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Theory of LTR for non-minimumphase systems, recoverabletarget
loops, and recovery ina subspace

Part 1. Analysis

A. SABERlt, B. M. CHENt and P. SANNUTIt

, ,'''' -

A complete analysis of loop transfer recovery problem using full order observer
based controllers for general not necessarily left invertible and not necessarily
minimum phase systems is considered. The analysis here, while showing that
neither exact nor asymptotic loop transfer recovery is in general possible, focuses
on three fundamental issues. The first issue is concerned with what can and what
canot be achieved for a given system and for an arbitrarily specified target loop
transfer function, while the second issue is concerned with the development of
necessary and/or sufficient conditions a target loop has to satisfy so that it can be
either exactly or asymptotically be recovered for a given system. The third issue
deals with the dexelopment of methodes) to test whether recovery is possible in a
given subspace of fhecontrol space or not, i.e. to test whether projections of
target and achievable sensitivity and complimentary sensitivity functions onto a
given subspace match each other or not. Such an analysis pinpoints the limitations
of the given system for the recovery of arbitrarily specified target loops via
observer based controllers. These limitations are the consequences of the struc-
tural properties (i.e. finite and infinite zero structure, and invertibility) of the given
system. Furthermore, the analysis discovers a multitude of ways in which freedom
exists to shape the loops in a desired way as close as possible to the target shapes.
Also, possible pole zero cancellations between the eigenvalues of the controller
and the input and/or output decoupling zeros of the plant are characterized.

1. Introductionand problemstatement
In multi-input and multi-output feedback control system design, performance

specifications such as command following, disturbance rejection, closed-loop band-
width, stability robustness with respect to unstructured dynamic uncertainties etc,
are naturally posed in the frequency domain in terms of sensitivity and complemen-
tary sensitivity functions (Doyle and Stein 1981). These sensitivity and complemen-
tary sensitivity functions are related to the loop transfer matrices evaluated by
breaking the control loop at critical points, commonly either the input or output
point of the given plant. Thus typically, one is interested in designing a closed-loop
control system to arrive at a specified loop Jransfer function. In this paper, we
concentrate on a case when the uncertainties are modelled at the input point of a
nominal plant model and hence the required loop transfer function is specified at
the plant input point. However, our results can be dualized for the case when the
required loop transfer function is specified at the plant output point. In recent
years, a design procedure called LQG/L TR, originally proposed by Doyle and Stein
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Figure 1. Plant-controller closed-loop configuration.

(1979), has gained some prominence. Essentially, LQGjLTR is a two step design
procedure. In the first step of design, a standard state feedback design is done so
that the resulting loop transfer function at the plant input point, here after called
as a target loop transfer function, meets the given specifications. In the second step
of design, one first assumes a closed loop configuration as in Fig. I where C(s) and
P(s) are respectively the transfer functions of a controller and the given plant.
Given P(s) and the target loop transfer function L(s), one seeks to design a C(s)
such that C(jw)P(jw) is either exactly or 'approximately' equal to L(jw) in the
frequency region of interest. This second step of design is termed as LTR design
and is the focus of this paper.

Let us consider a plant !,

i = Ax+ Bu, y = Cx (1.1)

where the state vector x E [Rn,output vector Y E [RPand input vector u E [Rrn.
Without loss of generality, assume that Band C are of maximal rank. Let us also
assume that! is stabilizable and detectable. Let F be a full state feedback gain
matrix such that:

(a) the closed-loop system is asymptotically stable, i.e. eigenvalues of A- BFlie
in the left half s-plane; and

(b) the open-loop transfer function when the loop is broken at the input point
of the plant meets the given frequency dependent specifications.

The state feedback control is
"

u= -Fx ( 1.2)

and the loop transfer function evaluated when the loop is broken at the input point
of the plant, the so-called target loop transfer function, is

-

L(s) = Fcj)B ( 1.3)

where cj)= (sf - A)-). Instead of using the state feedback control law (1.2), if one
uses an output feedback controller C(s) as in Fig. 1, then the achieved loop transfer
function evaluated when the loop is broken at the input point of the plant is

Lo(s) = C(s)P(s), P(s) = Cci)B ( 1.4)

and thus our goal is to design a C(s) such that the mismatch function E(jw) with
E(s) defined as

E(s) = L(s) - Lo(s) ( 1.5)

is either exactly zero or in some sense approximately zero over the frequency range
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of interest. More precisely, we say exact LTR (EL TR) is achieved if

C(s)P(s) = L(s) for all s

Achieving ELTR is in general not possible. In an attempt to achieve 'approximate'
LTR, one normally parameterizes C(s) as a function of a scalar or a vector
parameter (1 and thus obtains a family of controllers C(s, (1). We say asymptotic
LTR (ALTR) is achieved if

C(s, (1)P(s)-+L(s) pointwise in s

as the tuning parameter (1-+ 00, or equivalently E(s, (1)-+0 pointwise in s as (1-+ 00.
Achievability of ALTR enables the designer to choose a member of the family of
controllers that corresponds to a particular value of (1which achieves a desired level
of recovery. Traditionally, observer based controllers either full or reduced order
type are used for LTR (an exception to this is Chen et af. 1990). In these
controllers, observer gain K is the only design variable and hence a family of
controllers is obtained by parameterizing it as a function of (1and K«(1)is designed
so that ALTR is achieved. Such a design is in general possible only for left
invertible and minimum phase systems. The purpose of this paper is to analyse
what is and what is not possible for general non-minimum phase systems without
imposing any assumptions either on them or on target loop transfer functions.

Ever since the seminal works of Kwakernaak (1969) and Doyle and Stein
(1979), there have been many papers on LTR using observer based controllers
(Athans 1986, Chen et af. 1989, Chen et aZ. 1990, Dowdle et af. 1982, Goodman
1984, Madiwale and Williams 1985, Matson and Maybeck 1987, Ridgely and
Banda 1986, Saberi and Sannuti 1990, Sogaard-Andersen 1989, Sogaard-Andersen
and Niemann 1989, Stein and Athans 1987, Zhang and Freudenberg 1987, 1990).
All these papers attest to the fact that ALTR is always achievable for left invertible
and minimum phase plants while providing some sufficient conditions under which
ELTR is possible. In general, AtTR requires high observer gain and LTR is
achieved asymptotically as the gain tends to infinity, i.e. K«(1)-+ 00 as (1-+ 00. As is
well known, in high-gain systems, some of the closed-loop eigenvalues tend to
infinity at several rates and others to finite values corresponding to the finite zeros
of the given plant. In other words, high-gain feedback in general induces a multiple
time-scale structure to a closed-loop system. Thus observer design can be viewed as
assigning a proper time-scale structure and an eigenstructure to the observer
dynamic matrix. At this time, there exist three methods of determining the required
observer gain for minimum phase plants: (1) Kalman filter formalism (Doyle and
Stein 1979), (2) direct eigenstructure placement method (Sogaard-Andersen 1989),
and (3) asymptotic eigenstructure and time-scale structure assignment (ATEA)
method (Saberi and Sannuti 1990). Kalman filter formalism has been well studied
and well understood for left invertible and minimum phase plants. In it, the
observer eigenstructure is controlled by varying the intensity of the input process
noise, i.e. the tuning parameter (1is the intensity of the input process noise. Here an
appropriate high gain is obtained by solving a parameter dependent algebraic
Riccati equation (ARE). Thus it is an asymptotic LQG method. The main
computational effort here is spent in solving repeatedly ARE's for each (1.We will
refer to such a design as ARE based design. In direct eigenstructure placement
method, some of the eigenvalues of the observer are placed at the plant finite
(invariant) zeros while the rest of them are placed far away in the negative half
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s-plane. However, there is a fundamental difficulty in placing the far away eigenval-
ues. One has to make sure that the residues associated with the far away eigenvalues
remain uniformly bounded as these eigenvalues are pushed to infinity. There is no
direct way of assuring this. In ATEA method, observer gain is parameterized
directly in terms of (J rather than being done indirectly via a parameter dependent
ARE. The parameter (Jcomes into play only in changing the degree of fastness of
various time-scales. It is fair to state that for the case ofleft invertible and minimum
phase plants, there exists ample literature describing both the mechanism of either
ELTR or ALTR and the methods of determining the required gain. However, in
contrast, not much work has been done in discussing the issues that arise when
general not necessarily left invertible, not necessarily minimum phase plants are
considered.

In the existing literature, LTR for non-minimum phase plants is mainly handled
by ignoring the non-minimum phase property of the given plant and using the ARE
based design as is done for minimum phase plants and then accepting the conse-
quent recovery error as it is. Such an approach is equivalent to performing the LTR
procedure for the minimum phase image model which is extracted via an all-pass/
minimum phase decomposition of the plant, since it is well known that the Kalman
filter gain in an LQG controller for the non-minimum phase plant is equivalent to
the corresponding gain for its minimum phase image model. Recently, Zhang and
Freudenberg (1987, 1990) for the first time showed explicitly what happens when
such an approach is taken. They develop expressions for the resulting asymptotic
behaviour of the loop transfer as well as sensitivity functions. More recently,
Niemann and Jannerup (1990) have expanded further on the results of Zhang and
Freudenberg (1987, 1990). Thus one can conclude that the LTR research for
non-minimum phase plants so far has concentrated on the analysis of the outcome
of the application of ARE-based design. which was developed earlier for left
invertible and minimum phase systems. Consequently, all the design possibilities
and constraints for non-minimum phase plants are not known in general when one
does not keep in mind any particular design method. All one knows at this stage of
research is that for general systems, even ALTR, let alone ELTR, is not possible.
Because of this fact, several issues spring up. The first and foremost issue irrespec-
tive of the design methodology that can be used concerns with questions such as (1)
What is feasible in general? (2) What are the design limitations that one encounters?
(3) Is there any freedom to shape asymptotically or otherwise the part that which
is not completely recoverable? (4) Can one develop meaningful bounds on the error
between the target and the attainable loop transfer functions or sensitivity and
complimentary sensitivity functions? (5) Can one characterize the manifolds or
subspaces in which complete recovery is possible? etc. To seek answers to these
questions in a systematic way, let us recall once again the conventional design
methodology. Typically, the design is separated into two distinct tasks of first
designing a state feedback gain which achieves a specified target loop transfer
function and then designing an observer based controller to recover it as best as
possible. In such a design methodology, one could first design an arbitrarily
specified target loop transfer function without knowing whether it is recoverable or
not by an observer based controller. This implies that the first issue of our analysis
is to investigate what is and what is not feasible by observer based controllers for
a given system irrespective of the properties of the target loop transfer functions.
Such an analysis will point out the limitations of the given system as a consequence
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of its structural properties such as finite and infinite zero structure, and invertibi1ity.
On the other hand, it makes sense to characterize the required necessary and
sufficient conditions on target loop transfer functions so that they are either exactly
or asymptotically recoverable by means of observer based controllers for a given
system. Such an analysis helps a designer to set meaningful goals at the onset of
design. In other words, although the actual physical tasks of first designing a target
loop and then designing an observer based controller are separable, one needs to
bridge or link these two tasks philosophically by knowing ahead what kind of target
loops are recoverable for a given system. Having thus developed the necessary
analytical tools which can point out the limitations of the given system or the
constraints on the recoverable target loops, one can move onto further analysis. In
particular, since recovery in general in all control loops as desired by the designer
is not feasible, one can then naturally look for methods to analyse whether recovery
in a chosen subspace of the control space is feasible or not. That is, due to the
directional behaviour of MIMO systems, one can begin to characterize the required
conditions so that the projection of the target and attainable sensitivity and
complimentary sensitivity functions onto a given subspace of ~m match each other
either exactly or asymptotically. This in turn can lead to several other pertinent
questions, e.g. What is the maximum dimension of a subspace in which the target
sensitivity and complimentary sensitivity functions can be recovered? Thus the fact
that complete recovery in general is not possible, releases a flood of issues for
careful study. As alluded to by the above discussion, one can divide the analysis of
these issues into three central parts. The first one is to analyse what can and what
cannot be achieved for a given system when the target loop transfer function is
arbitrarily specified. The second part is the development of necessary or/and
sufficient conditions a target loop has to satisfy so that it can be either exactly or
asymptotically be recovered for a given system. The third part is to develop
method(s) to test whether recovery is possible in a given subspace of the control
space or not. The recovery formulation in this part is in a sense a generalization of
the notion of conventional LTR. Inherent in all the above three issues is the
characterization of the resulting controller eigenvalues and possible pole zero
cancellations. Such an investigation is important in view of the fact, controller
eigenvalues become the invariant zeros of the closed-loop system and thus affect the
performance with respect to command following and other design objectives. Our
goal is to deal with all these issues systematically and explicitly in a direct way
without being tied to any design methodology in the process of analysis.

The paper is organized as follows. Recognizing that finite and infinite zero
structure of a given system plays a dominant role in LTR, in §2, we recall a special
coordinate basis (s.c.b.) of Sannuti and Saberi (1987) which displays clearly the
required zero structure. Zero dynamics, invariant and variant zeros of a given
system are defined and how s.c.b. portrays these zeros is clearly discussed. Connec-
tions between the s.c.b. and the various invariant and almost invariant subspaces of
geometric theory as needed for our development are also given there. Section 3
deals with all the fundamental analysis. In particular, in § 3.1 we analyse the
recovery mechanism for an arbitrarily given target loop. This analysis includes not
only the recovery of target loop transfer function but also target sensitivity and
complimentary sensitivity functions. We show that either ELTR or ALTR in
general is not possible. Whenever LTR is not possible, we give explicit expressions
for the asymptotic limits of loop transfer function and sensitivity and complimen-
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tary sensitivity functions. Moreover, we give explicit bounds on the attainable
sensitivity and complimentary sensitivity functions in terms of the singular values of
what is>called a recovery error matrix Me(s). These bounds can be used to analyse
the inevitable trade-off between the good recovery as indicated by (JmaxMeUw)and
robustness and performance as reflected in the sensitivity and complimentary
sensitivity functions. We next move on to the characterization and possible shaping
of a subspace in which the target sensitivity and complimentary sensitivity functions
can be recovered. All the analysis given here treats the target loop transfer function
L(s) as an arbitrarily given matrix, i.e. no particular properties of L(s) are exploited
in the analysis. However, § 3.2 takes into account the specific characteristics L(s)
might have. Here the necessary and sufficient conditions under which L(s) can either
exactly or approximately be recovered are given. Interestingly enough, these con-
straints turn out to be constraints on the finite and infinite zero structure of it. Such
an interpretation of the constraints reveals that either ELTR or ALTR is possible
under a variety of conditions. For instance, LTR can be achieved even if the target
loop transfer function does not contain non-minimum phase zero structure of the
given system provided some other conditions are satisfied. An example illustrates
this. Both § 3.1 and 3.2 stress recoverability in the entire control space [Rm.On the
other hand, § 3.3 generalizes all the results developed in § 3.1 and § 3.2 to cover
recoverability of the target sensitivity and complimentary sensitivity functions in a
specified subspace and thus adds a considerable amount of flexibility to the process
of design. It also shows that for left invertible systems irrespective of the number of
non-minimum phase zeros and irrespective of the nature of the target loop transfer
function, there exists at least one m - 1 dimensional subspace of [Rmin which the
target sensitivity and complimentary sensitivity functions can always be recovered
by an appropriate design of the controller. Also, in § 3 under all the analysis
conditions given above, the resulting controller eigenvalues and possible pole zero
cancellations are clearly discussed.

As mentioned earlier, this paper deals only with the issues concerning analysis.
It shows the limitations of the given system as a consequence of its structural
properties while discovering a multitude of ways in which freedom exists to shape
the loops as close as possible to the target shapes. In a sequel to this paper, we will
present a design methodology which is capable of utilizing the complete freedom a
design can have. This is in contrast to the ARE based approach which chooses to
shape the loops in a particular way among an array of available choices. For left
invertible and minimum phase plants, since ALTR is always possible, the particular
way the ARE based approach accomplishes the design does not playa critical role
although it results in an unnecessarily high controller gain and band-width. However,
for general systems, ability to utilize all the available design freedom is of paramount
importance. The path taken by the ARE based design to shape the loop is not
necessarily the best path and hence one needs to explore all the available design
freedom; especially exploring such a freedom in the subspace in which complete
recovery is not possible is a dire necessity. The design methodology proposed in our
sequel paper allows the designer to utilize all the available freedom. It follows the
asymptotic time-scale structure and eigenstructure assignment (ATEA) concepts of
our earlier work (Saberi and Sannuti 1989, 1990). Also, in Part 2, a method of design
to achieve ELTR whenever it is possible is given. These design methods have been
implemented into a 'Matlab' software package and our experience with them shows
that ARE based design has an abundant number of deficiencies.
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Throughout this paper, A' denotes the transpose of A, A H denotes the complex
conjugate transpose of A, I denotes an identity matrix while h denotes the identity
matrix of dimension k x k. A(A) and Re [A(A)] respectively denote the set of
eigenvalues and real parts of eigenvalues of A. Similarly, O"maJA]and O"min[A]
respectively denote the maximum and minimum singular values of A. Ker [V] and
1m [V] denote respectively the kernel and the image of V. The open left and closed
right half s-planes are respectively denoted by <{J- and <{J+.

2. Preliminaries
As we shall see throughout this paper, finite and infinite zero structures of both

the given system and the target loop transfer function playa dominant role in the
recovery analysis as well as design. In fact, the whole subject of LTR can be viewed
as the study of assigning a zero structure to a closed-loop system within the
constraints imposed by the zero structures of the given open-loop system and the
target loop transfer function. Thus a good non-ambiguous understanding of zero
structure is essential for our study. Keeping this in mind, we recall in this section
a special coordinate basis (s.c.b.) of a linear time invariant system (Sannuti and
Saberi 1987). Such a s.c.b. has a distinct feature of explicitly displaying the finite
and infinite zero structure of a given system. Various definitions regarding zero
dynamics, invariant and variant zeros of a given system are given and portrayal of
these by the s.c.b. is discussed. Connections between the s.c.b. and the various
invariant and almost invariant subspaces of geometric theory as needed for our
development are also given. A reader who is not interested in the proofs of
theorems in subsequent sections can either skip or read this section lightly. We have
the following theorem.

Theorem 2.1: Special coordinate basis

Consider the system ~ characterized by the triple (e, A, B). There exist non-
singular transformations rb r2 and r3, an integer mu ~ m, and integer indexes qi,
i = 1 to mu, such that

x = r)x, y = r2y, u = r3[ii',vT

x = [x~,x~, x~, xf]', xa = [(x:)', (x;)']'

Xt= [x;, xS, ..., x;.,y

Y = [Yf' Y;]', Yt = [YI, Y2, ..., YrnJ'

U = [UI, U2, ..., urnY

i; = A;"x; + L;ifYt+ L;;,ys

(2.1)

(2.2)

-'+- A +-+ L +- L +-
Xa - aaxa + atYt+ asYs

ic = Accxc + LctYt+ LcsYs+ BJE~x: + E;;,x; + V]

(2.3)

(2.4)

ib = AbbXb+ LbtYt, Ys = CsXb
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and for each i = 1 to mu

i; = AqiX;+ L/Yf + Bqi
[u; + E;axa+ E;bXb+ E;exe+ .I EijXj JJ=l

(2.5)

j\ = CqiX;, jif = Cfxf (2.6)

Here the states x: , x;; , Xb, Xc and xf are respectively of dimension n: , n;; , nb, ne
and

nf = I q;
i=l

while Xi is of dimension qi for each i = 1 to mu- The control vectors U and i5are
respectively of dimension mu and mv = m - mu while the output vectors jif and jis

are respectively of dimension Pi = mu and Ps ~ nb' The matrices Aqi' Bqi and Cqi have
the following form

- [0 Iqi-1

J
-
[

O

J
-

Aqi - 0 0 ' Bqi - l' Cqi - [1 0 ... 0]
(2.7)

(Obviously for the case when qi = 1, Aqi = 0, Bqi = 1 and Cqi= 1.) Furthermore, we
have A(Ad,,) EI6'+,A(A;,,) EI6'-, the pair (AcnBJ is controllable and the pair
(Abb' Cs) is observable. Moreover, assuming that Xi are arranged such that
q; ~ qi+ I' the matrix L; has the particular form

L;=[Lii La ... Lii-l 00...0]

Also, the last .row of each Li is identically zero.

Proof

The proof follows from Theorem 2.1 of Sannuti and Saberi (1987).

We can rewrite the s.c.b. given by Theorem 2.1 in a more compact form:

C = [0 0 0 0 Cf

J
(2.8)

0 0 Cs 0 0

We next define a dual system tt characterized by the triple (Ct, At, At) where

Ct=A/, At =1', At=c'

In what follows, we state some important properties of the s.c.b. which are
pertinent to our present work. These properties are stated without proofs, however
the proofs are straightforward and simple.

i = Ax + Bru',i5']', ji = Cx

whereA, jj and C are in the form

[A;

0

LC, ° L4Cf] [° °]

0 A;" L::sCs 0 L;;jCf 0 0
A= 0 0 Abb 0 LbfCf jj = 0 0

BeE"/a BeE;;, LesCs Ace LefCf 0 Be

BfE: BfE;; BfEb BfEe Af Bf 0
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Property 2.1

We note that (Abb' Cs) and (Aqi' Cq.) fonn observable pairs. Unobservability
could arise only in the variables xa and XC' In fact, the system I: is observable
(detectable) iff (Aobs>Cobs) is an observable (detectable) pair, where

[Aaa 0 ] [
Ada 0 ]Aobs = B E A ' Aaa= 0 A-' Cobs= [Ea EcJcca cc aa

Ea = [E;a E;a ... E;"ua)', Ec = [E;c E;c ... E;"ucJ'

Similarly, (Acc, Bc) and (Aq., Bq) fonn controllable pairs. Uncontrollability could
arise only in the variables 'xa ~nd Xb' In fact, I: is controllable (stabilizable) iff
(Aeon,Beon) is a controllable (stabilizable) pair, where

[
Aaa LasCs

] [
La!

] [
L;is

] [
L~

]Aeon = 0 Abb' Beon= Lb!' Las = L;;; , La! = L;;j

Property 2.2

The given system I: is right invertible iff Xb and hence ys are non-existent
(nb = 0, ps = 0), left invertible iff Xc and hence v are non-existent (nc = 0, mv = 0),
invertible iff both Xb and Xc are non-existent. Moreover, I: is degenerate iff it is
neither left nor right invertible.

There are interconnections between the s.c.b. and various invariant and almost
invariant geometric subspaces (Wonham 1985). To show these interconnections, we
shall use the following standard notation:

1/* the supremal (A, B)-invariant subspace 'contained' in Ker (C)
r!Il* the supremal (A, B)-controllability subspace 'contained' in

Ker (C)
the infimal (A, C)-invariant subspace 'containing' 1m (B)
the infimal (A, C)-observability subspace 'containing' 1m (B)
the supremal Lp-almost invariant subspace 'contained' in
Ker (C)

r!Ilt,KerC the supremal Lp-almost controllability subspace 'contained' in
Ker (C)

Y't 1mA the infimal Lp-almost conditional invariant subspace 'contain-
, ing' 1m (B)

% t, 1m A the infimal Lp-almost complementary observability subspace
'containing' 1m (B)

1/ Ker C {xo E IRn Ix( t) : IR--+IRn, x( t) absolutely continuous such that
i-Ax E1m(B) for almost all t, x(0) = xo, lim,-00 x(t) = 0
and Cx = 0 for all t}
:=1/ KerC + r!Ilt. KerC

.=1/ ::'erc!1/ KerC

:= 1/ ~er C + r!Ilt KerC

:=(1/ b,KerC,(C:, A" B,)) 1.= 1/ ~erdC, A, B)
:=(1/: KerC(C" A" B,)) 1.= 1/KerdC, A, B)
.=1/*(C" X" B,)1.
:=r!Il*(C/, AI> B/)1.

:=1/ KerC (CI> AI> BJ 1.

:=1/ ~erC:(C/, AI, B/)1.

Y'*
%*

1/ t, Ked

1/ b,KerC
1/ ~er C

1/ :. KerC

Y'b,lmA(C, A, B)

Y':'lmA(C, A, B)
!l' *( C, A, B)
ff*(C, A, B)
!l' - (C, A, B)
!l' + (C, A, B)
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Various components of the state vector of the s.c.b. have the following geomet-
rical interpretations.

Properties 2.3

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

( 14)

(15)

(16)

(17)

(18)

Xa EBXc spans "f/*

Xc spans fYl*

Xc Ef)xf spans !/ *

xa Ef)Xc Ef)xf spans .AI *

xa Ef)Xc Ef)xf spans "f/ t. Ker(:

Xc Ef)xf spans fYlt.Ked

Xc spans !/ t.1mD

Xa Ef)Xc spans .AI t. 1mD

X;; Ef)Xc spans "f/ Ker (:

X;; Ef)Xc Ef)Xf spans "f/ b, Ker (:

X;; Ef)Xc spans "f/ iter (:

X;; Ef)XcEf)Xf spans "f/t. Ked

X;; Ef)xcspans !/b,lmD(C, A, B)

X;; Ef)Xc spans !/ t. 1mD(C, A, B)

XCEf)xfspans Y*(C, A, B)

xa Ef)xcEf)xfspans !T*(C, A, B)

X;; Ef)Xc Ef)xf spans Y - (C, A, B)

X;; Ef)Xc Ef)xf spans Y + (C, A, B)

Remark 2.1

With the help of Properties 2.3, one can easily interpret the state vectors of s.c.b.
in terms of various geometric subspaces.

(1)

(2)

(3)

(4)

(5)

(6)

Xa spans "f/*/fYl*

x;; spans "f/ iterd fYl*

X;; spans "f/ Kerd fYl*

Xb spans .AI*.l

Xc spans fYl*

xf spans !/*/fYl*

Also, all the geometric subspaces defined earlier can be seen to be appropriate
unions of five basic subspaces which are spans of states x;; , x;; , Xb, Xc and xf'
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We next proceed to discuss the finite zero structure of t. It is traditional to
define an invariant zero z and the associated right state and input zero directions XR
and WR of t as those which satisfy the equation

P(z) [::]=0 (2.9)

where

P(z) =
[

Zln - A
-c ~B]

When the invariant zeros are not simple, MacFarlane and Karcanias (1976), also
Soroka and Shaked (1988), give the following definitions.

Definition 2.1
The rank deficiency (1zof P(z) is called the geometric multiplicity of the zero z

and the degree pz of the product of elementary divisors of P(s) that correspond to
z is called the algebraic multiplicity of this zero. Thus pz ~ (1z.

Definition 2.2

Let z, x~ and w~ be an invariant zero and the corresponding state and input
zero directions of t. Then the vectors x~ and w~, j = 1, ..., pz - (1zare defined as
the state and input pseudo zero directions associated with z if they satisfy

[
Xj

] [
xj-I

]P(z) w~ = - ~ ' j = 1, ..., pz - (1z
(2.10)

The following examples illustrate the short comings of these definitions.

Example 2.1
Let t be characterized by A= 14

fi~ r~ n
c = [

0 0 0 1

]0 100

Any point in the entire s-plane is an invariant zero by the traditional definition with
the corresponding x Rand WR as

xR~. m +P r!J. WR~O

where exand p are some constants. Having invariant zeros at all points in the entire
s-plane is problematic. However, as is well known, the situation described in this
example happens only when the given system is not left invertible.
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,

This system is square and invertible. It has three invariant zeros at z = - 1 with
pz = 3 and (Jz= 2. It is straight forward to verify that

x~ ~ [ ! 1

and w~= - 1

are the right state and input zero directions associated with z = - 1. But no solution
exists for pseudo zero directions as defined by (2.10). Thus the Definition 2.2 of
pseudo zero directions is questionable even for square invertible systems.

As shown by the above examples, the definitions of algebraic and geometric
multiplicities given above are not sufficient enough to define pseudo state and input
zero directions. We now proceed to show that s.c.b. displays directly and precisely
the finite zero structure of!:. We first define the following.

Definition 2.3
Eigenvalues of Aaa are said to be the invariant zeros of!:. Also, !: is said to be

of non-minimum phase if anyone of A(Aaa) is in C(j+, otherwise it is said to be of
minimum phase.

In order to define various multiplicities of invariant zeros, let X be a non-singular
transformation matrix such that

X-I AaaX = J = Block diag [JI, J2, ..., Jd

where Ji, i = 1 to k are some ni x ni Jordan blocks

(2.11)

[0 In.-I

]Jj = Diag [Zj, Zj, ..., z;] + 0 0 (2.12)

We note that

k" n. = nL...' a
i=1

Also, the geometric multiplicity of each invariant zero Z E A(Aaa), is the number of
Jordan blocks in (2.11) associated with Z and the algebraic multiplicity is the total
number of repetitions of Z in A(Aaa).The missing information in the literature is the
sizes of the Jordan blocks associated with each z. It turns out that this missing
information is crucial to define the state and input zero direction chains associated
with each z. Hence, in what follows we define what is called the multiplicity

Example 2.2
Let!: be given by

[ -I

1

0 0 1 bm

- 0 -1 0 1A=
-1 1 '0 0

1 1 1 0

and

C=[O 0 0 1]
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structure of an invariant zero in such a way that it contains all the needed
information.

Definition 2.4
For any given z E A(Aaa), let there be vzJordan blocks of Aaa as in (2.11) and

(2.12) associatedwith z. Let nzb nz2' ..., nzv be the dimensions of the corresponding
Jordan blocks. Then we say z is an 'invaria~t zero of ~ with multiplicitystructureS:

S: = {nZ.1' nz,2' ..., nz,vz}

If nz,l = nz,2 = ... = nz,vz = 1, then we say z is a simple invariant zero of~.

(2,13)

Remark 2,2

The geometric multiplicity (1zof z is vzand the algebraic multiplicity pz of z is then
given by

pz = nz,l + nz,2 + ..,+ nz,vz

For left invertible systems, geometric and algebraic multiplicities defined here
coincide with those given by MacFarlane and Karcanias (1976) and Soroka and
Shaked (1988).

Remark 2.3

Invariant zeros and their multiplicity structures can be defined in a coordinate
free setting. Let ff(r*jf?ll*) denote the class of maps F: (IRn-+lRm)such that
(A - BF)(r*jf?ll*) c (r*jf?ll*). Let AF = (A - BF) and AF be the map induced by
AF in r*jf?ll*. We note that AF is independent of FE ff(r*jf?ll*) and that
A(AF) c A(AF). Then it can be shown easily that AF and Aaa are related by a
similarity transformation. Thus all our results can be transformed to a geometric
space setting.

Now we can move on to define a state and input zero direction chain associated
with an invariant zero z of~. We note that there exist XI'!' x~'!, ..., x~'i independent
eigenvectors of Aaawhich are associated with an eigenvalue z of Aaa having the
multiplicity structure as in (2.13),

Definition 2.5: Eigenvector chain
For each i = 1 to v" a set of vectorsin IRnawhich satisfythe followingcondition

(2.14) is said to be the eigenvector chain of Aaaassociated with the invariant zero z

(Aaa - zIn)xfJ~ 1 = xfJa, j = 1, ..., nz,i- 1 (2.14)

Definition 2.6: Right state zero direction chain
For each i = 1 to v" a set of vectors in IRngiven in (2.15) is said to be the right

state zero direction chain of ~ associated with the invariant zero z

[

xz,a

1xlj ~ r, t ,j ~ I, ..., n,.,

(2.15)

Also, X71is said to be the right state zero direction of ~ associated with z.
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Definition 2.7: Right input zero direction chain

For each i = 1 to Vz, a set of vectors wij, j = 1 to nz,i' in IRmas given in (2.16)
is said to be the right input zero direction chain of ~ associated with the invariant
zero z

wZ.= -r3
[

Ea

J
xz,a

ij Eea ij

where Eea= [E~ E~] and Ea is as defined in Property 2.1. Also, Wflis said to be
the right input zero direction of ~ associatedwith z.

We have the following propositions.

(2.16)

Proposition 2.1

Corresponding to each invariant zero z, the state zero direction chain satisfies

Cxij = 0 for all i = I to v" j = 1 to nz,i

Proof
The proof is obvious.

Proposition 2.2
The set of vectors comprising of all state zero direction chains of all invariant

zeros of ~ form a linearly independent set and span "f/*jfJll*.

Proof

The proof is obvious.

Proposition 2.3
Invariant zero, state and input zero directions, z, Xfl and Wflas in Definitions

2.3 to 2.7, always satisfy (2.9). Also, when ~ is left invertible and when all its
invariant zeros are simple, z, Xfl and Wflas in Definitions 2.3 to 2.7 imply and are
implied as well by the traditional ones given by (2.9).

Proof

In view of (2.8)

(zIn - A)xfl = r1

r

ZIna~ Aaa

-BeEea

- BfEa

- Las Cs

zInb - Abb

- Les Cs

- BfEb

0
0

- LafCf

] r

Xft

]

- LbfCf 0
- LefCf 0

zInf - Af 0
zInc - Ace

- BfEe

= -r

r

~ ~

]
lOBe

Bf 0

-

[
Ea

J
z,a

- -Br3 Xii
Eea

[ ;a ]
xz,a

ea II

= Bwfl
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Also, from Proposition 2.1, we have CXfl = O. This proves the first point of this
proposition. The second point can easily be verified.

The following proposition gives a physical meaning to the invariant zeros, and
the state and input zero direction chain of a system.

Proposition 2.4
For a system t which is not necessarily left invertible,

condition, i(O) = xf", for any IX~ nz,iand the input
'" Zt ",-j ( t)-- ~ Wij exp z l" 11 ~ 0u-L..

(
'
) ' lor a t""j= 1 IX - } .

where z is any invariant zero of the system and nz,iE S:, we have

given that the initial

(2.17)

y==O
and

-
() ~ xijt"'-jexp(zt) l"

11x t = L..
(

'
) ' lor a t ~ 0

j~ 1 IX- } .
(2.18)

Proof

Without loss of generality, we can assume that t is in the form of s.c.b. Then
it is straightforward to verify that y== 0, Xb(t)== 0 and xf(t) == 0 for all t ~ O.This
implies that

ia = A~xa

Then under the given initial condition, it is easy to verify (2.18). The rest of the
proof also follows by direct verification.

One can define the left state and input zero direction chain associated with an
invariant zero of t as follows.

Definition 2.8
The left state and input zero direction chain associated with each invariant zero

of t are defined as the corresponding right state and input zero direction chain of
the dual system tt.

In view of Definitions 2.3-2.7, we can reconsider Examples 2.1 and 2.2.

Example 2.3

Consider the system given in Example 2.1. For this non-invertible system,
Definitions 2.3 to 2.7 result in one invariant zero at z = 1 with right state and input
zero directions x Rand WR as

XR~. rn, WR~ 0

where IXis some constant.
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Example 2.4

Consider the system given in Example 2.2. As we discussed earlier, this system
is square and invertible and has three invariant zeros at z = -1. Following the

Definitions 2.3-2.7, we have S~) = {I, 2} and

xi, ~ [ !J, xi, ~ [n xi, ~ [iJ
and

wf) = -I, w~) =-1 and W~2= - 1

We would like to discuss next what is called 'zero dynamics' of a given system.
Without loss of generality, let us assume that the given system is in the form of a
s.c.b. Now the trajectories of this system restricted to a manifold vii == {Yf= 0 and
Ys = O} are given by

i: = Adax:

i;; = A;.x;;
ie = Aeexe + BJE~x: + E,:;;x;;] + BJj

(2.19)

(2.20)

(2.21)

This is called output nulling dynamics or more commonly referred to as 'zero
dynamics'. Obviously, in order to maintain the trajectories of! on vii, one must use
the feedback law,

Ui= -[E;;;x: + Ej;;x;; + EieXcJ

for all i = 1 to mu' It is easy to see that the poles of zero dynamics are

A(Ada)uA(A;.) uA(Aee)

Note that A(Ada) and A(A;.) are fixed and are the invariant zeros of !. However,
A(AeJ are controllable via the input iJ. Thus we have the following definition:

Definition 2.9

The dynamics represented by (2.19) and (2.20) is called the invariant zero
dynamics, in particular (2.19) is called the unstable invariant zero dynamics and
(2.20) is called the stable invariant zero dynamics. Also, A(AeJ are called the
variant zeros of !.

The following property deals with other types of zeros defined in the literature
(Rosenbrock 1970).

Properties 2.4

(1) Output decoupling (o.d.) zeros of ! are the unobservable eigenvalues of the
pair (Aob8'Cobs)' Also, o.d. zeros of (Ace>Ee) are contained in the set of o.d.
zeros of (Aob8'Cobs)' Some of the o.d. zeros of! could be contained among
its invariant zeros.
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(2) Input decoupling (i.d.) zeros of ~ are the uncontrollable eigenvalues of the
pair (Aeon,Beon).Also, i.d. zeros of (Abb' Lbj) are contained in the set of i.d.
zeros of !:. Some of the i.d. zeros of ~ could be contained among its
invariant zeros.

(3) Input output decoupling (i.o.d.) zeros of ~ are contained among its
invariant zeros.

(4) Systemzeros of !: = {invariant zeros}+ {uncontrollableeigenvaluesof the
pair (Abb'Lbj)} + {unobservableeigenvaluesof the pair (Ace>EJ }.

The above properties clearly show the finite zero sttucture of ~. The s.c.b. can
also reveal the infinite zero structure of~. Let us say that a rational matrix H(s)
possesses an infinite zero of order k when H(1/z) has a finite zero of precisely that
order at z = O.Then the followingproperty shows the structure at infinity of!: as
displayed by the s.c.b.

Property 2.5

Let ijj be an integer such that exactly ijj elements of q;, i = 1 to mu, are equal to
j. Also, let KI be an integer such that ijj = 0 for all j > KI. Then there are jijj number
of infinite zeros of order j, for j = 1 to KI. Also, noting that

KI mu

I jijj = I q; = nj
j= 1 ;= 1

the total number of infinite zeros of all orders is nj'

We note that ~ does not have an infinite zero of order j iff ijj = O. As discussed in
Sannuti and Saberi (1987), the orders of infinite zeros are same as the t(j* structural
invariant indices (list 14 of Morse 1973),

r",*_ {
- - -

}10 - nl, n2, ..., nmu .

Let this list be ordered so that nl ::;;n2 ::;;... ::;;nm . Also, assume that this list has KI
distinct entries el < e2 ... < eKI where e; has muitiplicity d;, i = 1 to KI. That is

KI mu

I die; = I n;= nj
;= 1 ;=1

Then we have

t(j * = {n1 , n2, ..., nmu }

dl d2 dKI

=~'~2""'~}

ijl ij2 ijKI
r-"--,r-"--, ~

= {I, 1, ...,1,2,2, ...,2, ..., KI, KI, ..., KI}
(2.22)

3. General analysis
In this section, we consider a full order observer based controller as depicted in

Fig. 2. As discussed in the introduction, we have three central issues that need to
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u
PLANT y

CONTROLLER

Figure 2. Plant with full order observer based controller.

be analysed here. The first issue concerns with the investigation of the available
design freedom in characterizing the asymptotic behaviour of attainable loop
transfer function and sensitivity and complimentary sensitivity functions. This issue
does not concern itself with the nature of target loop transfer function which at this
stage is assumed to be arbitrary. Thus the first issue purely deals with the
limitations of the given system as a consequence of its structural properties in
recovering an arbitrary target loop via a full order observer based controller. We
discuss this issue in § 3.1. However, the second issue concerns with the characteriza-
tion of target loop transfer functions which can either exactly or asymptotically be
recoveredfor the given plant via an observer based controller. Such a characteriza-
tion is of paramount importance for a designer in order to formulate meaningful
goals at the onset of design. This issue is discussed in § 3.2 where the necessary and
sufficient conditions on the recoverable target loop transfer functions are given.
These conditions can be seen to be as constraints on the finite and infinite zero
structure and the invertibility properties of target loop transfer functions. The third
issue concerns with the first as well as the second issue when recovery is important
solely in a given subspace of the entire control space. Recovery in a subspace means
that the projection of the target and the achieved sensitivity and complimentary
sensitivityfunctions onto a given subspacematch each other exactlyor asymptoti-
cally. Section 3.3 discusses this issue and gives every single result of § 3.1 and 3.2
when recovery is confined to a given subspace and thus generalizes the traditional
notion of LTR. Inherently buried in all these three issues is the issue of analysing
the controller eigenvalues, possible pole zero cancellations and the mechanism of
such cancellations. This issue is also dealt with in this section.

We will now proceed with the analysis. C(s), the transfer function of the
observer based controller is given by

C(s) = F[sIn - A + KC + BF] -IK

while E(s), the error between the target loop transfer function L(s) and that
achievable by the controller, is given in (1.5). This expression (1.5) is not well suited
for LTR analysis. Recognizing this, Goodman (1984) earlier related it to another
transfer function M(s). Although Goodman considers only square invertible sys-
tems, his results as given in the following lemma are equally valid for general
systems.
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Lemma 3.1

Consider any arbitrary F such that A- 8F is asymptotically stable. Then E(s),
the error between the target loop transfer function L(s) and that realized by the
controller of Fig. 2, is given by

E(s) = M(s)[Im + M(s)] -1(Im + F&8) (3.1)

where

M(s) = F(sIn - A + KC) -18 (3.2)

Furthermore for all w E Q

E(jw) = 0 iff M(jw) = 0 (3.3)

where Q is the set of all 0 ~ Iwl< 00 for which L(jw) and Lo(jw) are well defined
(i.e. all required inverses exist).

Equations (3.2) and (3.3) present a clear perspective to study the basic mecha-
nism of LTR. In fact, they facilitate the study of E(s) in terms of the study of M(s).
Thus Lemma 3.1 and the expression for M(s) as given by (3.2) form a basis for our
study.

3.1. Recovery analysis for an arbitrarily given target loop

In a traditional LQG design, in view of the well known separation principle, a
designer separates the designs of state feedback gain F and observer gain Kinto two
different decoupled tasks. Keeping this in mind, our goal in this subsection is to
analyse the LTR mechanism without taking into account any specific characteristics
of F. Thus the only freedom we have to achieve the needed recovery is in the
selection of observer gain K. First of all, in order to guarantee the closed-loop
stability, K must be such that the observer dynamic matrix,

Ao= A - KC ( 3.4)

is an asymptotically stable matrix, i.e. ,1,(Ao) EC(j-. The remaining freedom in
choosing K can then be used for the purpose of achieving LTR. Now in view of
(3.2) and (3.3), ELTR is possible for an arbitrary F only if

M(jw) = (jwln - 10) -18 ==0 (3.5)

However, due to the nonsingularity of (jwln - 10)-1, (3.5) implies that 8 ==O. But
this is impossible in any real system and hence ELTR in general is impossible for
an arbitrary F. Thus one can only attempt to achieve ALTR, i.e. to render M(jw)
approximately zero in some sense. In order to analyse whether ALTR is possible,
we parameterize the gain K with a tuning parameter (J and thus consider a family
of controllers

C(s, (J) = F[sIn- A + K«(J)C+ 8F] -IK«(J) (3.6)

Thus now M(s) is also a function of (Jand is denoted by M(s, (J). To proceed with
our analysis of M(s, (J), for clarity of presentation we will temporarily assume that
Ao is nondefective. This allows us to expand M(s, (J) in a dyadic form

n R.

M(s, (J) = L s -'A.-i= I ,
(3.7)
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where the residue Ri is given by

Ri = FWy{fB (3.8)

Here Wi and Vi are respectively the right and left eigenvectors associated with an
eigenvalue Ai of 10 and they are scaled so that WVH = VHW = In where

W = [WI, W2, ..., Wn] and V = [VI, V2, ..., Vn] (3.9)

In general, all Ai' Vi and Wi are functions of u. However, for economy of notation
we will not show the dependence on u explicitly unless it is needed for clarity.

Remark 3.1

The assumption that K(u) is selected so that 10 is non-defective is not essential.
It simplifies our presentation. A removal of this condition necessitates the use of
generalized right and left eigenvectors of 10 instead of the right and left eigenvec-
tors Wi and Vi and consequently the expansion of M(s, u) requires a double
summation instead of (3.7).

We are looking for conditions under which for each i = I to n, the i-th term of
M(s, u) in (3.7) can be made zero. There are only two possibilities to do so.

(a) The first possibility is by assigning Ai to any finite value in C(l- while
simultaneously rendering the corresponding residue Ri zero. Since F is
arbitrary, it necessitates rendering either V{f(u)B=O or V{f(u)B--+O as
u --+00. Thus this possibility deals with finite eigenstructure assignment of
10.

(b) The second possibility is to make

Ri 0---+
S - Ai

pointwise in s as u --+00. This can be done by placing the eigenvalue Ai(U)
asymptotically at infinity while making sure that the corresponding residue
Ri is uniformly bounded as u --+00. It is important to recognize that placing
Ai asymptotically at infinity alone is not beneficial unless the corresponding
residue Ri is bounded. Since F is arbitrary, it amounts to assigning Wi(u)
and Vi(u) such that Wi (u)V{f (u)B remains bounded while Ai--+00 as u --+00.
Thus this possibility deals with infinite eigenstructure assignment of 10.

The above two possibilities of making a particular term of M(s, u) zero leads to two
fundamental questions that need to be answered: (a) How many left eigenvectors of
10 can be assigned to the null space of B'? and (b) How many eigenvalues of 10 can
be placed at asymptotically infinite locations in C(l- so that the corresponding
residues are finite? The following two lemmas respectively answer these two
questions.

Lemma 3.2

Let Aiand Vi be an eigenvalue and the corresponding left eigenvector of 10 for
any gain K(u) such that Ao is stable. Then the maximum possible number of
Ai E C(l- which satisfy the condition V{fB= 0 is n;; + nb. A total of n;; of these Ai
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coincide with the plant invariant zeros which are in CC- (the so called minimum
phase zeros) and the remaining nb eigenvalues can be assigned arbitrarily to any
locations in CC-. All the eigenvectors Vi that correspond to these n;; + nb eigen-
values span the subspace 1/Kerdfll*(f)JV*J.. Moreover, the n;; eigenvectors Vi
which correspond to the eigenvalues which coincide with the plant invariant zeros
in CC- coincide with the corresponding left state zero directions and span the
subspace 1/ Ker r:/fll *.

Proof

See Appendix A.

Lemma 3.3

Let Ai' Wi and Vi be an eigenvalue and the corresponding right and left
eigenvectors of Ao for any gain K(o) such that Ao is stable. The maximum number
of eigenvalues of Ao that can be assigned arbitrarily to asymptotically infinite
locations in CC- so that the corresponding WiV{fB are bounded as IAil-t 00 is
nb + nf' Furthermore, all the corresponding left eigenvectors Vi of such eigenvalues
asymptotically span the subspace JV H (f)9' */9!'*.

Proof

See Appendix B.

As implied by Lemma 3.2, in addition to n;; eigenvalues which coincide
with the plant minimum phase invariant zeros, there are nb other eigenvalues
which can be assigned arbitrarily to any locations in cc- such that V{fB ==O. This
implies that Wi V{fB corresponding to these nb eigenvalues are identically zero and
hence are bounded. Thus these nb eigenvalues are included among the nb + nf
eigenvalues indicated in Lemma 3.3. That is, there is a set of nb eigenvalues which
can be placed arbitrarily at either asymptotically finite locations in CC- as indi-
cated by Lemma 3.2 or at asymptotically infinite locations in CC- as indicated by
Lemma 3.3. Here after in order to conserve the controller band-width, we will
assume that these nb eigenvalues are always assigned to asymptotically finite
locations.

Lemmas 3.2 and 3.3 together tell us all the possibilities of rendering various
terms of M(s, 0) zero either exactly or asymptotically. There are altogether
n;; + nb + nf eigenvalues which can be assigned either at finite or at asymptotically
infinite locations so that the corresponding terms of M(s, a) in its dyadic ex-
pansion are either exactly or asymptotically zero. Thus a question arises as to
under what conditions n;; + nb + nf equals the dimension n of the given system.
It is easy to see that n;; + nb + nf = n iff ~ is left invertible and of minimum
phase. If ~ is not left invertible or/and of non-minimum phase, there are
ne == n - n;; - nb - nf==n: + nc terms of M(s, a) which cannot in general be ren-
dered zero. To emphasize explicitly the behaviour of each term of M(s, a), we
partition it into four parts

M(s, a) = M - (s, a) + Mb(s, a) + Moo(s, a) + Me(s, a) (3.10)
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where
nil R.

M_(s, u) = L s -'A-i=1 I

nil +nb Ri

Mb(s, u) = L s - A-
i = na- + 1 .

M ( )
nil + nb + nf R

00 s, u = . L ~
.=na- +nb+ 1S - Ai

and

n R.
MAs,u)= L ~

i=n-na- -nb-nf+ 1 S - Ai

Let A_(u), Ab(U), Aoo(u) and Ae(u) be the sets of eigenvalues of 10 associated
respectively with the parts M - (s, u), Mb(s, u), Moo(s, u) and Me(s, u). Similarly to
correspond with this partition of eigenvalues, we partition the right and left
eigenvectors of 10 into sets W_(u), Wb(u), Woo(u), We(u), V_(u), Vb(U), Voo(u)
and Ve(u). Also, here after we will be using an over bar on a certain variable to
denote its limit whenever it exists as u -+ 00. For example, MAs) and We denote
respectively the limits of Me(s, u) and We(u) as u -+ 00. We now note that various
parts of M(s, u) have the following interpretation

(I) M_(s, u) contains n;; terms. The n;; eigenvalues of 10 represented in it
form a set A- (u). In accordance with the Lemma 3.2, there exists a gain
t(u) such that M - (s, u) can be rendered identically zero by assigning the
elements of A- (u) to coincide with the plant minimum phase invariant zeros
while the corresponding set of left eigenvectors V- (u) coincides with the
corresponding set of left state zero directions. In fact, t(u) can also be
designed such that A- (u) and V- (u) approach asymptotically the set of
plant minimum phase invariant zeros and the corresponding set of state
zero directions as u -+00. In this case, M - (s,u) -+0 pointwise in s as
u -+ 00.

(2) Mb(s, u) contains nb terms. The nb eigenvalues of 10 represented in it form
a set Ab(U). In accordance with the Lemmas 3.2 and 3.3, there exxists a gain
t(u) such that Mb(s, u) can be rendered identically zero by assigning the
elements of Ab(U) arbitrarily to either asymptotically finite or infinite
location in C(J- as u -+ 00. As discussed earlier, in order to conserve the
controller band-width, we will assume here after that these eigenvalues are
assigned to asymptotically finite locations. Also, t(u) can be designed so
that Mb(S, u) -+0 pointwise in s as u -+ 00.

(3) Moo(s, u) contains nf terms. The nf eigenvalues of 10 represented in it form
a set Aoo(u). In accordance with the Lemma 3.3, there exists a gain t(u)
such that Moo(s, u) -+0 pointwise in s as u -+ 00 by assigning the elements of
Aoo(u) arbitrarily to asymptotically infinite locations in C(J-.

(4) MAs, u) contains the remaining ne == n;;; + nc terms. It is non-existent, i.e.
ne = 0, iff t is left invertible and of minimum phase. The ne eigenvalues of
10 represented in Me(s, u) form a set Ae(u). In view of Lemmas 3.2 and 3.3,
Me(s, u) cannot in general be rendered zero either asymptotically or other-
wise by any assignment of AAu) and the associated sets of right and left

.
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eigenvectors, WeCo")and Ve(a). However, as will be discussed later on,
Me(s, a) can be shaped to have some desirable properties. Since (A, C) is
assumed to be a detectable pair, except for the stable but unobservable
eigenvalues of A, others among the remaining eigenvalues of Ao which are
in Ae can be assigned to arbitrary locations in «j -. These arbitrary loca-
tions can either be asymptotically finite or infinite. But as will be shown by
an example in Part 2 of our paper (Saberi et al. 1991), MeUw, a) can be
unbounded as a -+ 00 whenever any elements of Ae(a) are assigned to
asymptotically infinite locations. Moreover, assigning elements of Ae(a) to
asymptotically infinite locations increases unnecessarily controller band-
width. Because of this, we assume Ae is confined to finite locations in «j - .

Since both M - (s, a) and Mb(s, a) can be rendered identically zero, for future use we
can combine them into one term

Mo(s, a) = M - (s, a) + Mb(s, a)

and rewrite M(s, a) as

M(s, a) = Mo(s, a) + Moo(s, a) + Me(s, a) (3.11)

We define likewise, Ao(a) = A- (a) uAb(a), Wo(a) = W _(a) u Wb(a) and Vo(a) =
V - (a) u Vb(a).

As the above discussion indicates, Lemmas 3.2 and 3.3 enable us to decompose
the mechanism of LTR into several parts. They show dearly what is and what is
not feasible under what conditions. Although they do not directly provide methods
bf obtaining the gain R(a), they do provide structural guide lines as to how certain
eigenvalues and eigenvectors are to be assigned while indicating a multitude of ways
in which freedom exists in assigning the other eigenvalues and eigenvectors of Ao.
These guidelines, in turn, can appropriately be channeled to come up with a design
method to obtain an appropriate gain R(a) (see, Part 2 of our paper, Saberi et al.
1991). Thus in short, Lemmas 3.2 and 3.3 form the heart of the underlying
mechanism of LTR.

Let $'tC::.A,D)(a)be the set of all gains R(a) designed by following the guide lines
given by the Lemmas 3.2 and 3.3. Namely, R(a) is designed such that (1) Ao is
asymptotically stable, (2) Mo(s, a) -+0 and (3) Moo(s, a) -+ 0 pointwise in s as
a -+ 00. Obviously $'tC::,A,D)(a)is a non-empty set. Theorem 3.1 given below
characterizes the asymptotic behaviour of the achieved loop transfer function as
well as sensitivity and complimentary sensitivity functions when R(a) E $'tC::,A,D)(a).
Let 80(s, a) and To(s, a) be the achieved sensitivity and complementary sensitivity
functions in the configuration of Fig. 2 when the loop is broken at the input point
of the plant

80(s, a) = [1m+ C(s, a)P(s)J-I

and

To(s, a) = 1m- 80(s, a) = [1m+ C(s, a)P(s)J-IC(S, a)P(s)

Also, let 8(s) and T(s) be the sensitivity and complementary sensitivity functions
corresponding to the target loop transfer function. We have the following theorem.
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Theorem 3.1

Consider the closed-loop system ~c comprising of the given plant ~ and the
controller as given in Fig. 2. Let ~ be stabilizable and detectable. Then for any F
such that A- BFis asymptotically stable, and for any gain K(O")E X'('l:,A,A)(O"),the
closed-loop system ~c is asymptotically stable. Moreover, as 0"-+ 00

E(s, 0")-+MAs)[Irn + Me(s)] -I(1rn + F&B), pointwise in s

So(s, 0")-+ S(s)[Irn + Me(s)],pointwise in s

To(s, 0")-+ T(s) - S(s)Me(s), pointwise in s

10";[So(jw, 0")]- O";[S(jw)]!~ [M (
.

)]
[S(

. " '" 0"max e JW
0"max JW

(3.12)

(3.13)

( 3.14)

( 3.15)

and

100;[To(jw,0")] - 0";[T(jw)] 1 ~ O"max[MAjw)]
O"max[S(jw)]

(3.16)

Proof

Expressions (3.12), (3.13) and (3.14) follow from Lemmas 3.2 and 3.3. The
bounds (3.15) and (3.16) are slight generalizations of similar results of Sogaard-
Andersen and Niemann (1989) (See also Chen et al. 1990).

In view of Theorem 3.1, Me(s) can be termed as the recovery error matrix. The
following well known result can easily be deduced from Theorem 3.1.

Corollary 3.1
Consider the closed-loop system ~c comprising of the given plant ~ and the

controller as given in Fig. 2. Let ~ be stabilizable, detectable, left invertible and of
minimum phase. Then for any F such that A- BFis asymptotically stable, and for

any gain K(O")E X'(c,A,A)(O"),the closed-loop system ~c is asymptotically stable.
Moreover, ALTR can always be achieved, i.e. we have as 0"-+ 00, pointwise in s

M(s, 0")-+0

and hence

E(s, 0")-+ 0

So(s, 0")-+ S(s)

To(s, 0")-+ T(s)

Proof

Since the recovery error matrix Me(s) is non-existent for left invertible and
minimum phase systems, the proof is obvious.

As implied by Theorem 3.1, the recovery error matrix Me(s) plays a dominant
role in the recovery process and hence it should be shaped to yield as best as
possible the desired results. Shaping Me(s) involves selecting the set of eigenvalues
Ae represented in Me(s) and the associated set of right and left eigenvectors We and
Ve. Such a selection can be done in a number of ways subject to the constraints
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imposed in selecting the eigenvectors (Moore 1976). However, note that though,
Me(s) would be small if all the non-minimum phase zeros of the given plant are far
away in '(j+. Hence, in this case one may not need any shaping of Me(s). The
following observation formalizes this.

Observation 3.1

Let ~ be left invertible and let all the n;; non-minimum phase zeros be far away
from the band-width of the target loop transfer function. Then the recovery error
matrix Me(s) is small. This is shown in Appendix C. A similar result has been
obtained by Zhang and Freudenberg (1990) when a left invertible system ~ has only
one non-minimum phase zero.

In multivariable systems, one interesting aspect of Theorem 3.1 is that there
could exist a subspace of the control space in which Me(s) can be rendered zero. To
pinpoint this, let

ei = H'Vi, Vi E Ve (3.17)

and let $e be the subspace of IRm

$e = Span {ei IVi E Ve} ( 3.18)

Let the dimension of $e be me' Now let

Y'e = orthogonal complement of $ e in IRm ( 3.19)

Let Ps be the orthogonal projection matrix onto Y'e. Then the following theorem
pinpoints the directional behaviour of M(s, a) and consequently the behaviour of
So(s, a) and To(s, a) as a ~ 00.

Theorem 3.2

Consider the closed-loop system ~c comprising of the given plant ~ and the
controller as given in Fig. 2. Let ~ be stabilizable and detectable. Then for any F
such that A- HF is asymptotically stable, and for any gain K(a) E $"('l:,A,A)(a),the
closed-loop system ~c is asymptotically stable. Moreover, we have as a ~ 00,

pointwise in s

M(s, a)Ps ~ 0,

So(s, a)Ps ~ S(s)Ps

To(s,a)Ps~ T(s)Ps

Proof
In view of the definitions of the matrix Ps and the subspaces $e and Y'e,

Theorem 3.1 implies the results of Theorem 3.2.

In view of the directional behaviour of Me(s) as given by Theorem 3.2, one
could try to shape it in a particular way so as to obtain the recovery of sensitivity
and complimentary sensitivity functions in certain desired directions or one could
try to shape Me(s) so that the subspace Y'e has as large a dimension as possible, i.e.
the subspace $ e has as small a dimension as possible. In this regard, we note that
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we have already selected Ao and Ax) and the corresponding sets of eigenvectors Vo
and Vooso that Mo(s,a) and Moo(s,a) tend to zero pointwise in s as a-HIJ. We
also note that although all the n;;- + nc vectors Vi E Vecan be selected to be linearly
independent, the corresponding ei ==H'Vi need not be linearly independent. In fact
for a given e =f 0, the equation

e=H'V

has n - m + 1 linearly independent solutions for V. Of course, not all such
n - m + 1 vectors could be admissible eigenvectors of Ao for different eigenvalues of

Ao in Cfj-, and moreover some or all of these n - m + 1 vectors could also be
linearly dependent on already selected eigenvectors in the sets Vo and V 00. Thus the
problem of shaping iCeis to find an admissible set of eigenvalues Ai and vectors ei,
i = 1 to n;;- + no which are not necessarily linearly independent but the associated
eigenvectors Vi of Ao satisfying ei = H' Vi, i = 1 to n;;- + nc, together with the
vectors in the setsVoand V00 form n linearly independentvectors.This problem of
selecting an admissible set (Ai, ei) is very much related to the traditional problem of
distributing the modes of a closed-loop system to various output components by an
appropriate selection of the closed-loop eigenstructure. This traditional problem of
'shaping the output response characteristics' of a closed-loop system has been
studied first by Moore (1976) and Shaked (1977) and more recently by Sogaard-
Andersen (1987) although to this date there exists no systematic design procedure.

The above discussion focuses how to shape the subspace [fle in which M(s, a),
S(s) and T(s) are recovered. A practical problem of interest could be to achieve
recovery of M(s, a), S(s) and T(s) in a prescribed subspace [fle. We will discuss this
aspect of the problem in § 3.3.

..

Remark 3.2

In general, although M(s, a) and hence S(s) and T(s) are recoverable in a
subspacesuch as [fl" the loop transfer function L(s) is not necessarilyrecoverable
in that subspace [fle as can be seen from the following example. However, this may
not be as important as it seems since in most of the design schemes recovery of L(s)
is only a means to recover S(s) and T(s).

Example 3.1

Consider a system t as given in Zhang and Freudenberg (1990), and character-
ized by

~

[

-1

A~ ~

0
-1

0
0

0 0

]

0 0
-0.2 0 '

0 -0.2 [

-0.5 -1.25

]

H= -2.5 -2.5
0.3 1.25
1.5 3.5

and

c= [
1 0

0 1

Let the target loop be specified by giving

-
[

-4.9019 -19.6075
F=

5.5879 22.3517

1 O

J0 1

-18.0299
-2.7018

-14.9622

J26-4831
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The given plant is of non-minimum phase and has two invariant zeros, one at
s = 1 and another at s = 2. The right input zero directions associated with zeros at
1 and 2 are respectively

[
I

J [
0.9806

JWR) = ° ' WR2 = 0.1961

100

~
~
~

."
='

...

'c:
~
to
::E

0

- O"ma",[M(j'-l, 200)P.J

< - - q.~IE(iw,200)P.]

--

50

-50
10-2 10-1 10° 101 102 103

Frequency (rad/sec)

Figure 3. amax[M(jw, a)Ps] and amaxlE(jw, a)Ps] of Example 3.1.

The vectors WRI and WR2together span 1R2.Following the analysis of Zhang and
Freudenberg (1990), one can show that for this example ARE based design cannot
produce any recoverable subspace of 1R2since it can recover only in a subspace
orthogonal to the space spanned by the right input zero directions. However, we
will next give an observer gain K such that ei ==B'Vi, i = 1,2, are along the
direction [ -1, 1]'. Let

r

8.75(0"- 1) - 3'5(0"+ 6)

]

K(O")= 25(0" - 1) -10(0" + 6)
1'55( 1 - 50") 3.5(0"+ 6)
5(1 - 50") 110"+ 67,8

so that the observer eigenvalues are placed at -0", -0", -2 and -1. Note that the
last two eigenvalues are purposefully selected to be the mirror images of the
non-minimum phase invariant zeros, although they can be placed at any locations.
It is now straightforward to verify that e) = IX)[ -1,1]' and e2 = IX2[ -1,1]' where IX)

and IX2are some constants dependent on how one scales the vectors Vi, i = 1 and
2. It is also simple to verify that a subspace !I'e having an orthogonal projection
matrix Ps

P = [
0.5 0.5

Js 0,5 0.5

is recoverable. The resulting M(jw, O")P" E(jw,O")P" So(jw, O")Psand S(jw)Ps are
plotted with respect to w over a given range of w in Figs 3 and 4 when 0"= 200. It
is easy to note that M(jw, O")Psis approximately zero while So(jw, O")Psis close to
S(jw)Ps. (Note that the minimum singular values of So(jw, O")Psand S(jw)Ps are
identically zero due to the singularity of Ps.) In view of the given expression for K(O"),
one can easily calculate E(jw, O")Psand show that it does not go to zero as 0"--+00.



1094 A. Saberi et al.

1.2

G> 0.8
-e
:J
:;: 0.6
;j,'"
:s 0.4

O"maz[S(jw)P.] /'/-------------,J

O"m4,,[So(jw,500)P.] ,/.

0.2

0
10-2 10-1 10° 101 102 103

Frequency (rad/sec)

Figure 4. amaJS(jeo)PsJ and amaJSO(jeo, a)PsJ of Example 3.1.

We will next examine the asymptotic behaviour of open-loop eigenvalues of the
full order observer based controller C(s, a) and the mechanism of pole-zero
cancellation between the controller eigenvalues and the input or output decoupling
zeros (Rosenbrock 1970) of the plant. It is important to know the eigenvalues of
C(s, a) as they are included among the invariant zeros of the closed-loop system tc
(Sannuti and Saberi 1987) and hence affect the performance of tc, e.g. command
following. The controller transfer function is given by (3.6) while the eigenvalues of
it are

A.(A- K(a)C - BF)

To study the nature of these eigenvalues, let

det [sIn - Ao] = ljJo(s)CPoo(s)CPe(s)

where CPo(s),CPoo(s) and CPe(s)are polynomials in s whose zeros are the eigenvalues
of Ao that belong to the sets Ao(a), Aoo(a) and Ae(a) respectively. Also, let

-- Re(s)

Me(s) = CPe(s)

~

( 3.20)

where Re(s) is a polynomial matrix in s. Now consider the following: ~

det [sIn- A + K(a)C + BF] = det [sIn- Ao] det [In+ (sIn - Ao) -IBF]

= CPo(s)cp00(s)CPe(s)det [1m+ F(sIn - Ao) -IB]

= CPo(s)CPoo(s)CPe(s) det [1m + M(s, a)]

-+ CPo(s)ljJoo(s)ljJe(s) det[Im + MAs)] as a -HfJ

[ Re(S)

]= CPo(s)CPoo(s)cpAs) det 1m + CPe(s)

= A. ( )A. ( )
det [ImCPe(s)+ Re(s)]

'1'0 S '1'00 S [CPe(s)]m - I

We note that the observer can be designed such that CPo(s),CPoo(s) and CPe(s)are
coprime. Thus the open-loop eigenvalues of the controller are the zeros of CPo(s),

(3.21)
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CPoo(s) and

det [ImCPe(s) + Re(s)]

[CPe(s)r- I

Thus Ao and Aooare contained among the eigenvalues of the controller. Although
Ao and Aooare in C(J-, there is no guarantee that the zeros of

det [ImCPe(s)+ Re(s)]

[CPe(s)]m-1

are in C(J-. Hence the controller mayor may not be open-loop stable. In general,
the loop transfer function C(s, a)P(s) has 2n eigenvalues, n of them coming from the
plant and the other n coming from the controller. However, there are several
cancellations among the input or output decoupling zeros (Rosenbrock 1970) of
C(s, a)P(s) and the controller eigenvalues. The following Lemma 3.4 which is
a slight generalization of a similar one in Goodman (1984), explores such a
cancellation.

Lemma 3.4

Let A be an eigenvalue of Ao= A - K(a)C and the corresponding left eigenvec-
tor V be such that VHB = O. Then A is an eigenvalue of A- K(a)C - BF with
corresponding left eigenvector as V. Moreover, A cancels an input decoupling zero
of C(s, a)P(s).

Thus in view of Lemma 3.2, the above lemma implies that whatever may be the
matrix F, if observer is appropriately designed, there are n;; + nb cancellations
among the eigenvalues of the controller and the input decoupling zeros of
C(s, a)P(s). As will be seen in the next subsection, there may be additional
cancellations if F satisfies certain properties.

3.2. Analysis for recoverable target loops
In this subsection, our aim is to characterize the class of target loops which are

either exactly or asymptotically recoverable for non-minimum phase systems which
are not necessarily invertible. Of course, in view of the previous subsection, such a
characterization has to depend on specific properties of the target loop transfer
function L(s) = F&B which is a function F. We have the following result.

Theorem 3.3

Consider a system ~ which is not necessarily of minimum phase and which is
not necessarily left invertible. Then a target loop transfer function L(s) = F&B
is exactly recoverable by the full order observer based controller iff
:e - (C, A, B) £ Ker F.

Proof
See Appendix D.

Several interpretations emerge from the recoverability conditions on the target
loops given in Theorem 3.3. In fact the constraints given in Theorem 3.3 are
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nothing more than constraints on the finite and infinite zero structure and inverti-
bility properties of L(s). Some interesting interpretations in this regard can easily be
exemplified. Let us first note that in view of Property 2.3, !l' - (C, A,B) is the span
of x d EBXcEBxf. Thus whenever !l' - (C, A, B) 5; Ker F, we have

(1) Span of Xc ==fJf* 5; Ker F.

(2) Span of Xd EBxc== ~~erl: 5; KerF.

(3) Span of xf ==!7*jfJf* 5; Ker F.

Obviously, the first two of these conditions pertain to the finite zero structure of t
while the third one pertains to the infinite zero structure of t. One can easily
interpret the above three conditions in terms of the invertibility and the finite and
infinite zero structure of L(s). We have the following interpretations.

(1) If t is not left invertible, any exactly recoverable L(s) is not left invertible.
On the other hand, left invertibility of t does not necessarily imply that an
exactly recoverable L(s) is left invertible. That is, whenever t is left
invertible, an exactly recoverable L(s) could be either left invertible or not
left invertible.

(2) Any left invertible and exactly recoverable L(s) must contain the non-
minimum phase zero structure of t. An exactly recoverable but not left
invertible L(s) does not necessarily contain the non-minimum phase zero
structure of t. Example 3.2 given later on illustrates this.

(3) For simplicity of presentation, let us assume that t is of uniform rank with
relative degree q (i.e. all the infinite zeros of t are of the same order q).
Then the smallest order of infinite zero of exactly recoverable L(s) is greater
than q (See also, Corollary 3.2).

We have the following corollary to Theorem 3.3.
"

Corollary 3.2
Consider an invertible and non-minimum phase system t. Also, let t be of

uniform rank with relative degree q. Then any target loop transfer function L(s)
which is invertible with the smallest order of infinite zeros greater than q and which
contains the non-minimum phase zero structure of t is exactly recoverable.

a

Proof

See Appendix E.

Remark 3.3

A special case of Corollary 3.2 when t is invertible and of minimum phase with
relative degree q = 1 was given earlier by Goodman (1984). Thus Corollary 3.2
generalizes Goodman's result for both non-minimum phase systems and for systems
with relative degree greater than unity.
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Example 3.2

Consider an invertible system characterized by the triple

A=

[

~
-5
-5

and

0 0 4 1

] [

0 0

]

-1 1 1 1 0 0
0 -5 1 I, 8 = 0 0
1 1 -10 0 1 0
1 1 0 -10 0 1

c= [
0 0 0 I O

J0 0 0 0 1

The given system has three invariant zeros at s = 1, s = -1 and at s = - 5. Let the
target loop be defined by the triple (F, A, 8) where

F= [
O 1
0 1

I 0 O

J100

Then, it is straightforward to show that A- 8F is asymptotically stable and
!l' -(C, A, 8), the span of x: EBxf, is a subset of KerF. Thus ELTR can be
achieved. In fact, the controller defined below having the eigenvalues at - 1, - 2,
-3, -4 and -5 achieves ELTR

where

i=

[

~
-5
-5

0 0
-1 1

0 -5
0 0
0 0

u = -Fx

1.5091 1,4909

] [

2.4909 -0.4909

]

0 0 1 1

0 0 x+ 1 1 Y

- 5.0110 - 1.9894 - 4,9890 1.9894
-2,0106 -4,9890 2.0106 -5,0110

The graphs of O"max[S(jw,0")]and O"max[SO(jw,0")]shown in Fig. 5 attest to the fact
that ELTR is achieved. However, it is simple to verify that the given L(s) is right
invertible and is of minimum phase with one invariant zero at s = - 3,5. Thus we
can conclude that an exactly recoverable L(s) need not contain the non-minimum
phase zero structure of !.

Theorem 3.3 deals with ELTR. Since the required conditions for ELTR in
general are severe, most often in practice one is interested only in ALTR. From its
definition, it is easy to see that ALTR occurs, i.e. kt(s) = 0, iff FWe = O. We have
the following results regarding ALTR.

Lemma 3.5

1m We coincides with 1/ Iter{;.

Proof

See Appendix F.
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Figure 5. Maximum and minimum singular values of S(Jw) and So(Jw) of Example 3.2.

Theorem 3.4

Consider a system! which is not necessarily of minimum phase and which is
not necessarily left invertible. Then a target loop transfer function L(s) = Fci)B is
asymptotically recoverable by the full order observer based controller iff
1/' Iter {: £; Ker F.

Proof

If 1/' Iter{:£; Ker F, Lemma 3.5 implies that FWe = 0 and hence MAs) = O. Thus
ALTR is achieved. On the other hand, if ALTR occurs, MAs) = 0 and hence
F We = 0 implying 1/' Iter{: £; Ker F.

As in the case of ELTR, we can interpret the constraints imposed by Theorem
3.4 in terms of the invertibility and the finite zero structures of L(s) and !. We have
the following interpretations.

(I) If! is not left invertible, any asymptotically recoverable L(s) is not left
invertible. On the other hand, left invertibility of ! does not necessarily
imply that an asymptotically recoverable L(s) is left invertible. That is,
whenever! is left invertible, an asymptotically recoverable L(s) could be
either left invertible or not left invertible.

(2) Any left invertible and asymptotically recoverable L(s) must contain the
non-minimum phase zero structure of !. An asymptotically recoverable but
not left invertible L(s) does not necessarily contain the non-minimum phase
zero structure of !. Example 3.3 given later on illustrates this.

.';

"

We have the following corollary to Theorem 3.4.

Corollary 3.3
Consider a left invertible and non-minimum phase system !. Then a target

loop transfer function L(s) = Fci)B is asymptotically recoverable by the full order
observer based controller if it contains the non-minimum phase zero structure
of!.
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Proof

Proposition E.l (see Appendix E) and the left invertibility of ~ together imply
that 1/ ier C C;;Ker F. Hence the result.

Example 3.3
Consider an invertible system characterized by the triple,

A=

[

~

-10

0
-1

0

~

]
, B=

[
~ ~

]-0,5 0 1

and

C = [
0 1 O

J001

The given plant has a non-minimum phase invariant zero at s = 1. Let the target
loop be defined by the triple (F, A, B) where

F= [
O 1
0 1 ~J

The triple (F, A, B) forms a minimum phase right invertible system and hence it
does not contain the non-minimum phase zero structure of ~. However, for this
example it can be easily seen that 1/ ier C is the span of [1 0 0]' and hence it is
contained in Ker F. Thus in accordance with Theorem 3.4, there exists a controller
which achieves ALTR. In fact, a full order observer based controller having the
eigenvalues at - 2, - (J and - (J and K((J)as given below achievesALTR,

[

3(J

K(J) = (J ~ 1 " ~05 ]

The following Figs 6 and 7 pertaining to the case of (J = 300 illustrate that AL TR
is achieved. Note that the minimum singular values of L(jw) and Lo(jw, (J) are
identically zero for this example.

Now we proceed to discuss the possible cancellations between the eigenvalues of
the controller and the input or output decoupling zeros of C(s, (J) or C(s, (J)P(s).
Lemma 3.4 already discussed one such result which is a slight generalization of a
similar one in Goodman (1984). The following lemma is also a slight generalization
of a similar one in Goodman (1984).

Lemma 3.6

Let Abe an eigenvalueof Ao= A - K(J)C and the corresponding right eigenvec-
tor W be such that FW = O. Then A is an eigenvalue of A- K(J)C - BF with
corresponding right eigenvector as W. Moreover, A cancels an output decoupling
zero of C(s, (J).
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Figure 6. amax[M(jw, a)] and amaxlE(jw,o)] of Example 3.3.
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Figure 7. Maximum singular values of L(jw) and Lo(jw, a) of Example 3.3.

We have the following theorems.

Theorem 3.5

If ELTR is achieved, i.e. if E(jw,o") = 0 for all O~ twl < 00, then every
eigenvalueof A- K(o")C- BF cancelseither an output decouplingzero of C(s,a)
or an input decoupling zero of C(s, a)P(s).

Proof

ELTR is achieved iff either FW; = 0 or VfB = 0 or both. Hence the result
follows from Lemmas 3.4 and 3.6.

Theorem 3.6

If ALTR is achieved, i.e. if E(jw, a) -+0 pointwise in w as a -+ 00 for all
0 ~ Iwl < 00, then every asymptotically finite eigenvalue of A - K(a)C - BF cancels
either an output decoupling zero of C(s, a) or an input decoupling zero of
C(s, a)P(s).
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Proof
If ALTR is achieved, then every asymptotically finite eigenvalue of Ao with

corresponding right and left eigenvectors Wi and Vi must be such that either
FWi = 0 or vpA = 0 or both. Hence this result also follows from Lemmas 3.4 and
3.6.

In view of Lemmas 3.4 and 3.6, and Theorem 3.5, whenever ELTR occurs, there
are n exact cancellations among the eigenvalues of the controller and the output
decoupling zeros of C(s) or the input decoupling zeros of C(s)P(s).

3.3. Recovery analysis in a given subspace
In the last two subsections, we discussed recovery of loop transfer function and

sensitivity and complimentary sensitivity functions for the general case when the
recovery was required over the entire IRmand when the state feedback gain F was
either arbitrary or a given fixed value. We found that such a recovery is in general
not possible and characterized the recoverable target loop transfer functions. We
also found that a matrix M(s, a) plays an important role in the recovery process.
Also, we determined the subspace [1'" called recoverable subspace, in which M(s, a)
can be rendered zero. Rendering M(s, a) zero in a subspace [l'e implies that the
projections of target and achievable sensitivity and complimentary sensitivity
functions onto [l'e match each other. However, the projections of target and
achievable loop transfer functions onto [l'e do not necessarily match each other.
This may not be a serious draw back since historically target loop transfer functions
are formulated only to meet the required specifications on the sensitivity and
complimentary sensitivity functions. Also, earlier in § 3.1, for a given design while
discussing how to find [l'e, we discussed some aspects of shaping [l'e to some extent.
In this section, we take an alternate approach. Given a subspace [I' of IRm,we first
like to find whether exact or asymptotic recovery of target sensitivity and compli-
mentary sensitivity functions in [I' is possible or not. In a sense, we are looking for
a generalization of the traditional notion of LTR to cover recoverability in a
subspace [1'. An important and a natural issue that arises when one is interested in
a recovery in a subspace [I' is the characterization of mismatch or error functions
between the target and achieved sensitivity and complimentary sensitivity functions
in the orthogonal complement of the subspace [I' or equivalently over the entire
space IRm.Thus our attention is focused next on this issue. Then we move on to find
the maximum possible dimension of a recoverable subspace [1'. Our results in this
regard show that for a left invertible non-minimum phase system, whatever may be
the given target sensitivity and complimentary sensitivity functions and whatever
may be the number of non-minimum phase invariant zeros, there exists at least one
m - 1 dimensional subspace [I' of IRmin which complete recovery is possible.

We have the following formal definition.

Definition 3.1
A subspace [I' is said to be exactly (or asymptotically) recoverable if the

projections of target and achievable sensitivity and complimentary sensitivity
functions onto [I' match each other exactly (or asymptotically as the tuning
parameter a -+ OCJ).We say [I' is recoverableif [I' is either exactlyor asymptotically
recoverable.
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Let Vs be a matrix whose columns form an orthogonal basis of the given subspace
g of IRm.Assume that the columns of Vs are scaled so that the norm of each
column is unity. Let Ps = VsV~be the unique projection matrix onto g. Obviously,
g is exactly recoverable if

So(s, (J)Ps ==S(s)Ps and To(s, (J)Ps == T(s)Ps

Similarly, g is asymptotically recoverable if

So,,,(s)Ps-+S(s)Ps and To(s, (J)Ps-+ T(s)Ps pointwise in s as (J-+ 00.

We have the following observation.

Observation 3.2

g is exactly recoverable iff M(s, (J)Ps==O. On the other hand, g is asymptoti-
cally recoverable iff M(s, (J)Ps-+0 pointwise in s as (J-+ 00.

Given the system t characterized by the matrix triple (C, A, B), let us now define
an auxiliary system ts characterized by the matrix triple (C, A, BVs)' Obviously the
auxiliary system ts differs from t in its input distribution matrix BVs' Now treating
ts as the given system, one can rediscuss here mutatis mutandis all the results of the
§ 3.1 and 3.2. In particular, we have the following theorem.

Theorem 3.7

g is asymptotically recoverable for any arbitrarily specified target loop transfer
function if the auxiliary system ts is left invertible and of minimum phase.

Proof

The proof is obvious.

Theorems 3.8 and 3.9 deal with the characterization of target loop transfer
functions so that g is either exactly or asymptotically recoverable.

Theorem 3.8

Consider a system t which is not necessarily of minimum phase and which is
not necessarily left invertible. Let the target loop transfer function be specified as
L(s) = Fq)B. Then g is exactly recoverable by means of a full order observer based
controller iff !f! - (C, A, BVs) £ Ker F.

Proof
The proof is a consequenceof Theorem 3.3.

Theorem 3.9

Consider a system t which is not necessarily of minimum phase and which is
not necessarily left invertible. Let the target loop transfer function be specified as
L(s) = Fq)B. Then g is asymptotically recoverable iff 1/ iterc<C, A, BV.) £ Ker F.
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Proof

The proof is a consequence of Theorem 3.4.

Given a subspace Y, Theorems 3.8 and 3.9 give the conditions under which it
can either exactly or asymptotically be recovered. The necessary design for ob-
server gain K(a) to recover in a subspace Y can be accomplished using the
auxiliary system ~s and any available design procedure. Knowing the gain K(a),
one can calculate M(s, a) from (3.2) and then easily characterize the behaviour of
sensitivity and complimentary sensitivity functions, So(s, a) and To(s, a), over the
orthogonal complement of Y or over the entire space [Rm.

We next proceed to obtain the maximum possible dimension of a recoverable
subspace Y. In this regard, our goal in what follows is to prove that whatever
may be the given target loop transfer function and whatever may be the number
of non-minimum phase zeros, there exists at least one m - I dimensional subspace
Y of [Rmwhich is always recoverable provided that the given system is left
invertible. To prove this, for simplicity of presentation, we will make a technical
assumption that all the non-minimum phase invariant zeros of ~ have geometric
multiplicity equal to unity. We next state two lemmas which lead to the intended
result.

Lemma 3.7

Let the given system ~ be left invertible and let z, x and W be respectively an
invariant zero, the associated right state and input zero directions of ~. Then we
have the following properties.

(I) The auxiliary system ~s is left invertible.
(2) Every invariant zero and the associated right state zero direction of ~s are

also the invariant zero and the associated right state zero direction of ~.
(3) z and x are respectively an invariant zero and the associated right state zero

direction of ~s iff W E Y.

Proof

See Appendix G.

Now let Zi, Xi and Wi' i = I to n;, be respectively a non-minimum phase
invariant zero and the associated right state and input zero directions of the given
system ~. Since ~ is assumed to be stabilizable and detectable, we have Wii=0 for
all i = I to n;. Because if Wi= 0, then by definition

(zJn - A)Xi = BWi = 0, CXi=O

This implies that Zi is an output decoupling zero of ~. But this contradicts the
detectability of ~ as Zi E C(;j+. Next let us define for each i = I to n;

.;Vi = Ker [w;]

Since Wii=0, each .;Vi is an m - I dimensional subspace. We have the following
lemma.
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Lemma 3.8
There exists at least one non-zero vector e E IRmsuch that

n+

ef/; O./Vi
i=l

Proof

See Appendix H. We are thankful for this proof to Mr Lin of Department of
Electrical and Computer Engineering, Washington State University at Pullman.

Thus in view of Lemma 3.8, there exists at least one e such that

e'wi #0 for all i = 1 to n: (3.22)

We have the following theorem.

Theorem 3.10

Consider the closed-loop system tc comprising of the given plant t and the
controller as given in Fig. 2. Let F be such that it yields the required target loop
transfer function. Let t be left invertible with non-minimum phase invariant zeros
having geometric multiplicity equal to unity. Then there exists at least one m - 1
dimensional recoverable subspace Y of IRm.

Proof

Select e as in (3.22). Define Y as

Y = the orthogonal complement of the subspace spanned by e in IRm.

Then it is trivial to see Y has a dimension of m - 1 and that Wif/;Y for all i = 1
to n: . Because if WiE Y, say Wi= VsViE Y, then e'wi = 0 which is a contradiction.
In view of Lemma 3.7, this implies that ts is left invertible and of minimum phase.
This in turn implies that Y is recoverable.

and C = :8/. This system has five non-minimum phase invariant zeros at s = 1,
s = 2, s = 3, s = 4 and s = 5. It is simple to verify that the right input zero

Example 3.4
Consider a system t characterized by

I 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 2 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 3 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 4 0 0 1 0 0 0 0 0 0 0 0

A= I 0 0
0 0 5 1 0 0 0 0 B= 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ' 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
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directions of these zeros are given by

[WR5 WR4 WR3 WR2 WRl] = 15

These vectors span the entire space 1R5.Following the analysis of Zhang and
Freudenberg (1990), one can show then that for this example ARE based design
cannot produce any recoverable subspace of 1R5since it can recover only in a
subspace orthogonal to the space spanned by the right input zero directions.
However, considering a subspace spanned by column vectors of Vs

r

-0.4472 -0.4472 -0.4472 -0.4472

1

0.8618 - 0.1382 - 0.1382 - 0.1382

Vs = -0.1382 0.8618 -0.1382 -0.1382
- 0.1382 - 0.1382 0.8618 - 0.1382
- 0.1382 - 0.1382 - 0.1382 0.8618

it is straight forward to verify that the system !s characterized by the matrix triple
(C, A, BVs) is left invertible and of minimum phase. Hence Y' spanned by the
columns of Vs is asymptotically recoverable. To exemplify this, let the target loop
transfer function be specified by

[

0 0 0
000

F = 0 0 79.43
0 49.28 0

23.14 0 0

0
113-57

0
0
0

Let us choose K(a) with a = 500 as

K(a) =

15030
-210840
845040

-1270100
636300

507
6
6
6
6

15030
- 210840
845040

-1270100
636300

6
507
6
6
6

151.71 21.11
0 0
0 0
0 0
0 0

15030
- 210840
845040

-1270100
636300

6
6

507
6
6

0
19.11

0
0
0

0
0
0

15.13
0 JJ

0
0

17.12
0
0

15030
- 210840
845040

-1270100
636300

6
6
6

507
6

15030
- 210840
845040

-1270100
636300

6
6
6
6

507

The K(a) given above places the observer eigenvalues at - 500, - 500, - 500,
-500, -500, -I, -2, -3, -4, and -5. Let the orthogonal projection matrix
onto the subspace Y' be Ps = VsV~. Then the resulting M(jw, a)P" E(jw, a)P"
So(jw, a)Ps and S(jw)Ps are plotted with respect to w over a given range of w
in Figs 8 and 9. It is easy to note that M(jw, a)Ps is approximately zero
while So(jw, a)Ps is close to S(jw)Ps. (Note that the minimum singular
values of So(jw, a)Ps and S(jw)Ps are identically zero due to the singularity
of Ps.)
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Figure 8. umax[M(jw, u)PJ and umaJE(jw, u)Ps] of Example 3.4.
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Figure 9. amax[S(jw)Ps] and amax[SO(jw,a)PJ of Example 3.4.

4. Conclusions

The first of the paper deals only with the issues concerning analysis of loop
transfer recovery problem using full order observer based controllers. All the
analysis given here is independent of the methodology by which observers are
designed. There are several fundamental results given here. At first for general
systems, precise definitions and properties of invariant zeros and their state and
input zero directions are presented. Also, what is called 'zero dynamics' of a given
system is discussed. These structural properties of a given system lead us to
decompose the recovery error between the target loop transfer function and that
that can be achieved by the observer based controllers, into three distinct parts for
any arbitrarily specified target loop transfer function. The first part of recovery
error can be rendered exactly zero by an appropriate finite eigenstructure assign-
ment of the observer dynamic matrix, while the second part can be rendered
arbitrarily close to zero by an appropriate asymptotically infinite eigenstructure
assignment. The third part in general cannot be rendered zero, either exactly or
asymptotically, by any means although there exists a multitude of ways to shape it.
Such a decomposition of loop transfer function recovery mechanism helps us to
discover the subspace of the control space in which target sensitivity and compli-
mentary sensitivity functions can either exactly or asymptotically be recovered.
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Moreover, it helps to formulate explicit singular value bounds on the recovery
error. All this analysis is given for an arbitrarily specified target loop transfer
function. Thus it shows the limitations of the given system in recovering the target
loop transfer functions as a consequence of its structural properties, namely finite
and infinite zero structure and invertibility. On the other hand, the next issue of our
analysis concentrates on characterizing the rquired necessary and sufficient condi-
tions on the target loop transfer functions so that they are either exactly or
asymptotically recoverable by means of observer based controllers for the given
system. Interestingly enough, the developed conditions turn out to be constraints on
the finite and infinite zero structure and invertibility properties of target loop
transfer functions. Such an interpretation of the constraints reveals that either
ELTR or ALTR is possible under a variety of conditions. For instance, LTR can
be achieved even if the target loop transfer function does not contain non-minimum
phase zero structure of the given system provided some other conditions are
satisfied. Since recovery in all control loops in general is not feasible, our analysis
next concentrates in developing the necessary or/and sufficient conditions under
which either exact or asymptotic recovery of target sensitivity and complimentary
sensitivity functions is possible in any specified subspace of the control space. In
this connection, we prove that for left invertible systems irrespective of the number
of non-minimum phase zeros and irrespective of the nature of the target loop
transfer function, there exists at least one m - 1 dimensional subspace of m
dimensional control space, in which the target sensitivity and complimentary
sensitivity functions can always be recovered by an appropriate design of the
controller. Inherent in all the issues discussed here is the characterization of the

resulting controller eigenvalues and possible pole zero cancellations. Such an
investigation is important in view of the fact, controller eigenvalues become the
invariant zeros of the closed-loop system and thus affect the performance with
respect to command following and other design objectives.

To summarize, the analysis presented here adds a considerable amount of
flexibility to the process of design and helps a designer to set meaningful goals at
the onset of design. In other words, although the actual physical tasks of first
designing a target loop and then designing an observer based controller are
separable, one can link these two tasks philosophically by knowing ahead what is
feasible and how. In a sequel, we will present a design methodology which is
capable of utilizing the complete freedom a design can have as is discovered here.
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AppendixA

Proof of Lemma 3.2
Let Aiand Vi be an eigenvalue and the corresponding left eigenvector of A- KC

for any gain K. To show that there are at most n;; + nb left eigenvectors of A- KC
for any gain Ksuch that the corresponding AiE C(J-and that V{fB = 0, consider the
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dual system ~t characterized by the triple (C" A" Bt). Let 1/t be the subspace of all

right eigenvectors Vt of (At - BtKt) for some Kt such that Ct Vt = O.Observe that
1/t is a stable (At, Bt)-invariant subspace. Furthermore, 1/t is in the kernel of Ct.
Hence 1/t is a subset of 1/ KerC(Ct, A" Bt). The largest possible dimension of- - - ,
1/ Kerr:(C" A" B,) is n;; + nb' Hence, there are at most n;; + nb left eigenvectors of
A- Kt for any gain K such that the corresponding Ai E '(j- and that V{iB = O.

We now proceed to determine the necessary gain K to assign such eigenvalues.
Again without loss of generality, we can assume that the given system is represented
by the s.c.b. as given by Theorem 2.1 and hence it is characterized by the triple
(C,A, ii) given in (2.8). Then consider a gain K of the form

[

0 0

]

L;if L;;,

K~ ~'f Kf

(A I)

where Kbb is selected such that A(Abb- KbbCs) are in '(j-. Let Va- and Vb
respectively be any left eigenvectors of A;;;,and Abb - KbbCs'It can easilybe verified
that A(A;;;,) and A(Abb- KbbCs) are among the eigenvalues of A - KC and that
[0 V;: 0 0 O]H and [0 0 Vr; 0 O]H are the associated left eigenvectors of
A- Ke. Furthermore, it is easy to verify that

[0 V;:- 0 0 O]B= 0 and [0 0 Vr; 0 O]B= 0

while [0 V;:- 0 0 O]His a left state zero direction of~. Finally, in view of the
properties of s.c.b., it is straightforward to see that such vectors [0 V;:- 0 0 O]H
and [0 0 Vr; 0 O]Hrespectively span the subspaces 1/Kerf:/f!II*and %*1.. 0

Appendix B

Proof of Lemma 3.3
Consider

M(s,O') = (sIn - A + K(O')C) -IB

Let X[t, K(O')] be the Laplace inverse of M(s, 0'). Then

X(t, K(O'))= exp[(A - K(O')C)t]B

Thus the problem of requiring that the residue matrices Wi(O')V{i(O')Bassociated
with the unbounded eigenvalues of A- K(O')Cbe uniformly bounded as IAi1--+00 is
equivalent to the requirement that

Sup Sup IIX[t, K(O')]II< 00" t~O

The problem as formulated in (B I) is same as the bounded peaking problem which
was treated earlier by Kimura (1981), except that now we need to consider the dual
system ~t characterized by the triple (Ct, A" Bt) rather than the given system ~.
From Lemma 6 in Kimura (1981), it follows that the asymptotic eigenspace
corresponding to the unbounded eigenvalues of A' - C/K(O')' is restricted to the
subspace f/' * of the dual system ~t. It is evident from Property 2.3 that f/' * of ~t
is %u(f)f/'*/f!II* of~. Then it follows that the maximum allowable number of

(B I)
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unbounded eigenvalues of A- K(o)C is equal to nb + nf' the dimension of
N*J..@JY'*jf!A*. 0

Appendix C

Proof of Observation 3.1
From (3.10), we note that as u --+00, the limiting value of Me(s) can be written

as
n+---H-

Me(s) = f FWiVi B
i = I S - Ai

Since I; is left invertible, as in Appendix E, it is easy to see that

{Wi, i = 1 to n:} spans f i.erC (C 1)

Let Zi, Xi and Wi' i = 1 to n:, be respectively the non-minimum phase invariant
zeros and state and input zero directions. Then we know that

{Xi' i = 1 to n:} spans f i.erC (C 2)

and

(ziln - A)Xi = BWi and CXi = 0

Since I; is stabilizable and detectable, (zJn - A) is non-singular. Hence

Xi = (zJn - A)-IBwi = &(Zi )BWi

(C 3)

Thus from (C 1) to (C 3)
n+ n+

Wi = f aikxk = f aik&(Zk)Bwk
k~ I k~ I

for some constants aikoi = 1 to n: and k = 1 to n: . Now Me(s) can be rewritten
as

n+ 1

[
n+

]Me(s) = JI S - Ai k~1 aikFd)(Zk)Bwk j7{fB
n+ n+ -H-

= f [Fd)(Zk)B]Wkf aik Vi B
k = I i = I S - Ai

Thus if Zkok = 1 to n: , is far away from the band-width of the target loop, then
Fd)(zdB is small and hence the result. 0

Appendix D

Proof of Theorem 3.3
As in (3.8), let Wi and Vi be respectively the right and left eigenvectors

associated with an eigenvalue Ai of Ao. Define.

Vo={ViIV{fB=O, i=1,2,...,a}

V, = {Vi IV{fB # 0, i = a + 1, a + 2, ..., n}

Wo= {WiIV{fB= 0, i = 1,2, ..., ex}
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and

Wr = {Wi IVf A -#0, i = (X + 1, (X +2, ...,n}

Lemma 3.2 implies that (X~ n;; + nb' Also, it is apparent that
Vo£ Y Ked,(C" A" At). Without loss of generality, let us assume that the given
system is represented by the s.c.b. as given by Theorem 2.1. Recalling that X;; EeXb
spans Y Ked, (C" A" At), Vo is of the form

[

V&

]Vo= ~~'
V&=o, V~=o (D 1)

where V&, V~ and V~ are respectively n: x (x, (n;; + nb) x (Xand (nc + nf) x (X
dimensional matrices while V~ is of full rank (x. Noting that

[Vo Vr] - I = [Wo Wr]H

we then have

V{{ Wr ==0 (D2)

This implies that Vo£ Ker (W~). In fact for (X= n;; + nb, the column vectors of Vo
span Ker (W~). Now if ELTR is achievable, in view of (3.8), the only way it could
happen is by letting FWr = 0, implying that F' £ Ker W~ or equivalently
F' £ Span Vo. Then F must be of the form

F = [FI Fz F3], FI = 0, F3 = 0 (D 3)

where FI, Fz and F3 are respectively m x n:, m x (n;; + nb) and m x (nc + nf)
dimensional matrices. Also, the feedback ,gains F1, Fz and F3 are respectively
associated with the states x:, [(x;;)' x~]' and [x~ xf]" Thus (D 3) reveals that
:£' - (C, A, A) which is spanned by x: EexcEexf is a subset of Ker F. This proves
that if EL TR is achieved, then :£' - (C, A, A) £ Ker F. On the other hand, let us
assumethat :£' - (C,A,A)£ Ker F.We first can assign Vi, i = 1 to n;; + nb such
that VfA = O. This implies that the columns of Vo span YKerC (C"A" Ht)and
hence V~ of (D I) is non-singular. Now let us partition Wr in the' same way as Vo
was partitioned

w, ~ [E]
Then in view of (D 2) and V~ being non-singular, we see that W~ == O. Thus if
:£'- (C, A, H) which is spannedby x: EeXcEexf is a subset of Ker F, then we have
FW~ = 0 and thus ELTR is achievable as indicated by (3.8). 0

Appendix E

Proof of Corollary 3.2

Again, without loss of generality, let us assume that the given system is
represented by the s.c.b. as given by Theorem 2.1. First, we have the following
propositions.
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Proposition E.l

The fact that the target loop transfer function Fc)B contains the non-minimum
phase zero structure of t implies that 1'"iterc/~* S;;Ker F, i.e. the span of
x: s;;Ker F.

Proof
Let Xri and Wri' i = 1 to n:, be the right state and input zero directions

associated with the invariant zeros Zi' i = 1 to n: , which are in C(j+. In view of
Propositions 2.1 and 2.2, we note that

Span {Xri,i = 1,2, ..., n: }= Span of x:.

We also have for all i = 1 to n:

[ZJn- A]Xri= BWri and CXri= 0

Since the target loop transfer function F$B contains the same non-minimum phase
zero structure as t, the above implies

[zJn - A]Xri= BWri and FXri= 0

for all i = 1 to n:. Hence the span of x: s;;Ker F. 0

Proposition E.2

Let t be invertible and of uniform rank with relative degree q. Then the fact
that the smallest order of infinite zero of L(s) is greater than q implies that
g'*/~*s;;KerF, i.e. the span of xfs;;KerF.

Proof

Given that t is invertible and of uniform rank with relative degree q implies that
the matrices A, Band C are of the form,

C = [0 / 0 0 ... 0]

It is then straightforward to verify that

0 0 0
0 0 0
0 0 O.

0 0
0 /
/ X

[B AB A2B ... Aq-lB] = .. .
0 0 / X X
0 / X ... X X
/ X X ... X X

(E 1)

where X denotes a non-zero element. The fact that the smallest order of infinite zero

Aaa La 0 0 ... 0 0
0 0 / 0 ... 0 0

A= I 0 0 / ... 0 0B-, -
0 0 0 0 ..../ 0
Ea EI E2 E3 ... Eq /
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of L(s) is greater than q implies that
FB = FAB = FA2B =... = FAq-IB = 0

Then in view of (E I), we can conclude that F is of the form,

F = [X 0 0 ... 0]

This implies that the span of xf S; Ker F.
Now to prove the Corollary 3.2, we observe that invertibilityof 1: implies that

Xc is non-existent. Thus in view of the above propositions, x;:- EBXcEBxf is a subset
of Ker F, i.e. fe - (C,A,B) S; Ker F. This proves the Corollary 3.2. 0

Appendix F

Proof of Lemma 3.5

From the work of Kimura (1981), we know that 1m Vo coincides with
Y Kerc!9f * EB% H while 1m Vyo coincides with Y */fll *. This implies that assuming
1: is in the form of s.c.b. Voand V00 have the special forms

(F I)

(F 2)

where V~ and V~ are non-singular matrices of dimension (n;; + nb) x (n;; + nb)
and nf x nf respectively. Also, V~, V~, Vri, V~, V~ and V~ are of dimension
n;:- x (n;; + nb), nc x (n;; + nb), nf x (n;; + nb), n;:- x nf, (n;; + nb) x nf and
nc x nf respectively. Now noting that

Wo Ve V00]- I = [Wo We Woo] H

we have

[We]HVo= 0 and [WeJHV00= 0

Hence, in view of (F I) and (F 2), we have

[We]H= [W~ 0 W; 0]

where [W~ W;] is a (n;:-+ nJ x (n;:-+ nJ non-singular matrix. Hence the re-
sult. 0

Appendix G

Proof of Lemma 3.7

Assume that 1:sis not left invertible. Then it is well known that for any complex
number ZI, there exist 0 #-x I E [Rnand VIE [Rmsuch that

[
ZIIn - A -BVs

] [
XI

]
= 0

-C 0 VI

r r ]

- - V V=O, V=O, vri=OVo- '

and

Vror],

V=O, V=O, V=O
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This implies that

[
ZI

.

In - A -B
J [

Xl ]=0
-c 0 VsVI

Since ~ is left invertible, this then in turn implies that Zl is an invariant zero of~.
This is a contradiction and hence ~s is left invertible. To prove the second property
of the lemma, let z" Xs and Wsbe respectively an invariant zero, the associated right
state and input zero directions of ~s. Then by definition, we have

[zJ~e A -~VsJ [::J = 0
Thus we note that

[

ZJn - A
-c

-B

J [
Xs

]=0
0 Vsws

This proves the second property of the Lemma. Let us next prove the sufficiency
part of Property (3) of the lemma. Let w = Vsv, then

[zI~CA ~BJ[:J=O
implies that

[
ZIn - A

-c -~VsJ[:J=o
As ~s is left invertible, the above implies that Z and X are an invariant zero and the
associated right state zero direction of ~s. To prove necessity, assume that Z and X
are an invariant zero and the associated right state zero direction of ~s. Then there
exists a Wssuch that

(zIn - A)x = BVsws

In view of this and by the definition of z, X and w, we have

BVsws = Bw

Since B is of full rank, it implies then that w E g. D

Appendix H

Proof of Lemma 3.8
The proof is by induction. The lemma is trivially true when n;; = 1. Assume

that the given lemma is true for n;; = k. Then there exists a vector 0 #- v E [Rmsuch
that

k

vrj; U%i
i~l

To proceed with the proof, let us first assume that v rj;%k+ 1. Then
k+l

e = v rj; U %i
i=1

and hence the result.
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On the other hand, assume that v E JV k + I' First select non-zero scalar numbers

ai, i = I to k + I, such that ai =Faj if i =Fj. Then we have for all i = I to k + I,
aiv E JV k + I' Since JV k + 1 has only a dimension of m - I, there exists a vector
0 =FWE [Rm such that W f!. JVk+ I' Now define for each i = I to k + I

Xi = aiv + W =F0

Because of the fact that ai =Faj if i =Fj, we note that Xi =FXj if i =Fj. Moreover
Xi f!.JVk+l for all i = I to k + I since W f!.JVk+I' Now if

k
x. E U JV

I }

j~l

for all i = I to k + I

then there exists two distinct vectors among Xi' i = I to k + I, say Xs and X, for
some integers sand t, such that both are contained in some JVp for some f3 ~ k.
Thus 0 =F(as - a,)v = (xs - x,) E JVp. This implies that v E JVp and thus contradicts
the inductive hypothesis. Hence there exists at least one Xi for some i ~ k + I, such
that

k

Xi f!. U JVj
j~1

k+1

and e = Xi f!. U JVj
j= 1

Hence the result. 0
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