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=A+y B Bl(X.+7Y)
+ LC, — y2B2LC, P(I +v~2B2YP) 'Y
=A++y B Bl(X.,+7Y)
+ LC, + v 282LR LTY (33)

which is asymptotically stable because Y = 0 is a stabilizing solu-
tion of (20). Therefore P is a stabilizing solution of (21). The fact
that P = 0 follows from R, > 0. This completes the proof of
Corollary 1.2.

The following theorem shows that Bernstein and Haddad’s neces-
sary condition for full-order mixed H, and H, control, as given in
[2, Theorem 3.1], is also sufficient.

Theorem 2: Given vy > 0 and plant F(s) as described in Fig. 1,
with E,,, = BE, (R,, = B’R,) for some real 8. The full-order
controller H(s) maintains the internal stability of the closed- -loop
system and minimizes the cost function Jp of (1) subject to the H,,
norm constraint (6), :f and only if there exist stabilizing solutions
Q=0,P=0,and QzOsuchthat

0=AQ+ QAT+ V, + Q[v R, - CTV;'C]Q (34)
0=(A+72Q+0]R.) P+P(A+y7?[Q+0]Ru)
+ ETE, - CER,C. (35)
0=(A+7v20R, +BC)O+0(A+7 QR + Bc,)"
+ v 20[R. + B*CIR,C.]0 + QCTV;'CQ (36)
and the controller satisfies

A
C

H(s) = |— 5

B
c} (37)

with
A,=A -~ BC+BC,+ 7 ?QR,,
B.=QCTv;!

(38)
(39)

B (40)

C.= —R;'BTP(I+ B>y "2QP)
and the minimal performance index Jg of (1) may be computed
with

G- (1)

o+0 Q]

Q Q

Proof: Substituting R,. = B°R, into (12) gives (40). Q and
O being stabilizing solutions is concluded from Lemma 2. Para-
phrasing the proof of Corollary 1.2 proves that P is a stabilizing
solution. The necessity has been proved by Bernstein and Haddad
[2], and also follows from Lemma 1. The sufficiency follows from
Corollary 1.1. This completes the proof of Theorem 2.

Remark: Tt has been proved by Bernstein and Haddad [2] that Q
in the necessary condition of Theorem 2 is positive definite. The
same can be concluded for Lemma 1. Since in the scope of this
note, semidefiniteness can be tightened to definiteness in sufficient
conditions and Y is the dual of Q all Y = 0 may be replaced by

Y >0 and Q =0 may be replaced by Q >0 in every lemma,

theorem, and corollary.

III. CONCLUSIONS

The sufficient condition for Doyle, Zhou, and Bodenheimer’s
mixed H, and H_ full-order optimal control is shown to be the

dual of the necessary condition for Bernstein and Haddad’s. There-
fore, both conditions are proved to be necessary and sufficient.
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Explicit Expressions for Cascade Factorization of
General Nonminimum Phase Systems

Ben M. Chen, Ali Saberi, and P. Sannuti

Abstract—In this note explicit expressions for two different cascade
factorizations of any detectable left invertible nonminimum phase sys-
tem are given. The first one is a well known minimum phase /all-pass
factorization by which all nonminimum phase zeros of a transfer func-
tion G(s) are collected into an all-pass factor V(s), and G(s) is written
as G,(5)V(s) where G, (s) is considered as a minimum phase image of
G(s). The second one is a new cascade factorization by which G(s) is
rewritten as G,,(s)U(s) where U(s) collects all ‘“‘awkward’’ zeros in-
cluding all nonminimum phase zeros of G(s). Both G, (s) and G,(s)
retain the given infinite zero structure of G(s). Further properties of
G,(5), Gpg(5), V(s), and U(s) are discussed. These factorizations are
useful in several applications including loop transfer recovery.

1. INTRODUCTION

Cascade factorizations of nonminimum phase systems have been
used extensively in the literature. The so called minimum
phase /all-pass factorization plays a significant role in several appli-
cations, the prominent among them being singular filtering [2], [9]
and cheap and singular optimal LQ control [10]. Recently, it played
a significant role in loop transfer recovery as well [15]. Tradition-
ally such a factorization has been found by spectral factorization
techniques [11], [13], [14]. The role that the minimum phase/all-pass
factorization plays in the control literature as well as various
methods available for such a factorization are well documented by
Shaked [8]. Also, Shaked gives a new method of obtaining such a
factorization for the controllable, observable, and left invertible
systems. Shaked’s method yields valid results when all the invariant
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zeros of the given system are simple. It has some minor problems
when the invariant zeros are not simple due to an erroneous
definition of the pseudo zero directions [4], [12] as explained in [61.
However, such difficulties can be possibly resolved by using appro-
priate definition of pseudo zero directions.

This note provides explicit expressions for two different cascade
factorizations of any nonminimum phase system. The first one is
same as the traditional minimum phase/all-pass factorization. The
second one, a natural extension of the first, is a new cascade
factorization which seems to have several promising applications.
To be more specific, let us consider a detectable left invertible
nonminimum phase system X characterized by the matrix triple
(A,B,C)

%x=Ax+ Bu,y=Cx (1.1)

where the state vector x € R”, output vector yeR?”, and input
vector # € R™. Without loss of generality, assume that B and C are
of maximal rank. Let the transfer function of T be G(s). Then the
minimum phase /all-pass factorization, G(s) is expressed as

G(s) = G,(s)V(s) (1.2)

such that
G(5)G"(5) = Gu(5)Gr (5)
and V(s) in an all-pass factor satisfying
V(s)VH(s) =1 (1.3)

Here (_~)” denotes the Hermitian paraconjugate of (). We construct
later on a matrix B,, such that a system I, characterized by the
matrix triple (A, B,,, C) has the intended transfer function G,(s).
Also, the invariant zeros of X, are those minimum phase invariant
zeros of = and the mirror images of nonminimum phase invariant
zeros of . On the other hand, in loop transfer recovery and
perhaps in other applications, one does not necessarily require a true
minimum phase image of . What is required is a model which
retains the infinite zero structure of £ and whose invariant zeros can
appropriately be assigned to some desired locations in the open
left-half s-plane. With this point in view, we develop here a new
factorization of the form

G(s) = Gy (s)U(s). (1.4)
Here G,,(s) is the transfer function matrix of a system X,, charac-
terized by the matrix triple (A, B,,, C). An explicit expression for
B,, is given later on. Furthermore, Z,, has the same infinite zero
structure as that of , it is of minimum phase having all its invariant
zeros at desired locations and is left invertible. On the other hand,

U(s) is square, stable, invertible and is asymptotically all-pass in
the sense that ’

U(s)UH(s) > 1  as|s| - .

(1.5)

We emphasize in the following, some important attributes of the
method of factorization that is to be presented.

1) The method assumes only detectability and left invertibility of
T, i.e., < need not be controllable and observable.

2) Guided by one’s application, one can either seek one of the
two cascade factorizations, a traditional minimum phase/all-pass
factorization (1.2), and a new general cascade factorization (1.4). In
(1.2), G,,(s) has a particular invariant zero structure dictated by the
given system T while V(s) is an all-pass transfer function matrix.
On the other hand, (1.4) provides flexibility to have a chosen
invariant zero structure for G,.(s) but U(s), although square,
invertible, and stable, is only asymptotically all-pass.

3) Both factorizations given here retain the infinite zero structure
of T. This is crucial in several applications.
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The note is organized as follows. Sections II and III, respectively,
give explicit methods of constructing the traditional minimum
phase/all-pass factorization and the new general cascade factoriza-
tion. Section IV draws conclusions of our work. Throughout this
note, A’ denotes the transpose of A, I denotes an identity matrix
with approapriate dimension. Similarly, N A) denotes the set of
eigenvalues of A. The open left and right s-planes are, respec-
tively, denoted by ~ and €.

II. MiNtMuM PHASE/ALL-PAss FACTORIZATION

In this section, we give a simple and precise expression for the
minimum phase image G,(s), and the all-pass factor V(s) of 2.
We first transform the given system X into the form of a special
coordinate basis (SCB) which displays both the finite and infinite
zero structures of T explicitly ([7], also see the details of SCB in
the appendix A). That is, there exist nonsingular transformations
Ty, T,, and T'; such that

x=T%y=01,5,u=Ti
and
¥=A%+ Bi,y=Cx

where (A, B, C) are of the form

Al 0 LLC, LYC,
-~ 0 Aza LGy LGy
A=TrAn =1 0 A L,C, |
bb bfv“~f
B,E} B/E; B/E, A
0
. 0
B=T;'BTy=| ¢ |.
B,
é-ryer, = |0 ° O 7| and BB
=T; =10 o c, o ,and B;B,= 1. (2.1)

Here N A},) and N(A_,) are, respectively, the nonminimum phase
and minimum phase invariant zeros of Z. Also, we note that the
pair (A}, E) is observable whenever I is detectable. We have
the following theorem.

Theorem 2.1: Consider a detectable, left invertible, and nonmin-
imum phase system ¥ whose nonminimum phase invariant zeros lie
in the open right-half s-plane. Then

1) The minimum phase image of 2(A4, B,C) is 2,(A4, B,,,C)
having the transfer function G,(s) = C(sI — A)™'B,,, where

K
“T BT = 0
B, =TIB,I'y' =T, 0
B,

Ty, (2.2)

K* = PT'EF'TYT,

(2.3)
and where P is the solution of the Lyapunov equation
A} P+ PA}, = E}'T4TLE} . (2.4)
Moreover, 2,.(A, B, C) is also left invertible and has the same
infinite zero structure as Z( A4, B, C);
2) the stable all-pass factor of Z is given as
V(s) = Ty[I - Ef (sI — AL, + KLEF) KT (2.5)

Proof: See Appendix B.
We demonstrate the above results by the following example.
Example 2.1: Consider a square and invertible system X charac-
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terized by

,B=

N

It
O = OO -
[l = = =]
OO = =O
—_—_0 0 -
—_—— O
(=R e R e ]
—_ o000

and C = B’. As seen easily, T has a transfer function G(s)
s—1

G(s) =
(s) S —55* +8s° - S5s2+s+1

{(s=2)(s>-s+1) (s-1)°
(s — 1) s(s— 1) (s-2)|

Also, ¥ is controllable and observable and has an invariant zero at
s = 1. Furthermore, it is easy to verify that £ is already in the SCB

form with

1 0 0

A;,,=[0 1 1,E,,+=[(‘) (1) g].
0 0 1

Thus we obtain

=
84
Il
o
NI
| S
X
3
I
o~—oOoN
—o A~ PO

, G|
L (s+1)

and
s+ 1

G,(s) =
m(3) 5 — 55+ 85— 5824+ 5+ 1

. (s=2)(s*-s+1)

(s -1

III. A GENERALIZED CASCADE FACTORIZATION

@_1xs+n]'

s(s+1)(s-2)

Whenever some invariant zeros of X lie on the jw axis, no
minimum phase image of I can be obtained by any means. In what
follows, we introduce a generalized cascade factorization of a given
system ¥, which is a natural extension of the minimum phase /all-
phase factorization discussed above. The given nonminimum phase
and left invertible system is decomposed as

G(s) = Gy (s)U(s). (3.1)
Here G,,(s) is of minimum phase left invertible and has the same
infinite zero structure as that of ¥ while U(s) is a square, invert-
ible, and stable transfer function which is asymptotically all-pass.
All the invariant zeros of G,,(s) are in a desired set €,€ % . If the
given system X is only detectable but not observable, the set %,
includes all the unobservable but stable eigenvalues of X. In this
way, all the awkward or unwanted invariant zeros of £ (say, those
in the right-half s-plane or close to jw axis) need not be included in
G,,(s). Such a generalized cascade factorization has a major appli-
cation in loop transfer recovery design. For instance, by applying
the loop transfer recovery procedure to G,,(5), one has the capabil-
ity to shape the over all loop transfer recovery error over some
frequency band or in some subspace of interest while placing the

eigenvalues of the observer corresponding to some awkward invari-
ant zeros of T at any desired locations [6].

Let us assume that the given system X has been transformed into
the form of SCB as in (2.1). Let us also assume that in the SCB
formulation, x, is decomposed into x; and x} such that the
eigenvalues of A}, contain all the awkward invariant zeros of Z.
We have the following theorem.

Theorem 3.1: Consider a left invertible and nonminimum phase
system ¥ whose awkward invariant zeros are observable and are
dumped in N(A})). One can then construct a generalized cascade
factorization (3.1) such that

1) the minimum phase counterpart of 2Z(A, B, C) is
2,,(A, By,,C) having the transfer function G, (s) = C(sI -
A)~'B,,, where

(3.2)

and
Gy(s) = C(sI — A) " 'By,. (3.3)

Here K} is specified such that N\ A}, — K}E}) are in the desired
locations in %~ with desired admissible eigenvectors [5]. More-
over, X,,( A, B,,, C) is also left invertible and has the same infinite
zero structure as (A4, B, C);

2) the stable factor U(s) is given as

U(s) =T3[I - Ef (s - A}, + KYED)'KE|Ts'. (3.4)
Moreover,
U-'(s) = Ty[ 1 + Ef (sT - AL) K315 (3.5)

and U(s) is asymptotically all-pass, i.e.,

U(s)UH(s)=»1 as|s|— o.
Proof: See Appendix C.
We illustrate next this generalized factorization on an example.
Example 3.1: Consider a system ¥ as given in [15] and charac-
terized by

-1 0 0 0 -0.5 -1.25
o -1 o0 0 -25 =25
A4=109 0 -02 o - B 0.3 1.25 |
0 0 0 -0.2 1.5 35
[1r 0o 1 0
C'[o 1 0 1]
with
-0.2(s - 1) 1

(s+1)(s+02)

-(s-1)
(s+1)(s+02)

(s+1)(s+0.2)
(s+3)
(s+1)(s+02)

G(s) =

This system is square and invertible with two invariant zeros at
s = 1and s = 2. The minimum phase image and the all-pass factor
of % are obtained as

0.7353 —0.8088
B = | 14706 -1.6176
i -0.9353  0.8088 |’
—-2.4706 2.6176
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—-0.2(s + 3.9412) 0.6470
G (s+1)(s+02) (s+1)(s+02)
() =1 (54 2.1765) s +2.2941
(s+1)(s+0.2) (s+1)(s+0.2)
and
(s — 1)(s — 0.9414) - 1.7646
s+ 1)(s+2 s+ 2
Vo | EFIEED
—1.7646(s — 1) s+ 0.9414
(s+1)(s+2) s+2
The following is a cascade factorization of X:
[ 0.5 0
_| 375 =375
Bu=1 o7 o
L—-4.75 4.75
L —02(s+3)
— 0
(s+1)(s+0.2)
Gu(s) = )
—(s+4) s+4
(s+1)(s+02) (s+1)(s+0.2)
and
s—1 -5
s+ 3 s+3
U(s) = s—1 s24+s- 11
(s+3)(s+4) (s+3)(s+4)
It is simple to see that G,(s) has two invariant zeros at s = —3
and s = —4.

IV. CONCLUSION

Explicit and precise expressions for two different cascade factor-
izations of a detectable and left invertible nonminimum phase sys-
tem having a transfer function matrix G(s) are given. In a tradi-
tional minimum phase/all-pass factorization G(s) = G, (s)V(s).
On the other hand, in a new cascade factorization, G(s) =
G (5)U(s). Both G, (s) and Gy,(s) retain the infinite zero struc-
ture of G(s). The invariant zeros of G,(s) are those minimum
phase invariant zeros of G(s) and the mirror images of nonmini-
mum phase invariant zeros of G(s), where as the invariant zeros of
G,,(s) can be assigned as desired in . ¥(s) is an all-pass transfer
function matrix, where as U(s), although square, invertible and
stable, is only asymptotically all-pass.

Most of the existing solutions to the factorization problem have
some kind of difficulties when the invariant zeros of the given
systems are not distinct. Our solution, however, does not have such
a problem. Moreover, the computations involved in our method are
rather simple. For example, the required computations for the
transformation matrices of the special coordinate basis can easily be
done by either one of the software packages, one in L-A-S [1] and
the other in Matlab [3].

APPENDIX A
A SpeciaL. COORDINATE BAsis

We recall in this appendix a special coordinate basis (SCB) of a
linear time-invariant system {7]. Such a SCB has a distinct feature
of explicitly and precisely displaying the infinite as well as the finite
zero structure (i.e., the invariant zeros and zero directions), of a

given system. We summarize in the following the theorem and some
properties of SCB while the detailed derivation and proof can be
found in [7].
Theorem A.1 (SCB): Consider a system % as in (1.1). Then,
there exist nonsingular transformations T';, T, and T;, an integer
< m, and integer indexes g;, i = 1 to m,, such that

x=T% y="T,5,u="Ti
= [(x2), (%)
x|

[.V],.Vz; i

X = [x;, Xpy Xos x’f]’, X,
Xp= [x;, X5,
s Im)’

v’

AR

i= cul] = uy, uy, e

7= [
g

(A.1)

(A2)

=ALxt + Lyy+ Loy
2 = ApXx, +Lafy/+L,,,,y,,
(A3)

—Abbxb“'Lbfyj, Yo = Copxyp

%o = ApXo+ Loyyp+ Loy, + B ELxy + Eqxg + uc]

(A4)
and for each i = 1 to m,,
X =Agxi+ Ly
+ By |u;+ Ejux, + Ejxp + Ejoxc + ZEU ARGE))
Yi=Cyx;, yp=Cpxy. (A.6)

Here the states x}, x;, X,, X, and X, are, respectively, of
dimension nj, n;, n,, n. and n;= M« g; while x; is of
dimension g, for each i = 1 to m,. The control vectors u, and u,
are, respectively, of dimension m, and m, = m — m, while the
output vectors y, and y, are, respectively, of dimension p, = m

and p, < n,. The matrices 4,, B, , and C, have the following

form:
-[I] eum ool

0 I,
A
q [0 ]
=0, B,

(Obvxously, for the case when ¢, =1, 4 =1, and
C,. = 1.) Furthermore, we have N A},) e ?ﬁr )\(Aaa)e %", the
palr (A.., B.) is controllable and the pair (A4,,, C,) is observable.

In what follows, we state some important properties of the SCB
which are pertinent to our present note.

Property A.1: The given system ¥ is right invertible iff x, and
hence y, are nonexistent (n, = 0, p, = 0), left invertible iff x,_
and hence u, are nonexistent (n. = 0, m_, = 0), invertible iff both
x, and x_ are nonexistent.

Property A.2: Minimum phase and nonminimum phase invariant
zeros of X are, respectively, the eigenvalues of A;a and A7,

Property A.3: X is detectable iff the pair (A}, E]) is observ-
able.

Property A.4: Let g; be an integer such that g; elements of g;,
i=1to m,, are equal to j. Also, let k be an integer such that
g; = O for all j > k. Then there are jg; number of infinite zeros of
order j, for j = 1 to k. Also, noting that

k m,
Zj‘71= th=”f
j=1 i=1

the total number of infinite zeros of all orders is n,.

(A7)
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APPENDIX B
PROOF OF THEOREM 2.1

We first note that since —A)}, is stable and since the pair
(A7, E}) is observable, (2.4) has a unique, symmetric, and
positive definite solution, i.e., P = P’ > 0. Let us now show that
A}, — K}E} is a stable matrix. By examining (2.3) and (2.4), we
have

A}, - KiE} = A}, - PT'E}'T3TLE; = PY(-AL)P.

Hence, A, — K}E} is indeed a stable matrix. Now we are ready
to prove that %, is of minimum phase, left invertible, and has the
same infinite zero structure as . Without loss of generality, we
assume that ¥ is in the form of SCB of Appendix A. Thus %, can
be rewritten as

¥ =ALXI 4 Llys+ Ly, + Kju
g =Agxg + Lopyrt+ Loy
Xp=AppXp+ Lysys, yp = CoXp
X,=Asx;+ Ly,
+ B/[u + Efx} + E;x; + Eyx, + Efxf] Jyp=Crxy.
Let us now define a new state variable
xy =xy — K;Bpx,.
Since B}B =1, it is then straightforward to verify that
X7 = (A, — KJET)x7 — KJE xg + Lg,y, — KGEpX,
+(L, ~ KiBrLy) Yy
+(ALKIB; — K{E — K;E;K By — KiBy Ap)x,
and
Xp=Asx;+ Lpyy,
+ B, [u+ EfxT + E;x; + Eyx, + (E;+ KiBy) x,].

Then it follows from the results of [7] that there exists a nonsingular
transformation 7" such that

[x, xz7, %y, X5 = TR, %370 %, x7]
and
X = (Aj, — KJED)X] — KJETxg + Lpyp+ LG,y
Xg = AgeXxg v Lopye+ Lopyy
Yo =AppXp+ Lysys, ¥y = CpXp
Xp=Arx;+ Ly,
+ Bf[u + EXXT 4+ E;x; + Ef'x, + EFx/], y;= Crxs
(8.1)

for some appropriate dimensional matrices L7, L7,, Ej', and
E}". The state equations in (B.1) is now in the form of SCB. Hence,
it follows from the properties of SCB that X,, and 2 have the same
infinite zero structure and that Z,, is left invertible. Furthermore,
the invariant zeros of Z,, are given by

A, - KZE; —KGE;
0 A,

A (B.2)

Evidently, these eigenvalues lie in %. Hence, X, is of minimum
phase. Moreover, it is straightforward to verify that the left state
and input zero directions associated with the minimum phase invari-
ant zeros of ¥ remain unchanged in 2.

Next, we proceed to show that V(s)V*¥(s) = I. From the well
known Woodbury or Schur formula, and (2.3) and (2.4), we have

v-'(s) = T[T+ Ef (sI - AL) 'K}]|15!
=I+T,Ef(sI - A2,) 'P'E}'T}
=T+ T,E}(sP— PA},) 'E}'Ty
= [+ T,E}(sP+ A2/ P - ENTST,EF) 'E}'T

= [-T,ErP~'(-sl — A} + E}'K}")'E}'Ty

a
_ i H
=1- (1) 'K[(sT - AL, + KIEF) ') ErTy
= VH(S).
Here, we note that the poles of V(s) are the eigenvalues of the
stable matrix — A}, and the poles of V'~ !(s) are the nonminimum

phase invariant zeros of T, namely X A},). Finally, we are ready
to show that G(s) = G,,(s)V(s). Let us define

= (s1-A)"
[sI— AL, 0 -Lhe, -Lyc !
0 sI—AZ, -LiC, -LiC;

- 0 0 sI— Ay, —LyCpl| °
| -BE; -BE; -BE, sI-Ay
ket

K=|01,
0
[ 0
and
E=[Ef 0 0 0],
sl — A}, 0 -Lhe, -Lyc, ]
. 0 sI—A;, -LjC, -L;C,
&= 0 0 s~ Ay, —LyCy
0 -B,E; ~-BE, sI-Ay

Then it is straightforward to verify that
B,=B+K
$=(¢'-BE)"
CoK =0
E®K = Ef (sI - A%) 'K} .
Hence
G(s)V'(s)
= T,C8BT; 'Ty[ 1+ E} (s - AL) KTy

=T,[C8B + &(&~' - BE) ' BE®K|T;"

= G,(5).
This completes the Proof of Theorem 2.1. u
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AprPENDIX C
Proor OF THEOREM 3.1

Without loss of generality, we assume that ¥ is in the form of
SCB of Appendix A. Then following the procedures of Appendix B,
one can show that there exists a nonsingular state transformation
such that T,, can be transformed into the form of SCB as

M = (Al - KJED)RY — KTESxg + iy, + Libys
X; =Agx; v Loy + Loy
Xy = AppXp+ LysYse, Yo = CpXy
X;=Agx;+ Lyy,
+ B [u+ EfxY + E;x; + Ejfx, + EYx.]. v =Cpx;
(c.1)

for some appropriate dimensional matrices LY, L%, Ej’, and
E}’ . Hence, it follows from the properties of SCB that £,, and
have the same infinite zero structure and that X, is left invertible.
Furthermore, the invariant zeros of £,, are given by

+ +p+ + -

N Awe ~ KaFa K”_E" c . (c.2)

0 A,

Hence, X,, is of minimum phase. Moreover, the left state and input

zero directions associated with the invariant zeros N(Ag,) of 2

remain unchanged in X,,. Next, it is simple to verify that the

equality of G(s) = Gy, (s)U(s) follows directly from (B.3) and the

property of U(s)U H(s) - I as | s| — oo follows from the fact that

U(s) = I as | s| = oo. This completes the Proof of Theorem 3.1.
|
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Inversion of Polynomial Matrices by Interpolation

A. Schuster and P. Hippe

Abstract—Generalizing known polynomial interpolation methods to
polynomial matrices new algorithms for the computation of the inverse
of such matrices are developed.

I. INTRODUCTION

The inversion of polynomial matrices is a problem arising in
various fields of control system synthesis [10], [9], [16], [17], [6]).
Using Cramer’s rule the inversion can be carried out by computing
determinants [4], [7], [11], [15]. Another possibility is the direct
computation of the adjoint matrix which can, e.g., be obtained by
polynomial operations [10], [14]. Such polynomial operations, how-
ever, are known to cause numerical problems. Therefore numerous
methods have been developed which are based on the manipulation
of constant matrices. Some of these methods require restrictive
assumptions as, e.g., the algorithm by Emre ef al. [5] where the
determinant must be known at the outset or the method proposed by
Inouye [8] which only works for row or column proper polynomial
matrices. Chang ef al. [3] and Zhang [18] present algorithms which
yield the inverse already in irreducible form, however, at the
expense of increased computational effort. Buslowicz [1] develops a
recursive algorithm for the adjoint matrix and for the determinant
starting from the coefficient matrices. This algorithm is especially
elegant for matrices of low dimensions.

Here, we present interpolation methods for the computation of the
adjoint matrix which constitute a generalization of known polyno-
mial interpolation approaches. One of these seems especially suit-
able for computer applications.

II. INTERPOLATION OF POLYNOMIAL MATRICES

In what follows adj A(s) denotes the adjoint matrix, det A(s) the
determinantal polynomial, degree [ A(s)] the highest degree of all
elements of A(s), 6.,[ A(s)] the ith column degree, and 9, [ A(s)]
the jth row degree of a p X p nonsingular polynomial matrix
A(s), and ® denotes the Kronecker product.

It is well known that there is one and only one polynomial of
degree ¢ < n which assumes the values f(x,), S(x), 0, flx,) at
distinct base points X, X;,"**, X,. This polynomial is called the
oth degree interpolation polynomial. Three important interpolation
methods are [2]

i) the direct approach using Vandermonde’s matrix
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