

The followingremark is in order.

Remark 2.1: We should emphasize that the difference between Theorem 2.1
and the result of Chen, Saberi and Sannuti (1992) is that Theorem 2.1 deals
with general not necessarily strictly proper and not necessarily left invertible
systems while Chen, Saberi and Sannuti (1992) deals only with strictly proper
and left-invertible systems. Moreover, the procedure in Theorem 2.1 involves
solving the algebraic Riccati equation instead of Lyapunov equation as in Chen,
Saberi and Sannuti (1992). It is worth noting that under the condition that the
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system is strictly proper and left invertible, the result of Theorem 2.1 reduces
to that of Chen, Saberi and Sannuti (1992).

We demonstrate the above results by the followingexample.

Example 2.1. Consider a system 1:(A, B, C, D) with

[

1 1
0 1

A = 0 0
0 0
1 1

[

1 0
C = 0 0

0 0

1 1 1

] [

0 0 1

]

011 000
-111, B= 000,

011 000
111 010

1 0 1

] [

1 0 0

]
001, D=OOO.
01000 0

The given 1:(A, B, C, D) has a transfer function G(s),

G(s) = 1
s5 - 3s4 - 2s3 + 3s2 - S

[

S5 - 3s4 - 2S3 + 3s2 - S
X 0

0

S4 + 2s - 1 S4 - S3 - 3s2 + 1

]
S4 - 2s3 + 2s - 1 s3 - S2- S + 1 .

s3 - S2 - S + 1 S2 - 1

This system is neither left nor right invertible and has two invariant zeros at
{ - 1, I}. Hence, it is of nonminimum phase. Moreover, it is easy to verify
that 1:(A, B, C, D) is in the form of SCBwith

[1 1
J [

0 0 1
JAx = 0 1 ' Bx = 0 0 0 '

[1 0 O
J [

1 O
JDx = 0 1 0 ' rm = 0 1 .

Cx = D ~ ].

Thus, following the procedure given in Theorem 2.1 which involes solving a
Riccati equation, we obtain,

K = [ 1.412771 1.063856
Jx - 0.348915 2.255424 '

[

1.412771
- 0.348915

Bm = 0
0
0

D. ~ [gn

1.063856

1

2.255424
0 ,
0
1
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Gm(s)

1
s5 - 3s4 - 2s3 + 3S2 - S

[

S5 - 1.587229s4 - 4.110602s3 - 1.587229s2 - 0.302169s + 1.412771
x 1.063856s3 - 1.412771s2 - 1.063856s + 1.412771

1.063856s2 - 0.348915s - 1.412771

2.063856s4 + 3.446991s3 - 0.936144s2 - 2.510847s + 0.063856

]
S4 + 1.319280s3 - 1.063856s2 - 1.319280s + 0.063856

S3 + 2.319280s2 + 1.255424s - 0.063856

and

V(s)

1
S2 + 2.732051s + 1.732051

[

S2 + 1.319280s - 0.063856
x - 1.063856s + 1.412771

- 1.063856s - 1.191568
S2 - 0.587229s - 0.761686

s + 1.255424

]s - 0.651085 .

Our minimum-phase/all-pass factorization can be slightly modified to obtain
an inner-outer factorization.We first recall the followingdefinitions.

Definition2.1. A matrix function G(s) E fYl,Yf""is said to be inner if
GH(s)G(s) = I and outer if it has full row rank for every sin Re(s) > 0, equiv-
alently, it has a right-inverse which is analytic in Re(s) > O.

Definition 2.2. An inner-outer factorization of a matrix G(s) E fYl;Jt'oois a
factorization

G(s) = G/s)Go(s)

with Gi(s) an inner matrix and Go(s) an outer matrix.

Theorem 2.2. Consider a transfer function matrix G(s) E fYldCoo.Let .l'(A,
B, C, D) be a state space realization of GT(s). Let the SCB presentation of
.l'(A, B, C, D) be given as in Appendix A with A(A~) containing all the in-
variant zeros of .l'(A, B, C, D) located on the closed left-halfs-plane.Then the
inner-outer factorization of G(s) is given as

G(s) = G/s)Go(s),
where

G/s) = [(B; - D;K;)(sI - A; + C;K;)-IC; + D;]Tm

and

Go(s) = B'm(sI - A') -Ie + D'm,
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with the matrices Kn Bm and Dm as defined by (2.4)-(2.6).

Proof. The proof is a slight modification of that of Theorem 2.1 and, for the
sake of brevity, is omitted.

3. A Generalized Cascade Factorization

Whenever some invariant zeros of 1:(A, B, C, D) lie on the jw-axis, no
minimum phase image of 1:(A, B, C, D) can be obtained by any means. In
what follows, we introduce a generalized cascade factorization of a given sys-
tem 1:(A, B, C, D) which is a natural extension of the minimum phase/all-
pass factorization discussed above. The given system 1:(A, B, C, D) is
decomposed as

G(S) = GM(s)U(s). (3.1)

Here GM(s) is of minimum phase, left invertible and has the same infinite zero
structure as that of 1:(A, B, C, D) while U(s) is a stable transfer function ma-
trix which is asymptotically all-pass. All the invariant zeros of GM(s) are in a
desired set ~ Cfi'-. If the given system 1:(A, B, C, D) is only detectable
but not observable, the set fi5dincludes all the stable output decoupling zeros of
1:(A, B, C, D). In this way, all the awkward or unwanted invariant zeros of
1:(A, B, C, D) (say, those in the right-half s-plane or close to jw-axis) need
not be included in GM(s).Such a generalized cascade factorization has a major
application in loop transfer recovery design. For instance, by applying the loop
transfer recovery procedure to GM(s),one has the capability to shape the over
all loop transfer recovery error over some frequency band or in some subspace
of interest while placing the eigenvalues of the observer corresponding to
some awkward invariant zeros of 1:(A, B, C, D) at any desired locations
(Saberi et al., 1993).

Let us assume that the given system 1:(A, B, C, D) has been transformed
into the form of SCB as in Theorem A.1 of AppendixA. Let us also assume that
in the SCB formulation, Xais decomposed into Xd and X;;,such that the eigen-
values of Ada contain all the awkward invariant zeros of 1:(A, B, C, D). We
have the followingtheorem.

Theorem 3.1. Consider a detectable system 1:(A, B, C, D) that is not
necessarily of minimum phase and left invertible. Let the SCB representation of
1:(A, B, C, D) be given as in AppendixA with A(A,ia)containing all the "awk-
ward" but observable invariant zeros of 1:(A, B, C, D). Then the generalized
cascade factorization (3.1) is obtained as follows:
1. The minimum phase counterpart of 1:(A, B, C, D) is 1:M(A,BM, C, DM)

having the transfer function GM(s) = C(sI - A) -lBM + DM,where

BeO + KeO Kef

B:o + K:O K+

[1m, ]r;l,

af

BM = r11 B;;o 0 r-1 DM = rz (3.2)m,
Bbo 0

BfO Bf
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and where

[KCD

Kx = K;:O

KCf]K;
(3.3)

is specified such that A(Ax - KxCx) are in the desired locations inffJ- with
desired admissible eigenvectors (Moore, 1976). Moreover, 1:M(A,BM, c,
DM) is also left invertible and has the same infinite zero structure as
1:(A, B, C, D).

2. The factor U(s) is given as

U(s) = rm[Cx(sI - Ax + Kx Cx) -l(Bx - KxDx) + Dx], (3.4)

where U(s) is stable right invertible and asymptoticallyall-pass,Le.,

U(S)UH(S) -;. I as Isl-;. 00.

Proof It followsfrom the same line of reasoning as in Theorem 2.1. (see also
Chen, Saberi and Sannuti (1992».

We illustrate next this generalized factorization on an example.

Example 3.1. Consider the system 1:(A, B, C, D) given in Example 2.1.
Let's choose Kx such that A(Ax - Kx Cx) = { - 2, - 3}. We then obtain

Kx = [- ~ ~ ], BM =

2 1
- 4 4

0 0 I'
0 0
0 1

DM ~ [~ ~],

GM(s) =
1

S5 - 3S4- 2S3+ 3S2 - S

[

S5 - s4 - 12s3 - 7s2 + 7s + 2
x - 2s3 - 2s2 + 2s + 2

-, 2s2 - 4s - 2

2S4 + 7s3 + 1s2 - 6s

]
S4 + 3s3 - S2 - 3s

s3 + 4s2 + 3s

and

1

[

s2 + 3s
U(s) = S2 + 5s+ 6 2s + 2

-S-3
JS2 - 5 .

4. Conclusion

Explicit and simple expressions for two different cascade factorizations of a
detectable system having a transfer function matrix G(s) are given. In a tradi-
tional minimum phase/all-pass factorization, G(s) = Gm(s)V(s). On the other
hand, in a new cascade factorization, G(s) = GM(s)U(s). Both Gm(s) and
GM(s) are of minimum phase and left invertible, and retain the infinite zero
structure of G(s). The invariant zeros of Gm(s) contain those stable invariant



Explicit expressions for cascade factorizations 509

zeros of G(s) and the mirror images of unstable invariant zeros of G(s),
whereas the invariant zeros of GM(s)can be assigned as desired in fi5-. V(s)
is an all-pass transfer function matrix, whereas U(s), although stable, is only
asymptotically all-pass.

Most of the existing solutions to the factorizationproblem deal with only left
invertible and strictly proper systems and have some kind of difficultieswhen
the invariant zeros of the given systems are not distinct. Our solution, however,
does not have such a problem. Moreover, the computations involved in our
method are rather simple. The implementation of both of our factorization
methods in Matlab is straightforward and successful (Linet aI., 1991).
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Appendix A: A Special Coordinate Basis

We recall in this appendix a special coordinate basis (SCB) of a linear time
invariant system (Sannuti and Saberi, 1987; Saberi and Sannuti, 1990). Such
an SCB has a distinct feature of explicitly and precisely displaying the infinite
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as well as the finite zero structure (i.e., the invariant zeros and zero direc-
tions), of a given system. We summarize below the SCB theorem and some
properties of SCB while the detailed derivation and proofs can be found in
Sannuti and Saberi (1987) and Saberi and Sannuti (1990). Consider the system
.J:(A, B, C, D),

.J:(A, B, C, D) : f i = Ax + Bu,
1 Y = Cx + Du.

(AI)

It can be easily shown that using singular value decomposition one can always
find an orthogonal transformation U and a nonsingular matrix V that render the
direct feedthrough matrix D into the followingform,

--

[

I

D = UDV = ~o ~l (A2)

where mo is the rank of D. Thus, the system in (AI) can be rewritten as

. (
uo
)

}

x = Ax + [Bo Bd ul

(Yo)=
[

Co
] [

/mo 0

] (
Uo)

,

Yl Cl x + 0 0 Ul

(A3 )

where Bo, Bl, Co and Cl are the matrices of appropriate dimensions. Note that
the inputs Uoand Ul' and the outputs Yo and Yl are those of the transformed
system. Namely,

u = v[:~] and [~~] = Uz.

We have the following main theorem.

Theorem A.I. (SCB)
r3, such that

There exist nonsingular transformations rl, rz and

x = rl[x~, (xa)', xg, x;J', Xa = [(x~)', (x;;-)']',

[Yo' y;y = rz[Yo, Yj, Yb]', rub, uiJ' = r3[ub, u;, u~]'

and

Ace BeE"/a BeE; Leb Cb LefCf
0 Ada 0 LCb L;Cf

r1l(A - Bo CO)rl =1
0 0 A;a LCb L,if Cf I, (A4)
0 0 0 Abb LbfCf

BfEfe BfEf: BfEf7z BfEfb Af
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(A5 )

(A6)

(A7)

where 2(A;a) E (fj'-, 2(A,ia) E 0'+, (Ace, Be) is controllable, (Aw Cb) is ob-
servable and the subsystem characterized by (Af' Bf' Cf) is invertible with no
invariant zeros.

The proof of this theorem can be found in Sannuti and Saberi (1987) and
Saberi and Sannuti (1990). We state some important properties of the SCB
which are pertinent to our present work.

Property A.L The given system 27(A, B, C, D) is right invertible, if and

only if xb and hence, Yb are nonexistent, left invertible, if and only if Xc and
hence, Ue are nonexistent, invertible, if and only if both Xc and Xbare nonexis-
tent.

Property A.2. 2(A;a) u 2 (A;a) are the invariant zeros of 27(A, B, C, D).
We note that 2(A;,) are the stable (open left-half s-plane) and 2(A;a) are the
unstable (closed right-half s-plane) invariant zeros of 27(A, B, C, D).

Property A.3.
tectable where

The pair (A, C) is detectable, if and only if (Ax, Cx) is de-

[

Ace

Ax = 0
BeEe~

]A+ ,aa [

COe

Cx = Efe

C+

]

Oa
E+ .

fa
(A8)

Remark A1. The decomposition of Xainto x; and x; can be done in other
ways so that the corresponding matrices A;a and A;a have desired disjoint sub-
sets of the invariant zeros of 27(A, B, C, D).

Appendix B: Proof of Theorem 2.1

We first note that since the pair (Ax, Cx) is detectable and the pair
( - Ax, Bx) is stabilizable, it follows from Richardson and Kwong (1986) that
(2.6) has a unique, symmetric and positive definite solution, Le., Px = P; > O.
Let us now show that Ax - Kx Cx is a stable matrix. Let

Explicit expressions for cascade factorizations

BeO 0 Be

B;o 0 0

-1 IB-
0 0r1 [Bo, B1]r3 = aO

Bbo 0 0

BfO Bf 0

[C

cta Caa COb

cw]
r-1[CO]r - 0

0 0 0 Cf
2 C1 1 -

0 0 0 Cb 0

and

r-1[Imo 0] [1m"

0

H0 r3 = 02 0 0
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[

P11

Px-1 = Piz

P12

]
.

P22

Then pre-multiplying equation (2.6) by px-1, we obtain

[

- (A * + B tB' P )
'

Px-1(Ax - Kx Cx)Px = cc *c c 11 - (~da)' l
where

A:C = Acc - BATh T23]r~[~;:]
and

[

r
]

- - "2 13
r - r33 - [r13 rdr m r23 .

It is worth noting that t is a positive definite matrix and P11 is the unique posi-
tive definite solution of the algebraic Riccatiequation

[

Coc

]P11A;c + (A;C)'P11+ P11BctB~P11 - [C6cE;c]r~ Efc = O.

Hence, A(Ax - KxCx) = A( - Ada) UA(- A:C- BctB~P11) are all in g-, and
thus, Ax - Kx Cx is indeed a stable matrix. We are now ready to prove that
2:'m(A,Bm, C, Dm) is of minimum phase, left invertible and has the same infi-
nite zero structure as 2:'(A, B, C, D). Without loss of generality, we assume
that 2:'(A, B, C, D) is in the form of SCB of AppendixA. Let us define

Then, by the construction and the properties of SCB, the system 2:'m(A,Bm,
C, Dm) and the system f(A, iJ, C) have the same finite and infinite zero
structures and the same invertibility properties. Then using the same tech-
niques as in Appendix B of Chen, Saberi and Sannuti (1992) and, using the
properties of SCB, it is easily shown that the system f has the followingprop-
erties:
(1) f(A, iJ, C) is left invertible,
(2) f(A, iJ, C) has the same infinite zero structure as that of 2:'(A, B, C,

D); and
(3) f(A, iJ, C) has invariant zeros at

Kco Kcf

Kdo K;
A = A - BoCO-I 0 Co' B= 0

0 0
0 Bf

and

- [0

0 0 0

Cf]
C=

0 0 0 Cb 0 .
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[
Ax - KxCx *-

]
E $-,

A 0 Aaa

where *'s denote matrices of not much interest.
Next, we proceed to show that V(s)VH(s) = I. It follows from (2.6) and (2.5)
that

AxPx + PxA; + BxB; - KACxPx + DxB;) = 0

and

DAB; - D;K;) = - CxPx.

We then have

V(s)VH(s)

= I + rm Cx(sI- Ax + KxCx) -1(Bx - KxDx)(B; - D;K;)

x (- sI - A; + C;K;) -Ic;rm
- rm CAsI - Ax + KxCx) -Ipxc;rm

- r mCxPx( - sI - A; + C;K;) -IC; r m

= I + r m CAsI - Ax + Kx Cx) -I[ (Bx - KxDx)(B; - D;K;)

- PA - sI - A; + C;K;) - (sI - Ax + KxCx)Px]

x (- sI - A; + C;K;)-Ic;rm = 1.

We are ready to show that G(s) = Gm(s) V(s). Let us define

c1>As) = [c1>;(s) 0 0 0]'

It then follows that

BeO KeO Kef 0

I eB:o K;Q K 0

Bo = I B;;o , BK = 0 0 , Bf = 0 , Be= 0 I'

Bbo 0 0 0 0

BfO 0 Bf Bf- 0

c1>x(s)= (sI - Ax + Kx Cx)-1,

B = rI[Bo
- - 1
Bf Be]r3,

Bmrm = rI[BO 0] + rIBK,

Bmr mDx = rI[BO 0 O]r-I + r [B O]r-I3 1 K 3
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and

Dmrm Cx(/>x(S) = cr1 (/>xCS).

We now have

Gm(s)V(s)

= [C(sI -A)-lBm + Dm]rm[CxCsI -Ax + KxCx)-l

x (Bx - KxDx) + Dx]

= C(sI - A)-lBmrm[Cx(sI - Ax + KxCx)-l(Bx - KxDx) + Dx]

+ Dmrm Cx(sI - Ax + KxCx) -l(Bx - KxDx) + D

= C(sI - A) -l[Bmrm Cx(/>x(s)(Bx - KxCx) + BmrmDx

+ (sI - A)r1 (/>x(s)(Bx - KxDx)] + D
- -1 - -
- C(sI - A) r1[ ([Bo 0] + BK)CX(/>x(s)(Bx- KxDx)

+ LBo 0 0]ri1 + [EK O]r;l

+ ri1(sI - A)r1 iJixCs)(Bx - KxDx)] + D

= C(sI-A)-lr1([I O]'(Bx-KxDx) + [Eo 0 0]ri1

+ [EK 0]ri1) + D

= C(sI - A) -lr1 ([Eo 0 0] + [0 EI 0]

+ [0 0 EcDri1 + D

= C(sI - A)-lB + D

= G(s).

Finally, the fact that G(s)GH(s) = Gm(s)G::Z(s)follows immediately from the
fact that V(s) VH(s) = I, and this completes the Proof ofTheorem 2.1.
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