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Simultaneous tt2/H  Optimal Control: 
The State Feedback Case* 
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A b g r a a - - A  simultaneous H2/H® control problem is 
considered. This problem seeks to minimize the H 2 norm of a 
closed-loop transfer matrix while simultaneously satisfying a 
prescribed H~ norm bound on some other closed-loop 
transfer matrix by utilizing dynamic state feedback 
controllers. Such a problem was formulated earlier by Rotea 
and Khargonekar (Automatica, 27, 307-316, 1991) who 
considered only so called regular problems. Here, for a class 
of singular problems, necessary and sufficient conditions are 
established so that the posed simultaneous H2/H~ problem is 
solvable by using state feedback controllers. The class of 
singular problems considered have a left invertible transfer 
function matrix from the control input to the controlled 
output which is used for the H 2 norm performance measure. 
This class of problems subsumes the class of regular 
problems. 

1. Introduction 
IN MODERN CONTROL THEORY, optimization of some perfor- 
mance measure is a standard design tool. In this regard two 
performance measures, //2 and H® norms, are popular. 
Recently, in order to guarantee robust performance, i.e. 
guarantee performance in the face of plant uncertainty, some 
optimal control problems, dealing with both the H 2 and H® 
norm measures, have been formulated (see e.g. Bernstein 
and Haddad, 1989; Doyle et al, 1989; Khargonekar and 
Rotea, 1991; Rotea and Khargonekar, 1991). Such 
problems include (a) constrained optimization problems of 
minimizing the He norm of a closed-loop transfer matrix 
subject to an H~ norm constraint on another closed-loop 
transfer matrix, (b) mixed H2/H~ control problems of 
minimizing a mixed H2/H~ performance measure on a 
closed-loop transfer matrix subject to an H~ norm constraint 
on another closed-loop transfer matrix, and (c) simultaneous 
H2/H~ optimal control problems of minimizing the/-/2 norm 
of a closed-loop transfer matrix while simultaneously 
satisfying a prescribed H® norm bound on another 
closed-loop transfer matrix. Our interest here is in 
simultaneous H2/H~ optimal control problems. Recently, 
Rotea and Khargonekar (1991) considered such simultaneous 
H2/H~ optimal control problems and developed the 

* Received 7 April 1992; revised 13 August 1992; accepted 
4 June 1993. Recommended for publication by Editor W. S. 
Levine. 

t School of Electrical Engineering and Computer Science, 
Washington State University, Pullman, WA 99164-2752, 
U.S.A. 

~t Department of Electrical Engineering, National Univers- 
ity of Singapore, Kent Ridge, Singapore 0511, Republic of 
Singapore. 

§ Department of Electrical and Computer Engineering, 
P.O. Box 909, Rutgers University, Piscataway, NJ 
08855-0909, U.S.A. 

II Department of Aeronautics and Astronautics, FS-IO, 
University of Washington, Seattle, WA 99195, U.S.A. 

necessary and sufficient conditions under which they are 
solvable by utilizing dynamic state feedback controllers. 
However, they dealt with only so called regular problems 
(see Definition 2.2). The intent of this paper is to develop 
the necessary and sufficient conditions under which a 
simultaneous H2/H® optimal control problem is solvable for 
a class of singular problems (see Definition 2.3). The class of 
problems considered have a left invertible transfer function 
matrix from the control input to the controlled output which 
is used for the/-/2 norm performance measure. This class of 
problems subsumes the class of regular problems. 

Throughout the paper, Ker[V] and Im [V] denote the 
kernel and the image of V respectively. Also, p(M) denotes 
the spectral radius of matrix M, while normal rank denotes 
the rank of a matrix with entries in the field of rational 
functions. Given a stable and strictly proper transfer function 
G(s), as usual, i ts / /2 norm is denoted by IIGII2; and given a 
proper stable transfer function G(s), its H~ norm is denoted 
by IIGI[®. Also, FIH 2 denotes the set of real-rational transfer 
functions which are stable and strictly proper. Similarly, FIH ® 
denotes the set of real-rational transfer functions which are 
stable and proper. 

2. Problem Statement and Definitions 
Consider the following system: 

f .~ = Ax + Bu + Ezw 2 + E~w® 

J y = x  Y~: (2.1) 
I Z 2  : C2x -[- D2u 
I 

l z~ = C~x + D®u 

~\ where x • R n is the state, u e R '~ is the control input, w 2 • R t2 
and w ~ • R  t® are the unknown disturbance inputs, and 
z2eR q2 and z®eR q~ are the controlled outputs. Also, 
consider an arbitrary proper controller, 

u = F(s)x. (2.2) 

A controller u = F(s)x is said to be admissible if it provides 
internal stability of the resulting closed-loop system. Let 
Tz(F) and T~(F) denote the closed-loop transfer functions 
from w2 to z2 and from w~ to z~, respectively, under the 
feedback control law u = F(s)x. Moreover, let the infimum of 
the Hz norm of the closed-loop transfer function Tz(F ) over 
all the stabilizing proper controllers F(s) be denoted by ~,~, 
that is, 

75:=inf  {[IT2(F)Ih [ u = F(s)x internally stabilizes Y.). (2.3) 

The simultaneous HE/H~ optimal control problem is defined 
as follows. 

Definition 2.1 (Simultaneous Hz/H~ optimal control 
problem). For the given plant Z and a scalar 7 > 0, find a 
stabilizing proper controller F(s) such that II T2(F)Ih = ~'~ and 
II T®(F)II~ < 7. 
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The following definitions will also be convenient in the 
sequel. 

Definition 2.2 (regular simultaneous H2/H~ optimal control 
problem). A regular simultaneous H2/H~ state feedback 
optimal control problem refers to a problem in which the 
given plant Y. satisfies: 
(i) Di, i = 2, ~, are injective, and 
(ii) (A, B, Ci, Di), i = 2 and o0, have no invariant zeros on 
the jto axis. 

Definition 2.3 (singular simultaneous H2/H~ optimal control 
problem). A singular simultaneous H2/H® state feedback 
optimal control problem refers to a problem in which the 
given plant Y does not satisfy either one or both of the 
conditions (i) and (ii) in Definition 2.2. 

Definition 2.4 (/42 optimal controller). A stabilizing proper 
controller F(s) is said to be an He optimal controller if 
IIT2(F)[Iz = y~. 

Definition 2.5 (H® y-suboptimal controller). A stabilizing 
proper controller F(s) is said to be an H~ y-suboptimal 
controller if II T®(F)It~ < y. 

Definition 2.6 (stabilizable weakly unobservable 
subspace). Given a system 5:, characterized by a matrix 
quadruple (A, B, C, D), we define the stabilizable weakly 
unobservable subspace ~'g(Y,) as the largest subspace ~ for 
which there exists a mapping F such that the following 
subspace inclusions are satisfied: 

(A+BF)~'c_]V and ( C + D F ) T = { O } ,  

and such that A + BF I ~" is asymptotically stable. 
Our goal in this paper is to derive a set of necessary and/or 

sufficient conditions under which the simultaneous Hz/H= 
optimal control problem is solvable. 

3. Prefiminaries 
In this section, we recall several preliminary results needed 

to establish the necessary and/or sufficient conditions under 
which the simultaneous Hz/H= optimal control problem is 
solvable, while at the same time we also introduce some new 
results. 

3.1. Review of  H2-optimal Control In this subsection, we 
recall from Stoorvogel et al. (1992) the necessary and 
sufficient conditions under which an Hz-optimal state 
feedback control law of either static or dynamic type exists. 
We also recall a recent result of Chen et al. (1993) which 
characterizes all the possible H 2 optimal state feedback laws. 

The conditions under which an optimal controller exists for 
the system 

f .~ =- Ax + Bu + E2w 2 

Z2: ) y = x  

[ ze = Czx + D2 u 

(3.1) 

can be formulated m terms of an auxiliary system Z,,e 
constructed from the data of (3.1). The auxiliary system Z,,2 
is as given below: 

~ ke = AXp + Bup + E2w e, 
Zau2: ) y p = X p ,  (3.2) 

[ Zp = CpXp + Dpup. 

Here Cp and D e satisfy 

where 
Fz(P2):=[ A'P2+P2A+C~C2 P2B+C2D2] (3.3) 

[ B'P~ + D~,C~ D~Dz J' 

and where '°2 is the largest solution of the matrix inequality 
F2(P2) -> 0. It is known that under the condition that (A, B) is 
stabilizable, such a solution/)2 exists and is unique. 

We have the following theorem. 

Theorem 3.1. Consider the given system Zz as in (3.1), and 
the auxiliary system Zau2 as in (3.2). Define a subsystem Zv 
of Zau2 as that characterized by the quadruple 
(A, B, Ce, Dp). Then, the infimum, y~, can be attained by a 
static as well as by a dynamic stabilizing state feedback 
controller if and only if the pair (A, B) is stabilizable and 
lm (E2) c: ~l#g(~.p). 

Proof. See Stoorvogei et al. (1992). 
We know that whenever an optimal solution to the original 

H 2 problem exists, there exits a constant gain F such that 
AF:=A + BF is stable and that 

t1(C2 + OeF)(sl - At)-tE2[12 = y~. (3.4) 

Next, following the result of Rotea and Khargonekar (1991), 
it can be shown easily that any proper dynamic controller 
F(s) that stabilizes the system Z ~  2 (which is not necessarily 
regular) can be written in the following form: 

{~ = AF~ + ByI' (3.5) 
Fx + yK, 

where 
y~ = Q(s)(x - ~) (3.6) 

for some proper and stable Q(s), i.e. Q(s ) •  Rid ®, with 
appropriate dimensions. The following theorem qualifies 
Q(s) so that the controller F(s) is Hz optimal for the given 
system Z2- 

Theorem 3.2. Consider the given system Z2 as in (3.1). Let 
the system characterized by the matrix quadruple 
(A, B, C2, DE) be left invertible. Also, assume that the pair 
(A, B) is stabilizable, and that Im (E2)c_ °Vg(Ze). Define a 
set Q as 

Q:=  {Q(s ) •  RH~I a(s) = W(s) 

(t - E2E~)(sl - A t ) ,  W(s) • RH2}, (3.7) 

where E~ is the generalized inverse of E 2, i.e. E2E*2E 2 = E2. 
Then a proper dynamic controller F(s) stabilizes Y2 and 
achieves the infimum, y~, if and only if F(s) can be written in 
the form of (3.5) and (3.6) for some Q(s) • Q. 

Proof. See Chen et al. (1993). 

Remark 3.1. It is worth noting that if (A~, Bw, Cw) is a state 
space realization of W (s ), then Q (s ) = W (s )( l - E2 E~)(st - 
A~) can be written as 

O(s) = C~(sl - A,~) ~[A,Bw(I - EeE*2) 

-B~( I  - EeE*2)AF] + C~B,(I  - E2E*2). (3.8) 

3.2. Existence of H~-suboptimal Controllers. We recall in 
this subsection a theorem of Stoorvogei (1992a) which gives a 
set of necessary and sufficient conditions under which the 
following auxiliary system has an H® y-suboptimal controller: 

f 2 = A x + B u + E ~ w ~  
X ~ :  ~y  = Cx + Dw~ . (3.9) 

[ z .  = C . x  + D.u 

Before we introduce Stoorvogel's theorem, let us define the 
following quadratic matrices: 

~(P.) 
:= [A 'P,  + P~A + C'C~ + y zP~E~E'P® P~B + CLD®] 

B'P~ + D'C~ D'D~ J 
(3.10) 

and 

O~(Q~):= 
AQ® + Q~A' + E~E" + y-2Q~C'C®Q~ Q~C' + E®D'] 

CQ~ + DE" DD' J" 
(3.11) 

It should be noted that the above matrices are dual to each 
other. In addition to these two matrices, we define two 
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polynomial matrices whose roles are again completely dual to 
each other: 

and 

Ly(P®; s) := [sl - A - y-2E®E'P= - B] (3.12) 

Next, we recall Stoorvogei's theorem. 

Theorem 3.3. Consider the auxiliary system Y~,® as in (3.9). 
Assume that two systems, one characterized by 
(,4, B, C®, D~) and the other by (,4, E®, C, D) have no 
invariant zeros on C °. Then the following statements are 
equivalent: 
(1) There exists a linear, time-invariant and proper dynamic 

compensator Fo(s ) such that when the control law 
u(s)=Fo(s)y(s) is applied to Z . . . .  the resulting 
closed-loop system is internally stable. Moreover, the H® 
norm of the closed-loop transfer function from the 
disturbance input w= to the controlled output z~ is less 
than ~,. 

(2) There exist positive semi-definite solutions P®,Q= of the 
quadratic matrix inequalities Fe(P~)>-0 and Ge(Q®)>-0 
satisfying p(P~Q®)< ),2, such that the following rank 
conditions are satisfied: 
(a) rank {/~,(PJ} = normal rank {G®(s)}, 
(b) rank {t~y(a~)} = normal rank {G(s)}, 

1 (c) rank L Fy(P®) J =n 

+ normal rank {G®(s)}, Vs • C°U C +, 
(d) rank [Mr(O®, s), (~y(Q=)] = n + normal rank 

(G(s)}, Vs • C ° u C +, 
where G(s)= C ( s I - A ) - I E ~ + D  and G®(s)= C®(sl- 
A ) - IB+D~.  

Proof. See Stoorvogel (1992a). 

4. The simultaneous H2/ H® problem 
In this section, we give our main result regarding the 

simultaneous H2/H~ problem. We have the following 
theorem. 

Theorem 4.1. Consider the given system 5" as in (2.1). 
Assume that the pair (A, B) is stabilizable and the quadruple 
(A, B, C2, D2) is left invertible. Also, assume that the 
quadruple (A, B, C®, D®) has no invariant zeros on the #o 
axis. Then there exists an internally stabilizing control law 
u=F(s)x such that IIT2(F)II2 = y~ and IIT®(F)II®<y if and 
only if the following conditions hold: 
(1) Im (E2)c  ~(5,e) ,  which is equivalent to the fact that 

there exists an F such that A p : = A  + BF is stable and 
(3.4) holds. 

(2) There exists a positive semi-definite solution P~ of the 
quadratic matrix inequality Pr(P®) -> 0 such that 
(a) rank {/¢~(P®)} = normal rank (G®(s)}, 

L~(P, s) 
(b) r ank[  E ( ; ' ) ] = n + n o r m a l r a n k { G = ( s ) } ,  

Vs • C ° U (~+, ® 
where Fr(P®), Le(P=, s) and G®(s) are as defined in 
Subsection 3.2. 

(3) There exists a positive semi-definite solution Q= of the 
quadratic matrix inequality (~y(Q®) ~ 0 such that 
(a) rank {Gr(Q®)} = rank {(1 - E2E*2)E®} , 
(b) rank[Mr(Q®, s), Gy(Q=)]=n+rank {(t-e~e,*)e®~, 

Vs eC"UC*,  
where (~v(Q®) and Mv(Q~,s ) are as defined in 
Subsection 3.2 with A, C~, C and D being replaced by 
A F : = A + B F ,  C=F:=C®+D~F, 0, and V®:=(I-  
EzE+2)E®, respectively. 

(4) p(e®Q=) < y 2. 

Proof. At first, let us note that T=(F), the closed-loop 
transfer function from w~ to z~ under the controller of (3.5) 

and (3.6) with Q(s) • Q, is given by 

T®(F) = C=F(sl - AF) IE~ 

+ [C=r(st - AF)- IB  + O=lW(s)V=. (4.1) 

It can be simply verified that T®(F) is equivalent to the 
closed-loop transfer function from w® to z® of the following 
auxiliary feedback system: 

f k = Aex + Bu + E~w~ 
5,~: ] y  = V~w~ (4.2) 

L z~ = C~rx + D®u 

u = W ( s ) y .  (4.3) 

Furthermore, let us observe that the system characterized by 
the matrix quadruple (AF, E®, 0, V=) has no invariant zeros 
on the jto axis due to the fact that AF is stable. We are now 
ready to prove the theorem. 
For the given system 5,, if there exists a stabilizing proper 
controller u = F(s)x such that the corresponding IITE(F)II2 = 
y~ and IIT®(F)II®<~', then by Theorem 3.1 we have 
Im (E2) c ~V#(Zp), which is equivalent to the fact that there 
exists a constant gain F such that AF:=A + BF is stable and 
(3.4) holds. Next, IIT~(F)II®<)' implies that there exists a 
Q ( s ) • Q  such that the corresponding W(s) is an H~ 
suboptimal controller to the auxiliary system Z® of (4.2). We 
also observe that Condition 2 in Theorem 4. I is the condition 
under which there exists a state feedback H~ suboptimal law 
to the following system: 

k = Ax + Bu + E~w~ 
(4. 4) 

+ o®u 

Then, from Theorem 3.3 and some simple algebra, it follows 
that Conditions 2-4 hold. Conversely, we assume that 
Conditions 1-4 in Theorem 4.1 hold. Then Conditions 2-4 
imply that there exists a proper controller W(s) such that 
when it is applied to 5,~ the resulting closed-loop transfer 
function from w~ to z® has H= norm less than ),. We first note 
that due to the special structure of 5,®, all the internally 
stabilizing controllers must themselves be stable. Hence w(s) 
is stable. Next, it is shown in Stoorvogel (1992a) that in fact 
W(s) can be chosen to be a full order observer-based 
controller for an auxiliary system and hence W(s) can be 
chosen to be strictly proper, i.e. W ( s ) •  RH 2. Then it is 
straightforward to verify that the controller (3.5) and (3.6) 
with Q(s) = W ( s ) ( ! -  E2E~)(sl-  AF) achieves H T2(F)II2 = ~,~' 
and II T®(F) ll= < ~'. This completes the proof of Theorem 4.1. 

The following remarks are in order. 

Remark 4.1. Theorem 4.1 generalizes the result of Rotea 
and Khargonekar (1991). In fact, it is easy to verify that for 
the regular simultaneous H2/H ® optimal control problem, 
conditions 1-4 of Theorem 4.1 reduce to those conditions of 
the main theorem (i.e. Theorem 2) in Rotea and 
Khargonekar (1991). 

Remark 4.2. The proof of the above theorem is constructive. 
In fact, by utilizing the construction procedure in the proof 
of Theorem 4.1 and the design algorithms in Chen et al. 
(1993) and Saberi et al. (1991), one can easily compute the 
controller (whenever it exists) that solve the simultaneous 
H2/H~ problem. The design procedure has been imple- 
mented in a Matlab software environment by Chen et al. 
(1991). 

5. Conclusion 
For a class of singular problems, necessary and sufficient 

conditions are established so that a simultaneous HE/H ® 
problem, originally formulated by Rotea and Khargonekar 
(1991), is solvable by using dynamic state feedback 
controllers. The class of singular problems considered have a 
left invertible transfer function matrix from the control input 
to the controlled output which is used for the H 2 norm 
performance measure. This class of problems subsumes the 
class of regular HE/H ® problems for the solvability of which 
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Rotea and Khargonekar (1991) established earlier the 
necessary and sufficient conditions. 
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