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LOOP TRANSFER RECOVERY FOR
GENERAL NONMINIMUM PHASE NON-

STRICTLY PROPER SYSTEMS,
PART 2-DESIGN*

B. M. CHEN,1 A. SABERIl AND P. SANNUTI2

Abstract. This part focuses on the design of full order observer based control-
lers for the recovery of target loop transfer function or sensitivity and com-
plimentary sensitivity functions for general non-strictly proper, not necessarily left
invertible and not necessarily minimum phase systems. For general systems, loop
transfer recovery is not completely feasible although there exists considerable
amount of freedom to shape the inevitable recovery error. Here the necessary
design constraints and the available design freedom are reviewed. In view of the
available freedom, possible specifications on the time-scale and/or eigenstructure of
the observer dynamic matrix are formulated. Then three types of design schemes
are developed in detail. The first one is an asymptotic time-scale and eigenstructure
assignment (ATEA) scheme, and the other two are optimization based designs; one
dealing with the minimization of H 2 norm of a so called 'recovery matrix' while the
other dealing with the minimizationof H 00 norm of the same. Relative advantages
and disadvantages of both ATEA and optimization based design schemes are
discussed. Besides the conventional LTR problem which is concerned with the
recovery over the entire control space, another generalized recovery problem
where the concern is with the recovery over a specified subspace of the control
space is also considered. All the developed design methods are implemented in a
"Matlab" software package. A bank of examples illustrate the developed design
schemes.

Key Words-Loop transfer recovery, robust control, asymptotic time-scale and
eigenstructure assignment, H 2- or H oo-optimization.

1. Introduction and Problem Statement

As is well known and as discussed earlier in Part 1 (Chen, Saberi and Sannuti,
1992 a), the basic loop transfer recovery problem is concerned with analyzing
and possibly designing an observer based controller which can achieve the same
robustness properties as those of a state feedback controller. To be specific,
consider a plant 2:,

i = Ax + Bu, y = Cx + Du, (1.1)

where the state vector xE9'ln, output vector yE9'lP and input vector uE9'lm.
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Without loss of generality, assume that [B' D']' and [C D] are of maximal
rank. Let us also assume that ~ is stabilizable and detectable. Let the state
feedback control law,

u = -Fx (1.2)

be such that (a) the closed-loop system is asymptotically stable, i.e., the
eigenvalues of A - BF lie in the left half s-plane, and (b) the open-loop transfer
function when the loop is broken at the input point of the plant meets the given
frequency dependent specifications. Then Lt(s), 5t(s) and Tt(s), respectively,
the target loop transfer function, sensitivity and complimentary sensitivity
functions are

Lt(s) = FcJ>B,

5t(s) = [lm+Lt(s)]-l

and

Tt(s) = 1m - 5t(s) = [lm+Lt(s)]-lLt(s), (1. 3)

where cJ>=(sl - A)-l and 1m denotes an identity matrix of dimension m x m. On
the other hand, let

14= -Fx,

i = (A-KC-BF+KDF)x + Ky (1.4)

be a full order observer based control law where K is an observer gain. Thus
Lo(s), $o(s) and To(s), respectively, the obtainable loop transfer function and
sensitivity and complimentary sensitivity functions are given by

Lo(s) = C(s)P(s), pes) = CcJ>B+ D,

50(s) = [lm+Lo(S)]-l

and

To(s) = 1m - 50(s) = [lm+Lo(S)]-lLo(.s), (1. 5)

where C (s) is the observer based controller transfer function,

C(s) = F[sln-A+KC+BF-KDF]-lK. (1. 6)

Thus, the goal of loop transfer recovery problem is to design a K such that

E(jw) = Lt(jw) - Lo(jw) (1. 7)

is either' exactly zero or in some sense approximately zero over the frequency
range of interest. Obviously, as we did in Part 1, E(s) can be termed as recovery
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error. We say exact LTR (ELTR) is achieved if the recovery error E(s) can be
rendered zero, i.e., if

C (s)P(s) = Lt(s) for all s.

Achieving ELTR is in general not possible. In an attempt to achieve "approxi-
mate" LTR, one normally parameterizes C (s) as a function of a tuning
parameter a. In observer based controllers, the gain K is the only free design
variable and thus parameterizing it as a functionof a, a familyof controllers C (s,
a) are obtained,

C(s, a) = F[sIn-A+K(a)C+BF-K(a)DF]-lK(a). (1. 8)

We say asymptotic LTR (ALTR) is achieved if

C (s, a)P(s) ~ Lt(s) pointwise in s

as a~oo, or equivalently E(s, a)~O pointwise in s as a~oo. Achievabilityof
ALTR enables the designer to choose a member of the family of controllers that
corresponds to a particular value of a which achieves a desired level of
recovery.

In Part 1 (Chen, Saberi and Sannuti, 1992 a), we considered general
non-strictly proper, not necessarily invertible and not necessarily of minimum
phase plants and analyzed the mechanism of loop transfer recovery. The
analysis there, while showing that neither ELTR nor ALTR can in general be
achieved, focuses on four fundamental issues. The first issue is concerned with
what can and what cannot be achieved for a given system and for an arbitrarily
specified target loop transfer function. On the other hand, the second issue is
concerned with the development of necessary and/or sufficient conditions a
target loop has to satisfy so that it can be either exactly or asymptotically be
recovered for a given system while the third issue is concerned with the
development of necessary and/or sufficient conditions on a given system such
that it has at least one, either exactly or asymptotically, recoverable target loop.
The fourth issue deals with a generalization of all the above three issues when
recovery is required over a subspace of the control space. It concerns with
generalizing the traditional LTR concept to sensitivity recovery over a subspace
and deals with method(s) to test whether projections of target and achievable
sensitivity and complimentary sensitivity functions onto a given subspace match
each other or not. All this analysis of Part 1 shows some fundamental limitations
of the given system as a consequence of its structural properties, namely finite
and infinite zero structure and invertibility. It also discovers a multitude of ways
in which freedom exists to shape the recovery error in a desired way. Thus, it
helps to set meaningful design goals at the onset of design.

For strictly proper systems, there exists essentially three methods of
designing observer based controllers for LTR. These methods are, (1) Kalman
filter formalism (Doyle and Stein, 1979), (2) direct eigenstructure placement
method (Sogaard-Andersen, 1989), and (3) asymptotic eigenstructure and
time-scale structure assignment (ATEA) method (Saberi and Sannuti, 1990 a;
Saberi et al., 1991 b). A general discussion of these methods including their
relative advantages and disadvantages, is given in detail in Saberi et al. (1991 b).
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In this paper, we develop design methods for general non-strictly proper
systems and for different types of design tasks. The existing ATEA design
method of Saberi and Sannuti (1990 a) and Saberi et al. (1991 b) is streamlined
and extended to deal with general systems. Besides the ATEA design, two
optimization based designs are also developed here. One optimization based
method deals with minimizing the H 2 norm of a "recovery matrix" related to the
loop transfer recovery error while the other minimizes the H 00 norm of the
same. In optimizationmethods, one normallygenerates a sequence of observer
gains by solving parameterized algebraic Riccati equations. As the parameter
tends to a certain value, the corresponding sequence of H2 norms (or H 00 norms
depending on the method) of the resulting recovery matrices tends to a limit
which is the infimum of the H2 norm (or H 00 norm) of the recovery matrix over
the set of all possible observer gains. A sub-optimal solution is obtained when
one selects an observer gain corresponding to a particular value of the
parameter. In the process of generating a sequence of suboptimalsolutions, the
mathematical optimization procedure follows a particular path and shapes the
recovery matrix accordingly. That is, there is no freedom to shape the recovery
matrix directly, and one has to be content with what the mathematical optimiza-
tion procedure yields. In contrast with this, since parameterization of ATEA
design procedure is explicit rather than being implicit via algebraic Riccati
equations of optimizationbased methods, ATEA design procedure allows all the
available design freedom to shape the recovery matrix as desired within the
structural constraints imposed by the given system. Also, in connection with
ELTR, the present existing optimizationbased design methods can generate the
required observer gain for ELTR only for a subclass of all allowableproblems.
On the other hand, ATEAdesign method appropriately modifiedand simplified,
can generate the required observer gain which achieves ELTR whenever it is
possible.

The conventionalLTRdesign task seeks the recovery over the entire control
space. As discussed in Part 1, one can also formulate another generalized design
task which seeks the recovery only over a specified subspace of the entire
control space. Such a formulation is meaningfulespecially when recovery over
the entire control space is not feasible. All the three design methods developed
here are modified to deal with such a generalized design task.

The paper is organized as follows. Section 2 reviews the necessary design
constraints and the available design freedom. Section 3 develops the general
ATEA method of design. Also, in Sec. 3, a simplificationof ATEA is given to
arrive at a design for exact loop transfer recovery whenever it is feasible.
Section 4 develops optimization based designs. Here two designs are con-
sidered; one minimizes the H2 norm of a recovery matrix while the other
minimizes the H 00 norm of the same. Section 5 considers the generalized design
task of recovering the target sensitivity and complimentarysensitivity functions
over a subspace of the control space. For this purpose, here an auxiliarysystem
of the given system is constructed so that all the three designs developed earlier
can readily be applied for the new design task. Section 6 discusses the relative
advantages of the ATEA and optimization based designs. Section 7 draws
conclusions of our work.

As in Part 1, throughout this paper, A' denotes the transpose of A, AH
denotes the complex conjugate transpose of A, I denotes an identity matrix
whileh denotes the identity matrix of dimension k X k. A(A) denotes the set of



Loop transfer recovery, Part 2-Design 105

eigenvalues of A. Similarly, amax[A] and amin[A] respectively denote the
maximum and minimum singular values of A. Ker[V] and Im[V] denote
respectively the kernel and the image of V. The open left, closed right half
s-planes and the jw axis are respectively denoted by C-, C+ and Co. Also, the
set TER(17)denotes the set of exactly recoverable target loop transfer functions
for any given system 17, TR(17)denotes the set of either exactly or asymptotical-
ly recoverable target loop transfer functions, while TAR(17)denotes the set of
target loop transfer functions which are asymptotically recoverable but not
exactly recoverable for the given system 17.The precise definitions of TER(17),
TR(17) and TAR(17)are given in Part 1. Some geometric subspaces defined in
Part 1 are recalled next.

Vg(A, B, C, D) is the maximal subspace of!?lln which is (A - BF)-invariant
and contained in Ker(C-DF) such that the eigenvalues of (A-BF) Ivg are
contained in CgS;C for some F.

Sg(A, B, C, D) is the minimal (A-KC)-invariant subspace of !?lln
containing in 1m(B - KD) such that the eigenvalues of the map which is induced
by (A - K C) on the factor space !?lln/sg are contained in Cg<;;;;C for some K.

For the cases that Cg=C, Cg=C-and Cg=C+, we replace the indexgin vg
and sg by u*", u_" and u+", respectively.

A special coordinate basis (s. c.b) of any system 17was discussed in Sec. 3 of
Part 1. Such an s. c. b has a distinct feature of explicitly displaying the finite and
infinite zero structure of 17. Some integers associated with the s. c. b of 17and
hence with 17,playa dominant role in our discussions to follow. We would like to
recall now an interpretation of these integers:
. n;; and n~ are the numbers (counting multiplicity) of invariant zeros of 17in C-

and C + respectively.
. nf is the number of infinite zeros of 17.
. nc is the dimensionof the intersection of the subspaces 5+ (A, B, C, D) and

V+(A, B, C, D) which are defined above. This intersection is the largest
subspace of the state space which is completely controllable by the input
while maintainingan output equal to zero.

. nb equals the dimension of the state space n minus the numbers defined
above. It is equal to n minus the dimension of S+(A, B, C, D)+ V+(A, B,
C, D).

2. Design Constraints and Available Freedom

In Part 1 (Chen, Saberi and Sannuti, 1992), using full order observer based
controllers, we have analyzed systematically when and under what conditions
loop transfer recovery (LTR) is possible. We have also characterized the
recovery error whenever either exact or asymptotic recovery is not feasible.
For such an analysis, we considered a family of full order observer based
controllers C (s, a) where the observer gainK is parameterized as a functionof
a tuning parameter a. We discovered that for an appropriate recovery, there are
constraints in selecting the gain K(a), and these constraints manifest them-
selves in assigning both the asymptotically finite as well as the infinite
eigenstructure of the observer dynamic matrix A - K(a)C. However, we also
discovered that there exists a considerable amount of freedom in assigning
certain parts of either asymptotically finite or infinite eigenstructure to
A -K(a)C. Let us next briefly review the LTRmechanism as analyzedin Part 1



106 B. M. CHEN, A. SABERIANDP. SANNUTI

so as to familiarize ourselves with the necessary design constraints and the
available design freedom. We recall that the recovery error E(s, a) between the
target loop transfer function Lt(s) and the achievable one Lo(s), is given by

E(s, a) = M(s, a) [lm+M(s, a)]-1Um+F<PB), (2.1)

where

M(s, a) = F[sIn-A+K(a)C]-1[B~K(a)D]. (2.2)

The matrix M(s, a), termed as recovery matrix, plays a dominant role in
recovery analysis. In fact, Lemma 4.1 of Part 1 states that recovery error
E(jw, a) is zero if and only if the recovery matrix M(jw, a) is zero. Thus the
study of LTR is tantamount to the study of M(s, a). The matrix M(s, a) has a
simple physical meaning. If one considers the observer based controller as a
device with two inputs, one the plant input u and the other plant output y, then
-M(s, a) is the transfer functionfrom plant input point to the controller output
point. This is illustrated in Fig. 2.1 where

O(s) = -M(s, a)U(s) - N(s, a)Y(s)

and

N(s, a) = F[sIn-A+K(a)C]-1K(a).

Thus the condition for loop transfer recovery demands that the controller not
entail any feedback from the plant input u. Nowto study M(s, a) systematically,
assuming that A - KC is nondefective, we can expand M(s, a) dyadicallyas,

n

M(s, a) = L Ri(a)
i=1s-AiCa' ,

(2.3)

where the residue R i(a) is given by

Ri(a) = FWi(aWf(a)[B-K(a)D]. (2.4)

u

y

Fig. 2.1. Plant and controller configuration.
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Here, Wi( a) and Vi( a) are respectively the right and left eigenvectors associ-
ated with an eigenvalue Ai(a) of A-KC and they are scaled so that W(a)VH(a)
=VH(a)W(a)=In where

and

W(a) = [WI(a), W2(a), ..., Wn(a)]

1

.

V(a) = [VI (a), V2(a), ..., Vn(a)]

(2.5)

As is evident from (2.3) and (2.4), one can render the ith term of M(s, a) zero
only by two approaches:
1. by rendering the residue R i(a) zero while Aiis finite; or
2. by pushing Ai asymptotically to infinity while keeping the residue R i(a)

uniformly bounded.
The first approach implies an appropriate finite eigenstructure assignment

while the second one implies an appropriate asymptotically infinite eigenstruc-
ture assignment to A - K C. Owing to the structural properties of the given
system I, there does not exist complete freedom to assign the needed
eigenstructure to A - K C. The analysis of Part 1 reveals several guidelines as to
when, how and to what extent such an assignment can be done. To review these
guide lines, the recovery matrix M(s, a) is partitioned into four parts based on
the analysis of Part 1:

M(s, a) = M-(s, a) + Mb(s, a) + Moo(s, a) + Me(s, a), (2.6)

where

n-

M-(s, a) = t Ri(a)
i=1 s-Ai(a) ,

MOO nf R
OO

(
(s, a) = L La)i=

nb b

Mb(s, a) = L Ri(a)
i=1 s-Af(a

ne R e

and Me(s, a) = L i(a)
i=1 s-AHa'

Define the following sets:

A-(a) 4 {Ai(a)Ii = 1, "., n;;}, Ab(a) 4 {Af(a) Ii = 1, "., nb},

Aoo(a) 4 pi(a) Ii = 1, "., nl}, Ae(a) 4 {Ai(a)Ii = 1, "., ne},

V-(a) 4 {Vi(a)Ii = 1, "., n;;}, Vb(a) 4 {Vf(a) Ii = 1, ..., nb},

Voo(a)4 {Vi(a) Ii = 1, "., nl}, Ve(a) 4 {Vi(a)Ii = 1, "., ne},

W-(a) 4 {Wi(a)li= 1, "., n;;}, Wb(a) 4 {Wf(a)li = 1, "., nb},

Woo(a) 4 {Wi(a) Ii = 1, "., nl}, We(a)4 {Wi(a)li = 1, "., ne}.

Hereafter, we will use an over bar on a certain variable to denote its limit as
a~ 00whenever it exists. For example, Me(s) and Wedenote respectively the
limits of Me(s, a) and We(a) as a~ 00.
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It turns out that irrespective of the target loop transfer function, both M-(s,
a) and Mb(s, a) can be rendered zero either exactly or asymptotically as a~ 00
by an appropriate finite eigenstructure assignment to A-K(a)C. Also, MOO(s,
a) can be rendered zero asymptotically as a~ 00by an appropriate asymptotical-
ly infinite eigenstructure assignment to A - K (a) C. On the other hand, for
arbitrary target loop transfer functions, Me(s, a) cannot always be rendered zero
and hence Me(s, a) has been termed in Part 1 as the recovery error matrix.
Although Me(s, a) cannot always be rendered zero, there ~xists abundant
amount offreedom to shape Me(s, a) within the given constraints. Nonetheless,
for a particular class of target loops, namely Lt(S)ETER(.1'), Me(s, a) can
exactly be rendered zero, while for another class of target loops, namely
Lt(S)ETR(.1'), Me(s, a) can asymptotically be rendered zero as a~oo.

We proceed now to describe in detail the necessary design constraints and
the available design freedom in assigning an appropriate eigenstructure to
A-K(a)C. We do this by considering one part of M(s, a) at a time.

Discussion on M-(s, (1): Consider an arbitrary target loop transfer function
Lt(s). The term M-(s, a) can identically (irrespective of the value of a) be
rendered zero. To accomplish this, the set of n;; eigenvalues A -( a) and the
corresponding set of left eigenvectors V-(a) of A-K(a)C must be selected to
coincide respectively with the set of plant minimum phase invariant zeros and
the corresponding left state zero directions of.1'. If one prefers, M-(s, a) can be
rendered zero asymptotically as a~ 00. This can be done if A -( a) and the
corresponding set of left eigenvectors V-( a) of A - K(a) C are selected so that
their asymptotic limits X-and V- coincide respectively with the set of plant
minimum phase invariant zeros and the corresponding left state zero directions
of .1'.

Discussion on Mb(s, (1): Consider an arbitrary target loop transfer function
LtCs). The term Mb(s, a) can identically (irrespective of the value of a) be
rendered zero. To accomplish this, the set of nb eigenvalues Ab(a) can be
assigned arbitrarily either at asymptotically finite or infinite locations in C-,
while the corresponding set of left eigenvectors Vb(a) of A - K (a) C is in the null
space of matrix [B-K(a)D]'. If one prefers, Mb(s, a) can be rendered zero
asymptotically as a~ 00. This can be done by selecting A b(a) arbitrarily either
at asymptotically finite or infinite locations in C-, while the corresponding set of
left eigenvectors Vb(a) of A - K (a)C must be such that its asymptotic limit Vb is
in the null space of matrix [B - K (a)D] '. Note that assigning all the elements of
Xb to finite locations, conserves the controller bandwidth.

Discussion on Moo(s, (1): Consider an arbitrary target loop transfer function
Lt(s). Moo(s, a) can be rendered zero asymptotically as a~ 00. For this
purpose, the set of nj eigenvalues A 00 (a) can be assigned arbitrarily at
asymptotically infinite locations in C-. However, for every Aj(a)EA OO(a),the
corresponding right and left eigenvectors Wi (a) and Vi (a) must be such that
Wj(a)[Vj(a)t[B-K(a)D] is uniformly bounded as a~oo. This enables each
residue Ri(a) uniformly bounded as a~oo and thus renders MOO(s)zero. We
note that there exists complete freedom in the way Ai (a) E A 00 (a) tends to
infinity as a~ 00, i.e., the asymptotic direction and the rate at which each Ai (a)
goes to infinity can be dictated as desired by the designer.
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Discussion on Me(s, u): We note that if the given system is of minimum
phase and left invertible, then ne=n; +nc=O and hence Me(s, a) is nonexis-
tent. To deal with the general case when n; +nc*O, let u~at first consider an
arbitrary target loop transfer function Lt(s). Then in general Me(s, a) cannot
always be rendered zero although there exists abundant amount of freedom to
assign the associated eigenvalues and eigenvectors. To be explicit, the set of
n; +nc eigenvalues Ae(a) can be assigned arbitrarily at any (either asymptoti-
cally finite or infinite) locations. in C- subject to the condition that any
unobservable but stable eigenvalues of the given system must be included
among Ae(a). Also, there exists a complete freedom consistent with the results
of Moore (1976) in assigning the right and left eigenvector sets We(a) and Ve(a)
and hence We and iTe.But in general Ae, We and iTecannot be assigned such that
Me(s) is zero. However, there exists a multitude of ways to assign Ae and We
(and hence iTe)so that Me(s) can be shaped to have certain desired directional
properties or it is as small as it could be.

3. Observer Design by 'ATEA'

The previous section summarizes the available design freedom as well as
constraints in assigning the eigenstructure of observer dynamic matrix for
appropriate loop transfer recovery. We develop here a design procedure which
follows the asymptotic time-scale and eigenstructure assignment (ATEA) con-
cepts proposed originallyin Saberi and Sannuti (1989). Followingthe concepts of
Saberi and Sannuti (1989), we developed earlier an observer design for left
invertible and minimumphase plants in Saberi and Sannuti (1990 a) and for not
necessarily left invertible and not necessarily minimumphase but strictly proper
systems in Saberi et al. (1991 b). In what follows, we willpresent a step by step
ATEA design algorithm for general non-strictly proper systems. At first in
Subsection 3.1, we give a design procedure for an arbitrarily specified target
loop transfer function, i.e., without taking into account any specificcharacteris-
tics of F. This is the most general design procedure. Also, as discussed in
Remark 5.1 of Part 1, whenever the given Lt(s) is asymptotically recoverable,
that is whenever LtCs)ETR(.l'), the gain F has a particular structure,

- -1
F = F3FFI , F =

[
F;'I ° FbI ° FfI

]F;'2 ° F b2 ° Ff2 '
(3.1)

where F3 and FI are the nonsingular transformation matrices as defined in
Theorem 3.1 of Part 1. Whenever F conforms to the form given by (3.1), it
entails additional freedom in selecting some eigenvalues and eigenvectors. For
this special case, with or without making use of such an additional freedom, the
general ATEA procedure of Subsection 3.1 yields a design which asymptotically
recovers Lt(s). On the other hand, as discussed in Remark 5.2 of Part 1, for
exactly recoverable target loop transfer functions, that is whenever Lt(s)
ETER(.l'), F has another specific structure,

- -1
F = F3FFI ,

[
F;'I

F = F;'2
° FbI
° Fb2

°
° ~ l (3.2)
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For the case when F has the above special structure, one needs to assign only a
finite eigenstructure to A-K(a)C. For this special case, the general ATEA
design procedure of Subsection 3.1 can be simplified greatly and such a
simplified design is presented in Subsection 3.2.

3.1 General 'ATEA' design The ATEA design method is decentralized in
nature. It uses the special coordinate basis (s.c.b) of the given system:J: (see
Theorem 3.1 of Part 1 of Chen, Saberi and Sannuti, 1992 a; see also Sannuti and
Saberi, 1987; Saberi and Sannuti, 1990 b). The specified finite eigenstructure of
A - K (a) C is assigned appropriately by working with subsystems which repre-
sent the finite zero structure of the given system (see Eqs. (3.3) to (3.6) of Part
1). Similarly the specified asymptotically infinite eigenstructure of A - K(a)C is
assigned appropriately by working with subsystems which represent the infinite
zero structure of the given system (see Eq. (3.8) of Part 1 for each i
= 1,"', mj).

There are two issues in formulating the observer dynamic matrix A - K (a) C
by an appropriate selection of K(a). The first issue is eigenvalue assignment and
the second one is corresponding eigenvector assignment. We will focus on one
issue at a time. Let us first consider the eigenvalue assignment. As discussed in
Sec. 2, some eigenvalues of A-K(a)C are constrained while some others are
free to be assigned to either asymptotically finite or infinite locations in C-. To
be specific,
1. A -( a) must coincide either exactly or asymptotically with the set of plant

minimum phase invariant zeros,
2. Ab(a) and Ae(a) can be assigned to either asymptotically finite or infinite

locations, and
3. A 00(a) have to be assigned to asymptotically infinite locations.

In this section in order to conserve controller bandwidth, both A b(a) and
Ae(a) are assigned to asymptotically finite locations. Let us next examine
carefully the freedom available in assigning A 00 (a) to asymptotically infinite
locations. As is clear from the discussion in Sec. 2, there exists complete
freedom in the way each Ai (a) E A 00 (a) tends to infinity as a~ 00, i.e., both the
asymptotic direction and the rate at which Ai (a) goes to infinity can be dictated
as desired by the designer. In other words, the freedom available in assigning
every asymptotically infinite eigenvalue Ai (a) manifests itself in two ways:
1. in choosing the asymptotic directions along which the eigenvalues tend to

infinity, and
2. in choosing the rates at which the eigenvalues tend to infinity.

To reflect both these types of freedom, let A 00(a) for asymptotically large
values of a be subdivided into r:5:nj sets,

Al Az Ar

--;;;' ---,;;' "', 14'
(3.3)

Here Al is a set of nl numbers all in C- and Al is closed under complex
conjugation. Also ~1=lnl=nj. Apparently, the elements of AI, l=l,"',r,
define the asymptotic directions of asymptotically infinite or fast eigenvalues
while the small parameters Ill, 1=1,"', r, whichare some functions of a, define
the rates at which these eigenvalues go to infinity.
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In summary, regarding the eigenvalues, a designer has the freedom to
specify
i. the asymptotic limits ;P and Xe of Ab(a) and Ae(a), and
ii. Al and Ill, 1=1,...,r.
We note that Xb and X e in addition to X-define the asymptotically finite
eigenvalues of A - K(a)C, while Al and lll, 1= 1,"', r, define the asymptotically
infinite eigenvalues.

Let us look now at the constraints and design freedom available in assigning
the eigenvectors of A - K(a)C. The set of right eigenvectors V- is constrained
to coincide with the corresponding set of state zero directions of the plant.
Moreover, Im(V-) coincides with the subspace V*(A, B, C, D)/V+(A, B, C,
D). On the other hand, the set of eigenvectors Vb is constrained to be in the null
space of [B - K (a)D] '. In view of the particular structure of s. c.b, it can be
seen then that every element Vr of Vb is constrained to be of the form [0, 0,
(Vr)H, 0, ot. In other words, the set Vb can be represented in a matrix notation
as [0, 0, (Vbb)H, 0, ot where Vbbis an nb x nb matrix. Thus, the selection of Vb
to be in the null space of [B - K (a)D]' is equivalent to any arbitrary selection of
Vbbconsistent with the freedom available in assigning it (Moore, 1976). Again in
view of the properties of s. c. b, we note that the columns of Vb span the
subspace glln/{S+(A, B, C, D)US-(A, B, C, D)}. There is also freedom
available in specifying We. Furthermore, it can be shown (see for example Saberi
et aI., 1991 a) that Im(We) coincides with the subspace V+ (A, B, C, D). Again
owing to the special structure of s. c. b, We has the special matrix form [( We+)H,
0, 0, (Wec)H, ot where wee=[(we+)H, (Wec)Ht is an neXne matrix. Thus, an
appropriate selection of We is equivalent to any arbitrary selection of wee
consistent with the freedom available in assigning it (Moore, 1976).

Now an assignment of both asymptotically finite and infinite eigenvalues and
the corresponding eigenvectors to A-K(a)C can be viewed as an asymptotic
time-scale and eigenstructure assignment (ATEA) to it. Further discussion on
time-scale structure of a system can be found in Saberi and Sannuti (1989) and
Saberi et al. (1991 b). In order to have a well defined separation of time-scales,
we will assume throughout the paper that

lll/lll+l ~ 0 as lll+l ~ O. (3.4)

We emphasize that the freedom that exists in specifying the asymptotically
infinite eigenstructure of A - K(a) C reflects itself in specifying an appropriate
fast time-scale structure. The asymptotic directions of asymptotically infinite
eigenvalues can be specified by the sets AI, 1=1,"', r, where r is an integer
less than or equal to nf' The relative fastness of time-scales is specified by
specifying the small positive parameters lll, 1= 1, .. . ,r, which are appropriate
functions of the tuning parameter a so that (3.4) is true as a~ 00. We note that
there is also a constraint on the infinite eigenstructure, namely, for every
asymptotically infinite eigenvalue Ai(a), the corresponding right and left
eigenvectors Wi( a) and Vi (a) of A - K (a) C must be such that
Wi(<T)[Vi(a)t[B-K(a)D] is uniformly bounded as a~oo. This constraint,
however, is automatically taken into account by the ATEA design procedure
given in this section.
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In what follows, we give a step by step ATEA design algorithm. In view of
the above discussion, the input parameters of the algorithm are ;P, Vbb,Ae,
wee, At and {Lt, 1= 1,' .., r, as well as the integer r. In fact, the primary inputs to
the algorithm are (1) Ae and wee which shape the resulting Me(s) and (2) At and
{Lt, 1= 1,"', r, which control the time-scale structure of the observer and thus
have a strong impact on the resulting gain of the controller. The rest of the input
parameters, namely Ab and Vbb are secondary inputs to the algorithm. Our
algorithm can be divided into three steps. Steps 1 and 2 deal respectively with
subsystem designs to assign the asymptotically finite and infinite eigenstruc-
tures. In Step 3, subsystem designs of Steps 1 and 2 are put together to form a
composite design for the given system.

Step 1: This step deals with the assignment of asymptotically finite eigen-
structure (i.e., slow time-scale structure) and makes use of subsystems (2.3) to
(2.6) of Part 1. A(A;;a) are the minimum phase invariant zeros of the given
system ~ and these are left alone to form some of the eigenvalues of A - K(a)C,
namely the set A-, while the corresponding left eigenvectors of A - K (a) C
coincide with the corresponding left state zero directions of~. To place the set
of eigenvalues Ab and left eigenvectors Vb, choose a gain Kb such that A(Abb)
coincides with Ab while Vbb coincides with the set of left eigenvectors of Abb
where

Abb = Abb - KbCb. (3.5)

Note that the existence of such a Kb is guaranteed by Property 3.2 of Sec. 3 of
Part 1 (Chen, Saberi and Sannuti, 1992 a) as long as the eigenvector set Vb is
consistent with the freedom available in assigning it (Moore, 1976). Next, in
order to place the set of eigenvalues Ae and right eigenvectors wee, let us first
form matrices A ee and Ce as follows:

Aee =
[

A;:ia+ 0
]
, Ce =

[
C:~

]
=

[
C6-f COc

]
,

BcEca Acc C Ea Ec
(3.6)

where

E;; = [(Eta)', (Eta)', ''', (E;:;fa)']',

Eia = [Etz, Eia], Ec = [E10 EL ..., Et'nfc]'.

Now select a gain Ke = [Keo, Kel] such that the set of eigenvalues and right
eigenvectors of

Aee - Kece == Aee - KeOceO - Kelce\ (3.7)

coincide with Ae and wee, respectively. Again note that the existence of such a
Ke is guaranteed by Property 3.2 of Sec. 3 of Chen, Saberi and Sannuti (1992 a)
as long as the eigenvector set wee is consistent with the freedom available in
assigning it (Moore, 1976). For future use, let us define
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Aeel = Aee - KeOceO, KeO =
[

Kao+

]KCO ,

and partition Kel as

Kel = [Kell Ke12 ... Kelmf ], " , (3.8)

where Keli is an ne x 1 dimensional vector.

Step 2: This step deals with the assignment of asymptotically infinite eigen-
structure (i.e., the fast time-scale structure) and makes use of subsystems,
i = I, . . . ,mf' represented by (3.8) of Part 1. This step exists only when nf> 0
since otherwise there is no need to assign any asymptotically infinite eigenstruc-
ture, and hence we assume here that nf>O. As discussed earlier, there is
complete freedom to specify any r$.nf fast time-scales. In particular, one can
always choose r= 1. For generality, we will k~ep r as arbitrarily given. The
freedom in assigning the fast time-scales is reflected in specifying the sets At.
and the small positive parameters {tt, I= 1," " r. Our design to assign an
appropriate fast time-scale structure is again decentralized. We deal with one
single input single output system at a time as represented by (3.8) of Part 1 for a
particular value of i, i = 1,"', mf' Thus, to proceed with our design, we need to
distribute the designer specified elements of the sets At, and the parameters {tt,
I= I, . . . ,r, among mf subsystems. There exists a complete freedom in such a
distribution and hence it can be done in a number of ways. Let subsystem i be
assigned ri time-scales for some ri$.qj" Let

Aij .- J = 1 ... r.II.. ' " "
r-tJ

be the asymptotically infinite eigenvalues that need to be assigned to subsystem
i. Let nij be the number of eigenvalues corresponding to the time-scale tl {tij'
That is, let Aij contain nij elements. As usual, the set Aij is assumed to be
closed under complex conjugation. Also, in order to have a well defined
separation of time-scales in subsystem i, we will assume that

{tijl {tij+ 1 ~ 0 as {tij+l ~ 0 for all j = 1, ''', ri-l. (3.9)

We note that when r= I, all {tij are equal to a single parameter {t and all ri are
equal to unity. That is, there is only one time-scale to be assigned to all
subsystems. In this case, a can be taken as 1/{toWith these preliminaries, we
are now ready to design the ith subsystem. At first, we will design a gain matrix
Kij for each time-scale tl{tij' j=l,"',ri' Define an nijxnij dimensional matrix
Gij and a 1 x nij dimensional matrix Cij having the following structure:

[
0 Inij-l

]Gij = 0 0 and C ij = [1 0].

Choose an nij x 1 dimensional gain vector Kij such that A.(Gfj) coincides with Aij
where Gfj=Gij- KijCij. Owing to the special structure of Gij and Cij, such a Kij
always exists. Let Kij be partitioned as
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[
Kijc

]Kij = Kijd '

where Kijd is a scalar. Moreover, the non singularity of Gfj implies that Kijd is
nonzero. Next, the gains Kij, j = 1,"', ri, obtained above, are put together to
form a composite gain vector which will induce the required fast time-scales in
the ith subsystem. Define the scalar numbers Iij as

'-1

hI = 1, Iij = TIKiid for j = 2, ..., ri'1=1

Let

aiO = 0

and
j

aij = L nibk=1
j = 1, ..., ri'

Note that air = q.. Also, let for each j = 1,'" ,rj,, ,

Eiaij-l + 1 = Eiaij-l + Z = ... = Eiaij = l1ij

and
q.

17 = Ii: Eik', k=1
(3.10)

Also, define a scaling matrix Sij as

[

q q q

]
Sij = Diag Ii: E'I, Ii: E'I, ..., Ii Eil .

l=aij-l+2 I=aij-l+~ /=aij+l

In (3.11), for j = ri, the product nt~qi +l Eil is taken as unity. Now let,

(3.11)

- 1
K.(a) = -I..S..K.

'l 17i t} t} t}

and

Ki(a) = [Kil(a), Kiz(a), ..., Kir/a)]'. (3.12)

The above design is rather simple when ri= 1. For this case, let iii denote the
small parameter. Then,

- - 1 - q.-l A - q.-Z A A I
Ki(a) - -

(
-

)q [(l1i) , Kil, (l1i) , Ki2,"" Kiq] ,
l1i ' '

(3.13)

where Kij, j=I,"',qi' are selected such that )"(GD are as desired, where

Gi = -
[

Kill Ki2, ..., Kiqi-l
- I qi-l

A

]

'
Kiq

0' .
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Here we did not discuss any eigenvector assignment. However, it turns out
that our eventual design is such that the eigenvectors corresponding to the
asymptotically infinite eigenvalues are naturally assigned to appropriate loca-
tions so that MOO(jm, a)~O as a~oo.

Step 3: In this step, various gains calculated in Steps 1 and 2 are put together
to form a composite observer gain for the given system ~. Define Kel as

Kel ( a ) =
[
K.':.l+(a)

]
= [Kel! Kel2 ... K-elmf ]

)

Kcl(a) '"

Keli = ~ J' K. Keli .
'f/. tri tridI

For the case when ri= 1, Kild is same as Kiq and 'f/iis same as (fii)qi. Assume
nj>O and define the observer gain K(a) as '

(3.14)

- -1
K(a) = rlK(a)r2 , (3.15)

where

K(a) =

BOa
B(;a+KaO+

BOb

BOc+KcO

BOj

~;'j+ Ii;'j
L + +H+ +Kal+ ( a)aj aj

LjJf+ iil!f
Lcj+HcjiKcl(a)

Lj+Kia)

L;'b+ H;'b
L;b + ii;b

Kb
LCb+iicb

0

(3.16)

and where

Kj(a) = Diag[Kl(a), K2(a), "', Km/a)],

Lj = [Li, Lz, "', L,',.)',

while the gains ii;j' ii;b' ii;'j, ii;'b' iibj' iicjand iicb are arbitrary but finite. We
have the followingtheorem.

Theorem 3.1. Consider a full order observer based controller with its gain
given by (3.15) where nj is assumed to be greater than zero. Then we have the
followingproperties:
1. There exists a a* such that for all a>a*, the designed observer is

asymptotically stable. Furthermore, it has the time-scale structure t, t/ f.1ij,
j = 1, . . . ,ri and i= 1, . . . ,mj. That is, the eigenvalues of the observer as
f.1r~0 are given by

A- + 0 (f.1r), Ab + 0 (f.1r), Ae + 0(f.1r),

Aij + 0(1)
f.1ij

for j = 1, .", ri and i = 1, "', mj'

Moreover, if ii;'j=o and iibj=o, some finite eigenvalues of A-K(a)C are
exactly equal to A-and A bfor all a rather than asymptoticallytending to A-
and A b.
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2. LTR is achieved as intended in the sense that as a~ 00,

M(s, a) ~ Me(s) pointwise in s.

Proof. See AppendixA.

Remark 3.1: For the case when nf=O, the observer gain obtained in the
above ATEA procedure is independent of a and is simply given by

K(a) = r1

Boa
B6a+KaO+

BOb
Boc+KcO

L-:Zb
L + 1

ab Irz .Kb

LCb

(3.17)

Moreover, such an observer gain places the eigenvalues of A -K(a)C precisely
at j\-U;PUj\e and Me(s) is exactly rather than asymptotically attained, i.e.,
M(s, a)=Me(s).

Remark 3.2: We emphasize that whenever Lt(s) is an element of TR(.l'),
owing to the special structure of F as in (3.1), Me(s) is zero irrespective of the
waythe set of n; + nceigenvaluesbelongingto Ae(a) and the associated right
and left eigenvector sets We(a) and Ve(a) are selected.

As can be easily seen, ATEA design is decentralized. Required time-scale
structure and eigenstructure is assigned to the subsystems of the given system
.l'. The calculations involved in subsystem designs do not explicitly require the
value of tuning parameter a. a enters only in (3.12) or (3.13) where subsystem
designs are put together to form a composite gain which assigns the required
time-scalestructure. Thus, atruly and directly acts as a tuning parameter and
controls the degree of fastness of fast time-scales. We present next three
examples to illustrate the ATEAdesign algorithm.

Example 3.1. Let .l' be characterized by

Let the target loop transfer function F <PB be specified by

F ~ [ ~

12
0
2

0
30

0

0
1
3 IH

It is simple to verify that this system is neither left nor right invertible and is of
nonminimum phase with two invariant zeros at s = - 1 and s = 1. Also, .l' is

-1 0 1 0 1 0 0 0
0 2 0 0 1 1 0 0

A = I 0 0 0 0 1 , B= 0 0 0
0 2 0 1 0 0 0 1
1 0 0 1 0 0 1 0

C[

0 1 0 0

n D [

O

H
0 0 0 0 0
0 0 1 0 0
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already in the form of s. c. b with n;; = n;; =nb = nc = nf= 1. It can also be verified
that the target loop specified by the given F is not a member of TR(.l'). Hence,
we cannot completely recover the given target loop. However, there exists a
gain matrix K(a) such that the corresponding recovery matrix M(s, a) tends to
some Me(s), which is of dynamicalorder ne=n;; +nc=2.

In what follows, we proceed with the ATEAdesign. First, we need to specify
the input data. We note that in this example,

Abb = 0 and Cb = 1.

Let us choose,

jp = {-2} and Vbb = [1].

Also, in this example,

Aee = [ ; ~l ce = 12.

Let us specify,

j1e = {-1.5, -2.5} and wee = [Wee1, wee2] =12,

so that Me(s) is prescribed as

Me(s)

- 1

[

30(s+2.5)

(s+1.5)(s+2.5) 2(s+1.5)l1s+21.5

0 0

]
3.5(s+1.5) -(s+1.5) .
10.5(s+1.5) -3(s+1.5)

Since mf= 1 and nf= 1, we can specify only one fast time-scale. Let the required
Al be

Al = {-1}.

Then, followingthe ATEA algorithm, we obtain

Kb = 2, Ke =
[

2.5 0

]2 3.5 '

and the observer gain K(a),

This K (a) places three observer eigenvalues exactly at {-1, -1. 5, - 2} and

0 1 1
3.5 1 0

K(a) = I
0 1 2
2 3.5a 0
0 a 0
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the remaining eigenvalues asymptotically at - 2.5 and - a. The plots of
maximum and minimum singular values of the target and the achieved loop
transfer functions for a= 50 are shown in Fig. 3.1. We note that for this
example, the minimum singular value of Lo(jw, a)=C(jw, a)P(jw) is identical-
ly zero since the given system is degenerate. Hence only the maximum singular
value of LoUw, 50) is shown. Also, the plots of maximum singular values of
Me(jw) and M(jw, a) for several values of a as shown in Fig. 3.2, clearly
demonstrate that M(jw, a) tends to Me(jw) as a~oo.

Example 3.2. Let ~ be characterized by

[

-1

A = i
0
2
1

~

]

,
-2 B~ [n

50~-
40
30

~ 20
Q) 10

'0

B 0
'S
~ -10

::E - 20

-30
-40

10-2

---, , ...,,,,,,"
,
"'----

---,
- LtCjw)
___n_- Lo(jw, 50)

10-1 10° 101

Frequency [rad/sec]

102

Fig. 3.1. Maximumand minimumsingular values of LtCjw) and
Lo(jw, 50).

25,

20 ~".;,.-;t'::n"'l-.:;;::n':::::-"", f.~, '
I"' /

i 15

l

--- amax[M(jw, 2)]~\'

\~ 10 u amax[M(jw, 5)] \
::E * * * * amaA4!(jw, 50)]

5 - amax[Me(jw)]

0
10-2 10-1 10° 101

Frequency [rad/sec]

102

Fig. 3.2. Maximum singular values of Me(jw) and M(jw, a).
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C = [ ~

1
0 ~ l D=[~l

Let the target loop transfer function F cPB be specified by

F = [-10 10 25].

This system is left invertible and is of nonminimum phase with two invariant
zeros at s=-1 and s = 1. Also, 1: is already in the form of s.c.b with
n;;= n~ = nb= 1 and nc= nf= O.It is simple to verify that the target loopspecified
by the given F is not a member of TR(1:). Hence, we cannot completely recover
the given target loop. However, there exists a gain K, which is independent of a
owing to nf= 0, such that the dynamical order of the corresponding recovery
matrix is equal to ne=n~=1.

We now proceed to design the observer gain using ATEA algorithm. As in the
previous example, let us first specify the required input data. We note that in
this example,

Abb = - 2 and Cb = 1.

Let us choose,

;P = {-2} and Vbb = [1].

Also, in this example,

Aee = 1 and Ce = 1.

Let us specify,

Xe={-o.l} and wee = [1],

so that Me(s) is prescribed as

Me(s) = !.!. ~ . .

Then following ATEA algorithm, we obtain

Kb = 0, Ke = 1. 1,

and the observer gain K,

K~ [~1 H
This K places the observer eigenvalues at {- O.1, -1, - 2}. The plots of
singular values of the target and the achieved loop transfer functions is shown in
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Fig. 3.3. Also, the plots of singular values of ]fJe(jw), M(jw) and E(jw) as
shown in Fig. 3.4, clearly demonstrate that M(jw)=]fJe(jw).

Example 3.3. Let ~ be characterized by

The target loop transfer function LtCs) is specified by

[
0 0 -50 0

]F = 450 0 0 46 .

20
15

.-. 10
~ 5
~ 0
"0

B -5
.~ -10'"
~ -15

-20
-25
-30

10-2

- LtCjw)
--_u- Lo(jw)

10-1 10° 101 102

Frequency [rad/sec]

103

Fig. 3.3. Singular values of LtCjw) and Lo(jw).

50

t

40 -"''''''''''''''
"""'*

'-'30 '*
~ "'K
:3 20. ...
~ 10;::s
'2 0c.o

~ -10
-20

-30:
-401

10-2

- a[E(jw)]
u a[M(jw)]
* * * * a[Me(jw)]

10-1 10° 101 102 103

Frequency [rad/sec]

Fig. 3.4. Singular values of Me(jw), M(jw) and E(jw).

[-1 0 0 1 j B [

0
0 -2 0 1 0

A = 0 2 -3 l' -1 0 I'
0 0 0 -4 0 1

C [

-2 0

H D [ H
0 0
0 1
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The given system is left invertible and has invariant zeros at s=-1 and s=O.
Also, it is already in the form of s. c.b with n;;= n;i = nb = nf= 1 and nc= o.
Moreover, it is straightforward to verify that the target loop specified by F is
asymptotically recoverable, i. e., the given target loop is in TR(1;') but not in
TER(1;').

We design the observer gain for this example using ATEA to achieve ALTR.
As in the previous examples, let us specify the required input data. We note that
in this example,

Abb = - 3 and Cb = 1.

Let us choose,

;p = {-3} and Vbb = [1].

Also, in this example,

A ee = 0 and
Ce = [ - ~ l

Let us specify,

Xe = {-2} and wee = [1].

Note that for this example Me(s)=O. Then following the ATEA algorithm, we
obtain

Kb = 0, Ke = [- 1, 0],

and an observer gain K(a),

K(a) =

0 1
0 0

-1 1
0 a-4

0
0
0
0

This gain places the eigenvalues of observer (precisely) at {- 1, - 2, - 3, - a}.
The plots of maximum and minimum singular values of the target loop transfer
function and the achieved loop transfer function for a= 250 in Fig. 3.5, as well as
the maximum singular values of the recovery error and recovery matrix for
a=250 in Fig. 3.6 demonstrate that ALTR is achieved.

3.2. Design for exactly recoverable target loops As discussed in the
previous subsection, in general in ATEA design, some eigenvalues are assigned
to finite locations and some others are assigned to asymptotically infinite
locations. Obviously, ATEA design discussed there yields a family of paramete-
rized controllers C (s, a). Depending upon the design requirements, one then
chooses a particular member of this family that corresponds to a particular value
of tuning parameter a. However, for the case when the given target loop is
exactly recoverable (i.e., Lt(s) E TER(1;'», there is no necessity of generating a
sequence of controllers. As discussed in Sec. 3, whenever Lt(s) ETER(1;'),F has
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50
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Fig. 3.5. Maximum and minimum singular values of LtCjw) and
LoUw, 250).
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Fig. 3.6. Maximum singular values of M(jw, 250) and
E(jw, 250).

a particular structure as given in (3.2). Owingto this particular structure of F,
all eigenvalues of A - K C can be assigned to finite locations and hence ATEA
design procedure can drastically be simplified. In fact, in this case, design
requires only finite eigenstructure assignment, and no fast time-scale structure
assignment is required. The intent of this section is to describe in detail the
available design freedom and step by step design for an appropriate finite
eigenstructure assignment to A - K C for exact loop transfer function recovery
(ELTR) whenever it is feasible.

Note that for exactly recoverable case, the observer gain K is not parame-
terized as a function of a and thus the presence of a is dropped in all our
notations. Followingthe interpretations of different partitions of M(s) as in Sec.
2, in view of Lemmas 4.2 and 4.3 of Part 1, and the form of F as in (3.2), the
available design freedom whenever L,(s) E TER(.l')can be described as follows:
1. A set of n;;eigenvalues of A - KC, namely A-, must be chosen to coincide
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exactly with the set of plant stable invariant zeros while the corresponding
left eigenvectors of A - K C must coincide exactly with the corresponding
left state zero directions of 1: so that M-(s) is rendered zero.

2. A set of nb eigenvalues of A - K C, namely A b, can be assigned arbitrarily at
finite locations in C-. Moreover, the eigenvector set Vb corresponding to
these eigenvalues can be selected freely within the constraints defined in
Moore (1976). However, Vb must be selected to be in the null space of
(B-KD)' so that Mb(s) is rendered zero.

3. A set of ne =n; + nc eigenvalues of A - K C, namely A e, can be assigned
arbitrarily at finite locations in C- subject to the condition that any
unobservable but stable eigenvalues of the given system must be included
among Ae. Moreover, the eigenvector set wee corresponding to these
eigenvalues can be selected freely within the constraints defined in Moore
(1976). We note that owing to the structure of F as in (3.2), Me(s) is zero
irrespective of how A e and wee are selected. Also, we note that n; + nc= 0 if
the given system is of minimumphase and left invertible.

4. A set of nf eigenvalues of A - KC, namely Af, can be assigned arbitrarily at
any finite locations in C-. (The sets A 00 and VOOare renamed here as Ai and
Vi because of the finiteness of the eigenvalues.) Moreover, the eigenvector
set Vf corresponding to these eigenvalues can be selected freely within the
constraints defined in Moore (1976). Again, owing to the structure of F as in
(3.2), Moo(s) is zero irrespective of how Ai and Vf are selected.

We now move on to give the design steps to obtain K which assigns an
appropriate finite eigenstructure of A - KC so that the observer based control-
ler achieves ELTR.

Step 1a: This step deals with the assignment of finite eigenstructure to the
subsystem (3.5) of Part 1. Choose a gain Kb such that A(Abb) coincides with Ab,
a set of nb designer specified eigenvalues all in C-, where

Abb = Abb - KbCb. (3.18)

Note that the existence of such a Kb is guaranteed by Property 3.2 of Sec. 3 of
Part 1 (Chen, Saberi and Sannuti, 1992 a). Also, in our design, the eigenvectors
of Abbcan be assigned in any chosen way consistent with the freedom available in
assigning them (Moore, 1976). Owing to the properties of s. c.b, our design
always results in an eigenvector set Vb corresponding to the eigenvalues A b of
A~KC, in the null space of (B-KD)' so that Mb(s)=O.

Step 1b: This step deals with the assignment of finite eigenstructure to the
subsystems (3.4), (3.6) and (3.8) of Part 1. Let Ag and cg be defined as

[

A;a 0 L;fCf

]

Ag = BcEta Acc LcfCf,

BfEd BfEc Af

cg =
[

C6a COc COf
]0 0 Cf .

(3.19)

Also, let Ag=AeUAfbe a set of n; +nc+nfdesigner specified eigenvalues all in
C- subject to the condition that any unobservable but stable eigenvalues of the
given system must be included among Ag. Now select a gain Kg such that
A(A g- Kg cg) coincides with A g. Again note that the existence of such a Kg is
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guaranteed by Property 3.2 of Sec. 3 of Part 1. Also, the eigenvectors of
Ag - KgCg can be assigned in any chosen way consistent with the freedom
available in assigning them (Moore, 1976). Let us partition Kg as

[

Kao+ Kal+

]

Kg = KCO Kc1 .
KIO Kll

Step 2: In this step, Kb and Kg calculated in Step 1 are put together into a
composite matrix. Let

(3.20)

Finally define the observer gain K as

- -1
K=r1Kr2. (3.21)

We have the followingtheorem.

Theorem 3.2. Consider a fullorder observer based controller with its gainas
given by (3.21). Then the eigenvalues ofthe observer are given by A-, Ab and
Ag. Moreover, the observer based controller using the gain given in (3.21)
achieves ELTR.

Proof See Appendix B.

Remark 3.3: We note that in general the observer gain which leads to ELTR
is not unique.

Example 3.4. Consider the system given in Example 3.2 except that now
the target loop transfer function Lt(s) is specified by

F =
[

-20
50

0
0

-50
100 ~ l

It is straightforward to verify that the target loop specified by F is exactly
recoverable. In fact, as illustrated in Fig. 3.7, the followingobserver gain,

K=

0 1 0
-1 1 0
-1 1 -1 I,

0 -1 0

does achieve ELTR while placing the observer eigenvalues precisely at {- 1,
-2, -3, -4}. Figure 3.7 shows the plots of maximum and minimum singular
values of the target and the achieved sensitivity functions, StUw) andSaUw).

Boa L-:ZI L-:Zb
B6a+KaO+ Kal+ L;;b

K = I BOb Lbl Kb

BOc+KcO Kc1 LCb

B 0/+ KIO Kll 0
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104

Fig. 3.7. Maximum and minimum singular values of St(jw) and
So(jw).

4. Optimization Based Design Methods

As is clear from Sec. 2, the whole notion of LTR is to render the recovery
matrix M(s)=F(sIn-A+KC)-l(B-KD) small in some sense or other. The
ATEA design method views this task from the perspective of asymptotic
time-scale and eigenstructure assignment to the observer dynamic matrix. An
alternative method is to view it as findinga gainK which minimizessome (say,
either Hz or Hoo)norm of M(s). That is, one can cast the LTR design as a
straightforward mathematical optimization problem. A suboptimal or optimal
solution to such an optimization problem provides the needed observer gain.
There is some historical basis to casting the LTR problem as such. In their
seminal work, considering only left invertible and minimum phase systems,
Doyle and Stein (1979) propose a design method based on Kalman filter
formalism in which the intensity of a fictitious input process noise is used as a
tuning parameter a. As a-.?00, their method yields an observer gain which
renders M(s, a) asymptotically zero and thus achieves ALTR. It looks,
however, mysterious why and how such a gain achieves ALTRfor the class of
problems considered by Doyle and Stein (1979). It turns out, as proved later on
by Goodman(1984), that the procedure of Doyle and Stein (1979) minimizesthe
Hz norm of M(s) as a-.?00. That is, the procedure of Doyle and Stein (1979)
yields a sequence of suboptimal solutions to Hz norm minimizationof M(s).
These suboptimal solutions are parameterized in terms of a; and the limit as
a-.?00of the sequence of corresponding IIM(s,a) IIH2is the infimumof IIM(s)IIH2
over the set of all possible gains. The infimumof IIM(s)IIH2happens to be zero
for left invertible and minimum phase systems. In view of this historic
perspective, in this section, we cast the loop transfer recovery problem for'
general not necessarily left invertible and not necessarily minimum phase
systems, as a standard Hz or H 00optimization problem. To facilitate this, we
consider the followingauxiliary system,

.

j

x:A'x + C'u + F'w,
:Ea. Y - x,

z=B'x+D'u.

(4.1)

2.5

2

Q) 1.5"0
;::I...

1'8
ro

::E 0.5

0

-0.5
10-1
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Here w is treated as an exogenous disturbance input to 1:a while u is the
controlling input. The variables y and z are respectively considered as the
measured and desired outputs. Suppose one uses a state feedback law to
generate the control u,

u = -K'x. (4.2)

It is then simple to verify that the closed-loop transfer function from w to z,
denoted by Tzw(s), is indeed equal to M'(s). Now LTR design problem can be
cast as the task of obtaining a K such that (1) the auxiliary system 1:aunder the
control law (4.2) is asymptotically stable, and (2) the norm (Hz or Hoc) of M(s) is
minimized. There exists a vast literature on Hz or Hoc minimization methods.
Borrowing from such a literature, subsection 4.1 discusses algorithms for Hz
minimization of M(s) while subsection 4.2 does the same for Hoc minimization.
We want to emphasize that the optimization problem is cast here in terms of
minimizing an appropriate norm of recovery matrix M(s) rather than the
recovery error E(s).

It is well known that an optimal solution for either Hz or Hocminimization of
M(s) does not necessarily exist, and the infimum of IIM(s) 11Hzor IIM(s) IIHoois in
general nonzero. For a class of target loops, however, the infimum of IIM(s) 11Hz
or IIM(s) IIHoois in fact zero, and it can be attained by a finite gain K. This is the
class of exactly recoverable target loops TER(1:). Also, for another class of
target loops, namely the class of asymptotically recoverable target loops TR(1:),
the infimum of IIM(s) 11Hzor IIM(s) IIHoois zero, and it can be attained only
asymptotically by using larger and larger gain K. Whether the infimum of
IIM(s) 11Hzor IIM(s)IIHoois zero or not, for general target loops, one needs to
generate a sequence of gains having the property that the limit of Hz or Hoc
norms of the correspondingly generated recovery matrices is the infimum of
IIM(s) 11Hz or IIM(s) IIHooover the set of all possible gains. A suboptimal solution
results when one uses a gain corresponding to a particular member of the
sequence. In Hz optimization, an observer gain is generated via the solution of
an algebraic Riccati equation (calledhere after Hz-ARE) parameterized in terms
of a tuning parameter a. A sequence of suboptimalgains is generated by tending
a to 00. In Hocoptimization, let y* be the infimum of II M(s) IIHoo over the set of all
possible gains. Then given a parameter y greater than y*, in Hocoptimization,
one generates a gain by solving an algebraic Riccati equation (called hereafter
Hoc-ARE) parameterized in terms of y so that the resulting IIM(s, y)IIHoois
strictly less than y. Starting with a y> y*, and graduallyreducing y step by step
but always keeping y> y*, one obtains a sequence of suboptimal gains.

For simplicity but without loss of generality, we assume throughout this
section that the matrix D is of the form,

D = [ 10° ~ l
Also, we partition the matrices Band C as

B = [Bo, Bd and C =
[
Co

]CI '

and let Al =A - Bo Co.
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4.1 H2-optimization based design algorithms In this subsection, we
consider H2 norm minimization of M(s) or equivalently Tzw(s). At first, let us
look at calculating the infimum value of IIM(s) IIH2as is done very elegantly in a
recent work by Stoorvogel (1990). We first recall the following lemma from
Stoorvogel (1990).

Lemma 4.1. Assume that (A, C) is detectable. Then the infimum of
IIM(s) IIH2over all the stabilizing observer gains is given by tr{FFF'}, where
FE&lnxn is the unique positive semi-definite matrix satisfying:

. F(F) =
[

AF+!!A'+BB' FC'+BD'
]

> 0
1. CP+DB' DD' -,

ii. rankF(F) = normrank{C(sIn-A)-IB+D}, 'IS E C+ICo,

iii. rank[ [SI-~~p)-C']]= n + normrank{C(sIn-A)-IB+D},
'IS E C+ ICo.

Here normrank {.} denotes the rank of matrix {.} over the field of rational
functions.

Proof. See Stoorvogel (1990).

In general, as discussed earlier, the infimum of !IM(s) IIH2can only be
obtained asymptotically. In what follows, we proceed to introduce a basic
algorithm of obtaining a sequence of parameterized observer gains K(a) for the
general system ~ such that the H 2 norm of the corresponding recovery matrix,
which is also parameterized by a and is denoted by M(s, a), tends to the
infimum of !IM(s) IIH2as a~ 00. The algorithm consists of the following two
steps:

Step 1: Solve the following parameterized algebraic Riccati equation (H 2-
ARE) for a chosen fixed value of the parameter a,

AlP + PAl - PCoCoP - aPClCIP + BIBl + -Lln = 0,a (4.3)

for its positive definite solution P. We note that a unique positive definite
solution P of (4.3) always exists for all a>O. Obviously, P is a function of a and
is denoted by P(a).

Step 2: Let

K(a) = [Bo+P(a)Co, aP(a)Cl]. (4.4)

We have the followingtheorem.

Theorem 4.1. Consider a full order observer based controller with its gain
taken as in (4.4). Let M(s, a) be the resulting recovery matrix. Then, we have

lim P(a) = F.a 00



128 B. M. CHEN, A. SABERIANDP. SANNUTI

Moreover, IIM(s, a) 11Hztends to the infimum of IIM(s) 11Hzas a~ 00, i.e.,

lim IIM(s, a) 11Hz= tr{FPF'}.a-> 00

Proof. See Appendix C.

In view of Theorem 4.1, it is apparent that as a takes values larger and
larger, the design algorithm given above generates a sequence of observer gains
havingthe propertythat the limitofthe correspondinglygenerated IIM(s,a) 11Hz
is the infimum of IIM(s) 11Hzover the set of all possible gains. A suboptimal
solution results when one uses a particular value of the parameter a. However,
for some particular class of systems, e. g., the well-known regular problems
(i. e., D is surjective implying that 2: is right invertible and has no infinite zeros,
and 2: has no invariant zeros on the jw axis), the infimum value of IIM(s) 11Hzcan
be achieved with the following observer gain (Doyle et aI., 1989),

K = Bo + PCD, (4.5)

where P is the positive semi-definite solution of

AlP + PAl - PCDCOP + BIBl = O.

The resulting infimum value of IIM(s) 11Hzis given by

IIM(s) 11Hz= tr{FPF'}.

Note that in this discussion, the observer gain K and thus the resulting recovery
matrix is not parameterized as a function of a. We note that for a regular
problem when IIM(s) IIHz=O, the observer gain K as given in (4.5) achieves
exact loop transfer recovery (ELTR). There is a larger class of systems than the
class of regular systems, for which IIM(s) 11Hz = O. However, no optimization
based method exists yet in the literature to generate the needed gain to achieve
IIM(s) IIHz=O, whenever it is possible, for systems other than the class of
regular systems. On the other hand, a direct design procedure based on ATEA,
which achieves ELTR whenever it can be done, was presented earlier in
Subsection 3.2.

Another special case of design that is of interest is as follows. Consider a left
invertible minimum phase system 2: which is non-strictly proper. Let the
observer gain K(a) be given by

K(a) = [Bo, aP(a)Cl],

where P(a)~P is the positive definite solution of

AlP + PAl - aPClCIP + BIBl = O.

It is simple to show then that the observer gain K(a) chosen as above achieves
asymptotic loop transfer recovery (ALTR), i.e., the resulting IIM(s, a) 11Hz

tends to zero asymptotically as a~ 00. This is a generalization, for non-strictly
proper left invertible minimum phase systems, of the result given by Doyle and
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Stein (1979) who treat only strictly proper left invertible minimum phase
systems. The above result has been given earlier by Chen, Saberi, Bingulac and
Sannuti (1990).

It is of interest to investigate what type of time-scale structure and
eigenstructure is assigned to the observer dynamic matrix A-K(a)C by the
gain K(a) obtained via the basic algorithm of Eqs. (4.3) and (4.4). Obviously,
the basic algorithm renders M-(s, a), Mb(s, a) and MOO(s, a) zero as a-:.oo,
while shaping Me(s, a) in a particular way so that the infimum of IIM(s) 11Hzis
attained as a-:. 00. In so doing, among all the possible choices for the time-scale
structure and eigenstructure of A-K(a)C, it selects a particular choice which
can easily be deduced from the results of cheap and singular control problems as
analyzed in Saberi and Sannuti (1987) (see also, Zhang and Freudenberg, 1990;
Saberi et aI., 1991 b). We have the following results:
1. As a-:. 00, the asymptotic limits of the set of n;; eigenvalues 11-(a) and the

associated set of left eigenvectors V-(a) of A - K(a)C coincide respectively
with the set of plant stable invariant zeros and the corresponding left state
zero directions of 2:. This renders M-(s, a) zero as a-:. 00.

2. As a-:. 00, some ofthe nb eigenvalues in 11b(a) coincide with the stable but
uncontrollable eigenvalues of 2: while the rest of them coincide with what are
called "compromise" zeros of 2: (Saberi and Sannuti, 1987). Also, the
asymptotic limits of the associated left eigenvectors, namely Vb(a), fall in
the null space of matrix [B-K(a)D]' so that Mb(s, a)-:.O as a-:.oo.

3. As a-:. 00, the set of nf eigenvalues 1100 (a) of A - K (a) C tend to asymptoti-
cally infinite locations in such a way that Moo(s, a)-:.O. The time-scale
structure assigned to these eigenvalues depends on the infinite zero
structure of 2: (see for details in Saberi and Sannuti, 1987). Also, the
eigenvalues assigned to each fast time-scale follow asymptotically a Butter-
worth pattern.

4. As a-:. 00,the asymptotic limitsof n; eigenvalues in 11e(a) coincidewith the
mirror images of unstable invariant zeros of 2:, while the associated set of
left eigenvectors of A - K (a) C coincide with the corresponding right input
zero directions of 2:. The rest of nc eigenvalues of 11e(a), as a-:.oo, tend to
some unnamed finite locations, while the associated left eigenvectors follow
some unnamed directions. This shapes the limit of recovery matrix, Me(s) in
a particular way so that the infimum of IIM(s) 11Hzis attained as a-:. 00.

To conclude, as ATEA design procedure does in general, the basic algorithm
of Eqs. (4.3) and (4.4) renders M-(s, a), Mb(s, a) and MOO(s, a) zero
asymptotically as a-:. 00. Moreover, it shapes Me(s) in a particular way so that
the infimum of IIM(s) 11Hzis attained as a-:. 00. In contrast to this, ATEAdesign
procedure of Sec. 3 allows complete available freedom to shape the limit of
recovery matrix Me(s) in a chosen manner within the design constraints imposed
by the structural properties of the given system.

Example 4.1. Let 2: be characterized by

A=

1
1
1
1

0
2
1
0

0
1
0
2

1
1
0
0

B=

0
1
0
1

0
0
1
0
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c = [ ~

°
0

1
0 ~ l D = [ ~ ~ l

This system is invertible and has nf= 2. It is of nonminimumphase as it has two
invariant zeros at s=1 and s = 2. Let the target loop transfer function F cPB be
specified by

F=
[

-1 51
9 -4 3 ~ l

Then it can be verified that the infimumof II M(s) II H2 for this problem is equal to
639.6. Hence, we cannot completely recover the given target loop. Let the
observer gain K(a) be calculated using Hz-optimization algorithm. The plots of
maximum and minimum singular values of the target and the achieved loop
transfer functions for a= 1000 are shown in Fig. 4.1.

We note that 2: is already in the form of s. c.b with

A ee = [ ~ ~ ]
and

ce = [ ~ ~ l
Then it can be shown that Hz-optimization algorithm renders MCO(s, a) zero
asymptotically as a~ 00and places

xe={-I,-2} and wee = [weel weez]=
[

0.9487 0.8

], 0.3162 0.6 .

This results in a particular Me(s),

- 1

[
69(s+2)

Me(s) = r-/_, .>/- , 0' -129(s+2)
-3(41s+ 18)

]123s-6 .

The plots of maximum singular values of Me(jw) and M(jw, a) for several
values of a as shown in Fig. 4.2, clearly demonstrate that M(jw, a)~Me(jw)
as a~ 00.

4.2 H co-optimization design algorithms In this subsection, we consider
H co norm minimization of M(s) or equivalently Tzw(s). Unlike in Hz norm
minimization case of previous subsection, for general systems, there are no
direct methods available of exactly computing the infimum of !!M(s) IIHrowhich is
denoted here by y*. However, there are iterative algorithms that can approxi-
mate y*, at least in principle, to an arbitrary degree of accuracy (see for example,
Pandey et aI., 1990). Recently though, for a particular class of problems, i. e.,
when 2: is left invertible and has no invariant zeros on the jw axis, such an
infimum y* has explicitly been calculated in Chen, Saberi and Ly (1991; 1992).

We now proceed to present a basic algorithm of computing the observer gain
matrix K such that the resulting H co-norm of the recovery matrix M(s, y), is
less than a priori given desired scalar y> y*. The algorithm is as follows:

Step 0:

Step 1:

Choose a value E= 1.

Solve the following algebraic Riccati equation (H co-ARE),
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Fig. 4.1. Maximum and minimum singular values of Lt(j m) and
Lo(jm, 1000).
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Fig. 4.2. Maximumsingular values of Me(jm) and M(jm, a).

AlP + PAl - PC'oCoP - .lpClC1PE

+ BIB I + ~ PF'FP + dn = 0
(4.6)

for P. Evidently, since (4.6) is parameterized in terms of y, the solutionP of it is
a function of yand is denoted by P( y).

Step2: IfP (y)> 0 goto Step3. Otherwise,decreaseEandgoto Step1. Note
that for y> y*, it is shown in Zhou and Khargonekar (1988) that there always
exists a sufficientlysmall scalar E*>Osuch that the H~-ARE (4.6) has a unique
positive definite solution P(y) for each EE(O, E*).

Step 3: Let

K(y) = [Bo+P(y)Co, iE P(Y)CI].

We have the followingtheorem.

(4.7)
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Theorem 4.2. Consider a full order observer based controller with its gain
taken as in (4.7). Let M(s, y) be the resulting recovery matrix. Then, we have
IIM(s, y) IIHrois strictly less than y, and tends to y* as y~y*.

Proof. It follows simply from the results of Zhou and Khargonekar (1988).

Remark 4.1: We note that y acts here as a tuning parameter. Since to start
with, one does not know y*, a particular prescribed value for y may turn out to
be less than y*. In that case, the Hoo-ARE (4.6) does not have any positive
definite solution even for sufficiently small E. Then, one has to increase the
value of y and try to solve the H oo-AREonce again for P( y»O. One has to
repeat this procedure as many times as necessary.

For the special case of regular problems defined in the previous subsection,
there exists a method of generating the gain without the need to introduce
another parameter E, and is given by Doyle et al. (1989),

K(y) = Bo + P(y)Co, (4.8)

where P( y)4p is the positive semi-definite solution of

AlP + PA1- PCoCoP + BIBI + ~PF'FP = 0,
y

such that A(A1-CoCoP+y-2F'FP)~C-. A full order observer based control-
ler with its gain taken as in (4.8) results in IIM(s, y) IIHrobeing strictly less than
y.

Obviously, the gainK( y) obtained via the basic Hoo-optimizationalgorithm of
Eqs. (4.6) and (4.7) assigns a particular time-scale structure and eigenstructure
to the observer dynamic matrix A-K(y)C. An investigation into the exact
nature of time-scale structure and the eigenstructure of A - K( y)C as y~ y* is
still an open research problem. But we like to point out that, as ATEA design
procedure does in general, the basic Hoo-optimizationalgorithm renders the
corresponding M-(s, y), Mb(s, y) and MOO(s,y) zero asymptoticallyas y~y*.
Also, the corresponding Me(s) is shaped in a particular way so that the infimum
of IIM(s)IIHrois attained as y~y*. In so doing, in addition to AOO(y),some
elements of Ae(y) may be pushed to infinite locations in C- as y~y*. The
investigation of these and other properties of H oo-optimizationalgorithm of Eqs.
(4.6) and (4.7) is outside the scope of this paper.

Example 4.2. Let 2: be characterized by

This system is neither left invertible nor right invertible with one invariant zero
at s= -1. Let the target loop transfer function FCPBbe specified by

-1 1 0 1 0 0 0

A = I 0 1 1 0 B=
1 0 0

0 0 -1 0 ' 0 0 1
1 1 0 0 0 1 0

L

C [

0 1

n D [

O

H
0 0 0
1 0 0
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[

0.2
F = 0.5

0.1

2.3
0.3
0.3

0.3
0.1
1.0

0.3

]

1. 7 .
0.1

For thisexample,it canbe verifiedthat y*, the infimumof IIM(s) IIH~' is equalto
yO.55=0.74161985. Hence, we cannot completely recover the given target
loop. Let the observer gainK( y) be calculatedusing Hoc-optimizationalgorithm.
The plots of maximumand minimumsingularvalues of the target and the
achieved loop transfer functions for y= 1 are shown in Fig. 4.3. We note that for
this example, the minimum singular value of La(jw, y)=C(jw, y)P(jw) is
identicallyzero since the given system is degenerate. Hence, only the maximum
singular value of La(jw, 1) is shown.

We note that 2: is already in the form of s.c.b with n;;=nb=nc=nf=l and

A ee = - 1 and
ce = [~l

Then it can be shown that Hoc-optimizationprocedure renders M-(s, y), Mb(s,
y) and M""'(s, y) zero asymptotically as y~y* and places

A:e= {-2} and wee = 1.

This results in a particular Me(s),

Me(s) = 1
[

-0.3
f_.O' -0.1

-1.0

0 0.3

]

0 0.1 .
0 1.0

The plots of maximumsingularvalues of Me(jw) and M(jw, y) for several
values of y as given in Fig. 4.4, clearly demonstrate that M(jw, y)~Me(jw) as
y~y*.
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Fig. 4.3. Maximumand minimumsingular values of LtUw) and
Lo(jw, 1).
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Fig. 4.4. Maximumsingular values of Me(jw) and M(jw, y).

5. Design for Recovery over a Specified Subspace

Sections 3 and 4 consider the conventional LTR design problem which seeks
the recovery over the entire control space. Here, given a subspace 5 of f!Ilm,the
interest is in designing an observer so that the achieved and target sensitivity
and complimentary sensitivity functions projected onto the subspace 5 match
each other either exactly or asymptotically. The conditions under which such a
design is possible are given in Part 1. To recapitulate these conditions, let VS be
a matrix whose columns form an orthogonal basis of the given subspace 5 of f!Ilm.
Also, given the system ~ characterized by (A, B, C, D), let us define an
auxiliary system ~S characterized by the matrix triple (A, BVS, C, DVS). Also,
let L / s) = F cPB be the specified target loop transfer function. Then, the
analysis given in Part 1 implies the following:
1. The projections of achievable and target sensitivity and complimentary

sensitivity functions onto the subspace 5 match each other exactly, if and
only if S-(A, BVs, C, DVS)~Ker(F).

2. The projections of achievable and target sensitivity and complimentary
sensitivity functions onto the subspace 5 match each other asymptotically, if
and only if V+(A, BVS, C, DVS)~Ker(F).

Thus, the task of designing observers for either exact or asymptotic
recovery over a subspace collapses to the task discussed in earlier sections
except that one needs to use ~S instead of ~. The following example illustrates
this.

Example 5.1. Consider a system characterized by

1 0 0 0 0 0 0 1 0 0 0 0
0 2 0 0 0 0 2 0 0 0 0 0
0 0 3 0 0 3 0 0 0 0 0 0

A = I 0
0 0 4 4 0 0 0 B= 0 0 0 0

0 0 0 4 4 0 0 0 ' 1 0 0 0
0 0 3 0 0 3 0 0 0 2 0 0
0 2 0 0 0 0 2 0 0 0 3 0
1 0 0 0 0 0 0 1 0 0 0 4



This system is left invertible and of nonminimum phase with invariant zeros at
s = 1, S = 2, S =3 and at s =4. Now consider a specified subspace 5 which is a
span of

VS =

0.4433
0.3802
0.6006
0.5462

-0.4553
0.5771

-0.4719
0.4867

-0.0027
-0.7128
-0.1664 I.

0.6813

It is simple to verify that the auxiliary system 2;s characterized by (A, B VS, C,
D VS)is left invertible and of minimum phase. Hence the projections of target and
achievable sensitivity and complimentary sensitivity functions onto VScan match
each other asymptotically. To exemplify this, let the target loop be specified by

so that the observer eigenvalues are placed at -1000, - 1000, - 1, - 2, - 3,
-4, -5 and -6. Let the orthogonal projection matrix onto the subspace 5 be
PS=VS(VS)'. Then the resulting M(jw, a)PS, E(jw, a)PS, SaUw, a)PS and
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0 0 0 4 0 0 0 0 1 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0

C = I 0 0 0 0 0 6 0 0 , D= 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0 0
0 0 0 0 0 0 0 8 0 0 0 0

0 0 0 200 100 0 0 0

F = I 0 0 100 0 0 50 0 0
0 60 0 0 0 0 30 0

50 0 0 0 0 0 0 25
L

Let us choose K(a) with a= 1000 as

0 10707293 240.6328
0 -1324480 -35.68825
0 - 6883343 -215.567

K(a) = I 0 258551 9.26071
1 1. 76203 2.185 x 10-7

-0.4570667 3978.336 144.08447
3.57747 -9798.08346 40.0091

0.185196 -354.2448 1.115087

-717.12942 -18.09924
106.64317 2.70284
643.91894 16.36376

-27.598585 -0.701356
-6.51 x 10-7 -1. 655 x 10-8

68.78912 1.74812
23.90837 -3.03008
-3.32316 125.04055
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Fig. 5.1. Maximum singular values of St(jw)PS and
So(jw, 1000)ps.
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Fig. 5.2. Maximum singular values of M(jw, 1000)PS and
E(jw, 1000)ps.

St(jw)PS are ploted with respect to w over a given range of w in Figs. 5.1 and
5.2. It is easy to note that M(jw, a)PS is approximately zero while So(jw, a)PS
is close to St(jw)ps. Also, note that the minimum singular values of So(jw,
a)PS and St(jw)PS are identically zero due to the singularity of ps.

6. Comparison of 'ATEA' and 'ARE' Based Design Algorithms

A comparison of optimal or suboptimal design schemes based on solving
Algebraic Riccati equations (ARE's) as described in Sec. 4 and the asymptotic
time-scale and eigenstructure assignment (ATEA) design schemes of Sec. 3, is
in order. In this regard, our earlier paper (Saberi et aI., 1991 b) discusses
several relative advantages and disadvantages of ATEA and ARE based designs.
Here we look at ATEA design and optimization based designs from two different
perspectives, (1) numerical simplicity and (2) flexibility to use all the available
freedom.

Let us first consider numerical aspects of both designs. It is clear that the
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central part of either optimization based design of Sec. 4 lies in obtaining the
positive definite solutions of parameter dependent ARE's repeatedly for diffe-
rent values of the parameter. As is wellknown, these ARE's become numerical-
ly "stiff" when the concerned parameter takes values close to a criticalvalue. To
be specific, the Hz-ARE becomes stiff as the parameter a takes larger and
\arger values, where as the Hoo-AREbecomes stiff when yapproaches y*. This
is due to the interaction of fast and slow dynamics inherent in such equations.
Thus the numerical difficulties accrue not only due to the required repeated
solutions of ARE's but also due to the "stiffness" of such equations. On the other
hand, as is clear from Sec. 3, ATEAadopts a decentralized design procedure and
in so doing removes both the obstacles of repeated solution of algebraic
equations and their stiffness. That is, in ATEA, in order not to allow the
interaction between the slow and various fast time-scales, the design that
assigns the appropriate asymptotically finite and infinite eigenstructure to the
observer dynamic ~atrix is done separately. The tuning parameter which
merely adjusts the relative fastness of fast time-scales is introduced only in
composing the two separately designed gains together into a composite gain,
and this presents no numerical difficultieswhatsoever as the parameter takes
larger and larger values.

Another factor that is of great importance in selecting a design procedure is
the flexibilityit offers to utilize all the availabledesign freedom. As summarized
in Sec. 2, there exists considerable amount of freedom to shape the recovery
matrix by an appropriate eigenstructure assignment to the observer dynamic
matrixA - K C. Such a freedom can be utilized to shape Me(j w), the limitof the
recovery matrix, with respect to w. Any optimization based method adopts a
particular way of shaping Me(jw) as dictated by the mathematical minimization
procedure. For example, as discussed earlier, in Hz optimization Me(jw) is
shaped by assigning some of the eigenvalues of A - KC at the mirror images of
the unstable invariant zeros of 1:, while the associated set of left eigenvectors of
A - K C coincidewith the corresponding right input zero directions of 1:. Such a
shaping obviously limits the available design freedom, and mayor may not be
desirable from an engineering point of view. Next, availabledesign freedom can
also be utilized to characterize appropriately the behavior of asymptotically
infinite or otherwise called fast eigenvalues of A - KC. What we mean by the
behavior of fast eigenvalues is (a) their asymptotic directions and (b) the rate at
which they go to infinity, i.e., the fast time-scale structure of A-KC. As
demonstrated in Saberi et al. (1991 b), the behavior of fast eigenvalues has a
dramatic effect on the resulting controller bandwidth. Again, optimizationbased
design methods fix the behavior of fast eigenvalues in a particular way that may
or may not be favorable to the designer's goals. We believe that the ability to
utilize all the availabledesign freedom is a valuableasset; in particular, exploring
such a freedom in the space in which complete recovery is not feasible is of dire
importance. ATEA design methods of Sec. 3 put all the availabledesign freedom
in the hands of designer and hence are preferable to optimizationbased designs
of Sec. 4. However, a clear advantage of the optimizationbased schemes is that
at the onset of design, they do not require much systematic planningand hence
are straightforward to apply. In fact, one simply0) solves the concerned ARE's
repeatedly for several values of tuning parameter until a gain obtained for one
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particular value of the parameter is appropriate for a suboptimal design.
Admittedly, ATEA design does not have such a simplicity. One needs in ATEA
design to come up with an appropriate utilization of the available design freedom
and thus the selection of available design parameters in order to meet the
practical design specifications. But this perhaps can be done by a simple
iterative adjustment. Such a procedure is still computationally inexpensive as
the required calculations for ATEA design are straightforward and do not involve
any "stiff" equations.

7. Conclusions

Full order observer design for loop transfer recovery for general not
necessarily left invertible, not necessarily of minimum phase, and non-strictly
proper systems is considered. After reviewing the necessary design constraints
and the available design freedom, three different methods of design are
developed. The first method is an asymptotic time-scale structure and eigen-
structure assignment (ATEA) scheme. The other two methods are optimization
based; one minimizes the H 2 norm of a recovery matrix related to the loop
transfer recovery error and the other minimizes the Hoc norm of the same. All
three methods of design give explicit methods of obtaining observer gain
parameterized in terms of a tuning parameter. In optimization based designs,
the gain is implicitly parameterized via the solution of parameterized nonlinear
algebraic Riccati equations (ARE's). On the other hand, ATEA design does not
require any solution of nonlinear algebraic equations; here the tuning parameter
enters the design only in forming a composite gain from several subsystem
designs, and thus it truly acts as tuning parameter. All three methods of design
yield a sequence of controllers as the tuning parameter takes different values. In
optimization based methods, as the tuning parameter tends to a certain critical
value, the corresponding sequence of H2 norms (or Hocnorms depending on the
method) of the resulting recovery matrices tends to a limit which is the infimum
of the H2 norm (or Hoc norm) of the recovery matrix over all possible observer
gains. In so doing, the optimization based methods shape the recovery error in a
particular way which mayor may not be meaningful from an engineering point of
view. On the other hand, the ATEA method has the flexibility to utilize all the
available design freedom to shape the recovery error appropriately to meet the
designer's needs within the constraints imposed by the structural properties of
the given system. Also, ATEA method can easily be modified and simplified to
yield an observer design that achieves ELTR whenever it is feasible. In contrast
with ATEA design, optimal or suboptimal design schemes do not require much
priori planning but require solving repeatedly the parameterized ARE's for
different values of the parameter. However, these ARE's invariably become
"stiff" as the parameter takes values closer to certain critical value.

Besides the conventional LTR design task which seeks the recovery over the
entire control space, another generalized task which seeks recovery only over a
specified subspace of the control space is also considered.

All the design methods developed here are implemented in a MATLAB-
software package. A number of design examples illustrate several aspects of
ATEA design as well as optimization based designs.
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Appendix A: Proof of Theorem 3.1

Without loss of generality, we will assume that the given system is in the
formof s.c.b. Then byrenamingthe variablesXo=[ (x;;)', xi] I and Xe= [(x;)' ,
x~]', we can rewrite the observer dynamicmatrix A-K(a)C as,

[

Aoo 0 -HQfCf

]

A-K(a)C = AeO Aeel'

.

-[H..if+Kel(a)]Ct '
BfEo BfCel Af-Kf(a)Cf-LfCf

(A. 1)

where

A -
[

A;;a -H;;bCb
]

H- -
[

fl;;f
]

E - [E
- E ]

00 - 0 Abb ' Of - H bf' 0 - . a b,

[
Kao+ C- H-+ C Kao+C

]
A eO - - Oa - jJb b- Ob

- BcE-;;a-KcoCoa -HcbCb-KcoCOb '

[

A+ Kao+ C + Kao+c

]
Aeel = Aee - KeOceO = aa- Oa - . Oc

BcEda-KcoCda Acc-KcoCoc '

H =
[
. Kao+COf+fJ;fCf

]ef KcoCOf+HcfCf'

The fact that ATEA algorithm yields an admissible observer gain K(a) in the
sense that A - K (a) C is a stable matrix for sufficientlylarge a and that it has the
required time-scale structure followsalong the lines of AppendixB of Saberi et
al. (1991 b). In what follows, we willshow that K(a) achieves LTRin the sense
that

M(s, a) = F[sIn-A+K(a)C]-I[B-K(a)D] -? Me(s) pointwise in s (A.2)

as a-?oo. In view of (3.16), let us partition K(a) as,

K(a) = Ko + [0 K(a)]

Boa 0 0
Bda+KaO+ 0 0

BOb 0 0
Boc+KcO 0 0

BOf 0 0

0 f;;f+ i!..;;f L;;b+ fl;;b
0 L;f+H;t+-!fa1+(a) L;b+H;b

+ I 0 Ll!f+ Hl!f Kb I. (A.3)
0 LCf+Hcf.! Kc1(a) LCb+Hcb
0 Lf+Kt<a) 0



Then we have
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and

B = B - K(a)D = B - KoD =

A = A - KoC

A;;a
- Kao+ COa

0
BcE;;a-KcoCoa

BfE;;

0
- Kao+

0
-KcO

0

0
0
0
0

Bf

0
0
0

Bc
0

0
A;;a - Kao+ C6a

0
BcE:a-KcoC6a

BfE;;

L;;b C b

L;;b Cb- Kao+COb
Abb

LCbCb- KcoCOb

BfEb

With these definitions, we can write M(s, a) as

M(s, a) = F[sIn-A+K(a)C]-lB.

Then in view of (A.3), it can be seen easily that K(a) has the form,

where

and

K(a) = T(a)na)N + Q,

.

[
1 1 ... ~

]
,

na) = Dlag 17;' r;;' '17mf

Q=

while T(a) satisfies

N = [Imf' 0]

L;;f+H;;f
L + H-+af+ af

Lbf+Hbf

LCf+ Hcf

Lf

L;;b+ H;;b
L;;b + H;;b

Kb

LCb+Hcb
0

T(a) ~ BmT

141

0 L;;f Cf
-Kao+Coc L;;fCOf

0 LbfCf
Acc-KcoCoc LcfCf-KcoCOf

BfEc Af

- [0
0 0 0

Cf]
C=

0 0 Cb 0 0 .
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as a~ 00, where

Bm =

0
Kal+

0
Kc1

Bf

T = Diag[JlrjK1rjd, 12r2K2r2d, ..., ImfrmfKmfrmfd]'

It is shown in Chen, Saberi and Sannuti (1992 b) that the triple (C, A, Bm) form
a left invertible and a minimumphase system. Thus, it followsfrom the results
of Saberi and Sannuti (1990 a) that

[sln-A+K(a)C]-lBm ~ 0 pointwise in s

as a~ 00. Next let

jj = [0, Bm, 0] + Be,

where

Then we have

M(s, a) ~ F[sln-A +K(a)C]-lBe

as a~ 00. Let us partition now F as

F = [Fo Fe Foe]

and define

[

-KaO+ -Kal+ 0

]
B ee -

1
- -KcO -Kc Bc .

It follows then from the results of Appendix B of Saberi et al. (1991 b) that

M(s a) ~ Me(s) = ~ Fe weei(Veei)HBee = F (sl -Aee+Kece)-lBee
, i=l S-A/' en, '

where

[yeel, yee2, ..., yeen,] = [weel, wee2, ..., Wen'rH.

This completes the proof of Theorem 3.1.

0 0 0
-Kao+ -Kal+ 0

Be = I 0 0 0
-KcO -Kc1 Bc

0 0 0
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Appendix B: Proof of Theorem 3.1

We assume that the given system 1: is in the form of s. c. b (see Theorem 3.1
of Part 1). Then in view of (3.20), we note that

A - KC

Then, it is simple to verify that the eigenvalu"esof A - K (a) C are given by
A-UAbUAg. Moreover,

I

0 0 0

I

* * *

Im[(sIn-A-KC)-l(B-KD)] = 1m 0 0 0 ~ S-(A, B, C, D),
* * *
* * *

which implies M(s)=F[sIn-A+KC]-l(B-KD)=O provided S-(A, B, C,
D)~Ker(F). Therefore, ELTR is achieved.

Appendix C: Proof of Theorem 4.1

Let to= 1/ya, and define the followingperturbed system,

j

x = A'x + C'u + F'w,
1:ae:

z = B~x + D~u,
(C.1)

where

A;;a 0 0

-Kao+Coa A;;a- Kao+ cta -Kao+COb
= I 0 0 Abb-KbCb

B cE;:a- KCO COa BcE-:-a-KcOCta -KcoCOb
B E--KfOC- B E+ -KfoC+ BfEb-KfOCObf a Oa f a Oa

0 0

-KaO+Coc (L;;f- Kal+)Cf-Kao+COf
0 0

Acc-KcOCoc (LCf-Kc1)Cf- KcoCOf

BfEc-KfOCoc Af-KfOCOf-KflCf

* 0 0 0 0 0 0 0
* * * * * * 0 0

(sIn-A-KC)-l = I
0 0 * 0 0 and B - KD = 0 0 0
* * * * * * 0 Bc
* * * * * * Bf 0

where *'s represent appropriate dimensional submatrices which are not neces-
sarily zero. Hence, we have
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BE = [Eo, Bb £In, 0] and
[

Imo
DE = 0

0
0

0 0

]0 dm-mo .

Consider the state feedback law,

u = -K'(a)x (C.2)

with gain K'(a) defined by,

K'(a) = (DED~)-l(PC+DEB~), (C.3)

where P is the positive definite solution of

AP + PA' + BEB~ - (PC'+BED~)(DED:>-l(CP+DEB~)= o. (C.4)

We note that D~ is injective. Then, it is shown in Stoorvogel (1990) that the
state feedback law (C.2), minimizesthe Hz norm of the transfer functionfrom w
to z, namely Tzw(s, a), as a--,>00 (or £--,>0). The proof of the first part of
Theorem 4.1 follows now by recognizing that (C.3) and (C.4) are respectively
equivalent to (4.4) and (4.3). The rest of Theorem 4.1 follows trivially from
Stoorvogel (1990).
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