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THEORY OF LOOP TRANSFER RECOVERY FOR
MULTIVARIABLE LINEAR SYSTEMS

ABSTRACT
Ben M. Chen, Ph.D.
Washington State University
December 1991

Chair : Ali Saberi

In this thesis, we develop a fairly complete theory of loop transfer recovery (LTR) using
observer based controller and stable compensator structures for general nonstrictly proper
continuous-time multivariable linear systems. The given system need not be left invertible
and of minimum phase. The thesis can be divided into the following three parts.

The first part deals with the analysis of LTR using full and reduced order observer
based controllers. The analysis of this part focuses on four fundamental issues. The first
issue is concerned with what can and what cannot be achieved for a given system and for
an arbitrarily specified target loop transfer function. The second issue is concerned with
the development of necessary and sufficient conditions a target loop has to satisfy so that
it can be either exactly or asymptotically recovered for a given system while the third issue
is concerned with the development of necessary and sufficient conditions on a given system
such that it has at least one, either exactly or asymptotically, recoverable target loop. The
fourth issue deals with generalizing the traditional LTR concept to sensitivity recovery over
a control subspace. All the results for the full and reduced order observer based controllers
are unified in the same framework.

Three types of design schemes are developed in detail in the second part. The first one
is an asymptotic time-scale and eigenstructure assignment (ATEA) scheme, and the other

two are optimization based designs; one deals with the minimization of the H; norm of
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a so called ‘recovery matrix’ while the other deals with the minimization of H, norm of
the same. Relative advantages and disadvantages of both ATEA and optimization based
design schemes are discussed. A helicopter attitude and rate command system design is
also presented to illustrate these algorithms.

In the third part, a new compensator structure is proposed for LTR design for the
recoverable target loops. The proposed compensator (i) is open-loop stable, (ii) guarantees
closed-loop stability, and above all (iii) requires much smaller values of gain than the
conventional observer based controller for the same degree of recovery. This is shown both
theoretically as well as by a bank of numerical examples including the helicopter control
system design. Also, the theoretical bounds on sensitivity and complementary sensitivity
functions obtained here demonstrate the advantages of using the compensator structure

over the observer based controller structure in loop transfer recovery.
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Chapter 1

INTRODUCTION AND
PRELIMINARIES

1.1. Introduction

In feedback control system design, specifications such as stability of the closed-loop system,
performance objectives of command following, fast response and disturbance rejection, and
robustness objectives of maintaining stability and insensitivity to plant parameter varia-
tions and other uncertainties, are common. In single-input single-output (SISO) systems,
as is well known from the days of Bode and Nyquist, such specifications can easily be cast
in terms of the magnitude of a sensitivity function (the inverse of return difference) or
equivalently in terms of the magnitude of loop gain (loop transfer function) obtained by
breaking the loop at any point of the feedback loop. In fact, it is intuitively clear in SISO
design that large loop gains or so called tight loops, yield good performance. However, as is
known, loop gains cannot be made arbitrarily high over arbitrarily large frequency ranges.
Rather they must satisfy certain tradeoffs and design limitations. A major tradeoff, for
example, concerns command and disturbance error reduction versus output measurement
noise error reduction. Large loop gain values over a large frequency range make errors due
to command and disturbances small; but they also make errors due to output measurement
noise large. There is yet another and perhaps more important limitation — namely the ro-

bustness requirement of tolerance to model uncertainties. Physical plants, in particular
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the way they deviate from finite dimensional linear models, put strict limitations on the
frequency range over which the loop gains may be large. This is to say that the open-loop
transfer gain of a feedback system must appropriately be ‘shaped’ in the frequency domain
in order to achieve the desired stability and performance objectives in the face of model
uncertainties. This is the essence of classical SISO frequency domain design philosophy.
Recently, the efforts of many researchers, notably those of Doyle and Stein (18], have shown
that multi-input multi-output (MIMOQ) design preblems de not differ fundamentally from
their SISO counter parts. What distinguishes MIMO from SISO design is that instead of a
single scalar sensitivity function or equivalently a loop gain in SISO design, in MIMO case
one has to deal with a sensitivity or complementary sensitivity matrix function, or equiv-
alently a loop transfer matrix obtained by breaking the loop at an appropriate point of
the feedback loop. Consequently, some norm of loop transfer matrix replaces the absolute
value or magnitude of loop gain. Also, since matrix multiplication is not commutative, in
the MIMO case the point at which the loop is broken to calculate the loop transfer matrix
depends on where the expected unstructured model uncertainties can most appropriately
be modeled. Thus in analogy with classical frequency domain concepts, the work of Doyle
and Stein [19] has shown that in the MIMO feedback system design as well, the objectives
of stability, performance and robustness in the face of uncertainties, can be cast in terms of
bounds on maximum and minimum singular values of some sensitivity and complementary
sensitivity matrix functions, or equivalently in terms of bounds on maximum and minimum
singular values of appropriate loop transfer matrices. In short, the work of Doyle and Stein
revealed that the classical concept of ‘loop shaping’ is still a viable key to design MIMO
feedback loops as well.

A prominent design methodology for MIMO systems which is based on the ‘loop shaping’
concept is LQG/LTR. It involves two separate designs of a state feedback controller and
an observer. The exact design procedure depends on the point where the unstructured

uncertainties are modeled and where the loop is broken to evaluate the open-loop transfer
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matrices. Commonly either an input point or output point of the plant is taken as such
a point. We will concentrate our discussion on the case when the loop is broken at the
input point of the plant. The required results for the output point are obtained via duality.
Thus in the two step procedure of LQG/LTR, the first step of design involves loop shaping
by state feedback design to obtain an appropriate loop transfer function, called the target
loop transfer function. Such a loop shaping is an engineering art and often involves the
use of linear quadratic regulator {LQR) design in which the cost matrices are used as
free design parameters to generate the target loop transfer function, and thus the desired
sensitivity and complementary sensitivity functions. However, when such a feedback design
is implemented via an observer based controller (or Kalman filter) that uses only the
measurement feedback, the obtained loop transfer function in general is not same as the
target loop transfer function, unless proper care is taken in designing the observers. This
is when the second step of LQG/LTR design philosophy comes into picture. In this step,
the required observer is designed so as to recover either exactly or approximately the loop
transfer function of the full state feedback controller. This second step has come to be
known as LTR.

The topic of LTR has been the subject of a number of authors including [2], [4], [8],
[9], [10], [11], [12], [13], [16], 18], [19], [22], 23], [25], (27], [28], [29], [31], [32], [33], [34],
[37], [56], [39], [40], [43], [50], [53], [58] and [59]. Both continuous and discrete systems
have been considered. During the last ten years the subject has achieved a certain amount
of maturity. My own research efforts for the last two years have uncovered a number of
aspects of LTR analysis and design [4], [8], [9), [10], [11], [12], [13], [14], [15], [39] and [40].
The purpose of this thesis is to discuss various aspects of LTR for continuous systems under
a single cover.

Throughout this thesis we shall adopt the following conventions and notations:

A’ := transpose of A,
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I:

Ik:

MA) :

Re [A(A)] :
Omasl Al
minA] -
Ker[V] :
Im[V]:
R:

c:

c:

s

c:

G(jw) :
Ry
M&R,) :

complex conjugate transpose of A,

an identity matrix,

an identity matrix of dimension kxk,
the set of eigenvalues of A,

the set of real parts of eigenvalues of A,
the maximum singular value of A,

the minimum singular value of A,

the kernel of V,

the image of V,

the set of real numbers,

the whole complex plane,

the open left-half complex plane,

the closed left-half complex plane,

the jw axis of complex plane,

G(3) | s=ju>

the subring of all proper rational functions of s,

the set of matrices of dimension £ x ¢ whose elements belong to R,.

The subject matter of this thesis is organized as follows. In the next section, we intro-

duce the problem formulation of loop transfer recovery in precise mathematical terms for

the cases when plant uncertainties are respectively modeled at the plant input and output

points. The section on preliminaries recalls a special coordinate basis (s.c.b) of multivari-

able linear systems. As will be seen throughout the thesis, the finite and infinite zero

structure of L plays a dominant role in LTR analysis and design, and the s.c.b given here

displays explicitly the required zero structure and there-by helps the readers to understand
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clearly the various results presented. Chapter 2 describes the structural details of both full
and reduced order observer based controllers. It also develops some preliminary analysis
and introduces what is called a recovery matrix M(s). It turns out that the recovery error
E(s) can be rendered zero if and only if M(s) can be rendered zero. Thus the study of
the recovery matrix M(s) is the key to both the analysis as well as design of controllers for
LTR. Chapter 2 also shows how the study of LTR utilizing either a full or reduced order
observer based controller can be unified into a single mathematical framework. Chapter 3
considers the detailed analysis of the LTR problem. The analysis of the LTR mechanism
focuses on four fundamental issues. The first issue is concerned with what can and what
cannot be achieved for a given system and for an arbitrarily specified target loop trans-
fer function. On the other hand, the second issue is concerned with the development of
necessary or/and sufficient conditions a target loop has to satisfy so that it can be either
exactly or asymptotically recovered for a given system, while the third issue is concerned
with the development of necessary or/and sufficient conditions on a given system such that
it has at least one recoverable (either exactly or asymptotically) target loop. The fourth
issue deals with a generalization of all the above three issues when recovery is required
over a subspace of the control space. It is concerned with generalizing the traditional LTR
concept to sensitivity recovery over a subspace and deals with method(s) to test whether
projections of target and achievable sensitivity and complementary sensitivity functions
onto a given subspace match each other or not. All this analysis shows some fundamen-
tal limitations of the given system as a consequence of its structural properties, namely
finite and infinite zero structure and invertibility. Consequently, for general systems, LTR
is not completely feasible although there exists considerable amount of freedom to shape
the inevitable recovery error. Thus the analysis given here helps to set meaningful design
goals at the onset of design. Actual design of controllers for LTR is considered in Chapter
4. In view of the necessary design constraints and the available design freedom, possible

specifications on the time-scale and/or eigenstructure of the observer dynamic matrix are
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formulated there at first. Then three types of design schemes are developed in detail. The
first one is an asymptotic time-scale and eigenstructure assignment (ATEA) scheme, and
the other two are optimization based designs; one dealing with the minimization of the
H; norm of the so called ‘recovery matrix’ while the other dealing with the minimization
of the H,, norm of the same. Relative advantages and disadvantages of both ATEA and
optimization based design schemes are discussed. The traditional observer design based
on Kalman filter formalism [18] belongs to the class of H; norm minimization schemes.
Besides the conventional LTR problem which is concerned with recovery over the entire
control space, another generalized recovery problem where the concern is with recovery
over a specified subspace of the control space is also considered in Chapter 4. In Chapter 5,
a new stable compensator structure for LTR design for recoverable target loop is proposed.
The proposed compensator (a) is open-loop stable, (b) guarantees closed-loop stability and
above all (c) requires much smaller values of gain than the conventional observer based
controller for the same degree of recovery. Finally, Chapter 6 makes relevant conclusions

and points out other aspects of LTR which are not discussed in this thesis.
1.2. Problem formulation

Let us consider continuous-time systems and formulate the LTR problem in precise math-

ematical terms. Let a model of the given plant be described by a system X,

z = Az + Bu,
I: (1.2.1)
y = Cz + Du,

where the state vector z € R, output vector y € R? and input vector u € R™. Without
loss of generality, throughout the thesis, we assume that [B’, D'}’ and [C, D] are of maximal
rank, and that ¥ is stabilizable and detectable. As mentioned earlier, let us first concentrate
on a case when plant uncertainties are modeled at the input point of a nominal plant model
and hence the required loop transfer function is specified at the plant input point. However,

our results can be generalized easily for the case when the required loop transfer function
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Figure 1.2.1: Plant — Controller closed-loop configuration.

is specified at any arbitrary point. In fact, for the case when the required loop transfer
function is specified at the plant output point, our results can easily be dualized. We

discuss these issues in the next subsections.

1.2.1. LTR design for input break point

Let F be a full state feedback gain matrix such that (a) the closed-loop system is asymp-
totically stable, i.e. eigenvalues of A— BF lie in the left half s-plane, and (b) the open-loop
transfer function when the loop is broken at the input point of the given system meets

some given frequency dependent specifications. The state feedback control is
u=-—Fz (1.2.2)

and the loop transfer function evaluated when the loop is broken at the input point of the

given system, the so called target loop transfer function, is
Li(s) = F®B (1.2.3)

where @ = (sI,— A)~!. The corresponding target sensitivity and complementary sensitivity

functions are

Si(s) =[Im + F®B]™' and  Ti(s) = I, — Si(s).

Arriving at an appropriate value for F is concerned with the issue of loop shaping which,

as discussed earlier, often includes the use of linear quadratic regulator (LQR) design in
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which the cost matrices are used as free design parameters to generate L;(s) that satisfies the
given specifications, and thus yields the desired sensitivity and complementary sensitivity
functions. The next step of design is to recover the target loop using only a measurement
feedback controller. This is the problem of loop transfer recovery (LTR). To explain it
clearly, consider the configuration of Fig. 1.2.1 where C(s) and P(s) are respectively the

transfer functions of a controller and of the given system. Given a
P(s)=C®B + D, (1.2.4)

and a target loop transfer function L.(s), one seeks then to design a C(s) such that the

recovery error E(s),

E(s) = L(s) — C(s)P(s), (1.2.5)

is either exactly or approximately equal to zero in the frequency region of interest while
guaranteeing the stability of the resulting closed-loop system. Achievingexact LTR (ELTR)
is in general not possible. One seeks then approximate LTR. The notion of ‘approximate’
LTR has to be defined a little carefully. Here we seek achieving LTR to any arbitrarily
desired accuracy. In an attempt to make this feasible, one normally parameterizes C(s)
as a function of a scalar parameter o and thus obtains a family of controllers C(s, o). We
say asymptotic LTR (ALTR) is achieved if C(s,o)P(s) — L(s) pointwise in s as ¢ — oo,
i.e., E(s,0) — 0 pointwise in s as ¢ — oco. Achievability of ALTR enables the designer to
choose a member of the family of controllers that corresponds to a particular value of &
which achieves a desired level of recovery. In order to impart precise meanings to ELTR

and ALTR, let us next consider the following definitions:

Definition 1.2.1. The set of admissible target loops T(X) for the given system ¥ is defined

by
T(E) = {L:(s) € M™*™(R,)| Le(s) = F®B and \(A—- BF)eC~}.
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Definition 1.2.2. Ly(s) € T(X) is said to be exactly recoverable (ELTR) if there exists a
C(s) € M™*?(R,) such that
(i) the closed-loop system comprising of C(s) and P(s) as in the configuration of Fig.
1.2.1 is asymptotically stable, and

(ii) C(s)P(s) = Ly(s).

Definition 1.2.3. L(s) € T(X) is said to be asymptotically recoverable (ALTR) if there
exists a parameterized family of controllers C(s,0) € M™*?P(R,), where o is a scalar
parameter taking positive values, such that
(i) the closed-loop system comprisiﬁg of C(s,0) and P(s) as in the configuration of Fig.
1.2.1 is asymptotically stable for all ¢ > o*, where 0 < o* < o0, and
(ii) C(s,0)P(s) — L¢(s) pointwise in s as o — co. Moreover, the limits, as ¢ — oo, of

the finite eigenvalues of the closed-loop system should remain in C~.}

Definition 1.2.4. L,(s) belonging to T(X) is said to be recoverable if L(s) is either exactly

or asymptotically recoverable.

Definition 1.2.5.

1. The set of exactly recoverable target loops for the given system X is denoted by
T™*(Z).

2. The set of recoverable target loops for the given system X is denoted by T*(Z).

3. The set of target loops which are asymptotically recoverable but not exactly recov-

erable for the given system I is denoted by T**(Z).

Obviously, T*(Z) = T*(Z) U T**(X).

tHere we have strengthened the notion of the closed-loop stability in order to exclude those cases having
the limits, as ¢ — 00, of some finite eigenvalues of the closed-loop system being on the jw axis. This avoids
having an almost unstable behavior of the closed-loop system for large o.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

1.2.2. LTR design for output break point

We will show next in this subsection, how duality arises for LTR between the two cases
when the loop is broken at the input point or at the output point of the plant. The problem
of LTR when the loop is broken at the input point of the plant is dual to that when the
loop is broken at the output point of the plant. In order to avoid any confusion, we give
below a formal step by step algorithm to show how duality arises for LTR at the input and
output points.
1. Let the given plant ¥ be characterized by the quadruple (A, B, C, D) where A, B,
C and D are respectively n x n, n x m, p x n and p X m matrices. Also, let P(s) be

the transfer function of X,
P(s)=C(sl,— A)'B+ D.

Let L(s) = C(sI, — A)"'K be an admissible target open-loop transfer function, i.e.
A(A - KC) € C~, when the loop is broken at the output point of the given plant.
Then, in the configuration of Figure 1.2.1, we are seeking a controller C(s) such that

the closed loop system is asymptotically stable and
E°(s) := Ly(s) — P(s)C(s)=0 foralls

in the case of exact loop transfer recovery when the loop is broken at the output
point (ELTRO) of %, or we are seeking a controller C(s, ¢) such that the closed-loop

system is asymptotically stable for all o > ¢*, where 0 < ¢* < 00, and
E°(s,0) := Li(s) — P(s)C(s,0) = 0 pointwise in s as ¢ — o0

in the case of asymptotic loop transfer recovery.

2. Define a dual system 4 characterized by the quadruple (A4, By, C4, D4) where

Ag:=A", By:=C', Cy:=B', Dy:=D.
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Note that Py(s), the transfer function of the dual plant Xy is P'{s). Let L(s) be
defined as
Ld(s) = L:(s) = Fd(sI,, - Ad)_le,

where Fy := K. It is simple to verify that the loop recovery error E?(s) is
E¥(s) := La(s) — Ca(s)Pu(s) = [E°(s)]"

Then, it follows that L(s) is either exacily or asymptotically recoverable at the
output point iff Ly(s) is respectively either exactly or asymptotically recoverable for
¥4 at the input point.

3. For the purpose of design alone, consider the fictitious plant X4 as given in step 2.
Then design a controller Cy(s) such that the closed-loop system is asymptotically
stable and

E'(s) := Lq(s) ~ Ca(s)Ps(s) =0 for all s
in the case of exact loop transfer recovery when the loop is broken at the input
point (ELTRI) of X4, or a controller C4(s,o) such that the closed-loop system is-

asymptotically stable for all & > o*, where 0 < 0* < 00, and
Ei(s,0) := Lqg(s) — Ca(s,0)Pi(s) —» 0 pointwise in s as ¢ — oo

in the case of asymptotic loop transfer recovery when the loop is broken at the input
point (ALTRI) of Z,.
4. Define a controller C(s) or C(s,s):

C(s) := Cy(s)

or

C(s,0) := C(s, o).

Then it can be verified trivially that the controller C(s) or C(s, o) designed above and
implemented as in figure 1.2.1 achieves either ELTRO or ALTRO. In fact, by the same
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reasoning, any LTR analysis or design required at the output point for the plant ¥ can
equivalently be done by considering the LTR analysis or design for ¥4 at its input point.
As such, throughout this thesis, we consider only LTR analysis and design at the input

point for any given system .
1.3. Preliminaries

As mentioned earlier, finite and infinite zero structures of both the given system and the
target loop transfer function play dominant roles in the recovery analysis as well as design.
In fact, the whole subject of LTR can be viewed as a study of assigning an appropriate zero
structure to the closed-loop system within the constraints imposed by the zero structures
of the given open-loop system and the target loop transfer function. Thus a good nonam-
biguous understanding of zero structure is essential for our study. Keeping this in mind,
we recall in this section a special coordinate basis (s.c.b) of a linear time invariant system
[41], [42]. Such a s.c.b has a distinct feature of explicitly displaying the finite and infinite
zero structure of a given system. Connections between the s.c.b and the various invariant
and almost invariant subspaces of geometric theory as needed for our development are also
given. In fact, it is easy to understand all the structural properties of a given system via
its s.c.b presented here. The s.c.b described here forms an integral part of all our analysis
and design methods throughout this thesis.

Consider a system X characterized by the quadruple (A4, B,C, D) as in (1.2.1). It is

simple to verify that there exist non-singular transformations U and V such that
I,, 0
UDV = [ m 0] : (1.3.1)

where my is the rank of matrix D. Hence hereafter, without loss of generality, it is assumed

that the matrix D has the form given on the right hand side of (1.3.1). One can now rewrite
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the system of (1.2.1) as,

i = Az + [Bo B,][Z:],

vo] _ [Co In 0] [uo]
yl]— Ct]z+[0° 0] lul’

where the matrices By, B;, Co and C; have appropriate dimensions. We have the following

(1.3.2)

theorem.

Theorem 1.3.1 (s.c.b). Consider the system I characterized by (A, B,C, D). There ex-
ist nonsingular transformations I';, I'; and T'3, an integer my < m—my, and integer indexes

g, t = 1 to my, such that
=%, y=Tw , u=Tsi
z = [z, 2}, T, sz]’ y & =[(z7), (=)
By =[zh o5 - ’z:n!]’
§y= [y({” y'f’ yl’i]’ y Y1 = [yl) Y2y *-° ’ym!]’

@ = [ub,uf, ul) , up=[ur, uzy oo yumyl,

and
& = ALz, + Bo,yo+ Lasys + Lyye (1.3.3)
z} = ALzt + Biyo + L:’,y; + L (1.3.4)
&y = Awzs + Bosyo + Logys o 95 = Chzs (1.3.5)

T, = Az + BOcyO + chyb + chy! + Bc[ ;x; + E;:z:] + B.u, (136)
Yo = C&J.’C; + C'{,';z:’ + Copzpy + Coce + Co;:l:f + up (1.3.7)

and for each i =1 to my,

my
; = A+ Lioyo + Lisys + By [t + EiaTa + Eiszs + Eicze + ) Eijz; ) (1.3.8)

=1
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Y = C,;_-Zg s U= CJ Zy. (139)

Here the states =7, zF, 3, z. and z; are respectively of dimension n7, n}, ny, n. and
my

ng = Y g while z; is of dimension g; for each i =1 to my. The control vectors uo, us and
i=1

u. are respectively of dimension mq, my and m. = m — mg — my while the output vectors
Yo, ¥y and ys are respectively of dimension po = mo, py = my and py = p — po — ps. The

matrices Ay, B,; and C,; have the following form:

0 I, 0
Aq.' = [0 qbl] s Bq.- = [1] ’ Cq.' = [1, 0,"’, 0]. (13.10)

(Obviously for the case when ¢; = 1, we have Ay;;= 0, B,,= 1 and C,,;= 1.) Furthermore,
we have M(A7,) € C~, M(A}) € C*, the pair (A, B.) is controllable and the pair (Aw,Cs)
is observable. Also, assuming that z; are arranged such that ¢; < giy1, the matrix L;; has

the particular form,

Ly = [Liry Liay +++y Lii-1, 0,0, <+, 0].

Also, the last row of each L;; is identically zero.

Proof : For strictly proper systems, using a modified structural algorithm of Silverman
[49], an explicit procedure of constructing the above s.c.b is given in [41]. The required
modifications for nonstrictly proper systems are given in [42]. Here by an obvious change
of basis, the variable z, is further decomposed into z; and z}. Also, a software package

to generate the s.c.b of any given system is given by [26]. |

Remark 1.3.1. Given a specified region C, of complex plane, one can easily decompose

z, into =7 and z} such that M(A7,) € C; and A(A},)¢ C,.
We can rewrite the s.c.b given by theorem 1.3.1 in a more compact form,

i=A%+Bua , §j=Ci+ Da, (1.3.11)
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where
A;a 0 L;},C’z, 0 L:fo
) 0 Ar LiC, 0O L:fo
A:= FII(A - BoCo)F1 = 0 0 A 0 LUC{ ,
B.E BCE; LaCy Aee LyCy
BfE: BfE: BfEb BfE'c Af
B, 0 0
) B 0 0
B:=F;1[Bo BI]P3= Boa 0 0 y
Bee 0 B.
Boy By ©
i [Co] [05;, Cs. Cop Coc Co,}
G=T5*| |m=|0 0o o o ¢,
Ci 0 0o G 0 0
and

) I, 0 0
D:=TI;'DI3=|0 0 0}.
0 00
We can also define a dual system X4 characterized by the quadruple (A4, By, Cy, Da) where

Ag:=A, By:=C', Cy:= B, Dg:=D'. (1.3.12)

In what follows, we state some important properties of the s.c.b which are pertinent
to our present work. These properties are stated without proofs, however the proofs are

straightforward and simple.

Property 1.3.1. The given system I is right invertible iff z, and hence y;, are nonexistent
(ny = 0, py = 0), left invertible iff z. and hence u. are nonexistent (n. = 0, m. = 0),
invertible iff both z) and z. are nonexistent. Moreover, I is degenerate iff it is neither left

nor right invertible.

Property 1.3.2. We note that (Asw, Cs) and (Ay;, Cy;) form observable pairs. Unobserv-
ability could arise only in the variables z, and z.. In fact, the system X is observable

(detectable) iff (Agbs, Cobs) is an observable (detectable) pair, where

—_ A““ 0 — A;a O — COa COc
Aote = [BCE,..., Ax]  Aee = [ 0 A:,] G = [E E}
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Cﬂﬂ = [C(;-ov C(-)‘;:L Ea = [Eg—’ E:]: Ea= [Ec-:p E;-t; .
Similarly, (Ac, B;) and (Aq;, By;) form controllable pairs. Uncontrollability could arise

only in the variables z, and 3. In fact, ¥ is controllable (stabilizable) iff (Acon, Beon) is a

controllable (stabilizable) pair, where

- Asa Labe - BOo Laf
e 5] e [ )

- B- - - - L:l
Boyy = [Bg’-:] y Lap = [LS-:] ’ L¢f= [L:}]'

Property 1.3.3. Invariant zeros of £ are the eigenvalues of A,s. Moreover, the stable and
the unstable invariant zeros of L are the eigenvalues of A, and A}, respectively. Thus,
the system X is of minimum phase iff n} = 0 and hence A}, is nonexistent. On the other

hand, ¥ is of nonminimum phase iff n} > 0.

There are interconnections between the s.c.b and the invariant and almost invariant
geometric subspaces. To show these interconnections, we define the following geometric

subspaces of a linear system.
Definition 1.3.1.

1. V?(X) — the maximal subspace of R" which is (A + BF)-invariant and contained in
Ker (C + DF) such that the eigenvalues of (A + BF)|V? are contained in C, C C for

some F.

2. §9(E) — the minimal (A4 KC)-invariant subspace of R containing in Im (B+ K D)
such that the eigenvalues of the map which is induced by (A + KC) on the factor

space " /87 are contained in C, C C for some K.

For the cases that C; = C, C; = C~ and C, = C*, we replace the index ¢ in V¢ and S by *,

= and *, respectively.
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Various components of the state vector of s.c.b have the following geometrical interpre-

tations.

Property 1.3.4.

1. 27 @z} @z, spans V*(T).
z; @z, spans V~(X).
z} @ z. spans V¥(Z).
z.® z; spans §*(X).
z; ®z.Dzs spans ST(IT).

I

z¥ ®z.®zs spans S~(I).
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Chapter 2

OBSERVER BASED
CONTROLLERS

2.1. Full and reduced order observer based controllers

In this chapter, we give the structural details of both full and reduced order observer based
controllers commonly used in LTR. Other controller structures for LTR are possible and
one such structure, called compensator structure [10], is discussed in chapter 5. As might
be expected, the two controllers considered here might have different capabilities regarding
LTR; but as will be seen shortly there exists a common mathematical machinery to analyze
them under a single frame work. In subsequent chapters, we will systematically do LTR
analysis using a generic controller which could be either of the two controllers. In such an

analysis, we will use the following notation :

C(s) := transfer function of the controller,

L(s) := C(s)P(s) = achieved loop transfer function,

S(s) :=[Im + L(s)]* = achieved sensitivity function,

T'(s) := In — S(s) = achieved complementary sensitivity function,
E(s) := Ly(s) — L(s) = recovery error,
M(s) := The recovery matrix (to be defined later on),

M°(s) = recovery error matriz, which is the limit of the recovery matrix,
18
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T*(Z set of exactly recoverable target loops for I,

) =
T*(X) = set of recoverable target loops for T,
)

T**(Z) = set of asymptotically but not exactly recoverable target loops for I.

The above notation applies to a generic controller, however, whenever we refer to a par-
ticular type of controller, we shall use appropriate subscripts to identify it. Subscripts f
and r are used respectively to represent full and reduced order observer based controllers.
For example, M;(s) and T}(Z) denote respectively the recovery error matrix when a full
order observer based controller is used, and the set of recoverable target loops for ¥ when
a reduced order observer based controller is used.

We now proceed to give the structural details of the controllers considered here.

2.1.1. Full order observer based controller

The dynamic equations of a full order observer based controller are

£ = A + Bu+ K;(y — Cz — Du),
(2.1.1)

u=u=-Fz,
where K is the observer gain chosen so that A — K;C is asymptotically stable, and F
is the state feedback gain that prescribes the target loop transfer function L¢(s) = F®B.

The transfer function of the controller is
Cf(s) = F[sIn—A+BF+K;C—KfDF]-1KJ. (2.1.2)

2.1.2. Reduced order observer based controller

In this case, without any loss of generality but for simplicity of presentation, it is assumed

that the matrices C and D have been transformed into the form,

0 Co

¢= [I,,_mo 0

and D= [l[))o] .
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Then the dynamic equations of £ can be partitioned as follows,
[i'l] - [Au Au] [1'1] + Bu]u
:i:g Agl A22 T 322 ’
Yoi _ 0 Coz] [-’L'l] [Do]
yl] - [Ip—mo 0 z3 + (N

We note that y; = z, is already available and need not be estimated. Hence one needs only

(2.1.3)

the estimate of ;3. To proceed further, let us rewrite the state equation for z; in terms of

the output y; and state z; as,

%1 = Auy + Anaza + B, (2.1.4)
Since ; and y; are known, (2.1.4) can be rewritten as
Y1 = Anzz2 + Buu = g1 — Anyr. (2.1.5)
Thus, observation of z; is made via (2.1.5) as well as by
Yo = Cozz3 + Dou.

Now, a reduced order system suitable for estimating the state z, is given by
= Az + Bru+ Any,

T2
(2.1.6)
[3{0 = Y = Cr$2 + Dru’

n

where

Cm] [Do]
A.=Ag, B,=Bpy, ,=[ . D, = . 2.1.7
= G By @17)

Based on equation (2.1.6), we can construct a reduced order estimate of the state z, as,
&1 = Arda+ Bu+ Auypr + K, (yr — Cr22 — Dyu), (2.1.8)

where K, is the reduced order estimator gain matrix and is chosen such that A, — K,C,
is asymptotically stable. For the purpose of implementing it, (2.1.8) can be rewritten by
partitioning K, = [K;s, K] in conformity with yo and §, and by defining the following
variable v,

v= .'Eg - Krlyl- (21.9)
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Then the reduced order observer based controller becomes

i) = (A' - KrCr)v ’+' (Bf bt Kf.Dr)u + Gry,
(2.1.10)
u=t4= —F1$1 ol Fgf)g = —ng - [0, F1 + FgK,l]y,
where '
F= [Fl) F2] ’ Gr = [KrOs A21 - KrlAll + (Ar - KrCr)Krll- (2-1-11)

The transfer function from —u to y that results in using the reduced order estimator is

then given by

C,(s) = FQ(SI - A,. -+ K,C,- + B,-Fg hnd K,-D,-Fg)-l

: (G, — (B, - K.D,)[0, F, + FgK,1]> +0, Fi+ K, (2.1.12)

Proposition 2.1.1. For the case when X is right invertible and the matrix D is of maximal

rank, full and reduced order observer based controllers coalesce into one and the same.

Proof : When X is right invertible and matrix D is of maximal rank, we have
Ar=An=A, B,=By=B, C,=Cup=C, D.,=Dy=D.
Using these facts, it is easy to verify the above proposition. | |

2.2. Preliminary analysis

We proceed now to do some preliminary analysis of recovery error E(s). It turns out that
the expression, E(s) = Lq(s) — L(s), is not well suited for loop transfer recovery analysis.
Realizing this, for the class of systems he considered, Goodman [22] related E(s) to a matrix
M(s), here after called the recovery matrix. The following lemma generali.zes Goodman’s
result for general nonstrictly proper systems and for both full and reduced order observer

based controllers considered here.

Lemma 2.2.1. Let ¥ be stabilizable and detectable. Also, let L(s) = F®B be an admis-

sible target loop, i.e. Ly(s) € T(X). Then the error, E(s), between the target loop transfer
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Figure 2.2.1: Plant and controller configuration.

function L¢(s) and that realized by either of the controllers considered here, can be written
in the form,
E(s) = M(3)[Im + M(s)]*(Im + F®B). (2.2.1)
Furthermore for all w € Q,
E(jw)=0if M(jw)=0

where () is the set of all 0 <| w |< oo for which L(jw) and L(jw) = C(jw)P(jw) are well
defined (i.e. all the required inverses exist). The expression for the recovery matrix M(s)

depends on the controller used. In particular, we have

My(s) = F(sI, — A+ K;C)™Y(B - K;D), (2.2.2)
M,(s) = Fy(sI — A: + K,C,)"Y(B, - K, D,). (2.2.3)
Proof : See Appendix 2.A. |

A physical interpretation of the recovery matrix M(s) can be given. To do so, one can
view the controller as a device having two inputs, (1) the plant input u and (2) the plant
output y as shown in 2.2.1. Then, —M(s) is the transfer function from the plant input

point to the controller output point while M (8) is the transfer function from the plant
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input peint to the estimated state . That is, one can write
U(s) = —FX(s) = =M(s)U(s) - N(s)Y (s),

and
X(s) = M(s)U(s) + N(s)Y(s).

Here, depending on the type of controller used, the expressions for M(s) are as given in
(2.2.2) and (2.2.3). Also, M(s) is such that M(s) = FM(s). Moreover, for each type of

controller, the expressions for N(s) and N(s) are as given below.
Ni(s) = F(sI - A+ K;C)'K; , Ny(s)=FNy(s),

N,(s) = Fy(sI - A, + K,C,)™'G, + [0, F, + ;K1) , N.(s)=FN,(s).

In view of the above expressions, lemma 2.2.1 implies that whenever LTR is achieved, the
controller output does not entail any feedback from the plant input point. On the other
hand, the state estimate  in general depends on the plant input. The significance of
lemma 2.2.1 can be seen in two ways. It converts the LTR analysis problem into a study of
conditions under which M(s) can be rendered zero. Also, it unifies the study of M(s) for
both types of controllers into a single mathematical framework. To see this explicitly, let
us define an auxiliary system X, characterized by the matrix quadruple (A,, B,,C,, D,).

Then we have the following observation.

Observation 2.2.1. The LTR mechanism for the given system ¥ using a reduced order
observer based controller can be studied using the auxiliary system X, using a full order

observer based controller constructed for it where in F; takes the place of F.

In view of lemma 2.2.1 and observation 2.2.1, our study of LTR for both types of con-
trollers is unified and reduces to the study of an appropriate recovery matrix M(s). In order
to further cement such a unification, we need to investigate the relationship between the

structural properties of X, and . The following proposition delineates such a relationship.
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Proposition 2.2.1.

1. I, is of (non-) minimum phase iff ¥ is of (non-) minimum phase.
¥, is detectable iff ¥ is detectable.
Invariant zeros of ¥, are the same as those of ¥.

Orders of infinite zeros of X, are reduced by one from those of .

AT

L, is left invertible iff £ is left invertible.
6. (2) VHE,) = VH(Z).

7. (g) §7(Z,) =8 (Z)NT, where U := {z | Cz € Im(D)}.

8. §7(Z,) = 0 iff X is left invertible and of minimum phase with no infinite zeros of

order higher than one.

Proof : See Appendix 2.B. ]

Remark 2.2.1. For a left invertible and minimum phase system X, it is simple to see that
§~(%,) =87 (E2)NTV = 0 if T has no infinite zeros of order higher than one. Also, for a
nonstrictly proper single-input-single-output system X, §~(Z) = S§~(%,) =S~ ()N =0

iff it is of minimum phase.
2.A. Appendix 2.A — Proof of Lemma 2.2.1

To simplify and to unify the proof of lemma 2.2.1 for both full 2nd reduced order observer

based controllers, fisrt we examine the following Luenberger observer based controller:

b = Lv+Gu+ Hy,
(2.A.1)
-u = Fz=Pv+Vy,

where v € R" with r being the order of the controller. It is well known (see e.g., [32]) that
& is an asymptotic estimate of the state z provided that (a) L is an asymptotically stable

matrix and (b) there exists a matrix T € R™*" satisfying the following conditions:

1. TA-LT =HC,
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4. VD =0.
We have the following proposition given earlier in Niemann et al [32] although our proof

of it is slightly different from that of [32].

Proposition 2.A.1. Consider any admissible target loop transfer function Li(s) = F®B.

Then the error E(s) realized by Luenberger observer based controller of (2.A.1) is given by
E(s) = M(s)[Im + M(s)] "} (In + F®B), (2.A.2)

where

M(s) = P(sI - L)™'G. (2.A.3)

Proof of Proposition 2.A.1 : It is straightforward to see that the transfer function of a

Luenberger observer based controller is given by
C(s)=V + P(sI - L+ GP)™'(H - GV)
=V +[I+ P3G Pd,(H - GV)
= [I+ M(s)]'[V + P2, H], (2.A.4)

where &, := (sI — L)™*. Also, using the fact that TA — LT = HC, it is trivial to verify

that
P%,TB+ P HC®B — PT®B=0. (2.A.5)
Then we have
C(s)P(s) = [I + M(s)]*[V + P®.H])(C®B + D) (2.A.6)
= [+ M(s)]"'[VC®B + P9 HC®B + P%,HD)] (2.A.7)
=[I+ M(s)]}|[F®B - PT®B + P®HC®B + P9, HD] (2.A.8)

= [I + M(s)]"}[L«(s) — PT®B + P®HC®B + P®TB — P%,G] (2.A.9)

= [T+ M(s)]7[L(s) — M(s)] (2.A.10)
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Note that we used the facts, V.D = 0 to get (2.A.7) from (2.A.6); F = PT + VC to get
(2.A.8) from (2.A.7); G = TB~ HD to get (2.A.9) from (2.A.8), and finally (2.A.5) to get
(2.A.10) from (2.A.9). Now it simple to show that

E(s) = Le(s) — C(s)P(s)
= M(s)[I + M(s)]"}(I + F®B).

This completes the proof of proposition 2.A.1. o

Now, it is straightforward to verify that the full order observer based controller is a
special case of Luenberger observer based controller in (2.A.1) with
L=A-KiC, G=B-K;D, H=Kj,
{ P=F, V=0, T=1I
Similarly, the reduced order observer based controller is also a special case of (2.A.1) with
{ L=Apn-K.C, G=Bn-K,D,, H =G,,

P=F, V=[0,RA+FRK,), T=[-Kn,l].
Hence, equations (2.2.2) and (2.2.3) of lemma 2.2.1 follow trivially from (2.A.2) and (2.A.3).

|
2.B. Appendix 2.B — Proof of Proposition 2.2.1
Consider a linear time-invariant system characterized by
z = Az + Bu,
DE (2.B.1)
y = Cz + Du.
Without loss of generality, we can assume that the matrices C and D are of the form
[0 Cn [In, O ]
C—[Ip—mo 0 and D—[o ol
Then, we can partition the system (2.B.1) as,
[1'71] _ [Au Alz] [-’81] + By, Bl,l] [Uo]
t2]  LAn Al lz; Boa Byallul’
z: ' ' 2.B.2
pl-L e Sl
'} - Ip—mo 0 T2 0 0 Uy :
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Next, in this proof, we rewrite the special coordinate basis of section 2.2 slightly in an

expanded format. That is, we can choose the transformations I',, I'; and T', such that

I‘I—l All A12 - BO,ICOQ] F
* lAn Ay — Bo3Coal *
F A, La 0 0 Lasn  Lago 0 7
0 A Ch 0 Lypyi Lypio O
0 A Apza 0 Lygan Lyso O
= BcEca ch 0. Ac chl Lc]O 0 ?
Eta Epn Epa Efa  Am Apoe Apg
0 0 0 0  Am A Cp
L B2Ega2 BpaEpssn BpaEgnaa BpaEges Apnn Agzo Agaal
"By 0 0 07
By 0 0 0
BO,] Bl,l B(,oz 0 0 0
r;t ]1‘.-= Bg 0 0 B[, (2.B.3)
Bo2 By Biop I 0 0
Bjo 0 0 0
[ Bgoa 0 By 0]
Ll [T T e D
B o T o 0 0 001 o (2.B.4)
0 I 0 0 0 0 O
101 o000
I L={0 0 o o (2.B.5)
0 0
0 0 0O

Here we have decomposed our state space into seven subspaces, z =z, ® z5; ® 712 D z. ®
zyn ® zgn ® z4. Here z, = z7 @ 27, ie., z, is related to all finite invariant zeros of the
system; zp = 1 @ Zy2 where 733 = 23 N Ker (C}); z, is the same space as in the standard
s.c.b; finally z5 = z4, ® =44 ® z4,. Note that z; is related to the infinite zero structure of
the given system L. In particular, zj; is a part of the output which is related to infinite
zeros of order one, zy is the rest of the output and it is related to infinite zeros of order
higher than one, and z4, is zy N Ker (Cy).
We note that

Coz] [ I 0 ])
(Azz;[BO.% Bl-2]’F[A12 » T Boy By
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3 Coz ] [I 0 ])
- (A”’ [Boa, Bl'zl’[Au—Bo.xCoz 10 Biad)’

where I' is nonsingular and is given by

I 0
r=[_g, 1]
Hence, it is sufficient to prove proposition 2.2.1 for the new reduced order system charac-
terized by »
il [0 5])
A ? B b B b b *
( w [Boas Bual Ayz2 = Bo;1Co2 0 By,

From (2.B.3) to (2.B.5), we obtain

A, 0 0 0
A2z — By 2003 = Bc%m Aazz Aocc g ,
Bf2Efa2 BpaEyyy BpaEa  Agz
By 0 0 O
(Boa Bral=|2 0 0 2l

Bya 0 By; O
COa COb2 COc CO.f2

Coa _|Ea Ena Ea Apg
10 0 0 C ’
Ayz — By 1Co2 0 Cp 0 (f 2
and
I o I 0 0 07
]_ 0100
o Bl |3 00 0

It is interesting to observe from the above equations that

Coz ] I 0 )
(A22’ [BO,2’ Bl,2]1 [Au"'BO,ICO2 * 10 Bl.l

is already in the form of a special coordinate basis. Then all the properties listed in propo-

sition 2.2.1 follows trivially from the properties of the special coordinate basis discussed

earlier in section 2.2. 1
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Chapter 3
GENERAL LTR ANALYSIS

3.1. Introduction

This chapter deals with the general analysis of LTR mechanism using either of the con-
trollers discussed in the previous chapter. Notationally, in all our general discussion here,
we deal with the given system ¥ characterized by the quadruple (A, B,C, D) and the full
order observer based controller in which K is the observer gain. In view of observation
2.2.1, all the general discussion presented here can be particularized to the reduced order
observer based controller with appropriate notational changes. In all our main theorems,
we will however explicitly point out the capabilities of each type of controller as they might
be different.

As evident from lemma 2.2.1, the nucleus of LTR analysis is the study of M;(s) to
ascertain how and when it can or cannot be rendered zero. The required study of M/(s)
can be undertaken in two ways, with or without the prior knowledge of F that prescribes
the target loop transfer function Li(s). Note that the study of M/(s) without the prior
knowledge of F imitates the traditional LQG design philosophy in which the two tasks of
obtaining F and K are separated. Keeping this in mind, our goal in the next section is to
study Mj(s) without taking into account any specific characteristics of F. The following
section is devoted to LTR analysis while taking into account appropriate characteristics

of F. It complements the analysis of the earlier section. Decomposing M;(s) as F M (s),

29
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the study of My(s) without knowing F is the same one as the study of M(s). A detailed
study of M/(s) leads to two fundamental lemmas, one dealing with finite and another
dealing with asymptotically infinite eigenstructure assignment to the observer dynamic
matrix A — K;C by an appropriate design of K;. These two lemmas reveal the limitations
of the given system as a consequence of its structural properties in recovering an arbitrary
target loop transfer function via either a full or reduced order observer based controller.
Furthermore, they enable us te decompese M ;(s) into three essential parts, M g (s), M ;o(s)
and M ;(s). The first part M ‘;(3) can be rendered either exactly or asymptotically zero by
an appropriate finite eigenstructure assignment to A — K;C, while the second part M ;o(s)
can be rendered asymptotically zero by an appropriate infinite eigenstructure assignment
to A — K;C. The third part M ;(s) in general cannot be rendered zero, either exactly or
asymptotically, by any means, although our analysis of M ;(s) reveals a multitude of ways
by which it can be shaped. Allin all, the decomposition of M (s) into several parts and the
subsequent analysis of each part forms the gist of the LTR analysis discussed throughout
this book. In particular, it leads to several important results given in this chapter. For
example, theorem 3.2.2 characterizes the asymptotic behavior of loop transfer function
as well as sensitivity and complementary sensitivity functions achievable by either full or
reduced order observer based controllers. On the other hand, theorem 3.2.3 shows the
subspace ¢ € R™ in which M ;(s) can be rendered zero asymptotically, i.e, the projections
of the target and achievable sensitivity and complementary sensitivity functions onto S®
can match each other asymptotically. Next, in section 3.3, theorems 3.3.1 and 3.3.3 develop
the necessary and sufficient conditions a target loop transfer function L;(s) must satisfy
so that it can be either exactly or asymptotically recoverable for the given system . On
the other hand, theorems 3.3.2 and 3.3.4 develop the necessary and sufficient conditions
on ¥ so that it has at least one either exactly or asymptotically recoverable target loop
transfer function. Section 3.4 generalizes the results of sections 3.2 and 3.3 when recovery is

important over a prescribed subspace of the control space. Furthermore, our analysis in this
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chapter reveals the mechanism of pole zero cancellation between the controller eigenvalues

and the input or output decoupling zeros of X.
3.2. Recovery analysis for an arbitrary target loop

In this section, we consider that the target loop transfer function L(s) = F®B is arbitrary.
That is, we do not take into account any specific characteristics of L¢(s) in analyzing the
LTR mechanism. Then, as implied by lemma 2.2.1, M(s) as given below forms the basis
of our study,

My(s) = (s, - A+ K;C)™(B - K;D). (3.2.1)

It is evident that the gain K is the only free design parameter in M (s). First of all,
in order to guarantee the closed-loop stability, Ky must be such that A — K;C is an
asymptotically stable matrix. The remaining freedom in choosing K; can then be used
for the purpose of achieving LTR. We note that exact loop transfer recovery (ELTR) is

possible for an arbitrary F iff
M,(jw) = (jwl, — A+ K;C)™ (B - K;D) = 0.

However, due to the nonsingularity of (jwl,—A+K;C)™, the fact that M (jw) = 0 implies
that B — K;D = 0. The class of systems in which B — K;D can be rendered exactly zero
is very restrictive, and hence one normally attempts to achieve asymptotic loop transfer
recovery (ALTR), i.e. to render M §(jw) approximately zero in some sense. In order to
analyze whether ALTR is possible, as mentioned in the introduction, we parameterize the

gain K with a tuning parameter o and there-by creating a family of controllers,
Cy(s,0) = F[sI, — A+ BF + K4(0)C — K;(¢)DF]|™ Ky(o). (3.2.2)

In this case, M;(s) and M (s) are functions of ¢ and are denoted respectively by M;(s,0)

and M #(8,0). To proceed with our analysis, for clarity of presentation we will temporarily
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assume that A — K;C is nondefective. This allows us to expand M(s,o) and hence

My(s,0) in a dyadic form,

M y(s,0) =3 28

1=1 s - Ai

(3.2.3)

where the residue R; is given by
R; = W:VH[B - K,(0)D). (3.2.4)

Here W; and V; are respectively the right and left eigenvectors associated with the eigenvalue

Mi of A — K;(c)C and they are scaled so that WVH = VAW = I, where
W= [Wl, Wg, Ty, Wn] a.nd V = [‘/1, Vz, ey Vn]. (3.2.5)

In general, all X;, V; and W; are functions of . However, for economy of notation we will

not show the dependence on ¢ explicitly unless it is needed for clarity.

Remark 3.2.1. The assumption that K;(o) is selected so that A — K;(o)C is nondefec-
tive is not essential. However, it simplifies our presentation. A removal of this condition
necessitates the use of generalized right and left eigenvectors of A— K(c)C instead of the
right and left eigenvectors W; and V; and consequently the expansion of M (s, o) requires

a double summation in place of the single summation used in (3.2.3).

We are looking for conditions under which the i-th term of M (s, o) in (3.2.3) can be made

zero for each ¢ =1 to n. There are only two possibilities to do so.

1. The first possibility is by assigning A; to any finite value in C~ while simultaneously
rendering the corresponding residue R; zero either exactly or asymptotically, i.e.
Ri=0o0r R; = 0 as ¢ — co. Thus this possibility deals with finite eigenstructure

assignment to A — K;(o)C.

2. The second possibility is to make ét — 0 pointwise in s as 0 — oo. This can

be done by placing the eigenvalue X;(c) asymptotically at infinity while making sure
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that the corresponding residue R; is uniformly bounded as o — oco. It is important
to recognize that placing ); asymptotically at infinity alone is not beneficial unless
the corresponding residue R; is bounded. This amounts to assigning W;(c’) and Vi(0)
such that R; = W;(o)VH(o)[B - K(o) D] remains bounded while ; — oo as ¢ — co.
Thus this possibility deals with infinite eigenstructure assignment to A — K;(o)C.

The above two possibﬂities of making terms of M/(s,o) zero leads to the following two
fundamental questions: (1) How many left eigenveciors of A — K;(0)C can be assigned
to the null space of [B — Ky(a)D]' 7 and (2) How many eigenvalues of A — K;(c)C can
be placed at asymptotically infinite locations in C~ so that the corresponding residues are

finite? The following two lemmas respectively answer these two questions.

Lemma 3.2.1. Let A; and V; be an eigenvalue and the corresponding left eigenvector of
A — K(o)C for any gain Ky(o) such that it is asymptotically stable. Then the maximum
possible number of A; € C~ which satisfy the condition Ri=0is n; +ny. A total of ng of
these A; coincide with the system invariant zeros which are in C~ (the so called minimum
phase zeros) and the remaining ny eigenvalues can be assigned arbitrarily to any locations in
C~. All the eigenvectors V; that correspond to these n] + n; eigenvalues span the subspace
R™/S~(X). Moreover, the n; eigenvectors V; which correspond to the eigenvalues which
coincide with the system invariant zeros in C~ coincide with the corresponding left state

zero directions and span the subspace V*(Z)/V*(Z).
Proof : See Appendix 3.A. |

Remark 3.2.2. Instead of rendering the n] + n; residues R. mentioned in lemma 3.2.1
exactly zero, if one prefers, they can be rendered asymptotically zero as ¢ — oo. In that
case n, eigenvalues coincide asymptotically with the n; minimum phase invariant zeros
while the corresponding eigenvectors in the limit as ¢ — oo coincide with the corresponding

left state zero directions and span the subspace V*(X)/V*(Z).
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Lemma 3.2.2. Let X;; W; and V; be an eigenvalue and the corresponding right and left
eigenvectors of A — K;(o)C for any gain K(c) such that it is asymptotically stable.
The maximum number of eigenvalues of A — K;(0)C that can be assigned arbitrarily
to asymptotically infinite locations in C~ so that the corresponding R; are bounded as
| i |= oo is ny + ny. Furthermore, all the corresponding left eigenvectors V; of such

eigenvalues asymptotically span the subspace R"/V*(Z).

Proof : It follows along the same lines as lemma 3.3 of Saberi et al [39). [

As implied by lemma 3.2.1, in addition to n] eigenvalues which coincide with the
system minimum phase invariant zeros, there are n; other eigenvalues which can be assigned
arbitrarily to any locations in C~ such that R; = 0. This implies that R; corresponding to
these n; eigenvalues are identically zero and hence are bounded. Thus these n; eigenvalues
are included among the ny 4 n; eigenvalues indicated in lemma 3.2.2. That is, there is a set
of n, eigenvalues which can be placed arbitrarily at either asymptotically finite locations
in C~ as indicated by lemma 3.2.1 or at asymptotically infinite locations in C~ as indicated
by lemma 3.2.2. Here after in order to conserve the controller band-width, we will assume

that these n; eigenvalues are always assigned to asymptotically finite locations.

Remark 3.2.3. Consider the case when ¥ is right invertible and has no infinite zeros.
Note that this case includes the special case when X is a non-strictly proper single-input
and single-output system. For this case, ny + ny = 0 and hence there is no eigenvalue, X;
of A— K;(o)C that can be assigned to an infinite location such that the corresponding R;

is bounded.

Lemmas 3.2.1 and 3.2.2 together tell us all the possibilities of rendering various terms of
M 1(8, @) zero either exactly or asymptotically. There are altogether n; +n;+ny eigenvalues
which can be assigned, some at finite and others at asymptotically infinite locations, so that

the corresponding terms of M/(s, o) in its dyadic expansion (3.2.3) are either exactly or
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asymptotically zero. Thus a question arises as to under what conditions on the given
system, n; + ny + ny equals the dimension n so that any arbitrary admissible target loop

can be recovered. This is explored in the following theorem.

Theorem 3.2.1. Consider a stabilizable and detectable system . Then any arbitrary ad-

missible target loop is recoverable by either full or reduced order observer based controller,

i.e, T}(E) = T}(X) = T(Z), iff T is left invertible and of minimum phase.

Proof : Let us take the case of full order observer based controller. The fact that ¥ is left
invertible and of minimum phase implies that n} =n, = 0. Thus n] +ny+n; = n. Hence
the result follows from (2.2.1) and lemmas 3.2.1 and 3.2.2. Conversely, it is simple to see
that the recoverability of all the admissible target loops implies that V;#(B — K;D) = 0,
¢t =1,.--,n. Then by lemmas 3.2.1 and 3.2.2, we know that this is possible only when
ng; + ny + ny = n. Hence, n} = n, = 0, and thus ¥ is left invertible and of minimum
phase. In the case of reduced order observer based controller, in view of proposition 2.2.1
(i.e. item 6), we note that n} +n. corresponding to Z, is equal to zero iff ¥ is left invertible
and of minimum phase. Hence the result. |

For strictly proper systems and when full order observer based controller is used, the
above results were first obtained by Doyle and Stein in their seminal paper [18]. For the
case of reduced order observer based controller, the above results were given in [51], [29]
and [43]. For general non-strictly proper systems, the above results follow from [4] and [10].

The required structural conditions for recovery of any arbitrary admissible target loop,
as given in theorem 3.2.1 are not always met in practice. To see what is and what is not
feasible when the given X is not left invertible and is of nonminimum phase, let us partition
the dyadic expansion (3.2.3) of M (s, o) into four parts, each part having a particular type

of characteristics,

-~

My(s,0) = 1\7[;(3,0) + Ml}(s, o)+ M;o(s, o)+ M;(s,a), (3.2.6)
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where 5
. %, R - b & R
Mf(S,U')—i=l‘;':T;.', Mf(s’a)_gm?’
and
B R niine R

M;o(sv 0) = 2

i=ls_

= M= X T
Define the following sets where n, = n} + n.:

A(0) == (N (o) |i=1,---,n7}, A¥o):= {M(o)]|i=1,---,m},

A®(o) := {M¥(o) |t =1,---,ns}, A%(o):= {X(o)|i=1,---,n.},

V(o) ={Vi (o) |i=1,---,n7}, V¥o):={VP(o)]|i=1,---,m},

V(o) :={V>(o) | i=1,--- sngty V(o) :={Vi(o)|i=1,---,n.},

W-(O') = {vvl—(a) | t= 17' e 7n:}7 Wb(a):= {W/:b(o) | t= 1" o ,nb}’
W*(o):={W(o) |i=1,---,n5}, Wo):={Ws(o)|i=1,---,n.}.
Hereafter we will be using an over bar on a certain variable to denote its limit whenever it
exists as ¢ — 0o. For example, ﬁ;(s) and W° denote respectively the limits of M ;(s,a)

and W*(o) as 0 — oo.

We now note that various parts of M (s, ) have the following interpretation:

1. M;(s,a) contains n; terms. The n; eigenvalues of A — K;(o)C represented in it
form a set A™(g). In accordance with lemma 3.2.1, there exists a gain K(o) such
that M ; (s,0) can be rendered identically zero by assigning the elements of A~(o)
to coincide with the system minimum phase invariant zeros while the correspond-
ing set of left eigenvectors V(o) coincides with the corresponding set of left state
zero directions. In fact, K;(o) can also be designed such that A=(¢) and V(o)
approach asymptotically the set of system minimum phase invariant zeros and the
corresponding set of left state zero directions as ¢ — co. In this case, M t(s,0) =0

as o — 00.
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2. M l}(s, o) contains np terms. The ny eigenvalues of A — K;{o)C represented in it form
a set A¥(c). In accordance with the lemmas 3.2.1 and 3.2.2, there exists a gain Ky(0)
such that M ;(s,a) can be rendered identically zero by assigning the elements of
A¥(0) arbitrarily to either asymptotically finite or infinite locations in C~ as o — oo.
As discussed earlier, in order to conserve the controller band-width, we will assume
hereafter that these eigenvalues are assigned to asymptotically finite locations. Also,

Ky(0o) can be designed so that 1';{;(3, o) — 0 as o0 — oo.

3. M;o(s,a) contains ny terms. The ny eigenvalues of A — K;(0)C represented in it
form a set A®(o). In accordance with the lemma 3.2.2, there exists a gain K/(o)
such that M T(s,a) — 0 as 0 — oo by assigning the elements of A®(o) arbitrarily

to asymptotically infinite locations in C~.

4. M ;(s,a) contains the remaining n, = n} + n. terms. It is nonexistent, i.e. n. =0,
iff 3 is left invertible and of minimum phase. The n. eigenvalues of A— K;(o')C rep-
resented in M ;(s,a') form a set A°(o). In view of lemmas 3.2.1 and 3.2.2, M ;(s, o)
cannot in general be rendered zero either asymptotically or otherwise by any as-
signment of A°(c) and the associated sets of right and left eigenvectors, W¢(o) and
V¢(o). However, as will be discussed later on, M ;(s, o) can be shaped to have some
desirable properties. Since (A, C) is assumed to be a detectable pair, except for the
stable but unobservable eigenvalues of A, others among the remaining eigenvalues of
A — K;(a)C which are in A" can be assigned to arbitrary locations in C~. These ar-
bitrary locations can either be asymptotically finite or infinite. Moreover, assigning
elements of A°(¢) to asymptotically infinite locations increases unnecessarily con-

troller band-width. Because of this, we assume that A¢ is confined to finite locations

inC-.
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. r ~b . . .
Since M (s,0) and M (s, o) can be rendered identically zero, for future use we can combine
them into one term,

M) (s,0) = M (s,0) + M (s, 0),

and rewrite M (s, o) as
My(s,0) = M‘;(s,a) + M?(s,o) + ﬁ;(s,o). (3.2.7)

We define likewise,

A%c) = A~ () U A¥(0),
Wo(o) = W=(0) U W(a),

and

Vo) = V-(o) U V(o).

As the above discussion indicates, lemmas 3.2.1 and 3.2.2 form the heart of the un-
derlying mechanism of LTR as they enable us to decompose M (s, o) and hence Mj(s,o)
into several parts. They show clearly what is and what is not feasible under what condi-
tions. Although they do not directly provide methods of obtaining the gain K;(o), they
do provide structural guide lines as to how certain eigenvalues and eigenvectors are to be
assigned while indicating a multitude of ways in which freedom exists in assigning the other
eigenvalues and eigenvectors of A — K;(0)C. These guidelines, in turn, can appropriately
be channeled to come up with a design method to obtain an appropriate gain K;(c). As
will be discussed systematically in the next chapter, there exist essentially three meth-
ods of design to obtain appropriate Ky(o). These are (1) Kalman filter formalism which
minimizes the Hy-norm of M (s, o), (2) Methods of minimizing H,-norm of M;(s,s) and
(3) Asymptotic time-scale and eigenstructure assignment (ATEA) method of [43], [40] by
which M/(s,0) can be shaped as desired in a number of ways. Leaving aside now the

methods of design, let us at this stage simply define a set of gains K}(Z, o) as follows:
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Definition 3.2.1. Consider the system ¥. Let X
such that
1. A— K;(0o)C is stable for all ¢ > o* where 0 < 0* < o0,
2. the limits as ¢ — oo of the finite eigenvalues of A — K¢(o)C remain in C~,
3. ifny =0, M?(s, o) is identically zero for all o,

ot

ifng #0, as 0 — oo, M;(s, o) is either identically zero or asymptotically zero while
the eigenvalues represented in M 3(3,:7) tend to finite locations in C~, and
4. M?(s,a’)—»Oasa'—»oo .

In a similar manner, K}(Z, o) is defined for the reduced order system Z,.

Remark 3.2.4. For the case when ¥ does not have any infinite zeros, i.e. ny = 0, any
element K;(o) of K}(Z, o) is independent of o and hence is bounded. On the other hand,
if ¥ has at least one infinite zero, i.e. ny # 0, any element K;(c) of K3(Z, o) is dependent

on o. Moreover, ||Ks(o)|| = 00 as ¢ — oo.

It is obvious that K%(X,0) and K7(Z,0), as defined above, are nonempty sets. We
also note that whenever Ky(c) is chosen as an element of K}(Z, o), the asymptotic limit
as 0 — oo of Mj(s,0) = FM;(s, @), namely My(s) = Fﬁ;(s), is the ultimate error in
recovery matrix My(s,a). As such, hereafter 'A—l;(s) is called as the recovery error matriz.
Theorem 3.2.2 given below characterizes the asymptotic behavior of the achieved loop

transfer function as well as sensitivity and complementary sensitivity functions in terms of

E(s).

Theorem 3.2.2. Let the given system ¥ be stabilizable and detectable. Also, let Ly(s) =
F®B be an admissible target loop, i.e. L(s) € T(X). Then for a full order observer based

controller with gain K;(o) € K}(Z, o), we have pointwise in s, as ¢ — oo,

E(s,0) = M(s)[Im + M(s)]"*(In + F®B), (3.2.8)
Sy(s,0) = Se(s)[Im + My(s)], (3.2.9)
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Ty(s,0) — Ti(s) — Si(s)M(s), (3.2.10)
and
| iSs(jw, 0)] = il Se(jw)] | -
v e I O (3211)
| 0i[T(jw, )] = ailTi(jw)] | -
o [SG)] < Omaz[M}(jw)]. (3.2.12)

The above results are true for reduced order observer based controller as well, provided that
the subscript j is changed to r and the quadruple (A, B, C, D) is changed to (A,, B,, Cy, D,).
Also, F in (3.2.8) to (3.2.12) is replaced by F;.

Proof : Expressions (3.2.8) follows directly from the definition of of K3(Z,0) in definition
3.2.1.
To prove (3.2.9) and (3.2.10), let us consider the following. From (2.2.1), we have

E¢(s,0) = F®B — Cy(s,a)P(s)
= Mjy(s,0)[] + My (s, a)]-l(I+ F9B),

and hence
I+ Cy(s,0)P(s) =1+ F®B - Ey(s,0)
=1+ F®B — My(s,0)[I + My(s,0)]" (I + FOB)
= {I + My(s,0))" (I + F®B).
Thus we obtain
S1(s,0) = Si(s)[I + My(s,0)] (3.2.13)

and

Ty(s,0) = Ti(s) — Se(s)My(s, o). (3.2.14)

It is simple to see that (3.2.9) and (3.2.10) follows from the definition of of K3(Z,0) in
definition 3.2.1.
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We now proceed to show (3.2.11) and (3.2.12). Applying singular value inequalities to

(3.2.13), we have for each i = 1 to m,

oi[Ss(jw, o)} < oif Se(jw)] + Omaz[Si(jw) My (jw, o)),

and thus

0i[Ss(jw, 0)] = 6i[Se(jw)] < Tmaz[Si(jw)] Omaz[Mf(jw, 7). (3.2.15)
Now rewriting (3.2.13) as,
Si(s) = S1(s,0) — Se(s)My(s, 9),

we have for each i =1 to m,

ai[Se(jw)] = 6i[S1(jw, 0)] < Omaz|Se(iw)] Omaz[My(jw, 0)]. (3.2.16)

Then in view of (3.2.15) and (3.2.16), we get

| 2ilSy(jw, o)] = o[ Se(jw)] |
Omaz[St(jw))]

< o'ma:[M!(j“’a 0)]

Next using singular value inequalities and proceeding as above, we get

| oi[T(jw, )] — ai[Te(jw)] |
Omaz|St(jw)]

< dmas[Mf(jw’ 0)]
This completes the proof of theorem 3.2.2. | |

Remark 3.2.5. Theorem 3.2.1 is a special case of the above theorem. In fact, if the given
system X is left invertible and of minimum phase, then both M ;(s, o) and M((s,0) are
nonexistent and hence E¢(s,0) as well as E,(s,0) tend to zero pointwise in 8 as ¢ — oo

for all s € C.

As implied by theorem 3.2.2, the recovery error matrix Fl-;(s) plays a dominant role in
the recovery process and hence it should be shaped to yield as best as possible the desired

. Tt . . . e Y
results. Shaping M ((s) involves selecting the set of eigenvalues A” represented in M ((s)
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and the associaied set of right and lefi eigenveciors W° and V°. Such a selection can be
done in a number of ways subject to the constraints imposed in selecting the eigenvectors
[30]. However, note that though, no shaping may be necessary if fl-;(s) turns out to be
small. For certain class of systems ﬁ;(s) is, in fact, small in some sense or other. Following
a similar result of [39], one can prove easily that for a left invertible nonminimum phase
system which is not necessarily strictly proper but which has all its nonminimum phase
zeros far away from the band-width of the target loop transfer function, the norm of the
recovery error matrix T’I?;(s) is indeed always small.

In multivariable systems, one interesting aspect of theorem 3.2.2 is that there could
exist a subspace of the control space in which —AZ(S) can be rendered zero. To pinpoint
this, let

e;=[B - K(o)D|'V; , V;eV", (3.2.17)

and let £° be the subspace of R™,
£° = Span{e; | V; € V°}. (3.2.18)
Let the dimension of £° be m¢. Now let
S° = orthogonal complement of £° in R™. (3.2.19)

Let P* be the orthogonal projection matrix onto §¢. Then the following theorem pinpoints
the directional behavior of M (s, o) and consequently the behavior of Sy(s, o) and Ty(s, o)

as ¢ — O0.

Theorem 3.2.3. Let ¥ be stabilizable and detectable, and L:(s) be a member of the set
admissible target loops T(X). Then for any K;(o) € K}(Z, 0), the corresponding full order

observer based controller satisfies, as ¢ — oo, pointwise in s,
My(s,0)P* — 0,

St(s,0)P* — S(s)P?
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Ty(s,0)P* — T(s)P*,

where P* is the orthogonal projection onto S° € R™ as given in (3.2.19). The above results
are equally true for reduced order observer based controller, provided that the subscript f

is changed to r, and quadruple (A, B,C, D) is changed to (A,, B;,C:, D;).

Proof : In view of the definitions of the matrix P* and the subspaces £° and §°, theorem
3.2.2 implies the results of theorem 3.2.3. |

In general, although M(s,o) and hence Si(s) and Ti(s) are recoverable in a subspace
such as §¢, the loop transfer function Li(s) is not necessarily recoverable in that subspace
S° as can be seen from an example given below. However, this may not be as important
as it seems since in most of the design schemes recovery of L¢(s) is only a means to recover
Si(s) and Ti(s).

Example 3.1 : Consider a non-strictly proper system characterized by
30 10
a=[s 2], B—C-D_[o :

which is invertible with two nonminimum phase invariant zeros at s = 1 and s = 2. Let

the target loop Lq(s) and target sensitivity function Sy(s) be specified by
5 0
F= [0 4]
Let
110 -9
Ko} = [ 4 —3] '

Then, it is easy to calculate that

Li(s) = F(sI - A)™'B = [% 32—] ,

2

s =l nor =[5 5],

50s3 — 190s2 + 160s + 40 —45s® + 90s2 + 2255 — 270
16s3 — 3252 — 64s + 128 —12s® — 72s? + 444s — 360
st — 32s3 + 15552 — 232s + 84

Ly(s,0) = C4(s,0)P(s) =
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[s‘ — 4483 4+ 83s? + 2125 — 276 458 — 90s? — 2255 + 270
~16s% + 3282 + 64s — 128 s + 1883 — 35s% — 725 + 124

Sy(s,0) = st +6s3+13s2+12s+4

Now consider a subspace S° having the orthogonal projection matrix P* as

. _[05 05
P ‘[0.5 0.5]°

It is now straightforward to verify that

T3 76D
(S+2)  2(S+2
Se(s)P* = Sy(s,0)P* = [ ] .

5~2 S—-2

2(5+2) 2(S+2)

This implies that the projections of target and achieved sensitivity functions onto the

subspace S°¢ are equal to one another. On the other hand, we have
[5(s ~2) 5(s—2)
4(s

-3) 4(s-3)
2(s—-2)(s—3)

Lg(S)P‘ =

d
o 5(s® — 20s? + TTs — 46) 5(s° — 20s? + T7s — 46)

. l4(s® — 2657 + 955 — 58) 4(s® — 265% + 955 — 58)
Li(s,0)P* = 9(s® — 325% + 15552 — 2325 + 84)

Obviously, this implies that the projections of target and achieved loop transfer functions

onto the subspace S¢ are not equal, i.e. L(s)P* # Ly(s,o)P". a

In view of the directional behavior of Ff;(s) as given by theorem 3.2.3, one could try to
shape it in a particular way so as to obtain the recovery of sensitivity and complementary
sensitivity functions in certain desired directions or one could try to shape TI-;(s) so that
the subspace S° has as large a dimension as possible, i.e. the subspace £° has as small a
dimension as possible. In this regard, we note that we have already selected A® and A®
and the corresponding sets of eigenvectors V° and V*° so that M 3(3, o) and M ;o(s, o) tend

to zero as ¢ — oo. We also note that although all the n} + n. vectors V. € V° can be
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selected to be linearly independent, the corresponding e; = [B — K;(o)D]'V; need not be

linearly independent. In fact for a given e # 0, the equation
e =B~ K;(s)D]'V,

has n — m + 1 linearly independent solutions for V. Of course, not all such n —m + 1
vectors could be admissible eigenvectors of A — K;C for different eigenvalues of A — K;C
in C~, and moreover some or all of these n — m + 1 vectors could also be linearly dependent
on already selected eigenvectors in the sets V° and V™. Thus the problem of shaping £° is
to find an admissible set of eigenvalues A; and vectors e;, i = 1 to n¥ + n., which are not
necessarily linearly independent, but the associated eigenvectors V; of A — K;C satisfying
e; = [B— K;(o)D]'V;, i = 1 to n} + n, together with the vectors in the sets V° and
V™ form n linearly independent vectors. This problem of selecting an admissible set ();,
e;) is very much related to the traditional problem of distributing the modes of a closed-
loop system to various output components by an appropriate selection of the closed-loop
eigenstructure. This traditional problem of ‘shaping the output response characteristics’
of a closed-loop system has been studied first by Moore [30] and Shaked [47] and more
recently by Sogaard-Andersen [53] although to this date there exists no systematic design
procedure.

The above discussion focuses how to shape the subspace §¢ in which M(s, o), S(s)
and Ti(s) are recovered. A practical problem of interest could be to achieve recovery of
M(s,0) (or My(s,c)), Se(s) and Ti(s) in a prescribed subspace S¢. We will discuss this
aspect of the problem in section 3.4.

We will next examine the asymptotic behavior of open-loop eigenvalues of the full order
observer based controller Cy(s,o) and the mechanism of pole zero cancellation between
the controller eigenvalues and the input or output decoupling zeros [38] of the system. It
is important to know the eigenvalues of C(s, o) as they are included among the invariant

zeros of the closed-loop system [41] and hence affect the performance of it, e.g., command
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following. The controller transfer function is given by (3.2.2) while the eigenvalues of it are
AMA — K;(0)C — BF + K;(o)DF}.

To study the nature of these eigenvalues, let
det[sI, — A + K;(0)C] = ¢°(s)$™(s)$"(s)

where ¢°(s), $°(s) and ¢°(s) are polynomials in s whose zeros are the eigenvalues of

A — K;(o)C that belong to the sets A%(c), A®(c) and A*(o) respectively. Also, let

R*(s)
¢°(s)

where R°(s) is a polynomial matrix in s. Now consider the following:

FA_:I;(.S) =

(3.2.20)

det[sI, — A+ K;(c)C + BF — K4(o)DF]
= detfsl, — A+ K;(0)C]det[I, + (sI, — A+ K;(c)C)™(B — Ks(s) D)F]
= §(5)6=(5)6°(5) detlln + Flsln — A + Ky()C) (B ~ K4(0)D)]
= ¢P(2)4™()¢°(s) detlIm + FIl1(5,)]
— §°()¢7()4°(s) det{In + FH(s)] as o — o0
= PN 6) detlln + TN
= ¢(8)47(s) detlTng"(s) + E(s)/I6° ()™, (3221)

We note that the controller can be designed such that ¢%(s), ¢(s) and ¢°(s) are coprime.

Thus the open-loop eigenvalues of the controller of (3.2.2) are the zeros of ¢°(s), $°(s) and
det[Ing°(s) + R*(s)]/[6°(s))" "

Thus A® and A® are contained among the eigenvalues of the controller. Although A° and

A% are in C~, there is no guarantee that the zeros of

det{In¢%(s) + R*(s))/[6°(s)™
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are in C~. Hence the controller may or may not be open-leop stable. In general, the loop
transfer function Cy(s,o)P(s) has 2n eigenvalues, n of them coming from the system £
and the other n from the controller. However, there are several cancellations among the
input or output decoupling zeros [38] of Cy(s,o)P(s) and the controller eigenvalues. The
following lemma 3.2.3 which is a slight generalization of a similar one in Goodman [22],

explores such a cancellation.

Lemma 3.2.3. Let A be an eigenvalue of A — K;(c)C and the corresponding left eigen-
vector V' be such that V¥[B ~ K;(o)D] = 0. Then ) is an eigenvalue of A — K(c')C —
BF + K;(o)DF with corresponding left eigenvector as V. Moreover, A cancels an input

decoupling zero of C(s,a)P(s).

Proof : See Appendix 3.B. | |

Thus, in view of lemma 3.2.1, the above lemma implies that whatever may be the matrix
F, if the controller is appropriately designed, there are n] + n; cancellations among the
eigenvalues of the controller and the input decoupling zeros of Cy(s,o)P(s). As will be seen

in the next section, there may be additional cancellations if F satisfies certain properties.

Remark 3.2.6. Equation (3.2.21) and lemma 3.2.3 are equally true for reduced order
observer based controller. In this case, notationally the quadruple (A, B,C,D), F and
Cy(s, o) are to be replaced respectively by (A,, B.,C,, D,), F2 and C,(s,0).

3.3. Analysis for recoverable target loops

In section 3.2, loop transfer recovery analysis is conducted without taking into account any
knowledge of F. It involves essentially the study of the matrix M (s) or M(s,o) as to
when it can or cannot be rendered zero. This section complements the analysis of section
3.2 by taking into account the knowledge of F. Obviously then, the analysis of this section
is a study of M(s) = FM/(s) or M(s,o) = FM(s,o). One of the important questions
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that needs to be answered here is as follows. What class of target loops can be recovered
exactly (or asymptotically) for a given system? Or equivalently, what are the necessary and
sufficient conditions a target loop transfer function L,(s) has to satisfy so that it can exactly
(or asymptotically) be recoverable for the given system? As it forms a coupling between
analysis and design, characterization of L¢(s) to determine whether it can be recovered
either exactly or asymptotically for the given system, plays an extremely important role.
Although the physical tasks of designing F and K are separable, one can benefit enormously
by knowing ahead what kind of target loops are recoverable. The necessary and sufficient
conditions developed here on L(s) for its recoverability, turn out to be constraints on the
finite and infinite zero structure of L¢(s) as related to the corresponding structure of £. An
interpretation of these conditions reveals that either exact or asymptotic recovery of L¢(s)
for general nonminimum phase systems is possible under a variety of conditions.

Another important question that arises before one undertakes formulating any target
loop transfer function Li(s) for a given system X is as follows. What are the necessary
and sufficient conditions on ¥ so that it has at least one recoverable target loop? An
answer to this question obviously helps a designer to remodel the given plant if necessary
by appropriately modifying the number or type of plant inputs or outputs. To answer
the question posed, we develop here an auxiliary system E** of ¥ and show that the set
of exactly recoverable target loops T®*(X) is nonempty iff £®* is stabilizable by a static
output feedback controller. Similarly, another auxiliary system X* of L is developed to
show that the set of recoverable target loops T*(X) is nonempty iff L* is stabilizable by
a static output feedback controller. A close look at these conditions reveals a surprising
necessary condition; namely, strong stabilizability of ¥ is necessary for it to have at least
one, either exactly or asymptotically, recoverable target loop.

Finally, another aspect of analysis given here shows the mechanism of pole zero cancel-
lation between the controller eigenvalues and the input or output decoupling zeros of ¥ for

the case when the target loop L(s) is known.
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We proceed now to give the following results regarding the exact recoverability of a

target loop transfer function L(s) = F®B for a given system Z.

Theorem 3.3.1. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily left invertible and not necessarily of
minimum phase. Depending upon the controller used, the following condition is necessary
and sufficient so that an admissible target loop transfer function L¢(s) € T(X) is exactly

recoverable:
1. For a full order observer based controller, the condition is that S~(X) C Ker (F).

2. For a reduced order observer based controller, the condition is that S~(£)NU C

Ker (F).

Thus the set of exactly recoverable target loops under each controller is characterized as
follows:
(1) Full order observer based controller
TIE) = { L(s) € T(5) | §(5) C Ker (F) }.
(2) Reduced order observer based controller :

TE(E) = {Ly(s) € T(E) | $=(Z) NV C Ker (F) }.

Proof : For the case of a full order observer based controller, we consider an auxiliary

system characterized by

z=Az+C'u+ Flu,
Tau (3.3.1)

z= B'z + D'u.
Also, with a state feedback law

u=-Kjz,

the closed-loop transfer function from w to z, denoted here by T2¥(s), is simply

T;o(s) = Mj(s).
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Hence, the problem of finding an observer gain matrix such that A— K;C is asymptotically
stable and that M(s) = 0 is equivalent to the well-known disturbance decoupling problem
with internal stability when the plant considered is £,y as given in (3.3.1). Then it follows
from Stoorvogel [54] that the above disturbance decoupling problem with internal stability
is solvable if and only if S~(Z) C Ker (F).

Results for reduced order observer based controller are derived from similar arguments

and the properties of I, as given in proposition 2.2.1 are taken into account. |

Corollary 3.3.1. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D). Then
1. T}*(Z) = T(Z), i.e. any admissible target loop is exactly recoverable by a full
order observer based controller, iff T is left invertible and of minimum phase with
no infinite zeros.
2. T®*(Z) = T(Z), i.e. any admissible target loop is exactly recoverable by a reduced
order observer based controller, iff £ is left invertible and of minimum phase with

no infinite zeros of order higher than one.

Proof ;: For the case of a full order observer based controllers, it follows from the properties
of s.c.b that S=(Z) = 0 iff £ is of left invertible and of minimum phase and has no
infinite zeros. Hence, the result follows from theorem 3.3.1. Results for a reduced order
observer based controller follow from similar arguments when the properties of ¥, given in
proposition 2.2.1 are taken into account. | |

Several interpretations emerge from the recoverability conditions on the target loops
given in theorem 3.3.1. In fact the constraints given in theorem 3.3.1 are nothing more
than constraints on the finite and infinite zero structure and invertibility properties of Li(s).

Some interesting interpretations in this regard are exemplified below.

1. If ¥ is not left invertible, any exactly recoverable L(s) is not left invertible. On

the other hand, left invertibility of £ does not necessarily imply that an exactly
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recoverable L;(s) is left invertible. That is, whenever L is left invertible, an exactly

recoverable L,(s) could be either left invertible or not left invertible.

2. Any left invertible and exactly recoverable L¢(s) must contain the nonminimum phase
zero structure of £. An exactly recoverable but not left invertible L:(s) does not
necessarily contain the nonminimum phase zero structure of . This is illustrated in

example 3.2.

3. For simplicity of presentation, let us assume that I is strictly proper, invertible and
of uniform rank with relative degree q (i.e., all the infinite zeros of I are of the same

order ¢). Then

(a) the smallest order of infinite zero of L¢(s) € T7 (Z), i.e. L¢(s) is exacily re-
coverable by a full order observer based controller, is greater than ¢ (See also,

corollary 3.3.2).

(b) the smallest order of infinite zero of L¢(s) € T;"(Z), i.e. Li(s) is exactly recov-
erable by a reduced order observer based controller, is equal to or greater than -

g (See also, corollary 3.3.2).
We have the following corollary to theorem 3.3.1.

Corollary 3.3.2. Consider a strictly proper, invertible and nonminimum phase system X.
Also, let T be of uniform rank with relative degree q. Then
1. any target loop transfer function Lq(s) which is invertible with the smallest order
of infinite zeros greater than ¢ and which contains the nonminimum phase zero
structure of ¥ is exactly recoverable by a full order observer based controller.
2. any target loop transfer function Ly(s) which is invertible with the smallest order
of infinite zeros equal to or greater than q and which contains the nonminimum
phase zero structure of T is exactly recoverable by a reduced order observer based

controller.
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Proof : See Appendix 3.C. [ |

Remark 3.3.1. A special case of corollary 3.3.2 when ¥ is strictly proper, invertible and
of minimum phase with relative degree ¢ = 1 was given earlier by Goodman (1984). Thus
corollary 3.3.2 generalizes Goodman’s result for both nonminimum phase systems and for

systems with relative degree greater than unity.

le system ¥ characterized by

1 0 0 4 1 0 0
0 -1 1 1 1 00
A= 0 0 -5 1 1|, B=\|0 0},
-5 1 1 =10 0 1 0
-5 1 1 0 -10 01
and

00010 0 0

C—[O 000 1]’ D—[O 0l

This system has three invariant zeros at s =1, s = —1 and at s = —5. Let the target loop

be defined by the triple (F, A, B) where

01100
F‘[01100]'

Then, it is straightforward to show that A — BF is asymptotically stable and $~(Z) is
a subset of Ker (F). Thus ELTR can be achieved. In fact, the controller defined below

having the eigenvalues at —1, —2, =3, —4 and —5 achieves ELTR:

it =~-Fz
where
1 0 0 1.5091 1.4909 2.4909 -0.4909
0 -1 1 0 0 1.0000 1.0000
z=|] 0 0 =5 0 0|lz+ | 1.0000 1.0000 | y.
-5 0 0 -5.0110 -1.9894 —4.9890  1.9894
-5 0 0 -2.0106 —4.9890 2.0106 ~5.0110
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However, it is simple to verify that the given Li(s) = F®B is right invertible and is of
minimum phase with one invariant zero at s = —3.5. Thus we can conclude that an
exactly recoverable Ly(s) need not contain the nonminimum phase zero structure of £. O

We have the following interesting corollary of theorem 3.3.1.

Corollary 3.3.3. Consider a single-input single-output (SISO) non-strictly proper system
L. Then a target loop transfer function L,(s) = F®B is exactly recoverable by the full

order observer based controller iff it contains the nonminimum phase zero structure of .

Proof: A single-input single-output non-strictly proper system is always invertible. Hence,
the result follows from interpretation 2 given above. |
Our aim next is to develop the needed conditions on ¥ so that T**(Z) is nonempty.

We have the following theorem.

Theorem 3.3.2. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let U?R and 5::& be any full rank matrices of dimensions
(ng +m) x n and (n7 + ny + my) X n, respectively, such that Ker( ;R) = §~(Z), and
Ker(C:") =8-(£)nU.
Also, define the auxiliary systems Z3* and LE* which are respectively characterized by the
matrix triples (A, B,E?R), and (A, B, Ufn). Then we have the following results depending
upon the controller used :

(1) Full order observer based controller :

T"(X) is nonempty iff ZF* is stabilizable by a static output feedback controller.
(2) Reduced order observer based controller :

T:*(X) is nonempty iff TE® is stabilizable by a static output feedback controller.

Proof : Let us first consider the case of full order observer based controller. It follows

from theorem 3.3.1 that any admissible target loop L:(s) = F®B is exactly recoverable iff
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§7(£) C Ker(F). Hence, Ker (ﬁ?a) = §~(X) implies Ker (5?“) C Ker(F) and Im{F') C
Im ( C';n]’). Then we have F = GC“;R for some constant matrix G. It is trivial to verify
that the existence of an exactly recoverable target loop Li(s) = F®B such that A— BF is
asymptoticaily stable is equivalent to the existence of a matrix G such that A— B GC’I;R is
asymptotically stable.

Result for reduced order observer based controllers follow from similar arguments. This
completes the proof of theorem 3.3.2. -

Theorems 3.3.1 and 3.3.2 deal with ELTR. Since the required conditions for ELTR in
general are very severe, most often in practice one is interested only in ALTR. From its
definition, it is easy to see that ALTR occurs, i.e., the recovery error matrix H;(s) is zero,

iff FW* = 0. We have the following results regarding ALTR.

Theorem 3.3.3. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily left invertible and not necessarily of
minimum phase. Then the condition V*(X) C Ker (F) is necessary and sufficient so that
an admissible target loop transfer function L¢(s) € T(X), is recoverable by either full or
reduced order observer based controller. Thus the set of recoverable target loops under

either full or reduced order observer based controller is characterized by,
THE) = TH(E) = { Li(s) € T(T) | V*(B) C Ker (F) }.

Proof : Let us consider the case of full order observer based controller first. Following the
proof of theorem 3.3.1, it is simple to see that our problem is equivalent to the well-known
almost disturbance decoupling problem with internal stability (ADDPS) for the auxiliary
system X,y in (3.3.1). It is shown in Scherer {46] that the above ADDPS is solvable if and
only if V¥(Z) C Ker (F). Here we adhere to the notion of closed-loop stability by excluding
those cases where, in the limits as ¢ — oo, the finite eigenvalues of the closed-loop system

are on the jw axis.
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The result for reduced order observer based controller follows from similar arguments
when the properties of I, given in proposition 2.2.1 are utilized. n
As in the case of ELTR, we can interpret the constraints imposed by theorem 3.3.3 in

terms of the invertibility and the finite zero structures of Ly(s) and ¥ as follows.

1. If T is not left invertible, any recoverable L¢(s) is not left invertible. On the other
hand, left invertibility of X does not necessarily imply that a recoverable Li{s) is left
invertible. That is, whenever ¥ is left invertible, an recoverable L,(s) could be either

left invertible or not left invertible.

2. Any left invertible and recoverable L;(s) must contain the nonminimum phase zero
structure of £. A recoverable but not left invertible L;(s) does not necessarily contain

the nonminimum phase zero structure of .

We have the following corollary to theorem 3.3.3.

Corollary 3.3.4. Consider a left invertible and nonminimum phase system X, which is
not necessarily strictly proper. Then a target loop transfer function L,(s) = F®B is
recoverable by the full order observer based controller if it contains the nonminimum phase

zero structure of X.

Proof : Proposition 3.C.1 (see Appendix 3.C) and left invertiblity of £ together imply
that V+(Z) C Ker (F). Hence the result follows. ]

Example 3.3 : Consider an invertible system I characterized by
1 0 1 00

A = 1 —1 0 ] B = 1 0 1
01

-10 0 -05
010 0 0
C‘[001]’ D“[OO'

and
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Figure 3.3.1: 0maz[M;(jw,300)] and omaz[Es(jw, 300)).

This plant has a nonminimum phase invariant zero at s = 1. Let the target loop be defined
by the triple (F, A, B) where

P=l001)
The triple (F, A, B) forms a minimum phase right invertible system and it does not contain
the nonminimum phase zero structure of X. However, for this example it can be easily
seen that V*(X) is the span of [1, 0, 0}’ and hence it is contained in Ker(F). Thus in

accordance with theorem 3.3.3, there exists a controller which achieves ALTR. In fact, a

full order observer based controller having the eigenvalues at —2, —o and —o and K(o) as

3o 0
K(o) = [o’—l’ 0 ]

given below achieves ALTR,

0 o0-05

Figures 3.3.1 and 3.3.2 pertaining to the case of o = 300 illustrate that ALTR is achieved.
0

Analogous to theorem 3.3.2, we have the following theorem 3.3.4 regarding the nonempti-
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Figure 3.3.2: 0maz[Le(jw,300)] and omaz[Cy(jw, 300) P(jw)].
ness of T*(X).

Theorem 3.3.4. Consider a stabilizable and detectable system X characterized by a ma- .
trix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let C" be any full rank matrix with dimensions (n] +ny+ns)xn
such that Ker (5") = V*(X). Also, define an auxiliary system L* characterized by the ma-
trix triple (A, B ,C"). Then, under either a full or reduced order observer based controller,
the given system ¥ has at least one recoverable target loop, i.e. T*(X) is nonempty, iff the

auxiliary system I® is stabilizable by a static output feedback controller.

Proof : The proof follows along the same lines as that of theorem 3.3.2. -

Theorems 3.3.2 and 3.3.4 respectively give the necessary and sufficient conditions under
which the set of exactly recoverable target loops T**(X), and the set of recoverable target
loops T®(X), are nonempty. However, the conditions given there are not conducive to any
intuitive feelings. The following corollary gives a necessary condition which is surprising as

well as intuitively appealing.
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Corollary 3.3.5. Strong stabilizability of a given system ¥ is a necessary condition for it
to have at least one, exactly or asymptotically, recoverable target loop by using either a

full or reduced order observer based controller.

Proof : For the case of full order observer based controller, it follows from (3.2.21) that
whenever a target loop is exactly or asymptotically recoverable, the eigenvalues of the
corresponding observer based controller are either exactly or asymptotically given by A® €
C-, A® € C~ and A°® € C~. Hence, such a controller is asymptotically stable. By definition
the given system X is strongly stabilizabie.

Results for reduced order observers follow using similar arguments. |

We now proceed to discuss the possible cancellations between the eigenvalues of the
controller and the input or output decoupling zeros of Cy(s,) or Cy(s,a)P(s). Lemma
3.2.3 already discussed one such result which is a slight generalization of a similar one in

Goodman [22]. The following lemma is also a slight generalization of a similar one in [22].

Lemma 3.3.1. Let ) be an eigenvalue of A— K;(0)C and the corresponding right eigen-
vector W be such that FW = 0. Then ) is an eigenvalue of A— K;(0)C — BF + K;(c)DF
with corresponding right eigenvector as W. Moreover, A cancels an output decoupling zero

of Cy(s, o).

Proof : It follows from some simple algebra. n

We have the following theorems.

Theorem 3.3.5. If ELTR is achieved, i.e. if E(jw,0) =0 for all 0 <| w |< oo, then every
eigenvalue of A — K;(0)C — BF + K;(0)DF cancels either an output decoupling zero of

Cy(s,0) or an input decoupling zero of Cy(s,a)P(s).

Proof : ELTR is achieved iff either FW; = 0 or VH[B — K;(0)D] = 0 or both. Hence the

result follows from lemmas 3.2.3 and 3.3.1. |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Theorem 3.3.6. If ALTR is achieved, i.e. if E(jw,0) = 0 as o — oo for all 0 <|w |< oo,
then every asymptotically finite eigenvalue of A— K;(0)C — BF + K;(o0)DF cancels either

an output decoupling zero of Cy(s, o) or an input decoupling zero of Cy(s,o)P(s).

Proof : If ALTR is achieved, then every asymptotically finite eigenvalue of A — K;(c)C
with corresponding right and left eigenvectors W; and V; must be such that either FW; =0
or VH[B — Ky(s)D] = 0 or both. Hence this result also follows from lemmas 3.2.3 and
3.3.1. |

In view of lemmas 3.2.3 and 3.3.1, and theorem 3.3.5, whenever ELTR occurs, there are
n exact cancellations among the eigenvalues of the controller and the output decoupling

zeros of Cy(s) or the input decoupling zeros of C;(s)P(s).

Remark 3.3.2. Lemma 3.3.1 and theorems 3.3.5 and 3.3.6 are equally true for reduced
order observer based controller. In this case, notationally the quadruple (A, B,C, D), F
and Cy(s) or Cy(s, o) are to be replaced respectively by (A,, B,,C,, D,), F; and C,(s) or
C,(s,0).

3.4. Recovery analysis in a given subspace

In the last two sections, we discussed recovery of a target loop transfer function L¢(s) =
F® B when the recovery is required over the entire control space ™ and when the knowl-
edge of state feedback gain F is either unknown or known. The traditional LTR problem
as treated in there, concentrates on recovering an open-loop transfer function L,(s) which
has been formed to take into account the given design specifications. Actually, design
specifications are normally formulated in terms of certain required closed-loop sensitivity
and complementary sensitivity functions, Si(s) = [In + F®B]™! and Ti(s) = I, — Si(s).
In LQG/LTR design philosophy, these given specifications are reflected in formulating an
open-loop transfer function called target loop transfer function. As discussed earlier, this

aspect of determining a target loop transfer function is a first step in LQG/LTR design
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and falls in the category of loop shaping. Generating a target loop transfer function Ly(s)
at the present time is an engineering art and often involves the use of linear quadratic
design in which the cost matrices are used as free design parameters to obtain the state
feedback gain F' and thus to obtain L¢(s) = F@®B and Si(s) = [In+ F®B]™'. In the second
step of design, the so called loop transfer recovery (LTR) design, L;(s) is recovered using a
measurement feedback controller. Obviously, in the traditional LTR design where recovery
is required over the entire control space R™, ihe recovery of Li(s) implies the recovery
of the corresponding sensitivity function S¢(s) and hence the recovery of the complemen-
tary sensitivity function Ty(s). Conversely, in a similar manner, the recovery of Si(s) or
equivalently that of T;(s), implies the recovery of L¢(s). In other words, when recovery is
required over the entire control space ®™, recovering a certain target loop transfer function
is equivalent to recovering a certain target sensitivity function. Thus, without loss of any
freedom, historically, recovery of a target loop transfer function has been sought.

As seen in earlier sections, loop transfer recovery in the entire control space ®™ is not
possible in general. This may force a designer to seek recovery only in a chosen subspace
S of the control space ™. In that case, it is natural to think of recovering the projections
of both the target loop L,(s) and the sensitivity function S;(s) onto S. However, as seen
in example 3.1, one may obtain the projections of achieved and target sensitivity functions
onto & matching each other, but the projection of the correspondingly achieved loop transfer
function may or may not match that of the target loop. This implies that the designer
may have to choose between matching the projections onto S of (1) achieved and target
sensitivity functions, and (2) achieved and target loop transfer functions. Since, most
often design specifications are given in terms of sensitivity functions, it is natural to choose
matching the projections onto S of achieved and target sensitivity functions. In view of
this, in this section, we focus on recovery of sensitivity functions over a subspace. For
the case when S equals ®™, obviously the sensitivity recovery formulation of this section

coincides with the conventional LTR formulation. Thus this section can indeed be viewed
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as a generalization of the notion of traditional LTR to cover recovery over either the entire
or any specified subspace § of the control space ™.

A brief outline of this section is as follows. At first, precise definitions dealing with
the sensitivity recovery problem are given. Then, lemma 3.4.1 is developed generalizing
lemma 2.2.1. It formulates the condition for the recoverability of a sensitivity function
in § in terms of a matrix M*(s). Then, theorem 3.4.1 specifies the required conditions
on ¥ so that asymptotic sensitivity recovery in S is possible for any arbitrarily specified
sensitivity function Si(s). Similarly, theorems 3.4.2 and 3.4.4 specify the necessary and
sufficient conditions respectively for exact and asymptotic recoverability of a sensitivity
function when the knowledge of Si(s) is known. In an analogous manner, theorems 3.4.3
and 3.4.5 respectively establish the necessary and sufficient conditions so that sets of exactly
or asymptotically recoverable sensitivity functions of the given system ¥ for a specified
subspace S, are nonempty. An important aspect of recovery analysis in a subspace is to
determine the maximum possible dimension of a recoverable subspace S. Our results here in
this regard show that for a left invertible nonminimum phase system, whatever may be the
given target sensitivity and complementary sensitivity functions and whatever may be the
number of nonminimum phase invariant zeros, there exists at least one m — 1 dimensional
subspace § of ™ in which recovery of sensitivity and complementary sensitivity functions
is possible by using either a full or reduced order observer based controllers.

We have the following formal definitions.

Definition 3.4.1. The set of admissible target sensitivity function S(X) for a given system
L is defined as follows:

S(Z) := { 5i(s) € M™™(Ry) | 8:(s) = [Im + Lu(s)] ", Li(s) € T(T) }.

Definition 3.4.2. Given Si(s) € S(X) and a subspace S € R™, we say Si(s) is exactly
recoverable in the subspace S if there exists a C(s) € M™*?(R,) such that
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(i) the closed-loop system comprising of the controller C(s) and P(s) as in the config-
uration of figure 1.2.1 is asymptotically stable, and
(i) S(s)P* = Si(s)P*, where S(s) is the achieved sensitivity function and P’ is the

orthogonal projection matrix onto S.

Definition 3.4.3. Given Si(s) € S(Z) and a subspace S € R™, we say Sy(s) is asymp-
totically recoverable in the subspace S if there exists a parameterized family of controllers
C(s,0) € M™*P(R,), where o is a scalar parameter taking positive values, such that
(i) the closed-loop system comprising of C{s,¢) and P(s) as in the configuration of
figure 1.2.1 is asymptotically stable for all o > o where 0 < 0* < 0o, and
(ii) S(s,0)P* = Si(s)P* as 0 — oo. Moreover, the limits, as ¢ — oo, of the finite
eigenvalues of the closed-loop system should remain in C~. Here, S(s,0) is the

achieved sensitivity function and P* is the orthogonal projection matrix onto S.

Definition 3.4.4. Given Si(s) € S(X) and a subspace S € R™, we say that S(s) is

recoverable in the subspace S if Si(s) is either exactly or asymptotically recoverable in S.
Definition 3.4.5.

1. The set of exactly recoverable Si(s) € S(X) in the given subspace S is denoted by
S**(%, S).

2. The set of recoverable S;(s) € S(Z) in the given subspace S is denoted by S*(Z, S).

3. The set of admissible Si(s) € S(X) which are asymptotically recoverable but not

exactly recoverable in the given subspace S is denoted by S**(Z, S).
Obviously, S*(Z, §) = S**(Z, S§) U S**(%, §).

As usual, subscripts f and r are used respectively to distinguish the above sets for full

and reduced order observer based controllers. Also, we note that the above definitions 3.4.1
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to 3.4.5 are natural extensions of the corresponding definitions 1.2.1 to 1.2.5 given earlier
in Chapter 1. In fact, the definitions 3.4.1 to 3.4.5 generalize the concept of recovery to a
subspace and enable us to reanalyze all the results of the previous sections to cover recovery
in a given subspace S.

The following lemma is analogous to lemma 2.2.1.

Lemma 3.4.1. Let the given system X be stabilizable and detectable. Also, let Ly(s) =
F®B be an admissible target loop, i.e. Li(s) € T(X). Then E*(s), the projection onto a
given subspace § € R™ of the error between the achieved sensitivity function S(s) and the

target semsitivity function Sq(s), is given by
E*(8) = [Im+ FOB]™'M*(s) (3.4.1)
where
M?*(s) = M(s)P’. (3.4.2)
Furthermore for all w € ,
E(ju)=0 iff M’(jw)=0,

where () is the set of all 0 < |w| < oo for which Sy(jw) and S(jw) are well defined (i.e., all
required inverses exist). Here the expression for M(s) depends on the controller used. In
particular, for full and reduced order observer based controllers considered in this chapter,

the needed expressions are as in (2.2.2) and (2.2.3).

Proof : It is obvious. [ |

The following observation pertains to the case when § = R™.

Observation 3.4.1. If S = R™, then Si(s) = [In + L:(s)]™! is exactly recoverable in
S iff the corresponding target loop transfer function L¢(s) is exactly recoverable in S.
Similarly, if § = R™, then Sy(s) is asymptotically recoverable in S iff L(s) is asymptotically

recoverablein S.
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In view of the results of ohservation 3.4.1, for the case when § = 8™, the recoverability
of any sensitivity function in ™ does indeed imply the recoverability of the corresponding
target loop transfer function in ®™. This implies that when & = R™, definitions 3.4.1 to
3.4.5 are equivalent to the definitions 1.2.1 to 1.2.5 given earlier in chapter 1. On the other
hand, definitions 3.4.1 to 3.4.5 generalize the concept of recovery to a subspace and thus
enable us to reanalyze all the results of the previous two sections to cover recovery in a
given subspace S.

To proceed with the recovery analysis, let V* be a matrix whose columns form an
orthogonal basis of S € R™. Assume that the columns of V* are scaled so that the norm
of each column is unity. Let P* = V*(V*)’ be the unique orthogonal projection matrix
onto S. Then, define two auxiliary systems X} and X} characterized, respectively, by
the quadruples (4, BV*,C,DV?®) and (A,, B,V*,C,, D, V*). Now treating each auxiliary
system as the given system, one can rediscuss here mutatis mutandis all the results of

sections 3.2 and 3.3. In particular, we have the following theorems.

Theorem 3.4.1. Consider a stabilizable and detectable system & characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let V* be a matrix whose columns form an orthogonal basis of
a given subspace S € R™. Then
(1) any admissible sensitivity function Si(s) of L, i.e., S¢(s) € S(X), is asymptotically
recoverable in § by full order observer based controller if the auxiliary system X% is
left invertible and of minimum phase;
(2) any admissible sensitivity function Si(s) of L, i.e., Si(s) € S(X), is asymptotically
recoverable in S by reduced order observer based controller if the auxiliary system

¥ is left invertible and of minimum phase.

Proof : It is obvious in view of theorem 3.2.1. ]
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Theorem 3.4.1 is concerned with the recovery analysis when F is arbitrary or unknown.

As in section 3.3, one can formulate the recovery conditions for a known F as follows.

Theorem 3.4.2. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let V* be a matrix whose columns form an orthogonal basis of
a given subspace § € R™. Then depending on the controller used, an admissible sensitivity
function Si(s) of £, i.e. Sy(s) € S(X), is exactly recoverable in S iff the following condition

is satisfied:

1. For a full order observer based controller, the condition is that S~(X%) C Ker (F).

2. For a reduced order observer based controller, the condition is that (g) §-(%2) €

Ker (F).

Thus, the set of exactly recoverable sensitivity functions in the given subspace S is char-
acterized as follows:
(1) Full order observer based controller :
S, 8) = { Si(s) € S(2)|$~(3}) C Ker (F) }.
(2) Reduced order observer based controller :

S(5,8) = { Sio) es()] (7)5-E) CKex (P .

Proof : The proof is a consequence of theorem 3.3.1. |

Remark 3.4.1. If the given system X is strictly proper, i.e. D = 0, then it is simple to
verify that

(7)5"En=5"()n eI 02 e m(DV*))
and

(P =v+E)n {10z € Im(DV*))

which are not true in general for non-strictly proper systems.
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In what follows, we give a necessary and sufficient condition under which S**(X, S) is

non-empty for the given subspace S € R™. We have the following theorem.

Theorem 3.4.3. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let V* be a matrix whose columns form an orthogonal basis of

a given subspace S € R™. Let U} and C, be any full rank matrices such that
1. Ker (C}) = (%),
2. Ker () = (‘}) 5-(Z2).

Next, define two auxiliary systems S}"‘ and £**, which are respectively characterized by
the matrix triples (A, B,U}) and (A, B,C}). Then we have the following results depending
upon the controller used :
(1) Full order observer based controller :
S}*(Z,S) is nonempty iff T3 is stabilizable by a static output feedback controller.
(2) Reduced order estimator based controller :

S7*(Z,S) is nonempty iff £2** is stabilizable by a static output feedback controller.

Proof : The proof is a consequence of theorem 3.3.2. [ |

The following theorem deals with asymptotic recoverability of S;(s).

Theorem 3.4.4. Consider a stabilizable and detectable system ¥ characterized by a ma-
trix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let V* be a matrix whose columns form an orthogonal basis of
a given subspace S € R™. Then depending on the controller used, an admissible sensitivity

function Sy(s) of L, i.e. Si(s) € S(X), is recoverable in S iff the following condition is
satisfied:

1. For a full order observer based controller, the condition is that V*(£3) C Ker (F).
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2. For a reduced order observer based controller, the condition is that (2) VH(E:) C
Ker (F).

Thus the set of asymptotically recoverable sensitivity functions in the given subspace S is
characterized as follows:

(1) Full order observer based controller :

5(2,8) = { Si(s) € S(2) [V*(29) € Ker (F) }.
(2) Reduced order observer based controller :
SH(E, S) = {s.(s) e S(T)| (‘I’)w(z:) C Ker (F) }

Proof : The proof is a consequence of theorem 3.3.3. |

Again, as in theorem 3.4.3, we have the following theorem regarding non-emptiness of

the set S**(X%, S).

Theorem 3.4.5. Consider a stabilizable and detectable system L characterized by a ma-
trix quadruple (A, B, C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let V* be a matrix whose columns form an orthogonal ba-
sis of a given subspace S € R™. Let E}" and C," be any full rank matrices such that
Ker(C}) = V*(Z}) and Ker(C,’) = (3) V*(X!). Then depending on the controller
used, we have the following results:
(1) Full order observer based controller :
S}(Z, S) is nonempty iff an auxiliary system X* characterized by the matrix triple
(A, B, ;“) is stabilizable by a static output feedback controller.
(2) Reduced order observer based controller :

S} (%, S) is nonempty iff an auxiliary system £2* characterized by the matrix triple
(A, B,C?") is stabilizable by a static output feedback controller.

Proof : The proof is a consequence of theorem 3.3.4. 2
An important aspect that arises when one is interested in recovery analysis in a subspace

is to determine the maximum possible dimension of a recoverable subspace S. In this regard,
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our goal in what follows, as in [39], is tc prove that whatever may be the given target
loop transfer function and whatever may be the number of nonminimum phase zeros, there
exists at least one m —1 dimensional subspace S of ™ in which the given target sensitivity
function is always recoverable either by a full or a reduced order observer based controller.
To prove this result, for simplicity of presentation, we will make a technical assumption
that all the nonminimum phase invariant zeros of £ have geometric multiplicity equal to
oie.

We next state two lemmas which lead to the intended result.

Lemma 3.4.2. Let the given system ¥ be left invertible and let z, x and w be respectively
an invariant zero, the associated right state and input zero directions of X. Then we have

the following properties.
1. The auxiliary system L} is left invertible.

2. Every invariant zero and the associated right state zero direction of £} are also the

invariant zero and the associated right state zero direction of X.

3. z and z are respectively an invariant zero and the associated right state zero direction

of £} iffw € §.
Proof : See Appendix 3.D. |

Remark 3.4.2. Lemma 3.4.2 is equally true if we replace £ and £} by X, and X}.

Now let z;, z; and w;, ¢ = 1 to n], be respectively a nonminimum phase invariant zero
and the associated right state and input zero directions of the given system X. Since T is
assumed to be stabilizable and detectable, we have w; # 0 for all i =1 to n}. Because if

w; = 0, then by definition,

(ziln — A)z; = Bw; =0 , Cr;+ Dw; =Cz;=0.
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This implies that z; is an output decoupling zero of . But this contradicts the detectability
of ¥ as z; € C*. Next let us define for each i =1 to n},

N; = Ker (w}).
Since w; # 0, each N is an m — 1 dimensional subspace. We have the following lemma.

Lemma 3.4.3. There exists at least one nonzero vector e€ R™ such that

nd
ed M.
i=1

Proof : The proof is by induction. Lemma is trivially true when n = 1. Assume that

the given lemma is true for n} = k. Then there exists a vector 0 # v € R™ such that

k

=1
k+1
To proceed with the proof, let us first assume that v@A41. Then e = v¢|J A; and hence
=1

the result.

On the other hand, assume that v € Ni4;. First select nonzero scalar numbers a;, ¢ = 1
to k+1, such that o; # o; if i # j. Then we haveforalli=1to k+1, v € Nis1. Since
Nt has only a dimension of m — 1, there exists a vector 0 # w € ®™ such that w @My,

Now define for eachi =1 to k+ 1,
z;=av+w#0.

Because of the fact that o; # a; if i # j, we note that z; # z; if i # j. Moreover z; Ny
for all i = 1 to k+1 since wgNi41. Now if z; EO Nj for all i =1 to k+1, then there exists
two distinct vectors among z;, i =1 to k+1, sJa.-—-yl z, and z; for some integers s and ¢, such
that both are contained in some N for some 8 < k. Thus 0 # (a, — a:)v = (z, — z¢) € Np.
This implies that v € A3 and thus contradicts the inductive hypothesis. Hence there exists

at least one z; for some ¢ < k + 1, such that

k k+1
z;¢ |JN; and that e = z:¢ |J V.
=1 1=1
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Hence the result. [ |

Thus in view of lemma 3.4.3, there exists at least one e such that
e'w; #0 for all ¢ =1 to n}. (3.4.3)
We have the following theorem.

Theorem 3.4.6. Let the given system ¥ be left invertible with nonminimum phase in-
variant zeros having geometric multiplicity equal to unity. Then there exists at least one
m — 1 dimensional subspace S of R™ such that any admissible target sensitivity functions
Si(s) of I, i.e., Sy(s) € S(X), is recoverable, either by a full or a reduced order observer

based controller, in S.

Proof : For the case of full order observer based controller, we select e as in (3.4.3). Define
S as

S = The orthogonal complement of the subspace spanned by e in R™.

Then it is trivial to see S has a dimension of m — 1 and that w; ¢ S for all i = 1 to n}.
Because if w; € S, say w; = V?v; € S, then e'w; = 0 which is a contradiction. In view
of lemma 3.4.2, this implies that X} is left invertible and of minimum phase. This in turn
implies the results of theorem 3.4.6.

The result for reduced order observer based controller follows from similar arguments

and the properties of I, as given in proposition 2.2.1. ]
3.A. Appendix 3.A — Proof of Lemma 3.2.1

Let A; and V; be an eigenvalue and the corresponding left eigenvector of A — KC for any
gain K. To show that there are at most n; +n, left eigenvectors of A— KC for any gain K
such that the corresponding A; € C~ and that V;¥(B — K D) = 0, consider the dual system
¥ characterized by (A, By, Cy, D;) where

Ag = A’, Bg = C', Cg = BI, Dg = D'.
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Let V; be the subspace of all right eigenvectors V; of (A; — B:K;) for some K; such that
(Ct — D:K;)V; = 0. Observe that V is a stable (A, B;)-invariant subspace. Furthermore,
V¢ is in the kernel of (C; — D;K;). Hence V; is a subset of V~(A;, B, C:, D;). The largest
possible dimension of V=(A, B, C¢, D;) is n; + n,. Hence, there are at most n] + n;
left eigenvectors of A — K'C for any gain K such that the corresponding ); € C~ and that
VH(B - KD) =0.

We now proceed to determine the necessary gain K to assign such eigenvalues. Without
loss of generality we can assume that the given system is represented by the s.c.b as given

in Chapter 1. Then consider a gain K of the form,

By, Li; Ly
BE 0 0
K = | By Ly K
Bee 0 0
By 0 0

where Kjy, is selected such that A(Ay ~— KuCh) are in C~. Let V,- and Vj respectively
be any left eigenvectors of A7, and A — KCs. It can easily be verified that A(A7,)
and A(Aw — K3Ch) are among the eigenvalues of A — KC and that [VZ, 0, 0, 0, 0]¥ and
[0, 0, ViH, 0, 0]7 are the associated left eigenvectors of A — KC. Furthermore, it is easy to

verify that

[VH,0,0,0,0(B—-KD)=[VH,0,0,0,0]

coocoo
Doceoo
ocWeoeoco
i
=

and similarly

[0,0, V¥, 0, 0)(B- KD) =0.

Finally, in view of the properties of s.c.b, it is straightforward to see that such vectors
[VH,0,0,0, 01" and [0, 0, Vi, 0, 0]¥ respectively span the subspaces z7 and z5. More-
over, z, spans V*(A, B,C,D)/V*(A, B,C, D) and hence the result. [ |
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3.B. Appendix 3.B — Proof of Lemma 3.2.3

For economy of notations, we drop the dependency on o throughout this proof. Noting

from Lemma 2.2.1 that
Ey(s) := Li(s) — Cy(s)P(s) = My(s)[I + My(s)] [T + Le(s)],
we obtain,
Cy(s)P(s) = Li(s) — My(s)[I + My ()] [I + Li(s)]
= [T+ My(s)] 7 [Le(s) - My(s)],

from which Cy(s)P(s) can be interpreted in terms of a block diagram given below.

U + —-u
R Lg(S) N

+
M;(s)f—( "

In view of the block diagram, it is straightforward to write a state-space realization of
C;(s)P(s) as

S e or) o+ 5 o
-~ |(B-K,D)F A-K,C—-BF+K,DF B-K,D]"™

-4 =[F, -F]ai.
Let A be an eigenvalue of A — K,C and the corresponding left eigenvector V be such that
VH(B - K,D) = 0. 1t is simple then to verify that

Al-A 0

u -
[0, v ][_(B—K,D)F M - A+ K,C+(B-K,D)F| ="

and

[0, VH] [B —BK,,D] =0.

This shows that A is an input decoupling zero of C;(s)P(s) and thus the result follows. &
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3.C. Appendix 2.C — Proof of Corollary 3.2.2

Again, without loss of generality, let us assume that the given system is represented by the

s.c.b. First, we have the following propositions.

Proposition 3.C.1. The fact that the target loop transfer function F®B contains the
nonminimum phase zero structure of X, which is left invertible but not necessarily strictly

proper, implies that V¥(X) C Ker (F), i.e.,, the span of z} C Ker(F).

Proof : Let z,; and wy;, i = 1 to n}, be the right state and input zero directions associated
with the invariant zeros z;, ¢ = 1 to n}, which are in C*. It is easy to show (for example,
see [39]) that

Span{z,, i=1,2,+--,n}} = Span of z}.

We also have for all i = 1 to n},
(2l — A)zyi = Bw,; and Cgzsi+ Dwy; =0.

Since the target loop transfer function F®B contains the same nonminimum phase zero

structure as I, the above implies
(2l — A)z,i = Bw,; and Fz,;+0-w,;=0.
for all i = 1 to n*. Hence the span of z} C Ker(F). This proves proposition 3.C.1. O

Proposition 3.C.2. Let T be strictly proper, invertible and of uniform rank with relative
degree q. Then
1. the smallest order of infinite zero of Li(s) = F®B is greater than q implies that
S-(Z)/V*(E) C Ker (F), i.e., the span of z; C Ker (F).
2. the smallest order of infinite zero of Li(s) = F®B is equal to or greater than ¢ implies

that {S~(Z) N U}/V*(Z) C Ker (F), i.e., the span of z; N Ker (C) C Ker (F).
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Proof : Let us first prove item 1. Given that I is strictly proper, invertible and of uniform

rank with relative degree ¢ implies that the matrices A, B, C and D are of the form,

(Aea Le 0 0 .- 0 ] 0]
o 0 I o0 --- 0 0
0 0 o0 I ..- 0 0

A= . . . T . | B=].]
o o 0 o ... I 0

| E, E\ Ey By - E, 1)

c=[0100 .. 6], D=0

It is then straightforward to verify that

(=}

oo
coo
oo
)
P )

S
ST

[B AB 4B ... A"'B]= , (3.C.1)

><><N"'

0
I
X

~O O -

where X denotes the submatrices, which are not necessarily zero. The fact that the smallest

order of infinite zero of L¢(s) is greater than ¢ implies that
FB=FAB=FA'B=...=FA"'B=\.
Then in view of (3.C.1), we can conclude that F is of the form,
F=[X0,0,---,0].

This implies that the span of z; C Ker (F).
On the other hand, the fact that the smallest order of infinite zero of Li(s) is equal to
or greater than ¢ implies that

FB=FAB=FA*B=-.--=FA"?B =0.
Then in view of (3.C.1), we see that F is of the form,

F=[X, X,0,---,0]
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This implies that the span of z; N Ker (C) C Ker (F). This completes the proof of propo-
sition 3.C.2. m]

The results of corollary 3.3.2 follow from the properties of s.c.b, theorem 3.3.1, propo-
sitions 3.C.1 and 3.C.2. |

3.D. Appendix 3.D — Proof of Lemma 3.4.2

Assume that ¥} is not left invertible. Then it is well known that for any complex number

23, there exist 0 # z; € ®" and v; € ™ such that

ZII - -BV* =0
Dv? -
This implies that
[ len -A -B I =0
C D V'v; ] -

Since ¥ is left invertible, this then in turn implies that z; is an invariant zero of £. This is
a contradiction and hence X} is left invertible. To prove the second property of the lemma,
let z,, z, and w, be respectively an invariant zero, the associated right state and input zero

directions of X4. Then by definition, we have

[ z,I,—A —BV* ][z, ] —o
C Dv* w, |~
Thus we note that
[ z,],—A -B z | _¢
C D Viw, | 7

This proves the second property of the lemma. Let us next prove the sufficiency part of

property 3. Let w = V*v, then

(54 2] )

zl,-A —-BV* z -0
C DvV* v |

implies that
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As X% is left invertible, the above implies that 2z and z are an invariant zero and the
associated right state zero direction of £%. To prove necessity, assume that z and z are an
invariant zero and the associated right state zero direction of £}. Then there exists a w,
such that

(2In— A)z = BV’w,, Cz+ DV*w, = 0.

In view of this and by the definition of z, z and w, we have
BV*w, = Bw, DV’w,= Dw.

Since [B’, D'} is assumed to be of full rank, it implies then that w € S. |
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Chapter 4
GENERAL LTR DESIGN

4.1. Introduction

Chapter 3 considers the analysis of loop transfer recovery problem for general continuous
systems when either full or reduced order observer based controllers are used. Also, the
analysis given there corresponding to full and reduced order observer based controllers has
been unified into a single mathematical frame work. As such, for general discussion, only
full order observer based controllers are considered. The analysis of chapter 3 focuses on
four fundamental issues, (1) recoverability of a target loop when it is arbitrarily given, (2)
recoverability of a target loop taking into account its specific characteristics, (3) establish-
ment of necessary and sufficient conditions on the given system so that it has at least one
recoverable target loop transfer function or sensitivity function, and (4) recoverability of a
sensitivity function in a specified subspace of the control space. All this analysis shows some
fundamental limitations of the given system as a consequence of its structural properties.
In particular, the analysis of chapter 3 decomposes the so called recovery matrix M,(s, o)
where o is a tuning parameter of the observer gain, into three parts, namely MJ(s,o),
Mg (s,0) and Mj(s,0). For any arbitrary target loop transfer function L(s), the first
part MJ(s,o) can identically be rendered zero by appropriate finite eigenstructure assign-
ment to the observer dynamic matrix A — K;(c)C, while the second part M°(s,0) can be

rendered zero asymptotically as ¢ — oo by appropriate infinite eigenstructure assignment

17
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to A— K;(o)C. The third part called recovery error matriz M§(s, o) cannot in general be
rendered zero either exactly or asymptotically by any means for an arbitrary target loop
transfer function. However, it turns out that there exists a considerable amount of freedom
to shape the recovery error matrix in a desired way. Thus the analysis of chapter 3 while
shows explicitly what is feasible and what is not and helps to set meaningful design goals
at the onset of design.

The task of this chapter is to develop different design methods for both full and reduced
order observer based controllers in order to recover whatever is recoverable while shaping
the recovery error appropriately. Three different design methods are developed. The first
one is an asymptotic time-scale structure and eigenstructure assignment scheme (ATEA),
and the other two are optimization based designs. ATEA design method yields a controller
design which achieves any chosen recovery error matrix among a set of admissible recovery
error matrices. On the other hand, one of the optimization based design methods leads
to a controller that achieves a recovery error matrix having the infimum H,, norm, while
the other does the same except it achieves a recovery error matrix having the infimum
H; norm. The traditional design method developed first by Doyle and Stein [18] for left
invertible minimum phase systems using full order observer based controllers, turns out to
be an optimization based design in which H; norm of the recovery error matrix is mini-
mized. In optimization methods, one normally generates a sequence of observer gains by
solving parameterized algebraic Riccati equations. As the parameter tends to a certain
value, the corresponding sequence of H; norms (or H,, norms depending on the method)
'of the resulting recovery matrices tends to a limit which is the infimum of the H; norm (or
Hy norm) of the recovery matrix over the set of all possible observer gains. A suboptimal
solution is obtained when one selects an observer gain corresponding to a particular value
of the parameter. In the process of generating a sequence of suboptimal solutions, the
mathematical optimization procedure follows a particular path and shapes the recovery

matrix accordingly. That is, there is no freedom to shape the recovery matrix directly,
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and one has to be content with whatever the mathematical optimization procedure yields.
In contrast with this, since parameterization of ATEA design procedure is explicit rather
than being implicit via algebraic Riccati equations of optimization based methods, ATEA
design procedure allows all the available design freedom to shape the recovery matrix as
desired within the structural constraints imposed by the given system. Thus, an important
difference between ATEA and optimization based designs that needs to be emphasized is
this. ATEA is capable of achieving any admissible recovery error matrix where as optimiza-
tion based methods always lead to a particular recovery error matrix having the infimum
Hy or H; norm depending on the method used. For the case when the given target loop
transfer function is recoverable, all the three design methods are capable of recovering it.
We note that the observer gain is in general not unique, even for the case when the given
target loop transfer function is recoverable.

Let us next clear some notational considerations in presenting our design methods. In
our general discussion that is to follow, as in chapter 3, we always deal with the full order
observer based controller and the given system X along with the given target loop transfer
function L¢(s). As is clear from chapter 2, in a full order observer based controller, the
observer gain Kj is the free design parameter while the fized parameters of design are (a)
matrices (A, B, C, D) which characterize the given system X, and (b) the state feed back
gain F which specifies the given target loop transfer function L¢(s). On the other hand, in
a reduced order observer based controller, the observer gain K, is the free design parameter
while the fized parameters of design are (a) matrices (A,, By, C,, D,) which characterize a
reduced order subsystem X, of the given system X, and (b) a part F; of the state feed
back gain F that corresponds to the states which are being estimated by the observer.
Thus, if one is interested in a reduced order observer based controller design, for all the
design methods discussed here, the free as well as fixed parameters K;, (A, B,C, D) and
F should respectively be replaced by K, (A,, B, Cy, D,) and F;. This replacement is only

for the purpose of design. Once the observer gain K, is obtained, the implementation of
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the controller is as in (2.1.12).

This chapter is organized as follows. Section 4.2 reviews the design constraints as
well as the available freedom in terms of finite and asymptotically infinite eigenstructure
assignment to the observer dynamic matrix A — Ky(o)C. Section 4.3 develops the general
ATEA method of design. Also, in section 4.3, a simplification of ATEA is given to arrive at
a design for exact loop transfer recovery whenever it is feasible. Section 4.4 develops both
optimization methods, one dealing with the H; norm and the other with the H,, nom
minimization of the recovery error matrix. Section 4.5 considers the generalized design task
of recovering the target sensitivity and complementary sensitivity functions over a subspace
of the control space. For this purpose, following chapter 3, an auxiliary system of the given
system is constructed so that all the three designs developed earlier can be readily applied
for the new design task. Section 4.6 discusses the relative advantages of the ATEA and

optimization based design methods.
4.2. Design constraints and available freedom

It is clear from chapters 2 and 3, the recovery matrix M;(s,o) where o is a tunable pa-
rameter of observer gain K;(c), plays a central role in both LTR analysis and design since
loop transfer recovery error is zero if and only if M/(s,o) is zero. In chapter 3, we have

decomposed My(s, o) into three parts,
My(s,0) = M(5,0) + MP(5,0) + M;(s,0), (4.2.1)

and studied each part in detail. To facilitate our discussion here, let us review the essential
aspects of the above decomposition by considering one part of it at a time.

Discussion on M}(s,0) : This term depends on a set of n] + n, eigenvalues A%(o) =

A~(o) U A¥) of A — K;(0)C, and the corresponding set of right and left eigenvectors,
W) = W~(o) UW?(s), and V(o) = V(o) U V(o). For any arbitrary target loop

transfer function, MJ(s,o) can identically (irrespective of the value of o) be rendered
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zero. To accomplish this, the set of n7 eigenvalues A=(¢) and the corresponding set of left
eigenvectors V~(c) must be selected to coincide respectively with the set of plant minimum
phase invariant zeros and the corresponding left state zero directions of £. However, the set
of ny eigenvalues A%(c) can be assigned arbitrarily either at asymptotically finite or infinite
locations in C~, while the corresponding set of left eigenvectors V*(¢) is in the null space
of matrix [B — K(c)D]'. If one prefers, M}(s,0) can be rendered zero asymptotically as
o = co. This can be done by selecting A~{¢) and the corresponding set of left eigenvectors
V- (o) so that their asymptotic limits A~ and V~ coincide respectively with the set of plant
minimum phase invariant zeros and the corresponding left state zero directions of X. Also,
although A%(c) can be selected arbitrarily in C~, the corresponding set of left eigenvectors
V¥) of A — K;(0)C must be such that its asymptotic limit V* is in the null space of
matrix [B — K;(o)DJ'.

Discussion on M{(s,o) : This term depends on a set of ny eigenvalues A®(o) of A —

Ky(o)C and the corresponding set of right and left eigenvectors, W*°(¢) and V(o).
For any arbitrary target loop transfer function, M{°(s,o) can be rendered zero asymp-
totically as ¢ — oo. For this purpose, the set of n; eigenvalues A®(c) can be as-
signed arbitrarily at asymptotically infinite locations in C~. However, for every A\°(c) €
A>(o), the corresponding right and left eigenvectors W°(s) and V;*(c) must be such
that W°(o)[V°(a)}#[B — K/(c)D) is uniformly bounded as ¢ — co. We note that there
exists complete freedom in the way A°(o) € Aw(0) tends to infinity as ¢ — o0, i.e., the
asymptotic direction and the rate at which each A{°(¢) goes to infinity can be dictated as
desired by the designer.

Discussion on Mj(s,0) : This term depends on a set of n} + n. eigenvalues A®(c) of

A — K;(0)C and the corresponding set of right and left eigenvectors W¢(o) and V¢(o).
It is nonexistent if the given system is of minimum phase and left invertible. For general
systems and for an arbitrary target loop transfer function, M§(s, o) can never be rendered

zero in any way by any means.
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To summarize the above development, the first two terms of My(s, ), namely MJ(s, o)
and My(s,0), can be rendered zero either exactly or asymptotically by appropriate eigen-
structure assignment to the observer dynamic matrix A — K;(¢)C, but the third term
Mj(s, o) cannot in general be rendered zero for an arbitrary target loop transfer function.
Thus, M§(s, o) or its asymptotic limit as & — oo, namely m(s), can be termed as error
recovery matriz. Although Mj(s,o) cannot in general be rendered zero, clearly, there ex-
ists ample freedom in assigning the parameters A°(c’), W¢(o) and V*(o) on which Mj(s, o)
depends. A*(o) can be assigned at any (either asymptotically finite or infinite) locations
in C~ subject to the condition that any unobservable but stable eigenvalues of the given
system £ must be included among A(c). Also, there exists complete freedom consistent
with the results of [30] in assigning the right and left eigenvector sets W*(o) and V(o).
Thus, one can shape the recovery error matrix Mj(s, o) by selecting appropriately A(c),
W¢(c) and V(o). In other words, for any given system, there exists a set of admissible
recovery error matrices, and such a set can be denoted as M$(Z,0). Then, one naturally
seeks a design method which leads to a chosen recovery error matrix M%(Z, o) among the
set of admissible recovery error matrices M%(Z,0). In the following section, we will give;
an asymptotic time-scale and eigenstructure assignment (ATEA) design method capable of
achieving any chosen M§(s,o) € M5(Z,0). In section 4.4, we will describe two optimiza-
tion based design methods, one method leads to a design that yields the infimum Ho, norm
of the recovery error matrix as the tuning parameter ¢ — oo, while the other yields the
infimum H, norm. We emphasize that the (ATEA) design method can lead to any chosen
recovery error matrix, where as the optimization based design methods yield a particular
recovery error matrix having either the infimum H, norm or H; norm depending on the
method used.

The above discussion pertains to the case where the target loop transfer function Li(s) =
F®B is arbitrarily specified. Apparently, one acquires additional freedom when specific

properties of F are taken into account. For example, as stated in theorem 3.3.3, any
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admissible target loop transfer function L¢(s) of I, i.e., Li(s) € T(Z), is recoverable by
either full or reduced order observer based controller iff V*(Z) C Ker (F). Thus, whenever
Ly(s) is an element of T*(Z), M(s) is zero irrespective of the way the set of n} + n,
eigenvalues belonging to A°(0) and the associated right and left eigenvector sets We(o)
and V(o) are selected. Similarly, as stated in theorem 3.3.1, any admissible target loop
transfer function is exactly recoverable, i.e., an element of T}*(Z), iff S~(Z) C Ker(F)
for the case of full order observer based controller. Now whenever L,(s) is an element of
TF*(Z), both M}(s) and My (s) are zero irrespective of the way the sets of eigenvalues
A°(o) and A*(c), and the associated eigenvector sets W*(o), V¢(a), W*(c) and V*(0),
are selected. In fact, in this case, all eigenvalues of A — K;(0')C can be assigned to finite
locations in C~. Moreover, since there is no necessity of assigning asymptotically infinite
eigenvalues, there is no need either to parameterize the observer gain K| in terms of the

tuning parameter o.
4.3. Observer design by ‘ATEA’

The previous section summarizes the available design freedom as well as constraints in
assigning the eigenstructure of observer dynamic matrix for loop transfer recovery. We de-
scribe here a design procedure which follows the asymptotic time-scale and eigenstructure
assignment (ATEA) concepts proposed originally in [43], [44] and developed fully in [10]. At
first in subsection 4.3.1, we give a design procedure for an arbitrarily specified target loop
transfer function, i.e. without taking into account any specific characteristics of F'. This is
the most general design procedure. Also, when the given L,(s) is asymptotically recover-
able, it entails additional freedom in selecting some eigenvalues and eigenvectors. However,
the general ATEA procedure of subsection 4.3.1 still yields a design which asymptotically
recovers L¢(s). On the other hand, for exactly recoverable target loop transfer functions, F
satisfies S~(X) C Ker (F). Because of this, one needs to assign only a finite eigenstructure

to A— Ky(o)C. For this case, the general ATEA design procedure of subsection 4.3.1 can
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be simplified greatly and such 2 simplified design is presented in subsection 4.3.3.

4.3.1. General ‘ATEA’ design

The ATEA design method is decentralized in nature. It uses the special coordinate basis
(s.c.b) of the given system T (See theorem 1.3.1). The specified finite eigenstructure of
A—K;(0)C is assigned by working with subsystems which represent the finite zero structure
of the given system (See equations (1.3.3) to (1.3.6)) . Similarly the specified asymptotically
infinite eigenstructure of A— K(o)C is assigned appropriately by working with subsystems
which represent the infinite zero structure of the given system (See equation (1.3.8) for each
i =1 to my).

There are two issues in formulating the observer dynamic matrix A — K;(c)C by an
appropriate selection of K;(o). The first issue is eigenvalue assignment and the second one
is corresponding eigenvector assignment. We will focus on one issue at a time. Let us first
consider the eigenvalue assignment. As discussed earlier, some eigenvalues of A — K;(o)C
are constrained while some others are free to be assigned to either asymptotically finite or

infinite locations in C~. To be specific,

1. A~ (o) must coincide either exactly or asymptotically with the set of plant minimum

phase invariant zeros,

2. A¥(o) and A°(c) can be assigned to either asymptotically finite or infinite locations,

and
3. A®(0o) have to be assigned to asymptotically infinite locations.

In this section, in order to conserve controller band-width, both A*(¢) and A*(c) are as-
signed to asymptotically finite locations. Let us next examine carefully the freedom avail-
able in assigning A°°(o) to asymptotically infinite locations. As is clear from earlier dis-
cussion, there exists complete freedom in the way each A{°(o) € A®(o) tends to infinity as

o — 00, i.e., both the asymptotic direction and the rate at which A{°(o) goes to infinity can
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be dictated as desired by the designer. In other words, the freedom available in assigning

every asymptotically infinite eigenvalue A{°(o) manifests itself in two ways:

1. in choosing the asymptotic directions along which the eigenvalues tend to infinity,

and
2. in choosing the rates at which the eigenvalues tend to infinity.

To reflect both these types of freedom, we subdivide A*®(c) for asymptotically large values

of o into r < ny sets,
20222
b B2 Pr

Here A, is a set of n, numbers all in C~ and A is closed under complex conjugation. Also

(4.3.1)

.
Z ny = ny. Apparently, the elements of As, £ =1 to r, define the asymptotic directions of
=1

asymptotically infinite or fast eigenvalues while the small parameters p, £ =1 to r, which
are some functions of &, define the rates at which these eigenvalues go to infinity.

In summary, regarding the eigenvalues, a designer has the freedom to specify
i. the asymptotic limits A° and A° of A(c) and A*(c), and
il. Agand yg, £=1tor.

We note that A° and A° in addition to A~ define the asymptotically finite eigenvalues of
A — K;(0)C, while Ag and pg, £ =1 to r, define the asymptotically infinite eigenvalues.
Let us now look at the constraints and design freedom available in assigning the eigen-
vectors of A — K;(o)C. The set of right eigenvectors V'~ is constrained to coincide with
the corresponding set of state zero directions of the plant. Moreover, Im (V") coincides
with the subspace V*(Z)/V+(X). On the other hand, the set of eigenvectors V’ is con-
strained to be in the null space of [B — K;(o)D]'. In view of the particular structure of
s.c.b, it can be seen then that every element V:’ of V° is constrained to be of the form
[0, 0, (V®)H, 0, 0]7. In other words, the set V® can be represented in a matrix notation

as [0, 0, (V®)H, 0, 0] where V* is a ny x n, matrix. Thus the selection of 7’ to be in
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the null space of [B — K;(o)D}' is equivalent to any arbitrary selection of V* consistent
with the freedom available in assigning it [30]. Again in view of the properties of s.c.b, we
note that the columns of V° span the subspace R°/{S*(Z) US~(X)}. Next, there is also
freedom available in specifying W". It can easily shown (see for example [39]) that Im (W")
coincides with the subspace V*(Z). Again owing to the special structure of s.c.b, W* has
the special matrix form [0, (We*)#, 0, (We)H#  0]¥ where We = [(Wet)H, (We)HH
is a n, X n, matrix. Thus an appropriate selection of W" is equivalent to any arbitrary
selection of W*¢ consistent with the freedom available in assigning it [30].

Now an assignment of both asymptotically finite and infinite eigenvalues and the corre-
sponding eigenvectors to A— K;(o)C can be viewed as a problem for asymptotic time-scale
and eigenstructure assignment (ATEA). In order to have a well defined separation of time-

scales, we will assume throughout the paper that

pef ey — 0as peyq — 0. (4.3.2)

We emphasize that the freedom that exists in specifying the asymptotically infinite eigen-
structure of A — K;(o)C reflects itself in specifying the fast time-scale structure. The
asymptotic directions of asymptotically infinite eigenvalues can be specified by the sets
Ay € =1 to r, where r is an integer less than or equal to ns. The relative fastness of
time-scales is specified by the small positive parameters g, £ = 1 to r, which are appro-
priate functions of the tuning parameter o so that (4.3.2) is true as & — co. We note that
there is also a constraint on the infinite eigenstructure; namely, for every asymptotically
infinite eigenvalue A{°(c), the corresponding right and left eigenvectors W(o) and V;*(o)
of A — K;(0)C must be such that W*(o)[V:°(0)]?[B — K;(o)D] is uniformly bounded
as ¢ — 0o. This constraint, however, is automatically taken into account by the ATEA
design procedure given in this section.

In what follows, we give a step by step ATEA design algorithm. In view of the above

discussion, the input parameters of the algorithm are 7\-", V¥ R°, Wee, Agand g, £ = 1
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to r, as well as the integer r. In fact, the primary inputs are (1) A° and W* which shape
the resulting recovery error matrix My(s) and (2) A and e, £ = 1 to r, which control
the time-scale structure of the observer and thus have a strong impact on the resulting
gain of the controller. The rest of the input parameters, namely A’ and V*®, are secondary
inputs. Qur algorithm can be divided into three steps. Steps 1 and 2 deal respectively with
subsystem designs to assign the asymptotically finite and infinite eigenstructures. In step
3, subsystem designs of steps 1 and 2 are put together to form a composite design for the
given system.

Step 1 : This step deals with the assignment of asymptotically finite eigenstructure (i.e.,
slow time-scale structure) and makes use of subsystems (1.3.3) to (1.3.6) of £. The min-
imum phase invariant zeros A(A;,) of I are left alone to form some of the eigenvalues of
A - Ky(o)C, namely the set A~ while the corresponding left eigenvectors of A — K;(o)C
coincide with the the corresponding left state zero directions of X. To place the set of eigen-
values A° and left eigenvectors Vb, choose a gain K® such that A(Ay — K®C}) coincides
with A° while V¥ coincides with the set of left eigenvectors of A% = A, — KbC,. Note
that the existence of such a K® is guaranteed by property 1.3.2 as long as the eigenvector
set V' is consistent with the freedom available in assigning it [30]. Next, in order to place
the set of eigenvalues A° and right eigenvectors W, let us first form matrices A* and C®

as follows:

ce A, 0O Ce = Co, C
A = [BCE:; Acc] ? [CeI] [ o Oc (433)

where

= ((BLY, (BY,e-r(BE,YY » Eia=(ES, B3], Eo=[EL, Eesees Byl

Now select a gain

o+
ko= | =12 k)
such that the set of eigenvalues and right eigenvectors of A®° = A® — K*C* coincide with

A° and W** respectively. Again note that the existence of such a K* is guaranteed by
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property 1.3.2 as long as the eigenvector set W*° is consistent with the freedom available

in assigning it [30]. For future use, let us define

a0+
Aeel =Aee__Ke00e0 , Keo - [K ],

K®
and partition K as

K% = [ K™, K™, ..., K™ ] (4.3.4)
where X* is a n, x 1 dimensional vector.
Step 2 : This step deals with the assignment of asymptotically infinite eigenstructure (i.e.,
the fast time-scale structure) and makes use of subsystems, i = 1 to my, represented by
(1.3.8). This step exists only when n; > 0 since otherwise there is no need to assign any
asymptotically infinite eigenstructure, and hence we assume here that n; > 0. As discussed
earlier, there is complete freedom to specify any r < n; fast time-scales. In particular, one
can always choose r = 1. For generality, we will keep r as arbitrarily given. The freedom
in assigning the fast time-scales is reflected in specifying the sets A,, and the small positive
parameters gz, £ = 1 to r. Our design to assign an appropriate fast time-scale structure,
is again decentralized. We deal with one single input single output system at a time as
represented by (1.3.8) for a particular value of ¢, i = 1 to m;. Thus to proceed with
our design, we need to distribute the designer specified elements of the sets A,, and the
parameters p, £ = 1 to r, among my subsystems. There exists a complete freedom in
such a distribution and hence it can be done in a number of ways. Let the subsystem ¢ be

assigned r; time-scales for some r; < g¢;. Let

A;; .
_‘J's J=1ltor,
]
be the asymptotically infinite eigenvalues that need to be assigned to subsystem i. Lei n;;
be the number of eigenvalues corresponding to the time-scale t/p;;. That is, let A;; contain

n;; elements. As usual, the set A;; is assumed to be closed under complex conjugation. Also,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89
in order to have a well defined separation of time-scales in subsystem i, we will assume that
pij/piisr =0 as pijya —»O0forall j=1tor;—1. (4.3.5)

We note that when r = 1, all y;; are equal to a single parameter u and all r; are equal
to unity. That is, there is only one time-scale to be assigned to all subsystems. In this
case, o can be taken as 1/u. With these preliminaries, we are now ready to design the i-th
subsystem. At first, we will design a gain matrix K;; for each time-scale t/u;;, j =1 to ;.
Define a n;; X n;; dimensional matrix G;; and a 1 X n;; dimensional matrix C;; having the

following structure:

Gy = [g 1"3-‘] and G = [1 0].

Choose a n;; x 1 dimensional gain vector K;; such that A(G§;) coincides with A;; where
G§; = Gij — K;;C;;. Owing to the special structure of G;; and Cj; , such a Kj; always

exists. Let K;; be partitioned as

K
Ki' = e 3
[ Kija ]

where Kjjq is a scalar. Moreover, the nonsingularity of G§; implies that Kj;q is nonzero.
Next, the gains K;;, j =1 to r;, obtained above are put together to form a composite gain
vector which will induce the required fast time-scales in the i-th subsystem. Define the

scalar numbers J;; as

Ja=1, J.','=:_H:K.'u,j=2t07'.'-
Let i
ap=10
and

J
a;; = En.';, , J=1tor.
k=1

Note that a;,, = ¢;. Also, let for each j =1 to r;,

Cioij—1+1 = o143 = * " = €iay; = Hij
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and
i
= H €iko (4.3.6)
k=1
Also, define a scaling matrix S;; as
g g 9
S,'j = Diag H €t H €ty "y H €e | . (4.3.7)
l=aij—1+2 {=aij.1+43 L=aij+1

i
In (4.3.7), for j = r;, the product H €;¢ is taken as unity. Now let,
i=gi+i

> 1
Kij(o) = ;J.-,-S.-,-K;,-,

and .
Ki(o) = [Kia(0), Ria(o), -+, Kino)] - (4.38)
The above design is rather simple when r; = 1. For this case, let ; denote the small
parameter. Then
1

Kilo) = G

[(ﬁi)q‘-lkih E)Ka, -, Riqe]’ (4.3.9)
where K i»J = 1 to g;, are selected such that A(GY) are as desired where,

G = — j{"l’ fﬁz,---, Kl‘q-'-l f(.-,,- '
! "IQ.'-I 0 |

Here we did not discuss any eigenvector assignment. However, it turns out that our
eventual design is such that the eigenvectors corresponding to the asymptotically infinite
eigenvalues are naturally assigned to appropriate locations so that Mp(jw,0) — 0 as
o — oo.

Step 3 : In this step, various gains calculated in steps 1 and 2 are put together to form a

composite observer gain for the given system . Define K as

~ o1t ~ e -~ ~olm ~ C1 eli
K“(a)=[’;,{c,(("))]=[x“,x”,..-,x 1, & =nlJ.-,,.K.~,,.dK‘. (4.3.10)
[ 4 s
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For the case when r; = 1, K4 is the same as K, and #; is the same as (7;)%. Assume

ny > 0 and define the observer gain K(o) as

Ky(o) =Ty K(o) T3 (4.3.11)
where
[ B, L+, L+ H, ]
) B+ K™ LY, +Hy,+ K" (o) LY+ Ay,
K(o)= By, Lys + Hyy K (4.3.12)
By + K@ Lcj+§cj+£’d(o‘) Lo+ Hg,
L Boy Ly + K4(o) 0
and where

K (o) = Diag [K1(0), Ki(0), -+, Km,(0)],
1
L! = [L’n ’29 aL:n,]
while the gains A :}, H :,,, H af? H,, Hys, H.; and H, are arbitrary but finite. We have

the following theorem.

Theorem 4.3.1. Consider a full order observer based controller with its gain given by

(4.3.11) where ny is assumed to be greater than zero. Then we have the following properties:

1. There exists a o* such that for all ¢ > o°, the designed observer is asymptotically
stable. Furthermore, it has the time-scale structure t, t/pi;, j =1 tori, i =1 tom;.

That is, the eigenvalues of the observer as u, — 0 are given by

A +0(u), K +0(u) , A +0(ps)

A'--j-+0(1) forj=1tor; andi=1 tomy.

Hij

Moreover, if H, s =0and Hy; = 0, some finite eigenvalues of A— K(0')C are exactly

equal to A~ and A° for all o rather than asymptotically tending to A~ and x.
2. LTR is achieved as intended in the sense that as ¢ — oo,

Mj(s,0) — M(s) pointwise in s.
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Proof : See Appendix 4.A. |

Remark 4.3.1. For the case when ny = 0, the observer gain obtained in the above ATEA

procedure is independent of o and is simply given by

Bt ko 1
Ki(o) =T, | 20 ‘I;“ o (4.3.13)
By + K® Ly

Moreover, such an observer gain places the eigenvalues of A — K;(¢)C precisely at A~ U

—b

A" UK and M(s) is exactly rather than asymptotically attained, i.e. My(s,0) = M (s).

Remark 4.3.2. We emphasize that whenever L¢(3) is an element of T*(X), M;(s) is zero
irrespective of the way the set of n} + n. eigenvalues belonging to A°(c) and the associated

right and left eigenvector sets W*(o') and V(o) are selected.

As it can be easily seen, the ATEA design is decentralized. Required time-scale structure
and eigenstructure are assigned to the subsystems of the given system . The calculations
involved in subsystem designs do not explicitly require the value of the tuning parameter
0. o enters only in (4.3.8) or (4.3.9) where subsystem designs are put together to form a
composite gain which assigns the required time-scale structure. Thus o truly and directly

acts as a tuning parameter and controls the degree of fastness of fast time-scales.

4.3.2. A helicopter control system design

We present here a helicopter control system design to illustrate the ATEA design algorithm.
The following is a mathematical model for a typical modern attack helicopter operating
near hover. The dynamics of the helicopter were originally modeled by a twelfth-order
model that consists of an eighth-order model representing the rigid-body dynamics and
two second-order models representing the advancing and regressing rotor tip-path plane
modes. Main rotor collective pitch, lateral cyclic pitch, longitudinal cyclic pitch and tail

rotor collective pitch are the control inputs.
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An eighth-order design model that did not contain the tip-path plane modes were de-

veloped from the 12th-order model and it is given in {21},

z = Az + Bu,
where
[ forward velocity, ft/s ]
lateral velocity, ft/s
heave velocity, ft/s |' main rotor collective pitch
_ roll rate, rad/s _ lateral cyclic pitch
= pitch rate, rad/s v US l longitudinal cyclic pitch
yaw rate, rad/s tail rotor collective pitch
roll angle, rad/s
pitch angle, rad/s
[—0.0199 —0.0058 -0.0058 -0.0151 0.0232  0.0006 0
—0.0452 -—0.0526 —0.0061 —0.0260 -—0.0155 0.0148 0.6648
—0.0788 —0.0747 -0.3803  0.0008 -—0.0048  0.0420 0.0228
A= 0.4557 —2.5943 —0.1787 -2.9979 -0.5308  0.4155 0
~ | 0.3688 0.1931 -0.1753 0.0710 -0.5943  0.0013 0
1.0939  0.7310 —0.0358  0.4058  0.4069 —0.4940 0
0 0 0 1.0000 0.0005 -—0.0154 0
| 0 0 0 0 09994 0.0343 0
and

T_0.0456 —0.0083  0.4735 —0.0016]
~0.0369 02785  0.0086  0.3600
~3.1126 —0.0032 0.0076  0.0002
—2.4241 20.8327 1.0196  9.1903
—0.3205 0.2538 —6.3329 —0.0648
57889 —2.6208  2.3832 —11.0904

0 0 0 0
i 0 0 0 0]

The measured outputs are the heave velocity, roll, pitch and yaw rates, i.e.,

001000O0°O0
0 0000
0 1 000

y=Cz= z.

001

000
000O0OT1TUO0TU0O

The target loop is specified by the following state feedback gain matrix,

0.0243  0.0242 -0.5524 —0.0002  0.0008 -0.0136 —0.0073
0.0686 —0.1072  0.4990 0.0193  0.0483  0.0901  0.2389
—-0.0459 —0.0245  0.0597 -0.0085 -—0.3616 —0.0040  0.0154
-0.1120 -0.0332 —0.2841 —0.0431 -0.1254 -0.1650 —0.0569

F=

1

?

—0.6652 ]
—0.0003
0.0102
0

0
0
0
0]

—0.0046
0.1105
—0.6622 |

—0.1708
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It is simple to verify that the given system (A, B, C,0) is invertible with invariant zeros at
{0, 0, —0.00075649 + 70.013932}. Hence, it is of nonminimum phase.
In what follows, we proceed with the ATEA design.

Step 0 : Using the Linear System Toolboz developed by Lin et al. [26], we obtain the

s.c.b decomposition of the given system (A, B, C,0) as follows,

" 0.007833 —0.011183 0 0
0.023953 -0.009346 0 0

0 0 0 0

A= 0 0 0 0

—0.009834 -38.224759 31.881866 1.6838557
0.021831 -26.734750 81.818861 3.219285

—0.078800 0.074700 -0.021285 0.105341 —0.379227 —0.000034 0.001694 0.043684
0.455700 2.594300 1.859568 1.864994 —0.065245 —3.024800 -—0.542191 0.477555
0.368800 —0.193100 0.191564 —0.369178 —0.174135 0.073264 -0.623340 -0.002869

L 1.093900 --0.731000 0.477545 —1.224680 —0.038601 0.414174  0.319397 —0.510120.

0 46.641361 —73.009653 -—3.224812
0 0 —48.807083 —1.675088

~

0 0 0 0
0 00O
0000
= |10 0 0O
B=11 00 0|
0100
0010
(0 0 0 1
000010GO0°TO0
G_f00000100
0000UO0UO0T1 o0/
0 000O0UO0TU 0?1
1 0 0.819370 —0.572017  0.023863 0.000650 —0.074215  0.001117]
0 —1 —0.572864 —0.819358 —0.039541 0.010483 —0.008645 —0.023724
0 0 0 0 1 0 0 0
r.-|0 0 0 0 0 1 0 0
=10 o 0 0 0 0 1 0’
0 0 0 - 0 0 0 0 1
0 0 0.021440 —0.032082 0 0 0 0
0 0 0 —0.020477 0 0 0 0]
1000
0100
Ta=10 01 ol
000 1
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-0.321277 —0.000050 —0.000410 —0.000045 '|
0.037720  0.053232  0.025161  0.043965
0.019535  0.002260 -—0.156469  0.002787

—-0.172414 -0.012120 -0.039783 —0.099982

T =

and

n;=2 nrt=2 n=0, n.=0, ny=4

Step 1 : This step deals with the assignment of asymptotically finite eigenstructure. For
this example, n, = 0. Hence, there is no need to assign the eigenstructure for X and V.

Also, in this example,

—-0.021285  0.105341
1.859568 1.864994
0.191564 —0.369178
0.477545 —1.224680

A=°=A;,=[g 3] and C°=E}=

Let us specify,

T = {—0.001, — ce _ et yeen _ [1 —0.851846
K = {-0.001, —0.001} and W =[We!, W ]_[0 ppsineed

so that M}(s) is prescribed as

—0.140254  0.117916 -0.052177  0.281234

0.001 | -0.157749 —0.980041 —0.172435  0.060003
s+0.001 | 0.280960 -0.126562  0.115732 —0.538118
0.546280  0.029670  0.253212 -—0.982759

M(s) =

Then we obtain

0 0.386579 0  0.588698

e __ -3
K*=107"x 1y 0150740 0 —0.586986 ]

Step 2 : This step deals with the assignment of asymptotically infinite eigenstructure. Let

us specify r =1 and

An=An=Asz=Ag={-1}.
We obtain

K(o) =

coog
ocoq o
oqQ o0
Q ooco
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and

i (0) = 107 x 0 0.386579c 0 0.5886980'] .

0 0.150740c 0 —0.5869860
Step 3 : The observer gain matrix is then given by K;(¢) =

'—0.006046 + 0.0238630 —0.015174+ 0.0008800 0.024727 — 0.074215¢ 0.000715 4 0.001935¢ 1
—0.005099 — 0.039541c —0.026581 + 0.010138¢ —0.011691 — 0.008645¢ 0.015997 — 0.023580¢0
-0.379227 + & —=0.000034 0.001694 0.043684
-0.065245 -3.024800 + o -0.542191 0.477555
-0.174135 0.073264 -0.623340+ o —-0.002869
—0.038601 0.414174 0.319397 —0.510120 + ¢
0 1+3.4522x10~% 0.000500 —0.015400 + 3.1454x 10~ 5¢
L 0 ~3.0866x 10-%¢ 0.999400 0.034300 + 1.2019x 1050

This Ky(o) places two observer eigenvalues exactly at { —0.00075649 1= 70.013932 } and the
remaining eigenvalues asymptotically at { —0.001, —0.001, —o, —a, —0, }. Plots of maxi-
mum singular values of m( jw) and M;(jw, o) for several values of o are shown in Figure

4.3.1. The figure shows that My(jw, o) tends to M (jw) as ¢ — oo. o

4.3.3. Design for exactly recoverable target loops

As discussed in the previous subsection, in general in ATEA design, some eigenvalues are
assigned to finite locations and some others are assigned to asymptotically infinite loca-
tions. Obviously, ATEA design discussed there yields a family of parameterized controllers
Cy(s,0). Depending upon the design requirements, one then chooses a particular member
of this family that corresponds to a particular value of the tuning parameter o. However,
for the case when the given target loop is exactly recoverable (i.e., L;(s) € T**(X)), there is
no need for generating a sequence of controllers. In fact, all the eigenvalues of A — K;(o)C

can be assigned to finite locations and hence ATEA design procedure can drastically be
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M;(jw,5) 1
M/ (ju, 10) -
M;(jw,20) -
E My(jw,5) :
)
s M (jw) 7

-
......
.............................

103 102 10

-
(=]
IS

Frequency (rad/sec)
Figure 4.3.1: Maximum singular values of —M-;(jw) and M;(jw,o).

simplified. In this case, design involves only finite eigenstructure assignment, and no fast
time-scale structure assignment is required. The intent of this section is to describe the
available design freedom and a step by step design for an appropriate finite eigenstructure
assignment to A — K(o)C for exact loop transfer function recovery (ELTR) whenever it
is feasible.

Note that for exact recoverable case, the observer gain K| is not parameterized as
a function of o and thus the presence of o is dropped in all our notations. Following
the interpretations of different partitions of My(s) as in section 4.2, the available design

freedom whenever L(s) € T**(Z) can be described as follows:

1. A set of n; eigenvalues of A — K4(o)C, namely A~, must be chosen to coincide
exactly with the set of plant minimum phase invariant zeros while the corresponding
left, eigenvectors of A — K;(o')C must coincide exactly with the the corresponding left

state zero directions of ¥ so that M; (s) is rendered zero.

2. A set of n, eigenvalues of A— K4(c')C, namely A®, can be assigned arbitrarily at finite
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locations in C~. Moreover, the eigenvector set V* corresponding to these eigenvalues
can be selected freely within the constraints defined in [30]. However, V* must be
selected to be in the null space of (B — K;D)' so that M}(s) is rendered zero.

3. A set of n} + n. eigenvalues of A — K;(0)C, namely A, can be assigned arbitrarily
at finite locations in C~ subject to the condition that any unobservable but stable
eigenvalues of the given system must be included among A°. Moreover, the eigen-
vector set W corresponding to these eigenvalues can be selected freely within the
constraints defined in [30]. We note that under condition §~(Z) C Ker (F), Mj(s) is
zero irrespective of how A® and W* are selected. Also, we note that n} +n, = 0 if

the given system is of minimum phase and left invertible.

4. A set of ns eigenvalues of A— K;(0)C, namely A% can be assigned arbitrarily at any
finite locations in C~. (The sets A® and V* are renamed here as A? and V¥ because
of the finiteness of the eigenvalues.) Moreover, the eigenvector set V¢ corresponding to
these eigenvalues can be selected freely within the constraints defined in [30]. Again,
under the condition §~(Z) C Ker (F), M{(s) is zero irrespective of how A? and vd

are selected.

We now move on to give the design steps to obtain K; which assigns an appropriate
finite eigenstructure to A — K;(o)C so that the observer based controller achieves ELTR.
Step 1a : This step deals with the assignment of finite eigenstructure to the subsystem
(1.3.5) of s.c.b. Choose a gain K® such that A(Ay — K*C}) coincides with A%, a set of n,
designer specified eigenvalues all in C~. Note that the existence of such a K? is guaranteed
by property 1.3.2. Also, in our design, the eigenvectors of Ay, — K®Cy can be assigned in
any chosen way consistent with the freedom available in assigning them [30]. Owing to the

properties of s.c.b, our design always results in an eigenvector set V?® corresponding to the

eigenvalues A of A — K;(0)C, in the null space of (B — K;D)' so that M}(s) = 0.
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Step 1b : This step deals with the assignment of finite eigenstructure to the subsystems

(1.3.4), (1.3.6), and (1.3.8) of s.c.b. Let A9 and C? be defined as

Az.c 0 L:}Cf +
A= | B.E: A. LuCy ,Cv=[":;>¢ (’;°° CC"‘!] (4.3.14)
ByE} BsE. A !

Also, let A7 = A®U A? be a set of n} + n. + n; designer specified eigenvalues all in C~
subject to the condition that any unobservable but stable eigenvalues of the given system
must be included among A?, Now select a gain K7 such that AM(A? — K9C9) coincides with
A9. Again note that the existence of such a K| is guaranteed by property 1.3.2. Also, the
eigenvectors of A9 — K9C? can be assigned in any chosen way consistent with the freedom

available in assigning them [30]. Let us next partition K9 as

KaO+ KaH-
Ki=| K® K< |.
Ko Khn

Step 2 : In this step, K® and K7 calculated in step 1 are put together into a composite

matrix. Let _ _ _
BOc a{ ab
3 Bg; + K90+ [olt L;’},

K= B Lyg Kb . (4.3.15)

Boc+ K® K Ly
Bos+ K Kt 0

Finally define the observer gain K; as
K; =T, KT;*. (4.3.16)
We have the following theorem.

Theorem 4.3.2. Consider a full order observer based controller with its gain given by
(4.3.16). Then the eigenvalues of the observer are given by A=, A® and A9. Moreover, the

observer based controller using the gain given in (4.3.16) achieves ELTR.

Proof : It follows from the properties of s.c.b and some simple algebra. =

Remark 4.3.3. We note that in general the observer gain for ELTR is not unique.
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4.3.4. A helicopter control system design (cont.)

We continue here with the helicopter control system design discussed earlier in subsection
4.3.2. In some practical problems, the conditional stability of the closed-loop system is
allowed. In fact, the closed-loop system in the original design of Garrard et al [21] is
unstable since there are two closed-loop eigenvalues at {0.004877 + j0.017982} in their
design. It is simple to verify that for the helicopter system described in subsection 4.3.2,
ELTR is achievable via a reduced order observer based controller if we are allowed to place
two closed-loop eigenvalues at the origin. The following is such a reduced order observer

based controller obtained using the ATEA algorithm discussed in the previous subsection.

{ ¥ = AcompV + Beomp¥,

?

=t = Ceomp? + Deomp¥,

Where ©0.000000  0.000000  0.000000  0.000000]
. _| 0000000 0000000 0.000000 0.000000
comp = | _0.000544 —0.665443  0.007833  0.011183

| 0.665702  0.000103 —0.023953 —0.009346 |
©0.000000  1.000000  0.000500 —0.015400]
5 _| 0000000 0000000 0.999400 0.034300
omp = | _0.009834 —0.008232 —0.021579 —0.000281
| _0.021831  0.015586 —0.003752  0.000592
F_0.007300 —0.004600  0.024300  0.024200]
o | 023800 0110500 0068600 -0.107200
omp = | 0015400 —0.662200 —0.045900 —0.024500
| _0.056900 —0.170800 —0.112000 —0.033200 ]

and "_0.552777  0.000069 —0.001213 —0.014147"
b 0504876 0018221  0.044136  0.092720
eomp = | 0050573 —0.008787 —0.357982 ~—0.003470

| 0285460 —0.043521 —0.116801 —0.164337)

4.4. Optimization based design methods

As is clear from chapter 2, the whole notion of LTR is to render the recovery matrix

My(s) = F(sI,— A+ K;C)™'(B — K;D) small in some sense or other. The ATEA design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

method views this task from the perspective of asymptotic time-scale and eigenstructure
assignment to the observer dynamic matrix. An alternative method is to view it as finding a
gain K; which minimizes some (say, either Hz or Hy, ) norm of My(s). That is, one can cast
the LTR design as a straightforward mathematical optimization problem. A suboptimal
or optimal solution to such an optimization problem provides the needed observer gain.
There is some historical basis to casting the LTR problem as such. In their seminal work,
considering only left invertible and minimum phase systems, Doyle and Stein [18] propose
a design method based on Kalman filter formalism in which the intensity of a ficticious
input process noise is used as the tuning parameter 0. As ¢ — oo, their method yields
an observer gain which renders My(s,o) asymptotically zero and thus achieves ALTR.
It looks, however, mysterious why and how such a gain achieves ALTR for the class of
problems considered by [18]. It turns out, as proved later on by Goodman [22], that the
procedure of [18] minimizes the H; norm of the recovery matrix My(s) as o — oo. That is,
the procedure of [18] yields a sequence of suboptimal solutions to H; norm minimization
of M/(s). These suboptimal solutions are parameterized in terms of o; and in the limit as
o — oo of the sequence of corresponding ||Mj(s, )| n, is the infimum of ||My(s)||x, over
the set of all possible gains. The infimum of || My(s)||n, happens to be zero for left invertible
and minimum phase systems. In view of this historic perspective, in this section, we also
cast the loop transfer recovery problem for general not necessarily left invertible and not
necessarily minimum phase systems, as a standard H; or H, optimization problem. To
facilitate this, we consider the following auxiliary system,
z2=Az+Cu+ Flu,
L,:{y=z, (4.4.1)
z2=B'z+ D'u.

Here w is treated as an exogenous disturbance input to £, while u is the control input.

The variables y and z are respectively considered as the measured and desired outputs.
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Suppose that one uses a state feedback law to generate the control u,
u=-K;z. (4.4.2)

It is then simple to verify that the closed-loop transfer function from w to z, denoted by
T;u(s), is indeed equal to M’(s). Now the LTR design problem can be cast as the task
of obtaining a K such that (1) the auxiliary system I, under the control law (4.4.2) is
asymptotically stable, and (2) the norm (Hj or H,) of M(s) is minimized. There exists
a vast literature on H; or H,, minimization methods. Borrowing from such a literature,
subsection 4.4.1 discusses algorithms for H; minimization of M;(s) while subsection 4.4.3
does the same for H,, minimization. We want to emphasize that the optimization problem
is cast here in terms of minimizing an appropriate norm of recovery matrix My(s) rather
than the recovery error E(s) = L¢(s) — Ly(s).

It is well known that an optimal solution for either H; or H,, minimization of M 1(s)
does not necessarily exist, and the infimum of ||My(s)|lx, or ||M/(s)||u., is in general
nonzero. For a class of target loops, however, the infimum of || Mj(s)||x, or ||M(s)||x..
is in fact zero, and it can be attained by a finite gain K. This is the class of exactly
recoverable target loops T**(X). Also, for recoverable but not exactly recoverable target
loops T*(Z), the infimum of ||M(s)||x, or ||M;(s)||x., is zero, and it can be attained only
asymptotically by using larger and larger gain K;. Whether the infimum of ||M;(s)||m,
or ||Ms(s)lla,, is zero or not, for general target loops, one needs to generate a sequence
of gains having the property that the limit of H; or Hy, norms of the correspondingly
generated recovery matrices is the infimum of ||M;(s)||x, or ||Ms(s)||u.. over the set of
all possible gains. A suboptimal solution results when one uses a gain corresponding to a
particular member of the sequence. In H; optimization, an observer gain is generated via
the solution of an algebraic Riccati equation (called hereafter H,-ARE) parameterized in
terms of a tuning parameter . A sequence of suboptimal gains is generated by tending o

to co. Let 4* be the infimum of | M/(s)||x,, over the set of all possible gains. Then given
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a parameter 4 greater than 7*, in H,, optimization, one generates a gain by solving an
algebraic Riccati equation (called here after Ho,-ARE) parameterized in terms of -y so that
the resulting ||M/(s,7)||#., is strictly less than 4. By gradually reducing v, one obtains a
sequence of suboptimal gains.

For simplicity but without loss of generality, we assume throughout this section that
the matrix D is of the form,

p=[" ol

Also, we partition the matrices B and C as

B=[Bo, Bi] and C=[g°],
1

and let Al =A- BoCo.

4.4.1. H;-optimization design algorithm

In this subsection, we consider H; norm minimization of My(s) or equivalently T..(s). At
first, let us look at calculating the infimum value of || M;(s)||x, as is done very elegantly in

a recent work by Stoorvogel [55]. We first recall the following lemma.

Lemma 4.4.1. Assume that (A,C) is detectable. Then the infimum of || My(s)|| s, over
all the stabilizing observer gains is given by Trace {FPF'}, where P € ®"*" is the unique

positive semi-definite matrix satisfying:

. == _[AP+PA +BB PC' +BD
L F(P)=|""cP+DB DD’ ]20’

ii. rank F(P) = normrank {C(sI, — A)"*B + D} VseC*/C°,

— ' —
iii. rank [[81 ﬁ‘:t-l%) C’]] = n + normrank {C(sI, — A)"'B + D} Vse C*/C°.
Here normrank{-} denotes the rank of matrix {-} over the field of rational functions.

Proof : See Stoorvogel [54]. |
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In general, as discussed earlier, the infimum of ||M/(s)||x, can only be obtained asymp-
totically. In what follows, we proceed to introduce a basic algorithm of obtaining a sequence
of parameterized observer gains K;(o) for a system I such that the H; norm of the cor-
responding recovery matrix, which is also parameterized by o and is denoted by M;(s, o),
tends to the infimum of ||[My(s)||#, as ¢ — oo. The algorithm consists of the following two
steps:

Step 1 : Solve the following parameterized algebraic Riccati equation (H;-ARE) for a

chosen fixed value of the parameter o,
AP + PA} — PCyCoP — oPCiC1P + By By + ';‘In =0, (4.4.3)

for its positive definite solution P. We note that a unique positive definite solution P of
(4.4.3) always exists for all ¢ > 0. Obviously, P is a function of & and is denoted l.)y P(o).
Step 2 : Let '

Ky(o) = [Bo + P(0)Cy, oP(0)Cy]. (4.4.4)

We have the following theorem.

Theorem 4.4.1. Consider a full order observer based controller with its gain given by

(4.4.4). Let My(s,0) be the resulting recovery matrix. Then, we have
Jim, P(0) = P
Moreover, | M(s, o)||, tends to the infimum of ||M;(s)||x, as ¢ — o, i.e.,
Jim ||M(s,o)||#, = Trace {FPF'}.

Proof : See Appendix 4.B. ]

In view of theorem 4.4.1, it is apparent that as o takes on larger and larger values, the
design algorithm given above generates a sequence of observer gains having the property
that the limit of the correspondingly generated ||M;(s, o)||x, is the infimum of | M,(s)||x,

over the set of all possible gains. A suboptimal solution results when one uses a particular
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value of the parameter 0. However, for some particular class of systems, e.g. the well-known
regular problemst, the infimum value of ||Mj(s)|ls, can be achieved with the following
observer gain [17],

K; = By + PC’,, (4.4.5)

where P is the positive semi-definite solution of
AP+ PA} — PCyCoP + B, B} = 0.
The resulting infimum value of ||M/(s)||x, is given by,
| Ms(s)||a, = Trace {FPF'}.

Note that in this discussion, the observer gain K and thus the resulting recovery matrix is
not parameterized as a function of 5. We note that for a regular problem when || M (s)||x, =
0, the observer gain K} as given in (4.4.5) achieves exact loop transfer recovery (ELTR).
There is a larger class of systems than the class of regular systems, for which || M;(s)||x, = 0.
However, no optimization based method exists yet in the literature to generate the needed
gain to achieve | My(s)||s, = 0, whenever it is possible, for systems other than the class
of regular systems. On the other hand, a direct design procedure based on ATEA, which
achieves ELTR whenever it can be done, was presented earlier in subsection 4.3.3.

Another special case of design that is of interest is as follows. Consider a left invertible
minimum phase system ¥ which is non-strictly prope;'. Let the observer gain K/(o) be
given by

Ky(o) = [Bo, aP(0)C1],

where P(c) := P is the positive definite solution of

AP + PA, — 0PC,C\P + B,B, = 0.

'Regular problems are the class of problems where D is surjective impling that T is right invertible and
has no infinite zeros, and where T has no invariant zeros on the jw axis.
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It is simple to show then that the observer gain K;(o) chosen as above achieves asymptotic
loop transfer recovery (ALTR), i.e. the resulting || My(s, o)||x, tends to zero asymptotically
as 0 — oo. This is a generalization, for non-strictly proper left invertible minimum phase
systems, of the result given by Doyle and Stein [18] who treat only strictly proper left
invertible minimum phase systems. The above result has been given earlier by Chen,
Saberi, Bingulac and Sannuti [4].

It is of interest to investigate what type of time-scale structure and eigenstructure is
assigned to the observer dynamic matrix A — K;(c)C by the gain K;(o) obtained via the
basic algorithm of equations (4.4.3) and (4.4.4). Obviously, the basic algorithm renders
Mj(s,0) and M(s,0) zero as 0 — oo, while shaping Mj(s,o) in a particular way so
that the infimum of ||Mj(s)||n, is attained as 0 — oco. In so doing, among all the possible
choices for the time-scale structure and eigenstructure of A— K;(c)C, it selects a particular
choice which can be deduced from the results of cheap and singular control problems as

analyzed in [45] (see also, [58] and [40]). We have the following results.

1. Aso — oo, the asymptotic limits of the set of n] eigenvalues A~=(o) and the associated
set of left eigenvectors V(o) of A — K;(o)C coincide respectively with the set of
plant minimum phase invariant zeros and the corresponding left state zero directions
of X. Also. as ¢ — 00, some of the n; eigenvalues in Ab(c) coincide with the stable
but uncontrollable eigenvalues of ¥ while the rest of them coincide with what are
called ‘compromise’ zeros of ¥ [45]. Moreover, the asymptotic limits of the associated
left eigenvectors, namely V®(a), fall in the null space of matrix [B — K;(¢)D}’. This

renders M](s, o) zero asymptotically as o — oo.

2. As 0 — oo, the set of ny eigenvalues A®(o) of A — K;(0)C tend to asymptotically
infinite locations in such a way that M3°(s, o) — 0. The time-scale structure assigned
to these eigenvalues depends on the infinite zero structure of I (see for details in [45)).

Also, the eigenvalues assigned to each fast time-scale follow asymptotically a Butter-
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worth pattern.

3. As o — oo, the asymptotic limits of n} eigenvalues in A*(c’) coincide with the mirror
images of nonminimum phase invariant zeros of £, while the associated set of left
eigenvectors of A—K;(a)C coincide with the corresponding right input zero directions
of E. The rest of n. eigenvalues of A%(c), as & — oo, tend to some unnamed finite
locations, while the associated left eigenvectors follow some unnamed directions. This
shapes the limit of recovery matrix, M;(s) in a particular way so that the infimum

of || M(3)||#, is attained as ¢ — oo.

To conclude, as ATEA design procedure does in general, the basic algorithm of equa-
tions (4.4.3) and (4.4.4) renders M{(s,o) and M{°(s, ) zero asymptotically as & — co.
Moreover, it shapes M(s) in a particular way so that the infimum of || M;(s)||#, is attained
as ¢ — 00. In contrast to this, ATEA design procedure of section 4.3 allows complete avail-
able freedom to shape the limit of recovery matrix A_'I;(s) in a chosen manner within the

design constraints imposed by the structural properties of the given system.

4.4.2. A helicopter control system design (cont.)

We continue here the helicopter control system design discussed earlier in subsections 4.3.2
and 4.3.4. It is simple to verify that for the given helicopter system of subsection 4.3.2,
P = 0 satisfies all the three conditions of Lemma 4.4.1. Hence, by theorem 4.4.1, there
exists a sequence of observer gain matrices K;(o) such that the corresponding recovery

matrices,

lim [|M(s, o)l &, = Trace(FPF') =0.

This is clearly demonstrated by the plots of maximum singular values of M;(jw,o) for
several values of o as shown in Figure 4.4.1. The observer gain matrices for these plots are

generated using the Hj-optimization based algorithm given in the previous subsection. O
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Figure 4.4.1: Maximum singular values of M;(jw, o).

4.4.3. Hu-optimization design algorithm

In this subsection, we consider H., norm minimization of Mj(s) or equivalently T,,(s).
Unlike in H; norm minimization case of previous subsection, for general systems, there are
no direct methods available to compute exactly the infimum of | My ()|l .. which is denoted
here by 4*. However, there are iterative algorithms that can be used to approximate v*,
at least in principle, to any arbitrary degree of accuracy (See for example [36]). Recently
though, for a particular class of problems, i.e. when ¥ is left invertible and has no invariant
zeros on the jw axis, such an infimum 4* has explicitly been calculated in [5] and (6].

We now proceed to present a basic algorithm of computing the observer gain matrix
K such that the resulting H..-norm of the recovery matrix Mj(s,v), is less than a priori
given scalar 4 > 4*. The algorithm is as follows:

Step 0 : Choose a value e = 1.
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Step 1 : Solve the following algebraic Riccati equation (Hw-ARE),
AP + PA} — PC{CoP - %PC’,CIP + BB} + :/%PF'FP +el, =0, (4.4.6)

for P. Evidently, the solution P of the above Hy-ARE is a function of 4 and is denoted
by P(7).

Step 2 : If P(y) > 0 go to Step 3. Otherwise, decrease ¢ and go to Step 1. Note that for
4 > 4*, it is shown in [60] that there always exists a sufficiently small scalar €* > 0 such
that the Ho-ARE (4.4.6) has a unique positive definite solution P(7) for each € € (0,¢).

Step 3 : Let
1

Ky(7) = [Bo + P(v)Co, 5

P(y)Cy)- (4.4.7)
We have the following theorem.

Theorem 4.4.2. Consider a full order observer based controller with its gain taken as in
(4.4.7). Let My(s,v) be the resulting recovery matrix. Then, |M;(s,7)||n., is strictly less
than v, and tends to v* as y — 7".

Proof : It follows simply from the results of [60]. L I

Remark 4.4.1. We note that v acts here as a tuning parameter. Since to start with, one
does not know +4*, a particular prescribed value for 4 may turn out to be less than v*.
In that case, the Ho,-ARE (4.4.6) does not have any positive definite solution even for a
sufficiently small €. Then, one has to increase the value of 4 and try to solve the Ho-ARE

once again for P(+) > 0. One has to repeat this procedure as many times as necessary.

For the special case of regular problems, there exists a method of generating the gain

without the need to introduce another parameter ¢, and is given by [17], )
K;(v) = Bo+ P(7)Co, (4.4.8)
where P(y) := P is the positive semi-definite solution of

AP+ PA, — PCLCoP + B, B, + %PF’FP =0,
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such that A(A] — CoCoP +v~3F'FP) C C~. A full order observer based controller with
its gain taken as in (4.4.8) results in || My(s,7)||n., being strictly less than 7.

Apparently, the gain K;() obtained via the basic H.,-optimization algorithm of equa-
tions (4.4.6) and (4.4.7) assigns a particular time-scale structure and eigenstructure to the
observer dynamic matrix A — Ky(9)C. An investigation into the exact nature of time-
scale structure and the eigenstructure of A — K;(v)C as ¥ — 4" is still an open research
problem. But we like to point out that, as ATEA design procedure does in general, the
basic Hu-optimization algorithm renders the corresponding M} (s,7) and M(s,7) zero
asymptotically as ¥ — 7*. Also, the corresponding Mj$(s) is shaped in a particular way so
that the infimum of ||M/(s)||#,, is attained as ¥ — 4*. In so doing, in addition to A*®(y),

some elements of A°(y) may be pushed to infinite locations in C~ as v — 4*.

4.4.4. A helicopter control system design (cont.)

We continue here the helicopter control system design discussed earlier in subsections 4.3.2,
4.3.4 and 4.4.2. For the given helicopter system as in subsection 4.3.2, it can be verified that
4*, the infimum of |My(s)||s., is approximately equal to 1. Let the observer gain K;(v)
be calculated using H..-optimization based algorithm discussed in the previous subsection.
The plots of maximum singular values of M;(jw,7) for several values of y as given in Figure

4.4.2, clearly demonstrate that ||M;(jw,¥)||ln, = 7* as v — 7". ]
4.5. Design for recovery over a specified subspace

Sections 4.3 and 4.4 consider the conventional LTR design problem which seeks the recovery
over the entire control space. Here, given a subspace § of R™, the interest is to design an
observer so that the achieved and target sensitivity and complementary sensitivity functions
projected onto the subspace § match each other either exactly or asymptotically. The
conditions under which such a design is possible are given in chapter 3. To recapitulate

these conditions, let V* be a matrix whose columns form an orthogonal basis of the given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

" .
. .
. \ 4
18F \
” [

T
=L
1

1.6

1.4

1.2F

Magnitude

0.8f

0.6

0.41r

Seal
.......
Saw

SV TPV >
10-3 102 107 100 10! 102

b=
IS

Frequency (rad/sec)
Figure 4.4.2: Maximum singular values of M;(jw,v).

subspace S of ®™. Also, given the system X characterized by (A4, B, C, D), let us define
an auxiliary system £’ characterized by the matrix triple (A, BV*, C, DV*). Also, let
Ly(s) = F®B be the specified target loop transfer function. Then the analysis given in
Part 1 implies the following:

1. The projections of achievable and target sensitivity and complementary sensitivity

functions onto the subspace S match each other exactly iff S~(X?) C Ker (F).

2. The projections of achievable and target sensitivity and complementary sensitivity

functions onto the subspace S match each other asymptotically iff V*(E?) C Ker (F).

Thus the task of designing observers for either exact or asymptotic recovery over a subspace
collapses to the task discussed in earlier sections except that one needs to use £’ instead

of ¥. The following example illustrates this.
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Example 4.5 : Consider a system ¥ characterized by

71000000 1] 000 0]
02000020 0000
00300300 0000
A |00044000f o foo0o0o0
00044000f{°"T|1000]
00300300 0200
02000020 0030
(10000001 000 4]
(0004000 0] 1000]
00005000 0000
c=|00000600|,D=|0000
00000070 0000
(00000008 0000

This system is left invertible and of nonminimum phase with invariant zeros at s = 1,

8 =2,3=3 and at s = 4. Now consider a specified subspace S which is a span of

0.4433 -0.4553 —0.0027
0.3802 0.5771 -0.7128
0.6006 —0.4719 -0.1664
0.5462 0.4867 0.6813

It is simple to verify that the auxiliary system X’ characterized by (A, BV*, C, DV*) is left

V=

invertible and of minimum phase. Hence the projections of target and achievable sensitivity
and complementary sensitivity functions onto V'’ can match each other asymptotically. To

exemplify this, let the target loop be specified by,

0 0 O0 200 100 0 0 O
0 0 100 0 0 5 0 0
0 60 0 0 0 0 3 O
50 0 0 0 0 O 0 25

Let us choose Ky(o) with o = 1000 as

F =

0 10707293 240.6328  —T17.12942  —18.09924
0 —1324480  -—35.68825  106.64317 2.70284
0 —-6883343 —215.567 643.91894 16.36376
Ky(o) = 0 258551 9.26071 —27.598585  —0.701356
1 1.76203 2.185x10"7 —6.51x10"7 —1.655x10"8
—0.4570667  3978.336 144.08447 68.78912 1.74812
3.57747  —9798.08346  40.0091 23.90837 —3.03008
| 0.185196 —354.2448 1.115087 -3.32316 125.04055
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so that the observer eigenvalues are placed at —1000, -1000, -1, -2, -3, —4, —5 and —6.
Let the orthogonal projection matrix onto the subspace S be P* = V*(V*). Then the
resulting M;(jw, o) P*, Es(jw,o)P*, Sy(jw,o)P* and Sy( jw)P? are plotted with respect to
w over a given range of w in figures 4.5.1 and 4.5.2.

It is easy to note that Mj(jw,o)P? is approximately zero while S t(jw, o) P? is close to
Se(jw)P*. Also, note that the minimum singular values of S 1(jw,o)P* and S;(jw)P* are
identically zero due to the singularity of P*.

4.6. Comparison of ‘ATEA’ and ‘ARE’ based algorithms

A comparison of optimal or suboptimal design schemes based on solving Algebraic Riccati
- equations (ARE’s) as described in section 4.4 and the asymptotic time-scale and eigenstruc-
ture assignment (ATEA) design schemes of section 4.3, is in order. In this regard, Saberi,
Chen and Sannuti [40] discuss several relative advantages and disadvantages of ATEA and
ARE based designs. Here we look at ATEA design and optimization based designs from

two different perspectives, (1) numerical simplicity and (2) flexibility to use all the available
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freedom.

Let us first consider the numerical aspects of those design algorithms. It is clear that
the central part of either optimization based design of section 4.4 lies in obtaining the
positive definite solutions of parameter dependent ARE’s repeatedly for different values
of the parameter. As is well known, these ARE’s become numerically ‘stiff’ when the
concerned parameter takes values close to a critical value. To be specific, the H;-ARE
becomes stiff as the parameter o becomes large, where as the Ho,-ARE becomes stiff when
v approaches 4*. This is due to the interaction of fast and slow dynamics inherent in such
equations. Thus, the numerical difficulties accrue not only due to the required repeated
solutions of ARE’s but also due to the ‘stiffness’ of such equations. On the other hand, as
is clear from section 4.3, ATEA adopts a decentralized design procedure and in so doing
removes both the obstacles of repetitive solution of algebraic equations and their stiffness.
That is, in ATEA, in order not to allow the interaction between the slow and various fast

time-scales, the needed design to assign asymptotically finite and infinite eigenstructure
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to the observer dynamic matrix is done separately. The tuning parameter merely adjusts
the relative fastness of fast time-scales and it is introduced only in composing the two
separately designed gains together into a composite gain. This procedure presents no
numerical difficulties whatsoever as the parameter takes larger and larger values.

Another factor that is of great importance in selecting a design procedure is the flex-
ibility it offers to utilize all the available design freedom. As summarized in section 4.2,
there exists considerable amount of freedom to shape the recovery matrix by an appropriate
eigenstructure assignment to the observer dynamic matrix. Such a freedom can be utilized
to shape M;( jw), the limit of the recovery matrix, with respect to w. Any optimization
based method adopts a particular way of shaping Tf;( jw) as dictated by the mathematical
minimization procedure. For example, as discussed earlier, in H; optimization Tf}( jw)
is shaped by assigning some of the eigenvalues of A —~ K;C at the mirror images of the
nonminimum phase invariant zeros of X, while the associated set of left eigenvectors of
A — K;C coincide with the corresponding right input zero directions of £. Such a shaping
obviously limits the available design freedom, and may or may not be desirable from an en-
gineering point of view. Next, available design freedom can also be utilized to characterize
appropriately the behavior of asymptotically infinite or otherwise called fast eigenvalues
of A~ K;C. What we mean by the behavior of fast eigenvalues is (a) their asymptotic
directions and (b) the rate at which they go to infinity, i.e., the fast time-scale structure of
A~ K;C. As demonstrated in [40], the behavior of fast eigenvalues has a dramatic effect
on the resulting controller band-width. Again, optimization based design methods fix the
behavior of fast eigenvalues in a particular way that may or may not be favorable to the
designer’s goals. We believe that the ability to utilize all the available desi~gn freedom is a
valuable asset; in particular, exploring such a freedom in the space in which complete re-
covery is not feasible is of dire importance. ATEA design methods of section 4.3 put all the
available design freedom in the hands of designer and hence are preferable to optimization

based designs of section 4.4. However, a clear advantage of the optimization based schemes
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is that at the onset of design, they do not require much systematic planning and hence
are straightforward to apply. In fact, one simply (!) solves the relevant ARE’s repeatedly
for several values of tuning parameter until a gain obtained for one particular value of the
parameter is appropriate for a suboptimal design. Admittedly, ATEA design does not have
such a simplicity. One needs in ATEA design to come up with an appropriate utilization
of the available design freedom and thus the selection of available design parameters in
order to meet the practical design specifications. But this perhaps can be done by a simple
iterative adjustment. Such a procedure is still computationally inexpensive as the required

calculations for ATEA design are straightforward and do not involve any ‘stiff’ equations.
4.A. Appendix 4.A — Proof of Theorem 4.3.1

We shall prove theorem 4.3.1 in the following two cases:
Case 1 : The given system X is strictly proper, i.e. D =0.
Without loss of generality, we will assume that the given system is in the form of s.c.b.

Here we note that for strictly proper system, uo, yo, Co and By are nonexistent. Hence, we

have
e e el ~ a4 ~al4 ~.c >cl
C°=[E} E.], K°=K", K (6)=K (o), K(0)=K (o)
and .
L+ A, B+ Hy
) Ly + Hi + K (o) LY+ ),
K(d): L(,f-l-f{bf K?
Ly+Heyy+K(0) La+Ha
i Ly 4+ Ky(o) 0

Then by renaming the variables zo = [(z7)’, z}]’ and z. = [(z})', z!J’, we can rewrite the

observer dynamic matrix A — K;(o)C as,

A® 0 _ —HyCy
A-Kio)C=| A® A= —[H,+K(o)lC; |, (4.A.1)
BfEO BlfC'e A!—Kf(d)Cf—Lij
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where
wo_ | Az, —H.C. 0 0 -A'c e | AL O
A"[o A |04 "[BCE; —fIc.'CZ']’Ae_[BcEZ; A |’
~ H ~ at
Hop = | 59 H,=| .of|.
of [Hbf]’ “f [Hcl]

We prove the TSS properties of the observer on a transposed system ¥; whose closed-loop

dynamic matrix is a transpose of A,. Consider Z;,

&g = (A%)'z0 + (A®)'z. + Z Epzeg, (4.A.2)
=1
ée = (Aee)'ze + Z‘ E;ez[q‘ (4.A-3)
=1

and for each : =1 to m,,,
b= A= | | + (Bt (R ee+ Kio)s 4 5 B, (004
where
Eo=E;, Es), Ei. = [EY, Ei],
fIOJ = [flm, He, -+, ffo:n.] ’ erl = [f{el, Ha, -, erm.],
z =[xy, 2o, 23, 00y T )y @i = [T, Tiay o0, i)

Let us adopt the following scaling and transformation of variables,

) g
Lo =20, Te =T, Tig; = Tig; + (K=) 2, i = Heaz,-k, t=1togqg—1.
I=k+41

We next define,
Xij = [Tioijos#1s Tiaijord2s *** s Tio )|
and
Xij = [Biaijoy 41y Bicijoa 42y *** » Tiays]
so that
Xij=8;Xi;forj=1tor;—1,
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and

Xir.' = St'r.'X~ir.- + [ ? ] K;-:t,

where S;; is as defined in (4.3.7). Then (4.A.2) to (4.A.4) can be rewritten as

&9 = (A®)'zo + Doeze + 3, Doef0, 1] X, (4.A.5)
=1
ée = (A“c)'zc + Z-: Del [0 ’ I]Xln (4.A.6)

and for each i =1 to m,,

paXa = GhXa— Ha Y JiiK;Xi;+ Y Dial0, 11X 4, + Diso®o + Direx.  (4.A.7)
} =1

=1

p.-,»X,-j = G:,-X;,' + H.’,'X.'j..x + E D.','[[O, I]Xh‘ + D.-,-,z, for j=2tor; (4.A.8)

=1

01
H;,'=[0 0].

The zero elements in n;; X n;;_, dimensional matrix H;; are of appropriate dimension and

where

may or may not exist depending upon the values of n;; and n;;_;. Also, various coefficient

matrices in the above equations are as follows:

Do. = (A®) =" ELK!,, Dor = Ely , Dot = E,
=1

Do = -manI:;.- y Dire = —mHnﬁ:.- =Y Em(KY
=1

L0 i
[glt'l ’ 8&'2 1"y gl!'ri] = EltDiag[H €iky H €iky *°°y Ciq.‘]

k=1 k=2

D;;e = —Zué';,-j(Kd)' forj=2tor; -1
{=1

D;je = 5;,«,- forj=1tor;—1

i = = 3 Y 41 | § | (2
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and o

Dixe = G+ i | | | Kt 4-A9)
Although (4.A.5) to (4.A.8) are in singularly perturbed form, their time-scale structure
properties are not transparent. In order to bring various time-scales into focus, we adopt

another transformation of variables. Let for each i = 1 to m,,
Xir;, = Xy, and Xij =X+ KijpnXijppforj=1tor;—1 (4.A.10)

where n;;_; X n;; dimensional matrix

0 0
Ki; = [ K., Kia ] .
Then it is straightforward to verify that (4.A.7) and (4.A.8) can be rewritten as
llaXu = (G§) Xa + Z Dixe[0, 1}Xer, + Diroo + Disc.

=1

+ Z L2V N N [( %) X + HaXieor + Y Dire[0, 1) Xer, + Dike-’ce] ,
k=2 Hik . =1

pi; Xi; = (G5)Y Xij + HijXij1 + Y Dije[0, 1} Xer, + Dijeze

=1

+ Z %Kﬁﬂxﬁn voe Kik [( %) Xie + HixXikmr + Z Die[0, 1) X, + D'.keze]
k=j+1 7 =1

forj=2tor; -1,

I‘tr. iri— ( "-.)le. + HIP.XIT.—I + E Dor.l[O I]th + Dtr.eze (4A11)
=1

Since the interconnection matrices in the coupled equations (4.A.11) tend to null matrices
as ¢ — oo, the time-scale structure property of the observer follows directly from singular
perturbation theory. To show this more explicitly, we next do Lyapunov analysis of the

above dynamic system. For this purpose all the small parameters are redefined as
pij = €9 (4.A.12)

for some some positive scalars a;; where

o™
I
Q=
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Then in view of the property (4.3.5), we note that
a;j; > a;jyr forallj=1tor; — 1.

Also, we can rewrite (4.A.11) as

e Xy = (G) X + €% [D."m”o + Do+ Y DiyeXere + ) Kfikxik] )
k=1

=1

€ Xij = (G5) Xij + Hi; Xij—1 + €% [D;,.,z, +Y D5 Xee + Y K;,-,,X.-,.]
=1 k=j
forj=2tor; -1,

€*ini Xir.' = (G?f'. )’Xl'r.- + Hir.‘Xir.'—'l + Cd:" [D:rieze + ip;r.-txlf‘l]
{=1

(4.A.13)
for some positive scalars d}; and for some appropriately defined interconnection coefficient
matrices. It is important to note that all the interconnection matrices are bounded as

€ —0. Let

d=-min{d};; i=1tom, and j =1 to r;}.

DN =

Then
dij = dj; —d > 0for all i and j.
Also, let us define
Xo = Cdzo and Xe = Edﬁc.

Then we can rewrite (4.A.5), (4.A.6) and (4.A.13) as

Xo = (A®)Xo + Do.X. + € Y Doi[0, 1] X e,
=1

de = (A2, + & Dyl0, 1) Xor,,

=1
and for each i = 1 to m,,

6““Xi1 =(G5)' Xa + e Do Xo + Dy X. + zDillth + Z K ieXir|
=1 k=1
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5 X = (G5) Xij + HijXijoy + €% [DijeXe + %Dijtxtu + {2 KjikXik]
forj=2tor; -1, - ~
i Xy, = (G5,.) Xies + Hir, Xirim1 + €% [Dir.'exe + %Dir.-txln] .
= (4.A.14)

To proceed with a Lyapunov analysis of the above system, let us select the positive definite
matrices Py, P. and P;j, ¢ =1 to m, and j = 1 to ry, satisfying the following Lyapunov
equations:

PyAyy + AgePo = -1,
PCA:C + AgePe = _I’
P;(G5;) + GiPy = -1

We next define a Lyapunov function,
V(X) = X,PuXo + G X.PXo + 503 e X Py X (4.A.15)
i=1 j=1

where ¢, and c¢;; are some positive scalars that are yet to be selected. It is then easy to

show that dV/dt calculated along the trajectory of (4.A.14) satisfies the following:

dv

=5 < —1Xoll* + 20| Poll || Doel| [ Xoll [|Xell +2¢* Z 2ol 1l Dok | |1 Xoll 1| X |

—c[| Xe|l* + 20&‘?_: I Pell || Dee |} 11 Xelf 1| Xer I
=1

<[ G Ci1 4.
A2 {2 Xl + 222 Xl WPall [ 1Dl 1 o]

=1

+H|Diell |1 Xell + kZ I Dasel| 1| Xer [ + ;,Z [l K] lIXekH]
=1 =1
ri—1

+ Zz [ €% "X'J "2 +2 "Po" "Xu" ||X.,-1|| +2 au i ||X,,||||P., ||

(llD-'jell | Xell + kE IDisell | X, ll + kE | Kie ] IIX:'::II)]
=1 =3
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_Gri Cir; Ciri d;,..
I Xerll? + 25 Pori M| X M| X =1 [l + 222 prr € (| X || P |

5"' -w

[uv;,i,u ARSI |
= = [IXoll s IXell s WXuall o< s U Xarall s+ s UXmall s+ =+ [ Ximarma 1] R(E)
[Xoll Xl UXaall = Il s I Kimanll s+ [ Ximarm ] (4.A.16)
Let us next choose
ee > | Polf? || DocJ?. (4.A.17)

In order to facilitate the selection of coefficients ¢;;, let

1
d; = Tl min{d;;; j =1 to r;}

and define
bij=(ri+1-3)d;i < dij,j=1ltor. (4.A.18)

Then for each : = 1 to my, and j =1 to r;, select

ai5=bis

Cij =€
Here we note that for j=1tor; -1,
bi; > bijia.

Then the matrix R(e) is given as,

[ Roe * % o+ %

*x R * - %
Rley=| * * Ry .-+ & (4.A.19)

| x ok ke R, ]
where *'s represent appropriate dimensional submatrices which tend to null matrices as

¢ — 0. Also,
1 = [ Polll Dol

ROe =
=l Poll{| Dee | Ce

(4.A.20)
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whenever c, is as in (4.A.17). Furthermore, for each i = 1 to m,,

[ 1 Pia ]
?ﬁ—* iz oo * *
P; 1 .,
— &3 da T * . *
R; = : : . (4.A.21)
. 1 11Pir; |l
Sy —k —E
e"'-l;, €T
P R B
L ell‘i c"‘. r

Now in view of (4.A.18), it is straightforward to verify that R;, for each 1 = 1 to m,,, is
positive definite for € sufficiently small. Then in view of the special structure of R(e) as
in (4.A.19), there exists an €* such that for any € < €, R(e) is indeed a positive definite
matrix and thus the stability of the observer dynamics is guaranteed. This completes our
Lyapunov analysis for Case 1.

So far, we proved that the ATEA algorithm yields an admissible observer gain K(o)
in the sense that A, is a stable matrix for sufficiently large o and that it has the required
time-scale structure. In what follows, we will show that K(o) achieves LTR in the sense
that

My(s,0) = F[sI, — A+ K(0)C]™' B — M.(s) pointwise in s (4.A.22)

as o — 0o. In view of (4.3.12), it can be seen easily that K (o) has the following form,

Ky(o)=T(o)I(e)N+Q (4.A.23)
where
. 1 1 1 _
I'(o) = Dlag[m, E’ M) ’Im.] y N=[In,,0],

LY+ Ay, L+H,,
L;j + I?:f L;o + f{a-a

Q= Ly + I!bf K, ) , (4.A.24)
ch + Hcf Lca + Hca
| Ly 0
while T'(o) satisfies
T(oc) = BxT (4.A.25)
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as ¢ — oo where
r et
0
B, = 0 y T = Diag[Jir, Kir,dy Jar, Karydy - s Irmurme Kmarmad): (4.A.26)
Kc
By

It is shown in [7] that the triple (C, A, By) forms a left invertible and a minimum phase

system. Thus it follows from the results of [43] that

[sI,— A+ K4(0)C]™'B,, — 0 pointwise in s (4.A.27)
as o — 0o. Next let
B = [Bn,,0] + B® (4.A.28)
where
0 0 —-Ke+t 0
0 0 0 0
B=] 0 0 and Bf= 0 0. (4.A.29)
0 B. —-K° B,
By 0 0 0

Then we have
My(s,0) = F[sl, — A+ K;(0)C]™'B
= Flsl. = A+ K4(c)C]™'([Bm ,0] + B°)
— Flsl, - A+ K;(0)C]™'B® (4.A.30)

as 0 — co. We will next show that M(s, o) — M}(s) as 0 — co. To simplify the notation,

we reorder some variables and rewrite A — K;(c)C as in (4.A.1). We note that

K°(0)I V(o) = K°T (4.A.31)
and

K (o)I"Y(o) = BT (4.A.32)
as ¢ — oo. Let A%(0) and W®(0) respectively be an eigenvalue and eigenvector of A —

K;(a)C represented in M*(s, o). Let us partition W% (o) as

W (o) = (W) (o) , (W) (o) , (W) (o). (4.A.33)
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It is then easy to show that as ¢ — oo,
2% (o) — e A,
W) =20 , W) » W™ , W™i(0) » CTo)T'CW™" -0 (4.A.34)

where X" and W* are respectively an eigenvalue and eigenvector of A*°. Now in view of
the fact
[VOQ Ve, Vm]H[Woy Wea -Woo] = I,

we note that V° and V™ are of the form,
7V = [*, 0, #]' and V™ = [«, 0, #]',
where * denotes some finite value not necessarily zero. Hence,
V°B*=0 and V7B =0. (4.A.35)
Thus we can rewrite (4.A.30) as

My(s,a) = F[sI, — A+ K4(c)C)™' B
n FWi(o)V(0)B°

=2 8—/\.'

. Z:; FWj(—V“xz"Be
= M(s). (4.A.36)

Next by partitioning F' as
F= [FOa F., Foo]a

and letting

~ Kot
B,,=[ K 0]’

-K° B,

we note that

— Ne FQW“‘ T/'“‘ H Bee
My(s,0) » To(s) = S W _(V_)VTB" _

» Fi(sI,, — A®)-1B= (4.A.37)
=1 8 - /\
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where
7=, V. 7™ = [Weel, W ... WA,
This completes the LTR analysis of ATEA algorithm for Case 1.
Case 2 : The given system X is non-strictly proper.
Without loss of generality, we will assume that the given system is in the form of s.c.b.
Then by renaming the variablés zo = [(z7)', zi]’ and z, = [(z})', zl]', we can rewrite the
observer dynamic matrix A — Ky(o)C as,

A% 0 —HosCy
A-Kio)C=| 4a° A= —[Ay4+E%@)C; |, (4.A.38)
B4E® BiC! A;— Ky(0)Cy— LsCy

where

0 Ap-K'C

a0 | —K®Cq  —HuCy— K*™*Co
B.E; - KxCs —HaCi—K“Cq |’

00 _ A;a —i[:Cb 7, = iIO— = -
A _[ b ],H(,,_[ﬁb;  E°=[E; B,

B.Ef — K*C}, A..— K*®Ci.

P K™+ Cyy + ﬁ:fgf
f K*®Cos + H.4C; )

The fact that the ATEA algorithm yields an admissible observer gain Ky(o) in the sense

Aeel = A% — KeOcreO = [ A:; - K“O*CJ; —K°0+Coc ] :

that A — K;(o)C is a stable matrix for sufficiently large o and that it has the required
time-scale structure follows along the lines as in Case 1. In what follows, we will show

that K;(o) achieves LTR in the sense that
My(s,0) = F[sI, — A+ K;(0)C]™'[B — K(o)D] — M(s) pointwisein s (4.A.39)
as o — oo. In view of (4.3.12), let us partition K;(o) as,

Ki(o)=Ko+[0 K(o)]
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[ B 00] [0 L +H,, L+ H, ]
B+ K 0 0 0 Ly +H,+K" (o) LY+ H,,
Bo‘;'K 00 0 ch-l-f[d:l-l?d(d) Lc;,-i-ffcb
or 0 0] |y Ly + K4(0) 0
Then we have,
0 0 0
_ 3 -Kt 0 0
B=B-K(c)D=B-K,D = 0 0o o0,
-K® 0 B,
0 By 0
and
A=A-K,C
A7, 0 L, Cy 0 L;;Cy
—K**Cs. A} — KtCF LGy — K*®tCop ~K*+Cy, L:!CQf
= 0 0 As 0 LyCy
B.EZ — K*Cy, B.E}, — K°Cd, LaCh— K®Co, Ace— K®Co LyCy— K®Co
ByE; BsE} B4 E, BsE, Ag
00 0 0 Cy
C= .
00 C, 0 O

With these definitions, we can write My(s, o) as
My(s,0)=F [sI,. -A+ ?(U)U] B.
Then in view of (4.A.40), it can be seen easily that K (o) has the form,
K(0) =T(o)T(o)N +Q,

where
1 1 1
I'(¢) =Diag | —, —, -+- ,— N =[I,,,0],
() 8 hm 72 Nmy ’ [ ! ]

and X o o -
Ly+H, L+ H,
Ly + H,, L+ HY,
Q= L;,f-l-I?bf I{”~ y
Ly+Hy La+Hg
L 0
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while T'(o) satisfies
T(¢) = BT
as o — oo where
0
Kal+
Bm e 0 ’ T= Dlag [JlrlKlrld, J2r3K2rgd, ce ,Jm!rml Km,rm’d] .
Kcl
By

It is shown in [7] tha. the triple (C, 4, B,,) forms a left invertible and a minimum phase

system. Thus, it follows from the results of [43] that
[sI. — A+ K;(a)C)™ B,, = 0 pointwise in s

as o — 0o. Next let

B=[0,Bn,0]+ B°

where
0 0 0
~K%%+ _Kea+
B® = 0 0 0
—K® _—K B,
0 0 0

Then we have

My(s,0) = F[sl,— A+ K(a)C]™'B°

as 0 — 0o. Let us now partition F as
F=[F, F. F,]

and define
- Ka0+ - K¢1+ 0
—-K® —K B,

It follows from the results of Case 1 that

5= |

— ne Fev_y‘“‘ V“‘ Hpee
My(s,0) - Tis) = 35 22 (V)

e
i=1 s—A

= Fy(sI,, — A® + K*C®)™' B,
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where
—tel __eel —ttng —ttl 62 eene -H
[V VT ]=w W W ] .
This completes the proof of theorem 4.3.1. |

4.B. Appendix 4.B — Proof of Theorem 4.4.1

Let e = 1//7, and define the following perturbed system,

i=Az+C% + Flu,
Lae (4.B.1)
z = Bjz 4+ Dlu,
where
- _[Im, 0 O 0 ]
B.=[Bo, B, €Iy, 0], and D, = [ 0 0 el
Consider the state feedback law,
u=—K;'(o)z (4.B.2)
with gain K;'(o) defined by,
K4'(0) = (D.D))"(PC + D.B.), (4.B.3)
where P is the positive definite solution of
AP + PA' + BB, - (PC' + B.D.)(D.D,)™(CP + D.B!) = 0. (4.B.4)

We note that D is injective. Then, it is shown in Stoorvogel [55] that the state feedback law
(4.B.2), minimizes the H; norm of the transfer function from w to z, namely T}, (s, o), as
o — o0 (or € — 0). The proof of the first part of theorem 4.4.1 follows now by recognizing
that (4.B.3) and (4.B.4) are respectively equivalent to (4.4.4) and (4.4.3). The rest of

theorem 4.4.1 follows trivially from Stoorvogel [55]. ]
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Chapter 5

A STABLE COMPENSATOR
DESIGN FOR ALTR

5.1. Introduction

In this chapter, a new compensator structure is proposed for ALTR for general nonminimum
phase non-strictly proper systems. The proposed compensator is (a) open-loop stable, (b)
guarantees closed-loop stability and above all (c) requires much smaller values of gain than
the conventional observer based controller for the same degree of loop-transfer recovery. The
fact that the new compensator requires much smaller values of gain than the conventional
controller results in several practical advantages, the most important among them being
the reduction in controller band-width and freedom from the owes of control saturation.
Trade-off between the value of gain and the degree of loop transfer recovery as well as
the bounds on singular values of sensitivity and c;)mplementary sensitivity functions is
presented in this chapter.

Our central observation in this chapter is this. When one is restricted to the frame
work of observer theory, the link from the control signal u to the observer via the control
distribution matrix B is always present in the design configuration such as the one depicted
in figure 2.2.1. In these observers, when K;(o) and K,(o) are designed to achieve ALTR,
the effect of the above control-link on the output of observer based controller (namely

4) vanishes asymptotically as ¢ — oo for the case when ALTR is achievable. However,
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>

N(s)

Figure 5.1.1: Plant and compensator configuration.

effect of the above link on Z is in general nonzerc and hence the need for the above link
in the conventional observers. Based on this observation, we are inspired to remove the
above mentioned link structurally right from the beginning of the design. In other words, to
develop the appropriate full and reduced order compensators, we consider the configuration
illustrated in figure 5.1.1, where N(s) is exactly the same as the one in configuration 2.2.1.
Once the link from the control input to the controller or what is now called a compensator,
is removed we embark on a new design philosophy which is outside the realm of observer
theory and hence the separation principle is no longer valid. Without the backing or
blessing of the separation principle, one has to prove that the design objectives of closed-
loop stability and recovering the target loop shape can both be simultaneously achieved.
We intend to do exactly this.

Our design philosophy is deceptively very simple. Except for structurally omitting
the link mentioned earlier, our compensators are exactly the same as the conventional
observer based controllers. For example, in full order compensator design for LTR, we
plan to obtain a K;(o) such that (a) A — K;(o)C has all its eigenvalues in the left half s
plane (i.e., the compensator is open-loop stable), and (b) achieves asymptotic loop transfer

recovery (ALTR). For this purpose, we can use any of the existing methods of obtaining
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such a Ky(o). Thus, our compensator design is parallel in all respects to the conventional
observer design except for omitting the link mentioned earlier. Although our compensator
structurally differs from the observer in a very simple way, it has a profound effect on the
gain required for closed-loop stability and for ALTR. We show theoretically that for the
same gain, the difference between the target loop transfer function and the one achieved
by our compensator is always much smaller than that that can be achieved by the observer
based controller. But since our design method is also an asymptotic method, the above
theoretical result does not reveal the whole story. The proof that our method works is
evident from our examples. We solved numerically many examples that appeared in the
open literature, and noticed that the amount of gain required for the same degree of recovery
by our compensator is orders of magnitude less than what is required by an observer
based controller. This obviously has a profound impact on the practical implementation of

LQG/LTR schemes. Some specific attributes of our compensator are as follows:

1. Low values of gain obviously results in low compensator band-width and hence much
of the output noise that occurs at relatively high frequencies is filtered out. Fur-
thermore, low values of gain relieves the design from ever present owes of actuator
saturation. To emphasize this, we refer to Sogaard-Andersen and Niemann [50] who
recently studied the design trade-offs between the level of loop transfer recovery and
the necessary gain required by an observer based controller. A major conclusion of
their study is that the target loop transfer recovery design cannot always be achieved
even when modest and practically meaningful constraints are imposed on the size of
the observer gain. Furthermore, contrary to what has been discussed in the literature
(e.g., Friedland [20]; Baumgartner et al [3]), their study indicates that a high-gain
from controller input to controller output affects the entire control-loop and in par-

ticular the control-noise signal ratio and the control-command signal ratio.

2. Since the given plant is of minimum phase, it is always possible to design an open-loop
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stable compensator to guarantee the overall closed-loop stability (Vidyasagar [57]).
Our design results in an open-loop stable compensator. The advantages of having
such a compensator cannot be over emphasized. As it is known (Shaw [48]), open-loop
unstable compensators result in poor overall system sensitivity to plant parameter

variations. Furthermore, physical realizability of open-loop unstable compensators is

rather difficult.
5.2. Compensator structure

Analogous to observer based controllers, there are two compensator structures, one full
order type of dynamic order n and another reduced order type of dynamic order n —p+my.
We now proceed to give the structural details of these compensators.

5.2.1. Full order stable compensator

The dynamic equations of the full order stable compensator are

z=[A- K(0)Clz + K¢(a)y,
(5.2.1)
u=u=-Fz
The transfer function of the compensator is,
C(s,0) = F[sI — A+ K;(0)C] ™ Ky(0). (5.2.2)

We note that the above controller does not depend on the matrix D of the given plant.
In the parameterized family of controllers given in (5.2.2), the only free design variable is
the parameterized gain Ky(o). We need to parameterize Ky(o) in such a way that there
exists a o7 so that for all & > o7, the controller C.(s, o) is open-loop stable while capable

of achieving ALTR. That is, the design of K;(o) is to be done to meet the following goals:

1. [ Stability of the closed-loop system ] The closed-loop system comprising the

given system ¥ and the full order compensator is asymptotically stable, i.e., there
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exists a o3 such that for all & > o3, we have
Re[M(4u(0))] <0,

where

A-Ki(o)C - K;(c)DF K;(o)C
#( )—BF 1(0) fﬁl) _ (5.2.3)

Ago) = [

Moreover, the limits of all finite eigenvalues of A(c) remain in C-.

2. [ Loop transfer recovery | The achieved loop transfer function L.(jw, o),
L (jw,0) = C.(jw,0)P(jw),

is asymptotically equal to the target loop L¢(jw) as ¢ — oo, i.e., C(jw, ) P(jw) —

L¢(jw) pointwise in w as ¢ — 0.

3. [ Open-loop stability of the compensator ] The compensator is open-loop asymp-

totically stable, i.e., there exists a o} such that for all ¢ > o7, we have

Re[\(A4 — K;(c)C)] < 0.

5.2.2. Reduced order stable compensator

As in the case of reduced order observer based controller, without loss of generality, let us

assume that matrices C and D are transformed into the form,

— 0 COZ _[Do]
C—-[Ip_m 0 and D= Nk

and partition the dynamic equations of the given plant ¥ as in (2.1.3). Then the dynamic

equations of a reduced order compensator are given by
{ v = [A; — K, (0)C,]v + G,(0)y,

u=u= —-ng - [0, F1 + FgK,;(c'r)]y.

(5.2.4)
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Here we note that all the submatrices in (5.2.4) are the same as those defined in (2.1.3) to

(2.1.11). The transfer function of such a reduced order compensator is given by,
Crc(s,0) = F3[sI — A, + K,(0)C,]7'G,(0) + [0, Fy + F3K,1(0)). (5.2.5)

In the parameterized family of controllers given in (5.2.5), the only free design variable is
the parameterized gain K,(0). We need to parameterize K,(o) in such a way that there
exists a o}, so that for all ¢ > o7,, the controller C,.(s, o) is open-loop stable while capable

of achieving ALTR. That is, the design of K,(o) is to be done to meet the following goals:

1. [ Stability of the closed-loop system ] The closed-loop system comprising the
given system ¥ and the full order compensator is asymptotically stable, i.e., there

exists a o3, such that for all & > 03,, we have

Re[MAar(0))] <0,
where
A, — K,(0)C, — K,(0)D,Fs Az~ K.(0)D,F, K.(c)C,
Age(o) = -Bn Ay - BuFA Ar

—BnF, Az — BnFA Axn

Moreover, the limits of all finite eigenvalues of Ay,(o) remain in C~.
2. [ Loop transfer recovery ] The achieved loop transfer function L,.(jw,0),
L..(jw,0) = C,c(jw, o) P(jw),

is asymptotically equal to the target loop L¢(jw) as & — o0, i.e., C,c(jw, o) P(jw) —

L¢(jw) pointwise in w as ¢ — oo.

3. [Open-loop stability of the compensator ] The compensator is open-loop asymp-

totically stable, i.e., there exists a o}, such that for all ¢ > o},, we have

Re[MA, - K.(0)C,)] < 0.
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5.3. Properties of compensators

In this section, we will show the advantages of new compensator structure over the con-
ventional observer based controller. The following lemma characterizes the recovery error

between the target and the achieved loop transfer functions.

Lemma 5.3.1. The error E.(s,o) between the target loop transfer function L.(s) and

L.(s,0), the one realized by a full order compensator, is given by
E.(s,0) = M/(s,0),
where
My(s,0) = F[®™! + K;(o)C]™' (B - K;(o)D]. (5.3.1)
Similarly, the error E.(s,o) between the target loop transfer function L¢(s) and L,(s,o),
the one realized by a reduced order compensator, is given by
E,(s,0) = M,(s,0),
where
M,(s,0) = B8 + K,(0)C,]"}[B, — K,(0)D,], (5.3:2)

and where ®, = (sI - A,)™.
Proof : See Appendix 5.A. |

Theorem 5.3.1. Consider a stabilizable and detectable system T characterized by the
matrix quadruple (A, B,C, D), which is not necessarily of minimum phase and which is
not necessarily left invertible. Let Li(s) be any recoverable target loop transfer function of
L, i.e.,, L(s) € T*(X), then Ly(s) can be recovered via either a full or a reduced order type

of compensator.
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Proof : See Appendix 5.B. [ |

We now pursue the advantages of the compensator structure over the conventional

observer based structure. We have the following theorem.

Theorem 5.3.2. Consider a stabilizable and detectable nonminimum phase plant. As-
sume that the same gain K¢(o) is used for both a full order observer based controller and a

full order compensator. Let o be such that omqc[M;(jw, o)} is small (say, < 1 but nonzero)

for all w. Furthermore, assume that
Omin[Le(jw)] = Omin[F(jw — A)™1B] > 1 for all w € D,, (5.3.3)

for some frequency region of interest, D.. Then for all w € D., the mismatch between the
target loop transfer function and the one achieved by the full order compensator is always
less than the corresponding one achieved by the full order observer based controller. More

specifically, we have
Omaz|Ef(jw, 0)] 3> Omaz| Ec(jw,0))] for all w € D.. (5.3.4)

Similarly, assume that the same gain K,(o) is used for both the reduced order observer
based controller and the reduced order compensator. Let o be such that & pq:[M,(jw, )] is
small (say, < 1 but nonzero) for all w. Furthermore, assume that (5.3.3) is true. Then for
all w € D,, the mismatch between the target loop transfer function and the one achieved
by the reduced order compensator is always less than the corresponding one achieved by

the reduced order observer based controller. More specifically, we have
Omaz|Er(Jw, 0)] 3> Omaz[Erc(jw,0))] for all w € D,. (5.3.5)

Proof : Let us first consider the case of full order compensator and full order observer

based controller. Recalling the expression for Ef(jw, ) from (2.2.1), we have

Tmaz[E(jw; 7)) = Omaz{ My(jw, o) In + My (jw, )] [Im + F&(jw)B]}

2 Umax[M!(jw’ ”)]"min{[lm + My (jw, d)]_l}o'min[Im + F(I’(j"-’)B]
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_ Omaz[Mf{jw, &) ominlIm + F&(jw)B]

B Omaz[Im + M;(jw, o))

2 Umu[Ec(jw’ a)]a(w’ 0)1

where

Omin| FO(jw)B) — 1

1+ Omaz[ My (jw, o))

Now by our assumption, Omaez{My{jw,s)} is € 1 and Gpin[FE(jw)B]is > lforaliw € D,

a(w,0) =

and hence a(w,o) is 3 1 for all w € D.. Thus
a’"u'[Ef(jw'l 0’)] > a’ma:[Ec(].w, 0')] for all w € D..

Results for the reduced order compensator and the reduced order observer based con-

troller follow from similar arguments. |

Remark 5.3.1. It is well known (Doyle and Stein [19]) that in order to have good prop-
erties in command following and disturbance rejection, the target loop transfer function
Li(jw) has to be large and consequently, the minimum singular value o'min[L:(jw)] should
be large in the desired frequency region. Thus, the condition (5.3.3) is always satisfied in

all practical situations.

Remark 5.3.2. Due to the sign > in (5.3.4) and (5.3.5), theorem 5.3.2 clearly shows that
the compensator structure requires much smaller value of gain and hence the controller

bandwidth than that of the observer based structure for the same degree of recovery.

Next we compare the sensitivity and complementary sensitivity functions achievable
by a full and a reduced order compensators, with those achievable by a full and a reduced
order observer based controllers. Let us define the sensitivity and complementary sensitivity

functions achievable by a particular compensator as,

S.(8,0) = [In + Lu(s,0)]™ and T.(s,0) = I, = S.(s,0)
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where L.(s, ) is the correspondingly achieved loop transfer function. Here, the subscript *
will be replaced respectively by c or rc, when the controller used is a full order compensator
or a reduced order compensator.

We have the following result.

Theorem 5.3.3. Consider a general stabilizable and detectable nonminimum phase plant.
Assume that the same gain K(c) is used for both the full order observer based controller
and the full order compensator. Let o be such that gm[M;(jw, o) is small (say, <1 but

nonzero) for all w. Furthermore, assume that (5.3.3) is true. Then for all w € D, we have
Tmas[S1(jw; @) = S(jw)] > Omas{Se(jw, o) — Si(jw)] (5.3.6)

and
Omaz[Ty(jw,0) — Te(jw)] > OmazlTe(jw, o) = T(jw)). (5.3.7)

Similarly, assume that the same gain K, (o) is used for both the reduced order observer
based controller and the reduced order compensator. Let o be such that ome:[M:(jw,0)]
is small (say, < 1 but nonzero) for all w. Furthermore, assume that (5.3.3) is true. Then

for all w € D., we have
Omaz[Sr(jw,0) = St(jw)] > Omaz[Sre(jw, 0) — Se(jw)] (5.3.8)

and

OmaslTr(jw, @) = T(jw)] > Omas[Tre(jw, 0) — Ti(jw)]. (5.3.9)
Proof : Rewriting equation (3.2.13), we have
S¢(s,0) — Si(s) = Si(s)My(s, o). (5.3.10)
We also note that

I + Le(3,0) = In + Le(8) — My(s,0)
= {In — M(3,0)In + Le(s)] 7 }Im + Li(s)]
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and hence

S.(3,0) = Si(s) = Se(s)My(3,0)[Im + Le(s) — My(s, o). (5.3.11)

From (5.3.10) and (5.3.11), we obtain
S4(8,0) — Si(s) = [Sc(s,0) = Si(s)][Im + Le(s) — My(s,0)].
Now it is simple to see that under the assumptions of theorem 5.3.3,
Imaz[S;(j0, @) — Si(50)] 32 FmaslS.{jww, o) — Si(jw)], Ywe D..

This proves (5.3.6). Also, (5.3.7) to (5.3.9) follow along similar arguments. |

The above theorem shows once again that the compensator structure is much better

than the conventional observer based structure.
5.4. Examples

In what follows we consider four examples, including the helicopter control problem dis-
cussed in subsections 4.3.2, 4.3.4 and 4.4.2, to illustrate the theoretical results of section
5.3. We illustrate the advantages of the compensator structure in two different ways. At
first, we select the same gain Ky(o) or K, (o) for both the observer based structure and the
compensator structure, and then for several values of &, we compare the performance of
these two controller structures by plotting with respect to frequency for a given frequency
range, (i) the target and achieved loop transfer functions and (ii) the maximum singular
value of the loop transfer recovery errors, E.(jw,o) and Ef(jw,o). In another type of
comparison, we fix a prior the required degree of recovery by specifying a highest tolerable
value for the maximum singular value of the loop transfer recovery error. Then, we obtain
for both the controller structures the norm of the gain which meets the given specification.
We also obtain the resulting 0-db band-width as well as the eigenvalues of the controller.
The comparisons by both the methods show explicitly that the compensator structure for

the controller has much better recovery properties than the observer based structure.
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Example 5.1 : Consider a system X characterized by
-10 0 -20 0
z=] 0 1 -20{z+|0|u, y=[0 0 1]z+0-uy,
245 125 -20 1
which is a single-input and a single-output nonminimum phase system with invariant zeros
at s = —10 and s = 1. The geometric subspace V*(X) for this example is the span of

[0 1 0]. Let a target loop, L¢(s), be specified by the gain matrix,
F={12 ¢ 8].

Then it is simple to verify that L(s) € T*(Z), i.e., L¢(s) is recoverable. Now let us use
Hj-optimization based algorithm of Chapter 4 to obtain Ky(o). Figure E.1 (A) and table
E.1 (A) give the magnitude of the target loop transfer function as well as that of the two
recovered loop transfer functions, one for the full order compensator and another for the
full order observer based controller, for several values of the tuning parameter . On the
other hand, for the same degree of recovery, figure E.1 (B) and table E.1 (B) show (1) the
maximum singular value graphs of the two different controller transfer functions, and (2)
the required values of gains and the eigenvalues of the controllers. These numerical results
show clearly that the compensator structure has much better recovery properties than the

observer based controller. a

Example 5.2 : Consider the example given in [58),

-1 0 0 0 -0.5 1.25
. |0 -1 0 0 + -25 =25
=10 o0 -02 o |"T| 03 -125|"
6 0 0 =02 1.5 3.5
_ [1 01 0] - [0 0 u
¥=lo 1 01 0 o™
which is square, invertible and of nonminimum phase with two invariant zeros at s = —8

and s = 1. The geometric subspace V*(Z) for this example is the span of

[—0.138675 —0.693375 0.138675 0.693375 I.
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Now let a target loop, L;(s), be specified by the gain matrix,

—16.8910 0.5782 —19.1586 1.0317
—290.0338 7.0068 -295.0560 8.0112]°

It is straightforward to verify that L¢(s) € T*(Z), i.e., L¢(s) is recoverable. Here, we used

ATEA algorithm of Chapter 4 to obtain the following gain K((o),

3.75(1-0) 0.75¢ —1.25
25{(c —-1)  2.5(1 —20)

0.95(50 —1) 0.25(1 —30) |
5(1 - 50) 60 — 0.7

This gain places the eigenvalues of A — K;(c¢')C, one precisely at —8 and others asymp-

-

Ky(o) =

totically at —~1, —o and —o. Figure E.2 (A) and table E.2 (A) give the maximum and
minimum singular values of the target loop transfer function as well as those of the two
recovered loop transfer functions, one for the full order compensator and another for the
full order observer based controller, for several values of the tuning parameter o. On the
other hand, for the same degree of recovery, figure E.2 (B) and table E.2 (B) show (1) the
maximum singular value graphs of the two different controller transfer functions, and (2)
the required values of gains and the eigenvalues of the controllers. Again, these numerical
results show clearly that the compensator structure has much better recovery properties

than the observer based controller. a

Example 5.3 : Consider the following system X characterized by

-25 =25 1 =25 1 0

i = 0 0 0 1 z+ 0 0 u
-6 1 03 0 0 0|
1 0o 0 -2 01

_[1000] +[0 o]
Y=o 1 0 ol* Lo o)™

which is square and invertible with one nonminimum phase invariant zero at s = 0.3. The
geometric subspace V*(Z) for this example is the span of [0 0 1 0]. Now let a target
loop, L¢(s) = F®B, be specified by the following gain matrix,

13 50 0 10

F=[11 250 0 50]°
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It is trivial to see that V+(X) C Ker (F) and hence L(s) € T*(E), i.e., L¢(s) is recoverable.

Here, we used ATEA algorithm of Chapter 4 to obtain the following gain matrix,
e

for both reduced order observer based controller and reduced order stable compensator.
This gain matrix K, (o) places the eigenvalues of A, — K, (c)C, precisely at —2 and —(o+2).
Figure E.3 (A) and table E.3 (A) give the maximum and minimum singular values of the
target loop transfer function as well as those of the two recovered loop transfer functions,
one for the reduced order compensator and another for the reduced order observer based
controller, for several values of the tuning parameter o. Once again, these numerical results

show clearly that the compensator structure has much better recovery properties than the

observer based controller, (m|

Example 5.4 : We continue here the helicopter control system design as discussed in
subsections 4.3.2, 4.3.4 and 4.4.2 of Chapter 4. In what follows, we will apply our com-
pensator structure to this problem and show that it also yields a much better recovery
performance than the observer based controller, although the given target loop specified
by F as given in subsection 4.3.2 is not recoverable. The justification of applying the
compensator structure to LTR design for non-recoverable target loops remains a subject
of our future investigation. We will pick one K(o) obtained from each design algorithm,
namely, ATEA, Hj-optimization or H.-optimization based algorithm, and compare the
performance of observer based and compensator structures by plotting the maximum sin-
gular values of Ey(jw,0) and E,(jw,o). The results for ATEA algorithm are summarized
in Tables E.5 (A1), E.5 (A2), and Figure E.5 (A), while the results for H,-optimization
based algorithm are given in Tables E.5 (B1), E.5 (B2), and Figure E.5 (B), and that for
H-optimization based algorithm are presented in Tables E.5 (C1), E.5 (C2), and Figure
E.5 (C). 0
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TABLE E.1 (a)

Supremum of Maximum Singular Values of Mismatch Functions

Frequncy Range: 0.001 to 100 rad/sec

TUNING PARAMETER  Sup {0mee[Ef(jw,0)]} Sup {OmeelEcljw,0)]} l

CASE 1 = 5 117.5629 3.0258
CASE 2 = 20 52.7333 0.5086
CASE 3 = 100 2.8949 0.0182
6 50
aof | S X _
--------- Y _— dm.,[Eg(]U,U)]
20 ar S
g £ =~ oma|Ey(jw, o))
PO R N N 3 .
£ {0
& -20f e £
R TARGET LOOP TRANSFER o] o
——  RECOVERY VIA COMPENSATOR \\ 0k
O _ - . RECOVERY VIA OBSERVER \ 20t
Kb 103 101 10° 10 16 s i T 3 07 o
Frequency (rad/sec) Frequency (rad/sec)
CAsE 1
60 — 40

3 "“\\

20 \\ —  OmulEc(jw,0)]
|8 ST emalBtieo)
g s O
Z | -+=+—  TARGET LOOP TRANSFER e z ;

————  RECOVERY VIA COMPENSATOR &,
- RECOVERY VIA OBSERVER -20
s 107 o 10 10 102 s 107 ot i i o
Frequency (rad/sec) Frequency (rad/sec)
Case 2
40 .‘ 118 \‘\ .
" . ——  Ome|Ecfjw,0))
- -0 -—- E.(i
g g Omes[Ey(jw, @)
R 'é -20¢ Lemeas
=En E \\
g oor . | L") ™~ ’
—*~'= TARGET LOOP TRANSFER N K
0F —— RECOVERY VIA COMPENSATOR © N,/
-0} = — ~ RECOVERY VIA OBSERVER >
s 107 107 1 10 102 s 103 100 3 100 100
Frequency (radisec) Frequency (rad/sec)
Case 3

Ficure E.1 (a)
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TABLE E.1 (B)

Comparison of Observer Based Controller vs Stabie Compensator

For the Same Degree of Recovery

DEGREE OF RECOVERY

Sup{c

max[Ef(jw) 1} = Sup{c

([E (Jje)]} = 0.5086

for 0.001 s w s o rad/sec

OBSERVER BASED CONTROLLER STABLE COMPENSATOR

GAIN NORM-2: 4463.3 , 24.2299

EIGENVALUES: -2386.9 -24.1102
-9.9988 -13.0881
-0.9935 -0.6338
(0 dB)
BANDWIDTH: 18498 rad/sec 46.7 rad/sec
40
20+

Magnitude (dB)
8

102 107 109 10 T T T 10°
Frequency (rad/sec)

Figure E.l1 (B) : Maximum singular values

of observer based controller and stable compensator
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Supremum of Maximum Singular Values of Mismatch Functions

Frequncy Range: 0.01 to 100 rad/sec

TUNING PARAMETER  Sup {0mes[Es(iw,0)]}  Sup {Omes[Ec(iw, )]}

CASE 1 c =35 1570.7 25.9476
CASE 2 ¢ = 20 1397.7 6.4868
CASE 3 ¢ = 100 876.3 1.2975
80 n
L N 1
S0t \‘\
3 i » .
z I
§ § .
TARGET LOOP TRANSFER . ——  Omas| Ee(jw,0)]
40 L
—_ PENSATOR —— .
ol RECOVERY VIA COM o Omas|Ey{jw, 0)) -
- RECOVERY VIA OBSERVER .
b= 107 100 100 10° ks 10 10° 10! [0S
Frequency (rad/sec) Frequency (madsec)
CasE 1
80 7
6of TR ..
of T sof \\ 1
§ 5 g [ E.(3 ‘\\
S o TN 2 —_— o .
§ 3 et Beliinell
g o iﬁ, » === OmelEf(jw, o)) kY
Sea, r N
20l == TARGET LOOP TRANSFER  “Sp-..
———  RECOVERY VIA COMPENSATOR - 10p -
A0 .
— — = RECOVERY VIA OBSERVER 0 3
e 107 i® 10 10 s 10° T o To:
Frequency (rad/sec) Frequency (radisec)
Cast 2
80 [ o e
='—+=  TARGET LOOP TRANSFER | | = 7= -
sof .
«f \‘\.‘
g g 30
E E —  OmulEljwi0)]
& & 0f R
H E === Omel|Ef(jw,0)]
10} RS
RECOVERY VIA COMPENSATOR .
- - - RECOVERY VIA OBSERVER
“Be 161 0 Yor 10 o 107 1o 0 To°
Frequency (rad/sec) Frequency (rad/sec)
Cast 3

Ficure E.2 (A)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147

TABLE E.2 (B)

Comparison of Observer Based Controller vs Stable Compensator

For the Same Degree of Recovery

DEGREE OF RECOVERY
[Ef(jw)]} & Sup{ec

for 0.01 s w s w rad/sec

Sup{o‘max max[Ec(jw) ]} & 6.4868

OBSERVER BASED CONTROLLER STABLE COMPENSATOR

GAIN NORM-2: 1.0844x10° | 713.11
EIGENVALUES: -29563 -20
-29522 -17.8815
-8 -8
-1.0034 -1.1185
(0 dB) 7
BANDWIDTH: 1.0092x10 rad/sec 7794 rad/sec

.Magnitude (dB)
Iy
o

“or - a.m:-.xx[cc.(j“’):I

.60 -
S ()
80}
1005 10 102 10° 104 10° 10° 107 108

Frequency (rad/sec)

Figure E.2 (B) : Maximum singular values

of observer based controller and stable compensator
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TABLE E3 (a)

Supremum of Maximum Singular Values of Mismatch Functions

Frequncy Range: 0.00l1 to 1000 rad/sec

TUNING PARAMETER  Sup {omes[Ej(jw, )]} SUP {Tmes[Ec(jw,0)]}

CASE 1 c =5 106.2351 7.2843
CASE 2 c = 20 84.1034 2.3177
CASE 3 c = 100 39.8388 0.4999
60 50
40p RN
|| ISRURRRRRNSS ’ AN
g g .
3 U BN
H ] S
Z TARGET LOOP TRANSFER = 9% T GmeslEcljwn o)) )
~0F — .10 . 4
RECOVERY VIA COMPENSATOR 1 -——- am“[ EI( jw, 0)]
] S RECOVERY VIA OBSERVER .20 \
Abs 102 10° 10° 100 10F w Rty 107 10" 2 10 1 RG
Frequency (rad/sec) Frequency (rad sec)
Case 1
60 40 e
] 30: _______________ "“ * “
2} N,
£ g
2 2 of
§ ‘3 ~
Ec & o \\\
Z TARGET LOOP TRANSFER S, : . —  OmalEc(jw,0)] )
N, TR 10F
———  RECOVERY VIA COMPENSATOR N ™ cm e omalEy(iuno)]
“F __ . RECOVERY VIA OBSERVER 20} mesl=IUES
s 107 0. 10° 10 0 10 s 107 100 1% 100 3 '
Frequency (rad/sec) Frequency (rad sec)
Case 2
0 40
1 3 N
4 P \\\
% 1 %: Y Omas[Ec(jw,0)] ,
5 u . \\
2 i‘é o 77 Tmaz| B (jw, ) .. ]
= TARGET LOOP TRANSFER = . e
1 N 1
a0 T RECOVERY VIA COMPENSATOR N
a2 - - RECOVERY VIA OBSERVER -20 i
s 107 107 i o0 o 0 s 107 107 WP 0 100 '
Frequency (rad/sec) Frequency (rad/cec)
Cast 3
. Ficure E.3 (a)
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Table E.5 (A1) : K¢(o) obtained from ATEA with o = T75.

1.78367774  0.05085816 —5.54137522  0.14584105
—2.97066524  0.73378480 —0.66008964 —1.75249421
74.62077330 —0.00003431  0.00169392  0.04368414
—0.06524472 71.97519966 —0.54219109  0.47755509
—0.17413468  0.07326398 74.37666021 —0.00286912
—0.03860068  0.41417413  0.31939682 74.48987981
0.00000000  1.00025892  0.00050000 —0.01304098
| 0.00000000 —0.00023150  0.99940000  0.03520146 ]

Table E.5 (A2) : Suprema of 0mq:[Es(jw, o)) and omes[Ec(jw, o))
over w € (0.0001,100) rad/sec.

Supremum of O pmq:[Ef(jw, )] | Supremum of omaz{Ec(jw, )]

114.0949 1.3725

103 g v e g

102 b, —— == Eyjw,0) E

- E.(jw,0) ]

% 10t g 3
zﬁo I )
100 E E

E Nl e A

101 E 4
10.2 bbbt A LD ded b A LA Aond l A AALAL Al ALl A i aaaa
104 103 102 10 100 10! 102

Frequency (rad/sec)

Figure E.5 (A) : Maximum singular values of E¢(jw, o) and E.(jw,0o).
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Table E.5 (B1) : Ky(o) obtained from H;-optimization based algorithm with ¢ = 10.

1.08575467
—1.07142150
8.77244772
0.23431184
—0.10022108
—3.72267550
—0.12793544

| —0.18626875

1.87579279
—5.34940429
0.23431184
68.10414224
—0.70094374
—15.01264925
—0.30905087
—0.47613851

1.94020615
1.72470288
—0.10022108
~0.70094374
19.33832603
~2.88740014
0.41767027
0.25580550

5.34047118 ]

0.31681747
—3.72267550
—15.01264925
—2.88740014
37.48117992
0.29480109

—1.05725445

Table E.5 (B2) : Suprema of opez[Ef(jw, o)) and opmac[E:(jw, o))
over w € (0.0001,100) rad/sec.

Supremum of Omaz[Es(jw,o)] | Supremum of omez|Ec(jw, o))

983.9667 1.3152

103

..
.
e
.

102

10! £
o 3 Seae
2
& [
= 1ok
101 ¢ — Ec(jwa 0)
10.2 Aerdenbedendeded bl bbbl bl Ak b ALL) e ek bbb bbb AL AL bbb did
104 103 10?2 10 100 10! 10?
Frequency (rad/sec)

Figure E.5 (B) : Maximum singular values of Ef(jw, o) and E.(jw, o).
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Table E.5 (C1) : K(7) obtained from He-optimization based algorithm with y = 1.5.

" 11.29282005
~5.11144793
4.79116869
0.42589058
0.12665929
~1.59218797
—0.43799026
| —4.29490235

Table E.5 (C2) :

31.26778629 19.23846790  40.13781739]
—15.89047969 —6.20137729 —14.87306201
0.42589058  0.12665929  —1.59218797
36.82490566  0.12580871 —6.89988100
0.12580871 10.54345906 —0.90272812
—6.89988100 —0.90272812  21.03886210
—1.33778900 —0.34831755 —1.10520413
—12.35299443 —6.92834644 —15.18565659

-

Suprema of O pnaz[Es(jw,7)] and Ome=[Ec(jw, 7))
over w € (0.0001,100) rad/sec.

Supremum of Oyaz|Ef(jw,7)] | Supremum of omaz{Ec(jw,7))

1932.5496 1.4785

104

103

102

10t

Magnitude

...........
.
.,

bty
-
.,
Se,
e,
.

=== E(jw)

~
-
---------

100

01 —

A bl A2 dddd A L ALL

E(jw,)

Figure E.5 (C) : Maximum singular values of Ef(jw,v) and E(jw,7).

102 107! 100 10 102
Frequency (rad/sec)
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5.A. Appendix 5.A — Proof of Lemma 5.2.1

For the sake of simplicity, we drop the o-dependency on all of the variables. To unify the
proof of lemma 5.3.1 for both full and reduced compensators, consider first the following

compensator:

b = Lv+ Hy,
(5.A.1)

-u = Pv+Vy,
where v € R" with r being the order of the compensator. We assume that there exists a
matrix T € R7*" such that the following conditions are satisfied:
1. TA- LT =HC,
2. F=PT+VC, and

3. VD=0
Also, let
4. G=TB-HD.

We have the following proposition.

Proposition 5.A.1. Consider any admissible target loop transfer function L¢(s) = F®B.
Then the recovery error E(s) realized by the compensator of (5.A.1) is given by

E(s) = M(s) = P(sI - L)™'G. (5.A.2)

Proof of Proposition 5.A.1 : It is straightforward to see that the transfer function of

the compensator (5.A.1) is given by
C(s) =V + P9,H,

where &, := (sI — L)™1. Also, using the fact that TA — LT = HC, it is trivial to verify
that
P%TB+ P HC®B — PT®B = 0.
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Then we have
C(s)P(s) =(V + P®,H)(C®B + D)
= PT®B - P®,TB+ PoHD +VC®B

= F®B - P3,G.
Hence,
E(s) = Li(s) — C(s)P(s) = M(s) = P3,G.
This completes the proof of proposition 5.A.1. o

Now, it is straightforward to verify that the full order compensator is a special case of

(5.A.1) with
{L=A-—K;C, G=B-K;D, H=K;,

P=F, V =0, T=1
Similarly, the reduced order compensator is also a special case of (5.A.1) with

{ L=A;-K,C, G=By-K.D,, H =G,,

P=F, V=[07 F1+F2Kr1]7 T=[—Kr1’ I]
Hence, equations (5.3.1) and (5.3.2) of lemma 5.3.1 follow trivially from (5.A.2). |

5.B. Appendix 5.B — Proof of Theorem 5.2.1

It is shown in Chapters 3 and 4 that whenever a target loop is recoverable, there exist gain
matrices K;(c) and K, (o) such that A — K;(¢)C and A, — K,(0)A, are asymptotically
stable matrices for all ¢ > 0* where 0 < 0* < 0o and in the limits the finite eigenvalues of

these matrices belong to C~. Also, Ky(¢) and K,(o) guarantee that
E(s,0) = My(s,0) — 0 pointwise in s as o — oo, (5.B.1)

and

E,.(s,0) = M,(s,0) — 0 pointwise in s as & — oo. (5.B.2)
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Hence, such Kf(c) and K, (o) achieve loop transfer recovery and yield open-loop stability
of either a full or a reduced order type of compensator. Next, we will show that the stable
compensators designed as such can also achieve the asymptotic stability of the closed-loop

system.
Full order compensator :

The dynamic matrix of the closed-loop system with a full order compensator is Au(o)

as given in (5.2.3). Then consider the following reductions:

sI, — A+ K;(0)C + K;(6)DF —K/(o)C
det[s Iz — Au(0)] = det -" !(;}? 1(o) 81:(_”24

= det &1+ Ky(c)DF —Ky(o)C
- | &'+ BF ¢!

&~ + Ky(o)DF -K(o)C

=det| pr_ K,(s)DF &'+ K,(0)C

_au| O+BF 31
=9 BF - K (e)DF &' + K (0)C]"

Now using Schur’s formula for the determinant of a partitioned matrix, we have

det [sLzn — Au(0)]
= det[®! + K;(0)C]det[®* + BF — ®~(d~! + K;(0)C)"Y(B — K;(o)D)F)
= det[®~" + K;(o)C]det{®"]det[I, + ®BF — (9~ + K;(0)C)™(B — Ky(c)D)F]
= det[0~! + Ky(0)C]det[® " |det[In + F®B — F(®~ + K;(0)C)™(B — K;(o')D)]
= det[®™! + K;(0)C]det[®|det[In + F®B — M(s,0)]
— det[®@~* + K;(0')C]det[d")det{I,, + F®B] as 0 — oo
= det[®~! + K;(0)C]det[®~ + BF).

This shows that the closed-loop system with a full order compensator, is asymptotically
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stable for all o > o} for some nonnegative 3. It is also obvious that the limits of finite

eigenvalues of Ay(c) are in C™.
Reduced order compensator :

We first note the following:

sl—A=d= [ 2 ~Ap ] ,

—An 93
where &3 = (sI — An)™! and @33 = &, = (sI — A33)~. Hence
{0 _
[t]-v
where
—A }
®, = i
e
Thus
F®d, = F;. (5.B.3)

We have the following series of reductions:

det [shn—pime — Aar(0)]

[ 837 + K. (0)C, + K,(¢)D,F; —An+ K.(0)D,F, —K,(0)C,
= det BuF, &} + BuF —A,
i BnF, —Ag + B2 Fy 2oy
[ 7, + K.(0)D,F; ~Ayn+ K.(0)D.F, —K,(0)C:
=det| —Aia+BukF; o1 + BuFR —An
| @7 + BuR —Aqn + Bk L >
[ q"{gl + K.(¢)D.F; —-An+ K,(0)D,Fy -K,(0)C;
= det ~Aiz+ BuF; &7 + BuF —Aj
L (Bzg - K,(U)D,)Fz (Bgz - K,-(O’)D,)Fl Q;gl + K,-(U)Cf |
937 + BnF; —Axn + B Fy o7 ]
= det —Ai+ BuF; &3 + BuF —An
| (B2 — K,(0)D,)F; (By; — K.(0)D,)F, 3] + K,(0)C, |
o5 + BuFy —Ai2+ B F; —Ax2
= det —A2l + B22F1 02_21 + ngFg Q;zl
| (B, - K,(¢)D,)F; (B, K.(o)D)F; 81+ K.(0)C,
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— det -1+ BF o,
=9\ (B, - K.(0)D,)F !+ K,(o)C:

= det[®:? + K, (0)C,] det[@™" + BF — &,(®;* + K(0)Cr) (B, — K.(o)D;)F]
= det[®! + K,(0)C,] det[@™]

- det[I, + [0 B — 88,(3;* + K,(o)C,)"X(B, — K.(0)D,)}F]
= det[®; + K, (0)C,] det[®7"]

- det[I,n + FOB — Fd,(®* + K.(¢)C:)"\(B, — K.(0)D;)] (5.B.4)
= det[®; + K. (0)C,] det[®7"]

- det{Ln + FOB — Fy(8- + K.(6)Cy)" (B, — K.(0)D,)] (5.B.5)
= det[®! + K, (0)C;] det[®~] det[I, + F®B — M,(s,0)]
— det[®! + K. (0)C,) det[®!] det[In + F®B] aso — oo
= det[® + K, (0)C,] det[®~"]| det[I,, + ®BF] (5.B.6)
= det[®;! + K,(0)C,] det[@™! + BF]. (5.B.7)

Note that we used (5.B.3) in order to get (5.B.5) from (5.B.4). This shows that the closed-
loop system with the reduced order compensator, is asymptotically stable for all & > o3,
for some nonnegative o3,. It is also obvious that the limits of finite eigenvalues of A (o)

are in C~. This completes the proof of theorem 5.3.1. [
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Chapter 6
CONCLUDING REMARKS

6.1. Summary of the thesis

In this thesis, we present a fairly complete theory of loop transfer recovery, using both
observer based controllers and open-loop stable compensators, for multivariable linear con-
tinuous time systems. In Chapters 2 and 3, we deal with issues concerning the analysis of
loop transfer recovery problem using full and reduced order observer based controllers for
general non-strictly proper systems. The results for the full and reduced order observer
based controllers are unified in the same framework. There are several fundamental results
given in these chapters. Based on the structural properties of the given system, we de-
compose the recovery matriz, which characterizes the loop transfer recovery error between
the target loop transfer function and that that can be achieved by the observer based con-
trollers, into three distinct parts for any arbitrarily specified target loop transfer function.
The first part of the recovery matrix can be rendered exactly zero by finite eigenstructure
assignment of the observer dynamic matrix, while the second part can be rendered arbi-
trarily close to zero by an appropriate asymptotically infinite eigenstructure assignment.
The third part in general cannot be rendered zero, either exactly or asymptotically, by
any means although there exists a multitude of ways to shape it. Such a decomposition of
the recovery matrix helps us to discover the subspace of the control space in which target

sensitivity and complementary sensitivity functions can be either exactly or asymptotically
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recovered. Moreover, it helps to formulate explicit singular value bounds on the recovery
error matriz, which is the limit of the recovery matrix. All this analysis is given for an
arbitrarily specified target loop transfer function. Thus it shows the limitations of the given
system in recovering the target loop transfer functions as a consequence of its structural
properties, namely finite and infinite zero structure and invertibility. On the other hand,
the next issue of our analysis concentrates on characterizing the required necessary and
sufficient conditions on the target loop transfer functions so that they are either exactly
or asymptotically recoverable by means of observer based controllers for the given system.
The conditions developed here on a target loop transfer function for its recoverability, turn
out to be constraints on its finite and infinite zero structure as related to the correspond-
ing structure of the given system. We next move on to find the necessary and sufficient
conditions on the given system such that it has at least one recoverable target loop. In
this regard, we show that strong stabilizability of the given system is necessary for it to
have at least one recoverable target loop. Since recovery in all control loops in general
is not feasible, we concentrate next in developing the necessary and sufficient conditions
under which either exact or asymptotic recovery of target semsitivity and complementary
sensitivity functions is possible in any specified subspace of the control space. This gener-
alizes the traditional notion of LTR to cover recoverability in a subspace. We prove next
that for left invertible non-strictly proper systems irrespective of the number of nonmini-
mum phase zeros and irrespective of the nature of the target loop transfer function, there
exists at least one m — 1 dimensional subspace of m dimensional control space, in which
the target sensitivity and complementary sensitivity functions can always be recovered by
an appropriate design of the controller. Inherent in all the issues discussed here is the
characterization of the resulting controller eigenvalues and possible pole zero cancellations.
Such an investigation is important in view of the fact, controller eigenvalues become the
invariant zeros of the closed-loop system and thus affect the performance with respect to

command following and other design objectives.
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Chapter 4 concerns with design issues of loop transfer recovery for general not necessarily
left invertible, not necessarily of minimum phase, and non-strictly proper systems. After
reviewing the necessary design constraints and the available design freedom, three different
design methods are developed. The first method is an asymptotic time-scale structure
and eigenstructure assignment (ATEA) scheme. The other two methods are optimization
based; one minimizes the H; norm of a recovery matrix related to the loop transfer recovery
error and the other minimizes the Hy, norm of the same. All three methods of design give
explicit methods of obtaining observer gain parameterized in terms of a tuning parameter.
In optimization based designs, the gain is implicitly parameterized via the solution of
parameterized nonlinear algebraic Riccati equations (ARE’s). On the other hand, ATEA
design does not require any solution of nonlinear algebraic equations; here the tuning
parameter enters the design only in forming a composite gain from several subsystem
designs, and thus it truly acts as a tuning parameter. All three methods of design yield a
sequence of controllers as the tuning parameter takes on different values. In optimization
based methods, as the tuning parameter tends to a certain critical value, the corresponding
sequence of H; norms (or H,, norms) of the resulting recovery matrices tends to a limit
which is the infimum of the H; norm (or H,, norm) of the recovery matrix over all possible
observer gains. In so doing, the optimization based methods shape the recovery error in a
particular way which may or may not be meaningful from an engineering point of view. On
the other hand. ATEA method has the flexibility to utilize all the available design freedom
to shape the recovery error to meet the designer’s needs within the constraints imposed by
the structural properties of the given system. Also, ATEA method can easily be modified
and simplified to yield an observer design that achieves ELTR whenever it is feasible. In
contrast with ATEA design, optimal or suboptimal design schemes do not require much
prior planning but involve solving repeatedly the parameterized ARE’s for different values
of the parameter. However, these ARE’s invariably become ‘stiff’ as the parameter takes

values closer to certain critical value. Besides the conventional LTR design task which seeks
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the recovery over the entire control space, another generalized task which seeks recovery
only over a specified subspace of the control space is also considered in this chapter. All the
design methods developed here are implemented in a ‘Matlab’ software package. We also
illustrate several aspects of ATEA as well as optimization based algorithms using helicopter
attitude and rate command control system.

Chapter 5 deals with the design of practical controllers. Although observer based con-
trollers can recover all recoverable target loops, in connection with ALTR which is the goal
in practice, there are some inherent problems in using observer based controllers. More
specifically, observer based controllers require high values of gain. The use of high gain
brings with it the problems associated with high controller band-width and owes of signal
saturation. To liberate the designer from these difficulties, we advocate the use of com-
pensator structure for the controller, which is originally proposed in [8] and [9] for strictly
proper systems. As in the case with observer based controllers, the compensator structure
can also recover any recoverable target loop. Moreover, the compensator structure uses
values of gains orders of magnitude less than what the observer based controller does for
the same degree of recovery. This is shown both theoretically as well as by a bank of the
numerical examples including helicopter control system. Alsc, theoretical bounds on sen-
sitivity and complementary sensitivity functions obtained here confirm the advantages of
using the compensator structure over the observer based controller structure. In short, we
believe that the use of compensator structure for the controller brings the design procedure

of LTR into practical domain.
6.2. Future research topics

Despite recent progresses, there are still some open problems in loop transfer recovery and
the related areas.
As it is demonstrated in Example 5.4, in some cases, the open-loop stable compensator

structure proposed in Chapter 5 can be applied to LTR design for non-recoverable target
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loops to achieve a good recovery performance. The further examinations on the theoretical
aspects of such an approach could be considered as a future research subject. Another
interesting problem is to search for a controller structure for general nonminimum phase
systems and non-recoverable target loops. The new structure may not be open-loop sta-
ble but shall yield a better recovery performance than that achieved by the conventional
observer based controller.

Historically, LTR arose as an attempt to recover the impressive robustness properties
of the state feedback laws designed via linear quadratic optimal control theory. Such
impressive properties are useless if the corresponding target loop transfer function is not
recoverable, i.e. neither ELTR nor ALTR is feasible. The issue of developing of a step by
step algorithm to generate the target loops (or full state feedback laws), which have certain
useful properties and which are either exactly or asymptotically recoverable, could be a
very important research subject in multivariable linear control system design.

Finally, we note that this thesis mainly concerns with the theory of loop transfer recovery
for general non-strictly proper and nonminimum phase continuous-time multivariable linear
systems. We refer the interested readers to [12] and [13] for a complete analysis and design
of loop transfer recovery problem for general non-strictly proper discrete-time systems. In
[12] and [13], all the results of loop transfer recovery problem for discrete time systems
using prediction, current and reduced order estimator based controllers are unified in a

single framework.
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