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Abstract--In this paper, a new compensator structure for 
loop transfer recovery (LTR) is proposed. The proposed 
compensator (a) is open-loop stable, (b) guarantees 
closed-loop stability and above all (c) requires much smaller 
values of gain than the conventional observer-based 
controller for the same degree of loop-transfer recovery. The 
fact that the new compensator requires much smaller values 
of gain than the conventional controller results in several 
practical advantages, the most important among them being 
the reduction in controller band-width and freedom from the 
woes of saturation. The trade-off between the value of gain 
and the degree of loop transfer recovery as well as the 
bounds on singular values of sensitivity and complementary 
sensitivity functions is shown clearly. Both full and reduced 
order compensators for LTR when the design specifications 
are reflected either at the input or at the output point of the 
given plant are considered. Numerical examples illustrate the 
advantages of the new compensator structure. 

The new compensator structure is inspired by a careful and 
clear understanding of how loop transfer recovery occurs 
when conventional observer based controllers are used. To 
motivate and deduce our new compensator structure, a 
unified treatment of observer theory for LTR is presented. In 
the context of such a unification, some new results are also 
given. 

1. INTRODUCTION AND PROBLEM STATEMENT 
IN MULTI-INPUT and multi-output (MIMO) feed- 
back control system design, performance specifi- 
cations such as command following, disturbance 
rejection, closed-loop band-width, stability ro- 
bustness with respect to unstructured dynamic 
uncertainties etc., are naturally posed in the 
frequency domain in terms of sensitivity and 
complementary sensitivity functions. These sen- 
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sitivity and complementary sensitivity functions 
are related to the loop transfer matrices 
evaluated by breaking the control loop at critical 
points, commonly either the input or output 
point of the given plant. Recent results have 
shown that the formal mathematical synthesis 
procedures based on linear quadratic Gaussian 
(LQG) with loop transfer recovery (LTR),  the 
so called L Q G / L T R  techniques, provide a broad 
flexibility in achieving the necessary loop 
transfer matrices. L Q G / L T R  technique is 
essentially a two-step approach and involves two 
separate designs of a linear quadratic regulator 
and either an observer or a Kalman filter based 
controller (Athans, 1986; Stein and Athans,  
1987). The exact design procedure depends on 
the point, either the input or the output point of 
the plant, where the loop is broken to evaluate 
the open-loop transfer matrices. We will first 
concentrate our discussion on the case when the 
loop is broken at the input point of the plant. 
Dual discussion can be given for the case when 
the loop is broken at the output point. Thus in 
the two step procedure of L Q G / L T R ,  the first 
step of design involves loop shaping by state 
feedback design to obtain an appropriate loop 
transfer function, called the target loop transfer 
function. Such a loop shaping is an engineering 
art and often involves the use of linear quadratic 
regulator (LQR) design in which the cost 
matrices are used as free design parameters to 
generate the target loop transfer function and 
thus the desired sensitivity and complementary 
sensitivity functions. However,  when such a 
feedback design is implemented via an observer 
(or Kalman filter) based controller that uses only 
the output feedback, the obtained loop transfer 
function, in general, is not the same as the target 
loop transfer function, unless proper care is 
taken in designing the observers. This is when 
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the second step of L Q G / L T R  design philosophy 
comes into picture. In this step, the required 
observer is designed so as to recover either 
exactly or approximately the loop transfer 
function of the full state feedback controller. In 
this paper, we focus our attention on this second 
step of design. 

LTR has been the subject of many papers. 
The heart of the LTR problem can easily be 
understood by considering the closed-loop 
structure depicted in Fig. 1 where C(s) and P(s) 
are respectively the transfer functions of a 
controller and the given plant. Given P(s) and 
the target loop transfer function L(j~o), the goal 
is to design a C(s) such that C(jto)P(jto) is either 
exactly or approximately equal to L(jto), when 
the performance specifications are reflected at 
the input point. All the existing literature 
chooses either a full or reduced order observer 
based structure for the controller in which the 
state feedback gain F and the observer gain K 
are incorporated and K is a free design 
parameter. In this paper, we propose a new 
compensator structure for the controller. This 
structure is inspired by a clear and careful 
understanding of the error or mismatch function 
Eo(s )=-L( s ) -Co( s )P( s )  where C0(s) is the 
transfer function of an observer based controller. 

We now briefly review the observer based 
LTR theory to motivate the need for new 
controller structures other than observers. 
Consider a given plant, 

2 = A x  + Bu, y = C x  (1.1) 

where x, u and y are respectively n-, m- and p- 
dimensional state, input and output vectors. 
Assume that B and C are of maximal rank and 
that (1.1) is stabilizable and detectable. Let F be 
a stabilizing full state feedback gain matrix such 
that (a) the closed-loop system is asymptotically 
stable and (b) the open-loop transfer function 
when the loop is broken at the input point of the 
plant meets the given frequency dependent 
specifications. The state feedback control is 

u = - F x  (1.2) 

and the open-loop transfer function when the 
loop is broken at the input point is 

L(s) = F O B  (1.3) 

where • = (sI - A)  -l .  

FIG. 1. Plant-controller closed-loop configuration. 
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FIG. 2. Plant with full orders observer based controller. 

The interest next is to design an observer 
which implements (1.2) using only the output y, 
and at the same time recovers the target loop 
transfer function L(s). Let us first consider a 
controller based on a full order observer, 

u = t~ = - F 2  (1.4) 
where 

= (A - KC)2 + Bu + Ky. (1.5) 

Here K is the observer gain matrix. The block 
diagram of Fig. 2 illustrates the controller 
implementation. It is important to note that the 
framework of observer theory requires that the 
control input to the plant be also an input to the 
observer so that the stability of the observer 
error dynamics is guaranteed. The transfer 
function of the observer based controller, i.e. 
the transfer function from the output y of the 
plant to - f i  is 

Co(s) = F [ O - '  + KC + B F I - ' K ,  (1.6) 

and the open-loop transfer function when the 
loop is broken at the input point of the plant is 

Lo(s ) = Co(s )P(s ) (1.7) 

where P(s) =- COB. Thus the error or mismatch 
between the target loop transfer function L(s) 
and that realized by the observer implement- 
ation is 

Eo(S)  = L ( s )  - L o ( s ) .  (1.8) 

For square invertible systems, Goodman (1984) 
showed that Eo(j~o) = 0 iff 

MOw ) - 0  (1.9) 

for all w where 

M(s) = F ( O - '  + KC)- IB .  (1.10) 

Goodman's result can easily be generalized to 
cover left invertible systems as well. Thus exact 
loop transfer recovery at the input point 
(ELTRI) is possible iff (1.9) is satisfied while 
approximate LTR at the input point (ALTRI) is 
possible if the size of M(jm) (in some norm 
sense) can be made arbitrarily small for all w. 
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Equation (1.9) can be given a physical 
interpretation. Considering the observer based 
controller as a device with its output as t~ and 
inputs as u and y, it is easy to see that 

X(S) = ((~1-1 .~_ gc) - lBu(s )  _1_ ( ( i~-  1 +KC)-aKy(s), 
and 

a(s) = -F2(s) 
= -M(s)u(s) - F(cI )-1 -I- KC)-IKy(s). 

(1.11) 

In view of the condition (1.9), equation (1.11) 
implies that the output a of the observer based 
controller does not entail the feedback from the 
control signal u. However, the transfer function 
from u to 2 is in general non-zero even when 
M(s) is zero. 

In practice, the condition M( j to )=0  cannot 
always be satisfied exactly. The only recourse is 
then to make the size of M(jto) in some sense 
small for all w. Let the gain K be parameterized 
in terms of a scalar or a vector parameter tr and 
be denoted by K(o). Thus for ALTRI, one 
needs to obtain a K(o) such that, 

M(s) = F ( ~  -1 + K(o)C)-IB--~O 
pointwise in s as o--~ oo. (1.12) 

The condition (1.12) involves the state feedback 
gain F. However, in order to have the state 
feedback and observer designs to be independ- 
ent of one another, one needs to require that 

(~-~+ K(a)C)-IB---~O pointwise in s as 0--+0% 

(1.13) 

which is a sufficient condition for (1.12). 
Essentially there exists three methods of 
obtaining such a K(o). In their seminal work 
Doyle and Stein (1979) and others later on 
(Madiwale and Williams, 1985;  Sogaard- 
Andersen, 1987b; Matson and Maybeck, 1987) 
explored Kalman filter formalism (or asymptotic 
LQG theory) in which additional ficticious 
process noise of intensity proportional to a is 
injected into the system through the input into 
the plant and then the gain K(o) is calculated by 
solving the resulting filter Riccati equations. 
Sogaard-Andersen (1987a) proposed observer 
eigenstructure assignment techniques. More 
recently, Saberi and Sannuti (1988) proposed an 
asymptotic pole placement method which gener- 
alizes the earlier methods while simplifying the 
computational task in obtaining K(o). In all 
these ALTRI design methods, Ilg(o)ll---,o~ as 
tr---~ oo so that (1.13) can be satisfied asymptoti- 
cally. Thus all these are high-gain schemes. This 
implies that any ALTRI design scheme should 
include a trade-off between the required 

u =I P L A N T  ] y . .  

FIG. 3. Plant with full order compensator. 

robustness properties of the closed-loop system 
and the size of the feedback gain. The size of a 
feedback gain is very critical in many cir- 
cumstances due to unavoidable controller band- 
width constraints. Thus a cursory exploration of 
the literature indicates a definite need to develop 
dynamic compensators which would preserve 
closed-loop stability and at the same time 
achieve ALTRI without requiring large amounts 
of gain. In this paper, we propose such a scheme 
of developing dynamic compensators of order 
either n (full order) or n - m (reduced order). 

Our central observation is this. When one is 
restricted to the framework of observer theory, 
the link from the control signal u to the observer 
via the control distribution matrix B is always 
present in the design configuration such as the 
one depicted in Fig. 2. In these observers, when 
K(o) is appropriately designed to achieve 
ALTRI, the effect of the above control-link on 
the output of observer based controller (namely 
a) vanishes asymptotically as ~--*~. However, 
the effect of above link on 2 in general is 
nonzero and hence the need for the above link in 
the conventional observers. Based on this 
discussion, we are inspired to remove the above 
mentioned link structurally right from the 
beginning of the design. In other words, to 
develop an appropriate compensator of order n, 
we consider the configuration illustrated in Fig. 
3. Once the link from the control input to the 
controller or what is now called a compensator, 
is removed we embark on a new design 
philosophy which is outside the realm of 
observer theory and hence the separation prin- 
ciple is no longer valid. Without the backing or 
blessing of the separation principle, one has to 
prove that the design objectives of closed-loop 
stability and recovering the target loop shape can 
both be simultaneously achieved. We intend to 
do exactly this. 

Our design philosophy is deceptively very 
simple. Except for structurally omitting the link 
mentioned earlier, our compensator is exactly 
the same as the conventional observer-based 
controller. We plan to obtain a K(tr) such that 
(a) A -  K(tr)C has all its eigenvalues in the left 
half s plane (i.e. the compensator is open-loop 
stable) and that (b) the condition (1.12) is 
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satisfied asymptotically as o---~. For this 
purpose, we can use any of the existing methods 
of obtaining such a K(o).  Thus our compensator 
design parallels in all respects the conventional 
observer design except for omitting the link 
mentioned earlier. Although our compensator 
structurally differs from the observer in a very 
simple way, it has a profound effect on the gain 
required for closed-loop stability and for 
ALTRI. We show theoretically that for the same 
gain, the difference between the target loop 
transfer function and the one achieved by our 
compensator is always much smaller than that 
that can be achieved by the observer based 
controller. But since our design method is also 
an asymptotic method, the above theoretical 
result does not reveal the whole story. The proof 
that our method works is evident from our 
examples. We have solved numerically many 
examples that appeared in the open literature, 
and noticed that the amount of gain required for 
the same degree of recovery by our compensator 
is orders of magnitude less than what is required 
by an observer-based controller. This obviously 
has a profound impact on the practical 
implementation of LQG/LTR schemes. Some 
specific attributes of our compensator are as 
follows: 

1. Low values of gain obviously results in low 
compensator band-width, and hence much of the 
output noise that occurs at relatively high 
frequencies is filtered out. Furthermore, low 
values of gain relieves the design from ever 
present woes of saturation. To emphasize this, 
we refer to Sogaard-Andersen and Niemann 
(1989) who recently studied the design trade-offs 
between the level of loop transfer recovery and 
the necessary gain required by an observer-based 
controller. A major conclusion of their study is 
that the target loop transfer recovery design 
cannot always be achieved even when modest 
and practically meaningful constraints are 
imposed on the size of the observer gain. 
Furthermore, contrary to what has been 
discussed in the literature (e.g. Friedland, 1986; 
Baumgartner et al., 1986), their study indicates 
that a high-gain from controller input to 
controller output affects the entire control-loop 
and in particular the control-noise signal ratio 
and the control-command signal ratio. 

2. Since the given plant is of minimum phase, 
it is always possible to design an open-loop 
stable compensator to guarantee the over all 
closed-loop stability (Vidyasagar, 1985b). Our 
design results in an open-loop stable compen- 
sator. The advantages of having such a 
compensator cannot be over-emphasized. As is 

known (Shaw, 1971), open-loop unstable com- 
pensators result in poor overall system sensitivity 
to plant parameter variations. Furthermore, 
physical realizability of open-loop unstable 
compensators is rather difficult. 

Our discussion so far has been concerned with 
a full order observer-based controller and that 
too only with the case when the target open-loop 
transfer matrix is specified at the plant input 
point. Similar discussion pertains as well to other 
cases: (a) when a reduced order observer-based 
controller is considered and (b) when a target 
open-loop transfer matrix is specified at the plant 
output point. Even when a reduced order 
observer-based controller is used, we observe 
that exact or approximate LTR is possible if and 
only if the transfer function from the point 
where the input u of the plant is fed to the 
controller to the output point t~ of the controller 
is either exactly or approximately zero. Thus 
again, our compensator structurally (i.e. physi- 
cally) omits the link from the input point of the 
plant to the controller right from the beginning. 

The paper is organized as follows. In Section 
2, we consider conventional observers and while 
reviewing the existing theory, some clarifications 
and generalizations of it are presented. This 
section motivates the work that follows. Sections 
3 and 4 respectively develop the full and reduced 
order compensators when the target open-loop 
transfer matrices are specified at the plant input 
point, while Section 5 dualizes the results of 
Sections 3 and 4 for the case when the target 
open-loop transfer matrices are specified at the 
plant output point. Section 6 deals with 
numerical results on some representative ex- 
amples from the literature. Throughout this 
paper, A'  denotes the transpose of A, I denotes 
an identity matrix while I~ denotes the identity 
matrix of dimension k x k. ~,(A) and Re [Z(A)] 
respectively denote the set of eigenvalues and 
real parts of eigenvalues of A. Similarly, ~rmax[A ] 
and Omin[A] respectively denote the maximum 
and minimum singular values of A. The open left 
half plane is denoted by ~- .  

2. REVIEW OF LTR VIA OBSERVERS 
The purpose of this section is to re-examine 

how LTR occurs when either full or reduced 
order observer-based controllers are used. This 
is done in order to obtain a better intuition and 
understanding of the theory of observer-based 
controllers for LTR so that our new compen- 
sator design, discussed in Sections 3 and 4, can 
easily be motivated and inspired. In this process 
of review, the conditions for achieving either 
exact or approximate LTR (ELTR or ALTR), 
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when either full or reduced order observer based 
controllers are used, are brought to the same 
frame work, i.e. the observer-based controller 
theory is unified into a single frame work. Such a 
review and unification leads to several new 
results. For example, no method of determining 
gain for full order observer-based controllers 
exists in the literature for the case of achieving 
ELTR. Here an explicit method of determining 
such a gain is given. Also, both the cases when 
the loop is broken at either the input or the 
output point of the plant are considered. In 
short, this section summarizes, generalizes, 
unifies and in some cases clarifies the existing 
results on LTR using conventional observer- 
based controllers. 

2.1. Full order observers--ELTRI and A L T R I  
We will first consider the full order observer- 

based controller when the target open-loop 
transfer matrix is evaluated when the loop is 
broken at the input point of the plant. Eo(s), the 
error between the target loop transfer function 
L(s) and that achievable by the observer based 
controller of Fig. 2 is given by (1.8). In the 
observer design, K is the only free design 
parameter. First of all in order to guarantee the 
closed-loop stability, K must be such that 
A - KC is an asymptotically stable matrix, i.e. 

Re [~.(A - KC)] < 0. (2.1) 

The remaining freedom in choosing K can then 
be used to achieve LTR. In an attempt to find 
such a K, Doyle and Stein (1979) first gave a 
sufficient condition, 

K(I  + C C K ) - I C C B  = B, (2.2) 

under which E0(jw) -= 0 for all to. To understand 
the implications of (2.2), following Friedland 
(1986), we rewrite it in an equivalent way. In 
view of the identity, 

CK(Ip + CcIDK)-IcdD = (I) - ( ( I )  - 1  + g c )  -1,  

we have 

¢K(Ip + CCK)-~CCB = ¢PB - (rP -~ + KC)-~B. 

Thus, (2.2) implies that 

(¢P-' + KC)-~B = 0. (2.3) 

However, due to the nonsingularity of ( c - a +  
KC) -1, (2.3) implies that B-=0. But this is 
impossible in any real system. Thus the sufficient 
condition (2.2) cannot exactly be satisfied at all. 
However, (2.3) can asymptotically be satisfied 
for large gain without requiring B = 0. 

The above discussion reveals that the condi- 
tion (2.2) is poorly suited to study the loop 
transfer recovery problem. Realizing this, 

Goodman (1984) proceeded to look at directly 
the error or mismatch function Eo(s). Goodman 
studied square invertible systems. The following 
two lemmas represent minor extensions of 
Goodman's results and cover as well left 
invertible systems. 

Lemma 1. Eo(s), the error between the target 
loop transfer function L(s) and that realized by 
the full order observer-based controller of Fig. 2 
is given by 

Eo(s) = M(s)(Im + M(s))-l(Im + FdPB) (2.4) 

where 

M(s) = F(dP -1 + KC)-IB.  (2.5) 

Lemma 2. 

E0(j to)=0 iff MOw ) = 0  for all w e f ~  

(2.6) 

where ~ is the set of all 0-< co < oo for which 
Lo(jeo) and LOw) are well defined (i.e. all 
required inverses exist). 

Thus equation (2.4) presents a clear perspective 
to study the basic mechanism by which both 
exact and approximate LTR occurs. It is clear 
that ELTRI is achievable if M(j to)=  0 exactly 
and on the other hand ALTRI is achievable if 
Omax[M(jto)] can be made arbitrarily small for all 
w. In order to investigate when trmax[M(jw)] can 
be made either zero or arbitrarily small, 
assuming A -  KC is nondefective, Goodman 
[see also, Sogaard-Andersen, (1987c)] expands 
M(s) in a dyadic form, 

where 

R/ 
M(s) = ~ (2.7) 

i=l S -- ~i 

R i = ~ VinB. 

Here superscript H indicates the complex 
conjugate transpose. Also, W/ and V~ are 
respectively the right and left eigenvectors 
associated with an eigenvalue ~.i of A -  KC and 
they are scaled so that W V  a = VHW = In where 

w = W2 . . . . .  W.]  
and 

V = [ V l ,  V 2 . . . . .  Vn]. 

In view of Lemma 2, ELTRI is possible iff 
M(jeo) = 0 for all w. This is the case iff for each 
i = 1 to n, either F ~ / =  0 or VHB = 0  or both. 
Since F is designed to satisfy the required loop 
transfer function, FW~ = 0  is generically not 
satisfied. One can try to satisfy VHB = 0 for as 
many indexes i as possible. However, it is not 
possible to design so that V~nB=O for all 
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indexes, i = 1 to n. Let us investigate how many 
left eigenvectors of A - K C  can satisfy V ~ B  = O. 

Let n~ and n I be respectively the number of 
invariant zeros and infinite zeros (Sannuti and 
Saberi, 1987) of the given plant. In general 
n~ -< n - n r. We have the following result. 

L e m m a  3. For a left invertible plant, there exists 
a gain matrix K such that at most a total of 
n - n f  left eigenvectors V~, i = l  to n - n  I, of 
A - K C  can satisfy the condition V ~ B  = 0. Also, 
na of these n - n  I eigenvalues are same as the 
invariant zeros of the plant while nb =- n -- n I -- 

na eigenvalues can be assigned freely. Further- 
more, those left eigenvectors of A - K C  which 
are associated with the invariant zeros are same 
as the left zero directions of the plant. 

Proof .  See Shaked and Karcanias (1976); Saberi 
and Sannuti (1988). 

Lemma 3 implies that the maximum number 
of indexes i that satisfy VinB  = 0 is equal to the 
difference between the dynamic order and the 
number of infinite zeros of the given plant. The 
minimum number of infinite zeros is m and this 
happens for left invertible systems when all the 
infinite zeros are of order one, i.e. when C B  is of 
maximum rank (Sannuti and Saberi, 1987). Then 
in view of Lemmas 2 and 3, ELTRI  in general is 
impossible. It is possible only under some special 
circumstances. Goodman gives the following 
result. 

L e m m a  4. Let A - K C  be a nondefective matrix 
with left eigenvectors V~, i = 1 to n, such that 
V ~ B  = 0 for i equal to any n - m distinct indexes 
among 1 to n. Then Eo(jto)-= 0 for all to e f2 is 
equivalent to F B  =- O. 

Lemmas 3 and 4 culminate in the following 
theorem. 

T h e o r e m  1. Consider the closed-loop system 
comprising of the plant and the full order  
observer-based controller as in Fig. 2. Then both 
asymptotic stability of the closed-loop system 
and ELTRI  can be achieved under the following 
conditions: 

1. F B = O .  
2. The given plant has all its infinite zeros of 

order one (i.e. C B  is of maximal rank). 
3. The given plant is left invertible and has all 

its invariant zeros in the left half s plane (i.e. of 
minimum phase). 

Moreover,  a constructive method of obtaining 
a gain K to achieve both closed-loop stability and 

ELTRI  can be given under the above three 
conditions. Such a gain K in general is 
nonunique and belongs to a class of gains 
denoted by ~e. 

Proof .  Under the conditions given in the 
theorem, a method of calculating the class of 
gains ~e is given in Appendix A. 

R e m a r k  1. There is no method whatsoever in 
the literature to obtain the observer gain K that 
achieves ELTRI .  Although this paper is not 
intended in general to give methods of obtaining 
K, the constructive proof of Theorem 1 yields 
one such method. 

R e m a r k  2. It is important to realize the 
implications of the condition F B  = O. 

Apparently, it restricts the class of loop transfer 
functions L ( s )  that are attainable by full state 
feedback. In particular, under the condition 
F B  =0 ,  

F A B  
L ( s )  = F ~ B  s2 , 

implying that IlL(jto)ll must have at least a 
roll-off of 40 dB per decade with respect to to. It 
is well known that whenever the state feedback 
gain F is calculated by LQ R theory, IlL(jto)l I has 
only a roll-off of 20 dB per decade with respect 
to to. Thus the use of LQ R theory is then ruled 
out to generate the target loop transfer function. 

Since F B  = 0 severely restricts the class of 
loop transfer functions that are achievable, most 
of the existing literature focuses attention on 
ALTRI  methods. In these ALTRI  methods, one 
tries to find a gain K such that (1.13) is satisfied. 
As we discussed earlier, the gain K in this case is 
parameterized in terms of a tuning parameter  o. 
Satisfying (1.13) is a sufficient condition to 
render O'max[M(jto)] arbitrarily small for all to. 
At first, Doyle and Stein (1979) gave a sufficient 
condition under which (1.13) is true. Their  
condition is as follows: Let K ( o )  be chosen such 
that as e - - - ~ ,  K ( t r ) / a - - ~ B W  for some non- 
singular matrix W. Then,  (1.13) is true and 
consequently ALTRI  is achieved as o - - -~ .  
There were several attempts later on to weaken 
the Doyle-Stein  condition (Madiwale and 
Williams, 1985; Matson and Maybeck, 1987; 
Saberi and Sannuti, 1988). It is well known that 
in order to satisfy the Doyle-Ste in  condition, 
one requires only that the plant be left invertible 
and be of minimum phase. Thus in comparison 
with the sufficient conditions for ELTRI  as 
stated in Theorem 1, one finds a drastic 
relaxation of the required conditions for ALTRI .  
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As far as the design of K ( a )  is concerned, 
presently there exists three different methods: 
(1) asymptotic LQG methods, (2) asymptotic 
pole placement methods and (3) eigenstructure 
assignment methods. An exhaustive comparison 
of all these three methods is given in Saberi and 
Sannuti (1988). All these procedures aim at 
obtaining a gain K such that (a) some of the 
observer eigenvalues either coincide or are close 
to the zeros of the given plant and that the 
associated left eigenvectors satisfy the condition 
V ~ B  = 0 either exactly or approximately, and 
(b) the remaining observer eigenvalues are 
placed far in the left half s plane so that the 
corresponding R i / ( s -  ).~) in the dyadic expan- 
sion (2.7) are approximately zero. In other 
words, all these methods find a gain K such that 
amax[M(jto)] is arbitrarily small for all to. Thus 
the term M(s)  plays a dominant role in LTR. 
The following result summarizes this discussion. 

Theorem 2. Consider the closed-loop system 
comprising of the plant and the full order 
observer based controller as in Fig. 2. Let the 
given plant be left invertible and be of minimum 
phase. Then a gain K(o) can be designed such 
that both asymptotic stability of the closed-loop 
system and ALTRI can be achieved. Such a gain 
K(a)  in general is nonunique and belongs to a 
class of gains denoted by Y/a(a). 

Proof. See Saberi and Sannuti (1988). 

Let us next examine the eigenvalues of the 
observer based controller. These eigenvalues are 
given by 

~,(A - K C  - BF) .  

These eigenvalues are not necessarily in the left 
half s plane for all K. To study the nature of 
these eigenvalues, consider the following: 

det [sin - A + K C  + BF] 

= det [sin - A + KC] 

× det [In + (~-~ + K c ) - a B F ]  

= det [sin - A + KC] 

× det [1,, + F ( ~  -~ + K C ) - I B ]  

= det [Sin -- A + KC] 

× det [Ira + M(s)]. (2.8) 

Thus whenever ELTRI is achieved, i.e. when- 
ever M ( s ) = 0 ,  the controller eigenvalues are 
given by ) f f A -  KC).  Hence the observer-based 
controller is asymptotically stable. On the other 
hand, in the case of ALTRI, the eigenvalues of 
the full order observer-based controller ob- 
viously approach ~ ( A - K C )  as a--+oo. How- 

ever, in practice the value of o needed for the 
desired degree of recovery might not yield an 
asymptotically stable controller. In fact, this is 
the case in most practical problems. 

As discussed above, most often one opts for 
ALTRI design as it requires less stringent 
conditions than ELTRI design. In ALTRI, the 
level of recovery depends on Omax[M(j¢o)]. 
However in order to render Omax[M(jto)] small, 
one needs to increase the tuning parameter o 
which itself increases the gain K(o) .  Thus as 
discussed thoroughly by Sogaard-Andersen and 
Niemann (1989), there is a fundamental trade-off 
between the level of recovery and the size of 
gain. This trade-off can be visualized in a natural 
way in terms of the trade-off between the 
singular values of sensitivity and complementary 
sensitivity functions and the singular values of 
M(jto). The reason for this is that the robust 
stability and nominal performance of a system 
are directly reflected in the singular values of 
sensitivity and complementary sensitivity func- 
tions; whereas the level of recovery (i.e. the size 
of E0(jto)) is directly dependent on the singular 
values of M(jto). With this point in view, 
Sogaard-Andersen and Niemann (1989) derive 
some analytical expressions for the discrepancy 
between the desired and the achieved sensitivity 
and complementary sensitivity functions. Let 
So(s) and T0(s) be the achieved sensitivity and 
complementary sensitivity functions in the 
configuration of Fig. 2 when the loop is broken 
at the input point of the plant 

So(s) = [In + Co(s )P( s ) ]  -1 

and 

TO(s) = t m - So(s) = [tm + Co(S)P(s)I- 'Co(S)P(s ) 

where C0(s) is as given in (1.6). Let SF(s) and 
Tr(s) be the sensitivity and complementary 
sensitivity functions corresponding to the target 
loop-shape. The following lemma is a slight 
generalization of the results of Sogaard- 
Andersen and Niemann (1989). 

Lemma 5. Consider the configuration of Fig. 2. 
We have the following bounds on all singular 
values i = 1 to m of S0(j~) and T0(jto): 

lai[So(jto)] -- ai[SF(jto)]l 
--< Omax[M(j ¢0)], 

Omax[SF(jto)] 

and 

Io/[To(jto)]- o~[T,~Cjto)]l 
-< am~[M(jto)]. 

amax[SE(j 09)] 

The expressions given above can be used to 
analyze the inevitable trade-off between good 
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FIG. 4. Plant with reduced order observer based controller. 

recovery as indicated by Om~x[M(jto)] and 
robustness and performance as reflected in the 
sensitivity and complementary sensitivity func- 
tions. To do this, Sogaard-Andersen and 
Niemann (1989) developed some recovery 
diagrams. 

Before closing this section, let us note that 
M(s) plays a central role in every single result 
given in this section. 

2.2. Reduced order observers--ELTRI and 
A L  TRI 

Now let us consider a reduced order observer 
based controller as in Fig. 4. Without loss of 
generality, let us assume that 

C = [Ip, 01 

and hence the plant (1.1) is in the form, 

J f l  = A l l X l  + A12x2 + Bxu 
(2.9) 

X2 = A z l x I  + A22x2 + B2u,  

y = xl. (2.10) 

Also, let the state feedback gain matrix F which 
achieves the target loop transfer function L(s) be 
partitioned in conformity with (2.9) as 

F = [/71, F2]. (2.11) 

Let Ou  = (Sip -- A l l )  -1 and (I)22 = (Sin_ p -- 
A22) -1. It is then straightforward to derive the 
following relationships: 

P(s) = CdPB = apnB ~ + dPxlAlzHz(s), (2.12) 

L(s) = FrbB = F~P(s) + FzH2(s), (2.13) 

where Hz(s) is the transfer function between u 
and xz, i.e. xz(s) = Hz(s)u(s), where 

H2(s) = (aPE 1 - A2,~P,1A12)-~(A2,~PnBI + B2). 

(2.14) 

The reduced order observer equations 
(O'Reilly, 1983; Madiwale and Williams, 1985) 
are given by 

Z2 = Arz2 + Gry  + B,u, (2.15) 

with 

X 1 : y and "~2 = Kry + z2, (2.16) 

and with the reduced order observer based 
feedback control law as 

u = fi = -Fix1 - F222. (2.17) 

Here Kr is the reduced order observer gain and 
the matrices Ar, Br and Gr are given by 

Ar = A22 - KrA1z, Br = B2 - KrB1, 
(2.18) 

Gr = A22Kr - K r A l z K r  + A21 - K r a l l  • 

Now in order to bring the theory of full and 
reduced order observers to the same frame work 
and to understand the conditions for either 
ELTRI or ALTRI  clearly, we present the 
following results which are analogous to Lemmas 
1 and 2. 

Lemma 6. Eor(S), the error between the target 
loop transfer function L(s) and that realized by 
the reduced order observer-based controller of 
Fig. 4 is given by 

Eor(S)=Mr(s)(Im+Mr(s))-l(ImWFdPB), (2.19) 

where 

Mr(s ) = F2((I)221 + g r A a 2 ) - a n r  . (2 .20)  

Proof. See Appendix B. 

Remark 3. The expression for Eor(S) is identical 
to the corresponding one when full order 
observer-based controller is used; see (2.4), 
except that now Mr(s) takes the place of M(s).  

Lemma 7. 

Eor(jto) = 0 iff Mr(jw) = 0 for all to • ~-~r, 

(2.21) 

where f2r is the set of all 0-< to < oo for which 
Lor(jto) and L(jto) are well defined (i.e. all 
required inverses exist). 

Proof. The proof is obvious in view of Lemma 
2. 

As in the case of a full order observer, a 
physical interpretation can be given to the term 
Mr(s). It is straightforward to show that 

- a ( s )  = Mr(s)u(s) + IF1 + Fz(~21 + 

K,.AIz)-IGr + Kr(s)ly(s).  

Thus we note that Mr(s) is the transfer function 
from u to -f t .  Hence as in the case of a full 
order observer, whenever the size of Mr(s) is 
small, the effect of the link from the input point 
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of the plant to the observer, on t~ is small. In 
view of Lemma 7, the question now is when and 
how M,(jto) can be made either exactly or 
approximately zero for all to. We note that, 

B~ =- Be - K r B I  = O, (2.22) 

is a sufficient condition for [M~(jto)] to be 
identically zero. Unlike in full order observers, 
the condition (2.22) involves K, and hence there 
is a possibility of solving for Kr from it. 
Sogaard-Andersen (1987b) under the conditions 
that (a) the given system is square and invertible 
and (b) B1 is nonsingular, solves for K ,  

K~ = B2B11. (2.23) 

It turns out that a gain K~ which satisfies (2.22) 
and thus achieves ELTR can be obtained under 
much relaxed conditions. We have the following 
result analogous to Theorem 1. 

Theorem 3. Consider the closed-loop system 
comprising of the plant and the reduced order 
observer based controller as in Fig. 4. Then both 
the asymptotic stability of the closed-loop system 
and ELTRI can be achieved under the following 
conditions: 

1. The given plant has all its infinite zeros of 
order one. 

2. The given plant is left invertible and is of 
minimum phase. 

Moreover, a constructive method of obtaining a 
gain K~ to achieve both ELTRI and asymptotic 
stability of the closed-loop system can be given 
under the above two conditions. Such a gain K~ 
in general is nonunique and belongs to a class of 
gains denoted by ~ r .  

Proof. Under the conditions given in the 
theorem, a method of calculating the class of 
gains ff~er is given in Appendix C. 

Remark 4. When reduced order observer based 
controllers are used, the condition FB = 0 is not 
necessary. However, while full order observer 
always results in a strictly proper controller 
transfer function, the reduced order observer 
based controller has a nonstrictly proper transfer 
function. As discussed by Khalil (1981, 1984) 
and by Vidyasagar (1985a), a closed-loop system 
with a nonstrictly proper controller is not robust 
under unmodelled high frequency dynamics. 

Remark 5. Madiwale and Williams (1985) gave a 
sufficient condition for ELTRI, 

K r ( I  v + A12~22Kr)- lA12d~z2Br  = B~. (2.24) 

There is a one to one correspondence between 

(2.2) and (2.24). In the same way as we showed 
(2.3) is equivalent to B =0 ,  we can show that 
(2.24) is equivalent to Br-= 0. 

Since in general M,(s) cannot exactly be made 
zero, one focuses attention on ALTRI. That is, 
one needs 

Mr(s  ) = F2(dPf 1 + Kr(O)A12)- 'ar- - -> 0 

pointwise in s as a--* 0% 

where the gain Kr(a) is now parameterized in 
terms of a tuning parameter a. However, as in 
the previous section, in order to have the state 
feedback and observer designs to be independ- 
ent of one another, one needs to require that 

( dp f21 + K~( a)A12)- I B~---> 0 pointwise in s 
as a--*~. (2.25) 

To design such a K~(o), Dowdle et al. (1982) 
study a restrictive class of systems where all the 
first Markov parameters of the given plant are 
zero. Such a severe restriction on the given plant 
is not imposed in Madiwale and Williams (1985), 
instead they require that certain matrices are of 
full rank and a certain subsystem of the given 
system is of minimum phase. Based on 
asymptotic LQG methods, Sogaard-Andersen 
(1985b) studies the general case without any 
restrictions. Since Sogaard-Andersen divides it 
into three different cases, his analysis and design 
besides being not unified becomes unnecessarily 
involved. Saberi and Sannuti (1988) give an 
explicit method of calculating the gain K~(a) 
which satisfies the condition (2.25). In fact, they 
convert the problem of designing the reduced 
order observer for the given plant into that of a 
full order observer, however, for a reduced 
order subsystem of the given plant. 

The above discussion can be summarized as 
Theorem 4 which is analogous to Theorem 2. 

Theorem 4. Consider the closed-loop system 
comprising of the plant and the reduced order 
observer based controller as in Fig. 4. Let the 
given plant be left invertible and be of minimum 
phase. Then a gain K,(a) can be designed such 
that both asymptotic stability of the closed-loop 
system and ALTRI can be achieved. Such a gain 
Kr(a) in general is nonunique and belongs to a 
class of gains denoted by Xar(a). 

Proof. See Saberi and Sannuti (1988). 

Let us next examine the eigenvalues of the 
reduced order observer based controller. These 
eigenvalues are given by 

X(Az2 - KrA,z - B2F2). 

AUTO 27:2-D 
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These eigenvalues are not necessarily in the left 
half s plane for all K,. As in (2.8), we can show 
that 

det [Sin_ p -- A22 + K~A12 + B2F2 ] 
= det [sI,_p - Az2 + Kra12] det [1,, + M,(s)]. 

(2.26) 

Thus whenever ELTRI is achieved, i.e. 
whenever Mr(s)= 0, the controller eigenvalues 
are given by Z(Ar) and hence the reduced order 
observer based controller is asymptotically 
stable. On the other hand in the case of ALTRI, 
the eigenvalues of the reduced order observer 
based controller tend to )~(A,) as o---~oo. 
However, as in full order observers, the value of 
o needed for the desired degree of recovery 
might not yield an asymptotically stable control- 
ler. In fact, this is the case in most practical 
problems. 

Now as in Lemma 5, we would like to develop 
bounds on the sensitivity and complementary 
sensitivity functions generated by the use of 
reduced order observer based controllers. Let 
Sot(S) and Tor(S) be the generated sensitivity and 
complementary sensitivity functions in the 
configuration of Fig. 4 when the loop is broken 
at the input point of the plant, 

Sot(S) = [I,~ + C o r ( S ) e ( s ) ]  -1  

and 

Tor(S ) : I m -- Sor(S ) 

= [Im + Co,(S)P(s)]-lCor(S)P(s) 

where Cor(S) is the transfer function of the 
reduced order observer based controller. We 
have the following result analogous to Lemma 5. 

Lemma 8. Consider the configuration of Fig. 4. 
We have the following bounds on all singular 
values i = 1 to m of So,(jw) and Tor(jco): 

I o i [ S o r ( j t o ) ] -  oi[SF(jCo)]I 
<- Omax[Mr(jCo)], 

Crmax[Sr (j to)] 

and 

Ioi[ Tor(jto ) ] - oi[ Te(jto ) ]l 
<- Omax[Mr(j,o)]. 

O'max[Sf(j tO)] 

Proof. See Appendix D. 

2.3. Full and reduced order observers - -ELTRO 
and A L  TRO 

The target open-loop transfer functions can be 
designed when the loop is broken at either the 
input or the output point of the given plant 
depending upon the given specifications. We 
have discussed so far LTR recovery at the input 

point, either exact or approximate type (ELTRI 
or ALTRI), using either full or reduced order 
observer-based controllers. Now we would like 
to consider LTR recovery when the loop is 
broken at the output point (Kwakernaak, 1969). 
This method is used when the designer 
specifications and the modelling of uncertainties 
are reflected at the output point of the plant. In 
the literature, it is commonly said that LTR 
recovery at the input and output points (LTRI 
and LTRO) are dual to one another. This 
duality is well understood in the case when full 
order observers or Kalman filters are used in the 
controllers. That is, in the case of LTRO, the 
first step is to design a Kalman filter, via loop 
shaping techniques, whose loop transfer function 
meets the design specifications. The next step is 
to recover this Kalman filter loop transfer 
function via LTR technique. However, this kind 
of duality is not well understood when reduced 
order observer based controllers are used. For 
instance, Sogaard-Andersen (1987b) who has 
contributed much to the development of reduced 
or minimal order observers for LTRI makes the 
following comment: "The loop-shape formulation 
used here requires that the uncertainties and 
performance specifications are reflected to the 
plant input. Unfortunately similar results for the 
plant output cannot be derived since the 
minimal-order observer and the plant model are 
not dual." The confusion arises here because the 
duality is sought between the plant and the 
observer. The proper way is to seek the duality 
in the design methodology and when this is 
done, contrary to the statement of Sogaard- 
Andersen, minimal order observer based con- 
trollers can be designed for LTRO as well. In 
other words, one needs first to clearly define the 
duality in a mathematical way and then needs to 
interpret the implications of it as to the 
controller implementation. In order to avoid any 
confusion, we give below a formal step by step 
algorithm to show how duality arises for LTR 
recovery at the input and output points. 

1. Let the given plant model y be charac- 
terized by the triple (A, B, C) where A, B and C 
are respectively n × n, n × m and p × n matrices. 
Let 57 be of minimum phase and be right 
invertible implying p-< m. Also, let P(s) be the 
transfer function of the plant 57, 

P(s) = C(sl,  - A ) - lB .  

Let L(s) be the required target open-loop 
transfer function when the loop is broken at the 
output point of the given plant. Thus, in the 
configuration of Fig. 1, we are seeking a 
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controller C(s) such that L(jto) is either exactly 
or approximately equal to P(jw)C(jto).  

2. Define a transposed system model 57t 
characterized by the triple (At, B,, C,) where 

At -~ A ', Bt =-- C',  Ct =- B' .  

Note that since 57 is of minimum phase and right 
invertible, 57t is of minimum phase and left 
invertible. Also, note that P,(s), the transfer 
function of the plant Z, is P'(s).  Let Lt(S) be 
defined as 

L , ( s )  - L ' ( s ) .  

3. For the purpose of design alone, consider 
the fictitious plant 57, as given in step 2. Then 
design a controller C,(s) such that C,(jto)P,(jto) 
is either exactly or approximately equal to 
L/(jto). For this purpose one can use either a full 
or reduced order observer based controller 
design of Sections 2.1 or 2.2. In fact one can also 
use any other compensator design schemes such 
as those to be described in Sections 3 and 4. We 
note that the dynamic order of C,(s) is either n 
or n - m  depending upon either full or reduced 
order observer is used for the controller design. 

4. Define a controller C(s): 

C(s) -= c ; ( s ) .  

We note that the dynamic order of C(s) is same 
as that of C,(s). 

Then it can be shown trivially that the 
controller C(s) designed above and implemented 
as in Fig. 1 achieves either ELTRO or A L T R O  
depending upon whether C,(s) in step 3 is 
designed to achieve ELTRI or ALTRI  for the 
fictitious plant Zt. 

3. FULL ORDER COMPENSATOR--ELTRI AND 
ALTRI 

In this section and the next, we present our 
main contributions. To start with, let us recall 
the concept of LTRI. Given the plant transfer 
function P ( s ) = - C ~ B  and the target loop 
transfer function L ( s ) = - F ~ B ,  one wants to 
design a controller with transfer function C(s) 
such that C(jto)P(j~0) is either exactly or 
approximately equal to L(joJ). The only 
controller that is available so far for this purpose 
is observer based. As reviewed in the last 
section, in observer based controllers, M(s)  
plays a central role in the recovery procedure. 
Numerical experience shows that in order to 
achieve a satisfactory degree of recovery, large 
values of gain in general are required by the 
observer based controllers. In an attempt to 
reduce the size of required gains, one then 
naturally seeks new structures for the control- 

lers. The physical meaning of the transfer 
function M(s)  as explained in the last section, 
leads us to examine the observer based 
controller structure in which the link from the 
input point of the plant via the control 
distribution matrix B to the controller is 
removed. Such an omission of the link generates 
a new structure for the controller which we now 
call a compensator. Because of the omission of 
the link mentioned earlier, the celebrated 
separation principle is no longer valid and hence 
the properties of the compensator as to 
closed-loop stability and achieving LTR have to 
be examined carefully. This is the purpose of this 
section and the next. 

Consider the dynamic compensator, 

2 = (A - KC)z  + Ky, (3.1) 

u = ft = - F z .  (3.2) 

The only unknown matrix in (3.1) is K which is 
considered as a free design parameter. The 
compensator transfer function (i.e., the transfer 
function from y to -t~) is given by 

Cc(s) = F ( ~  -~ + KC)-~K. (3.3) 

We would like to design K to satisfy the 
following conditions: 

1. Stability o f  the closed-loop system. The 
closed-loop system as depicted in Fig. 3 and 
characterized by (1.1), (3.1) and (3.2), is 
asymptotically stable, i.e. 

where 
Re [Z(Ad)] < O, (3.4) 

(3.5) 

2. E L T R I  or A L T R I .  The achieved loop 
transfer function L¢(jw), 

L¢(jto) -- Cc(jt0)P(jto), (3.6) 

is either exactly or approximately equal to 
L(jto). 

3. Open-loop stability o f  the compen- 
sator. The compensator is open-loop asymptot- 
ically stable, i.e. 

Re [).(A - KC)] < 0. (3.7) 

The above three conditions are important from 
technical point of view. However, merely 
determining K to satisfy the above conditions is 
not enough because our primary goal as stated 
earlier is to come up with a scheme which 
requires smaller values of gain than the observer 
based controller to achieve the same level of 
LTR. In what follows, we show that our new 
compensator structure does exactly this. We first 
give the following lemma analogous to Lemma 1. 

r A-Kc 
A d  I - B F  
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Lemma 9. E¢(s), the error between the target 
open-loop transfer function L(s) and Lc(s), the 
one realized by the compensator, is given by 

Ec(s) = M(s), (3.8) 
where 

M(s) = F(t} -1 + KC)-IB. (3.9) 

selected as an element of Y(e and hence M(s) =--- O. 
It is also evident that the compensator is 
open-loop asymptotically stable. Next, the 
closed-loop stability can be proved as follows. 
The dynamic matrix of the closed-loop system is 
given by (3.5). Then consider the following 
reductions: 

Proof. 

Ec(s)  = L ( s )  - Lc ( s )  

= V[I,, - (¢P-' + KC)-IKC]tPB 

= F(dp -1 + KC)-IB. 

Remark 6. Observe that M(s) defined here is 
exactly the same as the one defined earlier for 
the full order observer-based controllers, see 
(2.5). In view of this, the two expressions for the 
error between the required and the achieved 
loop transfer functions, one for the conventional 
observer-based design (2.4) and the other for the 
new compensator design (3.8), differ sig- 
nificantly. This as we shall see later on in 
Theorems 7 and 8 leads to an overwhelming 
advantage in favor of the new compensator 
approach. 

Since M(s) defined here and in the case of full 
order observer based design is one and the same, 
we naturally see that ELTRI or ALTRI  is 
achievable by the new compensator under 
exactly the same conditions as in the previous 
case. That is K has to be an element of either ~e 
for ELTRI or an element of ~a(o) for ALTRI.  
However, the stability of the closed-loop system 
has to be separately examined. We have the 
following theorem. 

Theorem 5. Consider the closed-loop system 
comprising of the plant along with the 
compensator as in Fig. 3. Then both the 
asymptotic stability of the closed-loop system 
and ELTRI can be achieved under the following 
conditions: 

1. FB=O. 
2. The given plant has all its infinite zeros of 

order one. 
3. The given plant is left invertible and is of 

minimum phase. 

Moreover, under the above conditions, K can be 
selected as an element of y~r. Also, the 
eigenvalues of Acl  a r e  given by 3,(A - KC) and 
3,(A - BF). Furthermore, the developed compen- 
sator is always open-loop asymptotically stable. 

Proof. Under the conditions given and in view 
of the Theorem 1, it is obvious that K can be 

det[si2 _ A d ] = d e t [ S l . - A  + KC - K C  ] 
BF sin - A 

dp-1 
= d e t [ ~ _ ~ + B F  - K C ]  

= d e t  I ~ ;  - K C  
• -~ + KC] 

[~-1 + BF ~-~ l det 
k BF ¢p-1 + KCJ" 

(3.10) 

Now using Schur's formula for calculating the 
determinant of a partitioned matrix, we have 

det [s12~ - Act] 

= det [~-1 + KC] 

x det [~-x + BF - ~-~(d~ -~ + KC)-~BF] 

= det [~-1 + KC] det [~-~] 

x det [In + ~ B F  - (~-~ + KC)-~BF] 

= det [~-a + rCl det [~-1] 

xde t  {In + [~B - (~-~ + KC)-~B]F}. (3.11) 

Now using the identity 

det [In +AIA2] = det [I,, +AEAa] (3.12) 

for any n x m and m x n matrices A~ and A 2 ,  

det [s12~ - Act] 

= det [~-~ + KC] det [~-1] 

x det {I,, + F[t}B - (~-1 + KC)-~B]} 

= det [~-1 + KC] det [~-1] 

x det {Im + FtbB - F(tl) -1 ÷ KC)-IB} 

= det [~-1 + KC] det [~-~] 

x det {Ira + F ~ B  - M(s)}. (3.13) 

Noting that M(s) =- O, (3.13) reduces to 

det [Sl2n -- Ad] 

= det [¢P-~ + KC] det [¢P-~] det [In + *BF]  

= det [~-~ + KC] det [*-a  + BF]. 

Since by design A - K C  and A - B F  are 
asymptotically stable matrices, the closed-loop 
system of Fig. 3 is then asymptotically stable. 

As in the case of full order observer based 
controllers, the conditions given in Theorem 5, 
especially the conditions 1 and 2 are very 
restrictive and hence are not true for many 
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practical systems. To broaden the class of 
systems, one abandons the goal of achieving 
ELTRI and instead seeks ALTRI. For this 
purpose, as in the previous section, we 
parameterize K in terms of a tuning parameter 
0.. We have the following theorem dealing with 
ALTRI. 

Theorem 6. Consider the closed-loop system 
comprising of the plant along with the 
compensator as in Fig. 3. Assume that the given 
plant is left invertible and is of minimum phase. 
Select the gain K which is parameterized in 
terms of a tuning parameter 0., as an element of 
Y(a(o.). Then ALTRI is achieved as 0.--+~. 
Furthermore, there exists a 0.~ such that the 
closed-loop system is asymptotically stable for all 
o. > 0.~. More specifically, as 0.-+ 0% eigenvalues 
of Act are given by 

3.(A - K(O.)C) + O(1/o) 
and 

;~(A - BF) + O(1/0.). 

Also, the developed compensator is always 
open-loop asymptotically stable. 

Proof. The results of achieving ALTRI and 
open-loop asymptotic stability of the compen- 
sator are obvious. The proof of closed-loop 
stability of Fig. 3 can be seen as follows. In view 
of (3.13) and noting that M(s) tends to zero 
point wise in s as 0.---* 0% we have 

det [slz~ - Aa] 
--* det [(I) -1 + K(O.)C] det [0  -1] 

x det [In + dpBF] as 0.--~ oo 

= det [~-1 + K(O.)C] det [~-~ + BF]. (3.14) 

This completes the proof of Theorem 6. 

Remark 7. The full order observer is not in 
general open-loop stable while open-loop stabi- 
lity of the compensator is always guaranteed. 

As discussed earlier, one often opts for 
ALTRI design as it requires less stringent 
conditions than ELTRI design. However, 
ALTRI is fundamentally an asymptotic result. In 
practice, the degree of recovery depends on the 
size of gain. Both conventional observer-based 
controller and our new compensator are capable 
of achieving ALTRI. The following theorem 
however shows that for the same value of gain, 
the new compensator achieves much better 
degree of recovery than the observer-based 
controller. 

Theorem 7. Let K(o.) be an element of 5(a(o.). 
Assume also that the same gain K(o.) is used for 

both the observer-based controller and for the 
new compensator. Let o. 
o.m,,,[M(jw)] is small (say, 
Furthermore, assume that 

o-min[L(]co)] 

= o'~in[F(jco -A)-~B] >> 1 

be such that 
<<1) for all co. 

for all to ~ De, 
(3.15) 

for some frequency region of interest, De. Then 
for all co e D~, the mismatch between the target 
loop transfer function and the one achieved by 
the compensator is always less than the 
corresponding one achieved by the full order 
observer-based controller. More specifically, we 
have 

o'max[E0(jco)] >> O'max[E~(jco)] for all co ~ De, 

(3.16) 

where E~(s) is as in (3.8) and Eo(s) is as in (2.4). 

Proof. Recalling the expression for E0(jco) from 
(2.4), we have 

o'max[Eo(j co)] 

= o.m~{M(jco)[I,, + M(jco)]-X(Im + F~(jco)B))  

>- o.max[M(jco)]o.min{[I,, + M(jco)] -1} 

X o.rain[I m 4 - F ~ ( j c o ) B ]  

= o.max[M(jco)]o.mi~[Im + F~(jco)B] 

o'max[Im + M(jco)] 

>- o'm~x[Ec(jco)]tr(jco), (3.17) 

where 
o'min[F~(jco)B]- 1 

a~(j co) = 
1 + o.max[M(jco)] " 

Now by our assumption, o'max[M(jco)] is <<1 and 
o.mi,[F~(jco)B] is >>1 for all to e Dc and hence 
a~(jco) is >>1 for all co e De. Thus 

o'max[E0(jco)l >> o-max[Ec(jco)] for all co e D~. 

Remark 8. It is well known (Doyle and Stein, 
1981) that in order to have good command 
following and disturbance rejection properties, 
the loop transfer function matrix L(jco) has to be 
large and consequently, the minimum singular 
value o-min[L(jco)] should be large in the 
appropriate frequency region. Thus the condi- 
tion (3.15) is always satisfied in all practical 
situations. 

Remark 9. Theorem 7 is intuitively evident. In 
our compensator Ec(s), the error between the 
required and the achieved loop transfer function 
is equal to M(s) which is designed to be small in 
some sense. On the other hand, in conventional 
observer-based design, the corresponding error 
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Eo(s), is a multiple of M(s) ,  [Im + M(S)] -~ and 
I,, + FOB.  But in any good design, the loop 
transfer function F O B  is large in the frequency 
region of interest. Thus for the same gain K(o) ,  
Eo(s) differs from Ec(s) by a large factor 
(~[[FOB[[) making Eo(s) much worse than 
Ec(s). 

Once again, as in Lemma 5, we now develop 
bounds on sensitivity and complementary sen- 
sitivity functions when the new compensator is 
used. Let Sc(s) and T~(s) be the generated 
sensitivity and complementary sensitivity func- 
tions in the configuration of Fig. 3 when the loop 
is broken at the input point of the plant, 

S~(s) =[lm + C~(s)P(s)] -1 
and 

Tc(s ) = I m -- Sc(S ) = [ I  m + C~(s)P(s)l-lCc(s)P(s) 
where Cc(s) is as in (3.3). We have the following 
result analogous to Lemma 5. 

Theorem 8. Consider the configuration of Fig. 3. 
Assume that (3.15) is true. We have the 
following bounds on all singular values i = 1 to m 
of Sc(jt0) and T~(jto): 

l a i [ S c ( j w ) ]  - o i [ S F ( j W ) ] I  

Omax[Sr(j to)] 

Oma~[M(jto)] 

Omin[FO(jto)B] - -  Ornax[M(j¢o)]- 1 
<<trmax[M(jt0)] forall  t06Dc (3.18) 

and 

lai[T~(jto)] - ai[TF(jto)]l 

Omax[SF(ito)] 

O'max[M(j co)] 

Omi°[FO(jto)B]- Omax[m(jto)]- 1 

<<Omax[M(jto)] forall  torDc.  (3.19) 

Proof. See Appendix E. 

Remark 10. It is evident that due to the 
presence of the sign << in the expressions (3.18) 
and (3.19), the new compensator yields much 
better sensitivity and complimentary sensitivity 
recovery than the conventional full order 
observer based controller. 

4. REDUCED ORDER COMPENSATOR--ELTRI 
AND ALTRI 

In the previous section, we studied a new 
compensator whose dynamic order is the same as 
that of the given plant. Corresponding to the 
reduced order observer-based controllers, one 
naturally would like to investigate also the 

r -+0 u "I PLANT I 
^ 
u: 

••(sI-Ar)-l• I-~C- I-- 

REDUCED-ORDER COMPENSATOR 

Y _ 

FIG. 5. Plant with reduced order compensator. 

possibility of a reduced order compensator for 
the purpose of achieving either ELTRI or 
ALTRI. Motivated by the results of the previous 
section, in this section we study such a reduced 
order compensator structure (see Fig. 5). 

The structure shown in Fig. 5 corresponds to 
that of the reduced order observer-based 
controller except that, as in the case of full order 
compensator, the link from the plant input point 
via the matrix B to the controller (or what is now 
called a compensator) is omitted. Because of this 
omission of the link, again the separation 
principle is no longer valid and hence we need to 
study and establish the necessary properties of 
the reduced order compensator for LTRI. 

As in Section 2, without loss of generality, we 
will assume that the given plant is described by 
(2.9) and (2.10) while the state feedback gain 
matrix F which achieves the target loop transfer 
function L(s)  be partitioned as in (2.11). The 
reduced order compensator is dynamically 
described by 

22 ---- A r z 2  + Cry, (4.1) 

u = fi = --Flxl - Fzw, (4.2) 

w = Kry + z2. (4.3) 

The matrices Ar and Gr are as in (2.18). Here Kr 
is a free design parameter which is to be selected 
to satisfy the following conditions: 

1. Stability o f  the closed-loop system. The 
closed-loop system as depicted in Fig. 5 and 
characterized by (2.9), (2.18), (4.1) to (4.3), is 
asymptotically stable, i.e. 

Re [~(Actr)] < O, (4.4) 

where 

A c l  r = 

I 
A22 - K r A 1 2  - K r B 1 F 2  A21 - K ~ B I F I  

- B I F z  A l l -  B1Fl 

- n 2 F 2  A21 - B2FI  

2. E L T R I  

K r A  12] 

A12 / 

A22 _J" 

(4.5) 

or A L T R L  The achieved loop 
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transfer function L~,(jto), 

L,( j to)  = CcAjto)P(jto), (4.6) 

is either exactly or approximately equal to 
L(jto), where C~r(s) denotes the transfer 
function of the compensator (i.e. the transfer 
function from y to - a ) .  

3. Open-loop stability of  the compensator. The 
compensator is open-loop asymptotically stable, 
i.e. 

Re [).(A,)] < 0. (4.7) 

Besides satisfying the above technical conditions, 
as in the previous section, one expects that the 
value of gain needed for a certain degree of LTR 
is much smaller than that required by the 
reduced order observer-based controller. We 
have the following lemma: 

Lemma 10. Ecr(S), the error between the target 
loop transfer function L(s) and that realized by 
the reduced order compensator, is given by 

E~r(s) = L(s) - Let(s) = Mr(s), (4.8) 
where 

Mr(s) = F2(~2~ + KrA~E)-~B, (4.9) 

Proof. See Appendix F. 

Remark 11. The expression for Ecr(s) is identical 
to the corresponding one for the full order 
compensator, see (3.8), except that now Mr(s) 
takes the place of M(s). Also Mr(s) is the same 
as defined in (2.20) for the case of reduced order 
observer-based controller. We also note that the 
two expressions for the error between the 
required and the achieved loop transfer func- 
tions, one for the conventional reduced order 
observer design (2.19) and the other for the new 
compensator design (4.8), again differ sig- 
nificantly. Thus as we expect from Theorems 7 
and 8, this leads to an overwhelming advantage 
in favor of the new reduced order compensator 
in contrast to a reduced order observer-based 
controller. 

We have the following two theorems. 

Theorem 9. Consider the closed-loop system as 
depicted in Fig. 5. Then both the asymptotic 
stability of the closed-loop system and ELTRI 
can be achieved under the following conditions: 

1. The given plant has all its infinite zeros of 
order one. 

2. The given plant is left invertible and is of 
minimum phase. 

Moreover, under the above conditions, Kr can 

be selected as an element of ~er" Also, the 
eigenvalues of Adr a r e  given by 

)~(A22 - K, A12) and )~(A - BF). 

Furthermore, the developed compensator is 
always open-loop asymptotically stable. 

Proof. Under the given conditions, Kr can be 
selected as an element of ~er and hence 
Mr(s) =-0. Thus ELTRI is achieved. Also, it is 
evident that the compensator is open-loop 
asymptotically stable. The closed-loop stability 
of Fig. 5 is given in Appendix G. 

Theorem 10. Consider the closed-loop system as 
depicted in Fig. 5. Assume that the given plant is 
left invertible and is of minimum phase. Select 
the gain Kr which is parameterized in terms of a 
tuning parameter a, as an element of ~(ar(a). 
Then ALTRI is achieved as o ~ oo. 
Furthermore, there exists a tr2 such that the 
closed-loop system is asymptotically stable for all 
a >  a2. More specifically, as o--->oo, eigenvalues 
of Adr are given by 

~.(A22 - Kr(a)A12) + O(1/a) 
and 

).(A - BF) + O(1/o). 

Also, the developed compensator is always 
open-loop asymptotically stable. 

Proof. The results of achieving ALTRI and 
open-loop asymptotic stability of the compen- 
sator are obvious. The proof of closed-loop 
stability of Fig. 5 is given in Appendix H. 

As is clear by now, one often seeks an ALTRI 
design which as we know is asymptotic where the 
degree of recovery depends on the size of gain. 
Both the conventional reduced order observer- 
based controller and our new reduced order 
compensator are capable of achieving ALTRI. 
As expected, the following theorem, however, 
shows that for the same value of gain, the new 
compensator achieves a much better degree of 
recovery than the observer-based controller. 

Theorem 11. Let Kr(a) be an element of Yfar(a). 
Assume also that the same gain Kr(o) is used for 
both the reduced order observer-based control- 
ler and the reduced order compensator. Let a be 
such that Crmax[Mr(j~o)] is small (say, <<1) for all 
to. Furthermore, assume that (3.15) is true. 
Then for all a~ ~ De, the mismatch between the 
target loop transfer function and the one 
achieved by the reduced order compensator is 
always less than the corresponding one achieved 
by the reduced order observer-based controller. 
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More specifically, we have 

Om~x[Eo,(jto)] >> Omax[Ecr(jto)] for all to • D~, 

(4.10) 

where E~r(s) is as in (4.8) and Eor(S) is as in 
(2.19). 

Proof. The proof follows along the same lines as 
that of Theorem 7. 

As in the previous section, we now turn our 
attention to developing bounds on sensitivity and 
complementary sensitivity functions. Let Scr(S) 
and T~r(S) be the generated sensitivity and 
complementary sensitivity functions in the 
configuration of Fig. 5 when the loop is broken 
at the input point of the plant, 

S c r ( S  ) = [ I  m + Ccr(s)P(s)] -1 

and 

=Im - Scr(S ) = [In + Ccr(s)P(s)]-lCc~(s)P(s). 

We have the following result analogous to 
Theorem 8. 

Theorem 12. Consider the configuration of Fig. 
5. Assume that (3.15) is true. We have the 
following bounds on all singular values i = 1 to m 
of Scr(jto) and Tcr(jto): 

la;[S,(jto)]- ai[SF(jto)]l 

Omax[ SF(j to ) ] 
Crmax[Mr(j to)] 

Omi,[FdP(jto)B]- Crmax[Mr(jto)]- 1 

<< Omax[Mr(jto)] for all to • D~ (4.11) 
and 

Ioi[T~r(jto)] - oi[Te(jto)]l 

O'm~[M~(j to)] 

Omax[SFCj to)] 

Omin[FdP(jto)B]- Omax[Mr(jto)] -- 1 

<< Omax[Mr(jto)] for all to • De. (4.12) 

Proof. It follows along the same lines as that of 
Theorem 8. 

Remark 12. Remarks similar to 7-10 are 
obviously true even for reduced order 
compensators. 

5. FULL AND REDUCED ORDER 
COMPENSATORS--ELTRO AND ALTRO 

The results for the case when the target 
open-loop transfer functions are specified at the 
output point of the plant can be obtained by 

dualizing those for the case when the target 
open-loop transfer functions are specified at the 
input point of the plant. However, one has to 
interpret duality in a proper manner and this was 
discussed earlier in Section 2.3. All this 
discussion also applies to compensator design. 
All one has to do is to use either full or reduced 
order compensator design of Sections 3 and 4 to 
achieve LTR in the third step of the design 
algorithm discussed in Section 2.3. The remain- 
ing steps of the design algorithm given in Section 
2.3 remain intact. 

6. EXAMPLES 

Examples are presented in this section 
comparing the new compansator with the 
conventional observer approach. These ex- 
amples are worked out using the software 
reported by Chen et al. (1989). Clearly all the 
examples support the theoretical development 
given earlier and demonstrate that the new 
compensator approach is much better than the 
conventional observer approach in all cases, 
namely, (a) when the performance specifications 
are reflected either at the input or at the output 
point of the plant, and (b) whether the full or 
reduced order compensator is used. 

Most often in the literature, the maximum and 
minimum singular value graphs of the target and 
achieved loop transfer matrices are drawn with 
respect to to and are then compared. These 
graphs could be misleading. Although the 
singular values of target and achieved loop 
transfer matrices may match perfectly, the 
difference or mismatch between them could be 
very high owing to the phase difference between 
them. This has been pointed out by Ridgely and 
Banda (1986) in an example. The best way is to 
check the singular values of the mismatch 
function between the target and achieved loop 
transfer matrices. 

To show the effects of the phase difference, 
consider the example of Ridgely and Banda 
(1986) 

£ = A x  + Bu + F~ 

(6.1) 

and 
y = Cx + )7 = [2 1]x + r/. (6.2) 

The state feedback law is selected as 

u = - F x = - [ 5 0  10]x. (6.3) 

The full order observer gain K(o)  is obtained by 
solving the filter Riccati equation, 

A Y  + ZA '  + O(a )  - y C ' C Z  = 0 (6.4) 
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and 
K(a)  = YC' 

where 
Q(tr) = r r '  + O2BB'. 

The magnitude plots of the target and 
achieved loop transfer function when o 2 takes 
values 0; 500; 2500; 3600; 8100; and 250,000 are 
presented in Fig. 6(a). As O2 begins to increase, 
the low frequency region of the achieved loop 
transfer function begins to approach the target 
loop, while the high frequency region remains 
virtually unchanged. As 02 takes the value 3000, 
the low frequency region also almost matches 
the target loop. At 02 = 3600 as shown in Fig. 
6(a), the target and achieved loop transfer 
function magnitudes are almost "tight" together. 
However, as shown in Fig. 6(b), the phases are 
about 180 ° apart in the low frequency region. 
This shows that no recovery has been achieved 

TABLE l(a). SUPREMUM OF MAXIMUM SINGULAR VALUES OF 
MISMATCH FUNCTIONS OVER FREQUENCIES PLOTrED 

Tuning Supremum Supremum 
parameter Om~x{E0(jto)} Omax{Ec(jto)} 

Case 1 ~ = 500 20.1627 8.0747 
Case 2 o ~ = 103 21.6324 5.4534 
Case 3 o2 = 104 55.7910 0.7910 

TABLE l(b).  COMPARISON OF FULL ORDER OBSERVER-BASED 
CONTROLLER VS FULL ORDER COMPENSATOR FOR THE SAME 

DEGREE OF RECOVERY 

Degree of  recovery 
sup Omax[Eo(jto)] - sup Omax[Ec(jto)] ~ 0.7910 for 10 -2 < 

to < ~  r ads  -~. 

Gain norm 
Eigenvalues 

Bandwidth 

Observer-based Full order 
controller compensator  

353.4295 84.8997 
-1.8664 -2.0603 

-370.9527 - 100.4328 
5170 rad/s  -1 1682 rad/s  -1 

60 
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FIG. 6(a). Singular values of  target loop and design loops. 
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FIG. 6(b). Phase responses of target loop and design loop 
with q2 = 3600. 

at o 2 = 3600. It takes a 02 of 250,000 to achieve 
the needed recovery. 

In what follows, for each example, we present 
the traditional maximum and minimum singular 
value graphs of the target and achieved loop 
transfer matrices. However, in view of the above 
discussion, the maximum singular value graphs 
of the mismatch function are also separately 
given. Also, a tabular column presents the 
supremum of the maximum singular value of the 
mismatch function with respect to to over the 
frequency range of interest. All of the above 
data relate to the comparison between the 
observer-based controller and our new compen- 
sator when both of them use the same value of 
gain. Another method of comparison is to give 
the value of gain, eigenvalues and bandwidth of 
both the observer-based controller and the 
compensator in order that both of them achieve 
the same degree of recovery as measured by the 
supremum of the maximum singular value of the 
correspondingly generated mismatch function. 
Another tabular column shows this information. 
Also, for a chosen supremum of maximum 
singular value, a graph shows the variation of 
maximum singular value of the observer-based 
controller and that of the compensator with 
respect to to over the frequency range of 
interest. From all these data, it is easy to see that 
the new compensator approach has better 
recovery properties than the conventional 
observer approach. 

Example 1 (Full order ALTRI). Consider the 
example in Doyle and Stein (1979) [and see 
Table 1 (a, b) and Fig. 7 (a, b)]. 
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FIG. 7(a). Frequency responses for all the cases given in Table l(a) .  

Plant: 

y = [2 llx. 

State feedback gain: 

F = [50 10l. 

Example 2 (Full order ALTRO). Consider the 
following example in Ridgely and Banda (1986) 
[and see Table 2 (a, b) and Fig. 8 (a, b)] 

-0.08527 -0.0001423 -0.9994 0.04142 0 0.1862q 
46.86 -2.757 0.3896 0 -124.3 128.6 | 

l 070 / 
= 1 0.0523 0 0 

0 0 0 -20 
0 0 0 0 -20 / 

TABLE 2(a). SUPREMUM OF MAXIMUM SINGULAR VALUES OF 
MISMATCH FUNCTIONS OVER FREQUENCIES PLOTrED 

Supremum Omax{Eo(jo))} Supremum Omax{Ec(jO))} 

471.9951 0.2398 

TABLE 2 ( b ) .  COMPARISON OF FULL ORDER OBSERVER-BASED 

CONTROLLER VS FULL ORDER COMPENSATOR FOR THE SAME 

DEGREE OF RECOVERY 

Degree of recovery 
sup Oma~[Eo(jo9)] -~ sup Omax[Ec(jOJ)] --~ 0.2398 for 10 -3 <: 

0 9 < ~  r a d s  -1. 

Observer-based Full order 
controller compensator  

Gain norm 3,1623 x 109 317.4681 
Eigenvalues - 158.15 - 104.69 

-19923 -51 .17  
-76736 +/76737 -52 .5  + ]89.62 
-9956  + j17244 - 2 6 . 8  4-/'42.71 

Bandwidth 4.78 x 10 TM r a d / s -  1 5288 rad/s  -1 
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FIG. 7(b). Maximum singular values of full order observer based controller and compensator given in Table 
l(b). 

i ooo 
B =  0 0 0 0 2 0 '  

° ° ° °  
C =  0 0 1 0 " 

For this example,  the observer  gain is given, 
instead of the state feedback gain, to meet  all 
the design specifications for the loop broken at 
the output of  plant. 

[ 4.20 - 1 8 . 1 7  - 9 . 9 2  - 1 . 1 9  0.0181 0.1149] T 

K =  L - l . 1 9  55.81 - 0 . 6 0  10.49 -0 .3330  0.3380J " 

Example 3 (reduced order  A L T R I ) .  Consider 
the example in Sogaard-Andersen (1987b) [and 
see Table 3 and Fig. 9] 

2 

- 1  

3 

A =  2 

0 

1 

- 2  

2 

0 

- 1  - 1  

2 0 

1 0 

1 0 

2 

3 

0 

- 1  

03×4].  

B =  0 

0 

0 

0 

C =  [/3 

0 1 

2 0 

2 - 1  

0 

3 

2 

1 

0-  

0 

0 

0 

0 

1 

O_ 

0 0 1 1- 

0 0 0 0 

0 0 - 2  1 

- 4  2 0 - 1  

0 - 2  1 - 1  

- 3  2 2 0 

0 0 - 1  1_ 

The state feedback gain is an LQ-design with 
weights Q = 17 and R = 10-3/3 . 

TABLE 3. SUPREMUM OF MAXIMUM SINGULAR VALUES OF 

MISMATCH FUNCTIONS OVER FREQUENCIES PLOTTED 

Tuning Supremum Supremum 
parameter O,nax{Eo(jto)} O'max{Ec(j to)} 

Case 1 a = 10 203.0387 19.9622 
Case 2 o = 100 136.1517 2.1660 
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FIG. 8(a). Frequency responses for the case given in Table 
2(a). 
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FIG. 8(b). Max imu m singular values of  full o rde r  observer  

based controller  and compensa to r  given in Table  2(b).  
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FIG. 9. Frequency responses for both the case given in Table 3(a). 

7. CONCLUSIONS 

The loop transfer recovery (LTR) methods 
using observer or Kalman filter-based controllers 
are streamlined and the theory of both full and 
reduced order observers is brought to the same 
framework. It is shown that either exact or 
approximate LTR can be accomplished iff 
M(jto) [or equivalently M,(jco) for the reduced 
order observers] either exactly or approximately 
zero for all to. The term M(s) [or Mr(s)] has a 
physical interpretation; it is the transfer function 
from the point where the input u of the plant is 
fed to the observer based controller to the 
output point - ~  of the controller. Also, the 
conditions for ELTR are presented directly in 
terms of the given system matrices A, B and C 
and the state feedback gain F. The methods of 
calculating the needed observer gain for both full 
and reduced order observer based controllers to 
achieve LTR are presented. The singular value 
bounds on the difference between the achieved 
and the target sensitivity and complementary 
sensitivity functions are developed when both 
full and reduced order observer based control- 
lers are used. The duality between the two cases 
when the design specifications reflect at the input 
or at the output point of the plant is discussed. 
One has to interpret this duality carefully. From 
the view point of design methodology, the two 

cases are completely dual and this duality holds 
for either full or reduced order observer-based 
controllers or in fact for any other controllers or 
compensators. 

A new compensator structure for loop transfer 
recovery either at the input or at the output 
point of the plant is proposed. It could be either 
full or reduced order type. The compensator is 
structurally different from the observer in the 
sense that no link from the input point of the 
plant to the controller is used. This omission of 
the link from the input point of the plant to the 
controller has a profound effect on all aspects of 
the loop transfer recovery. It results in an 
open-loop stable compensator. Also, the closed- 
loop stability can be guaranteed. More impor- 
tantly, the value of gain required for a given 
degree of LTR is orders of magnitude less than 
what is required in the conventional approach. 
Also, singular value bounds on sensitivity and 
complementary sensitivity functions illustrate 
that the proposed compensator has better 
recovery properties than the conventional 
observer based controller. These advantages 
reflect in various ways. First, the woes of 
saturation are either eliminated or at least 
dampened. The controller band-width is reduced 
and consequently the control signal to noise ratio 
at the input point of the plant is increased. All 
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these claims are theoretically obvious from our 
development. Also, numerical examples illus- 
trate the same. 

A fundamental assumption throughout this 
paper has been that the given plant is of 
minimum phase. We are presently in the process 
of developing compensators for nonminimum 
phase plants where obviously, the structures 
given in this paper will not work out since in 
general nonminimum phase plants might not be 
stabilizable by stable compensators. Hence we 
are looking at some other appropriate structures 
to deal with nonminimum phase systems. These 
results will be reported in a forthcoming paper. 
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APPENDIX A: PROOF OF THEOREM 1 AND 
CALCULATION OF GAIN K TO ACHIEVE ELTRI 

Under the conditions (2) and (3) of Theorem 1, a theorem 
of Sannuti and Saberi (1987) implies that there exist 
nonsingular transformations F~, F2 and F 3 such that 

X=Fl$,  y=F2[yj ,  yk]', u=F3t~ 

x = Ix ' ,  x~,, x ) ] ' ,  

YG = A~axa + Lo~y~ + Laly l, (A.1) 

xh = AbbXb + Lbf Yf' Ys = Csxb, 

kr = EaXa + EbXb + Erxr + a, yi = xr. 

Here, the pair (Abb, Cs) is observable. Furthermore, Z(Aaa) 
are the invariant zeros of the given plant and hence in view 
of condition (2) of Theorem 1, they are in the left half s 
plane, ~ - .  

Since (Abb, C~) is observable, one can select a gain Kbb 
such that Z(Abb -- KbbCs) are in the desired locations in ~ - .  
Also, one can always choose a gain K/r such that 3.(E 1-2_ K/f) 
are in the desired locations in ~¢-. Now choose a gain K as, 

[ L,~ Lay 

t( = Kbb Lbr l ,  
LKyb K/fJ  

(A.2) 

where K#, is an arbitrary matrix with appropriate 
dimensions. Finally let 

K = F1/~F2 ~. 

ALl such gains K with Kt~ arbitrary form the class of gains 
~e- Due to the special structure of matrices in (A.1) and in 
view of (A.2), it is straightforward to verify that A - KC has 
eigenvalues in ~ and that 

F(O -1 + KC)- lB  =-0 

whenever FB -= 0. Hence in view of Lemmas 1 and 2, ELTRI 
is achieved. 
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A P P E N D I X  B: P R O O F  OF L E M M A  6 

In the reduced order observer-based feedback control 
system of Fig. 4, at first we want to evaluate the loop transfer 
function Lo, (s )  when the loop is broken at the input point of 
the plant. For this purpose, consider the plant input u and 
the controller output ti as two separate variables. Then  from 
(2.15) to (2.17), 

"~2 = (A22 - KrA12)X2 + A21xl + Bra + Kr(Xl - A l x x O .  

Hence 

J'~2($) = ((I)221 + KrA12)-I[(A21 + Krf~ll l )Xl(S)  + Br~($)], 

- a (s )  = F1xl(s ) + Fz(cb221 + K,.AI2) - I  

x [(A2, + Krf l ) l l l )X l ($)  + Bra(S)]. 
Thus 

[Ira + F2(~22 l + Kr4 ,2 ) - IBr][F1x , ( s )  + Fz$z(S)] 

= F1xl(s ) + F2(~21 + K,A12)-1(A21 + Kr~ l la )x t ( s ) ,  

and therefore 

Lo,(s  ) = [ l ,  + m r ( s ) ] - ' [ F  1 + F2(.22 l + KrA12) -1 

(KrdP H' + A21)IP(s  ), (B.1) 
where 

Mr(s) = F2(dp~ + KrA12)-1Br.  

We will next simplify some expressions. Using (2.12), 

(K,O?I l + A 2 O P ( s  ) 

= ( K . ~ ? ;  + A = O ( ~ . B ,  + ~ .A~2H2(s ) )  

= K,B~ - B 2 + A 2 t ~ t B  ~ + B 2 + ( K ,  + A:a~IOA~2H2(s  ). 
(B.2) 

But from (2.14) 

A2~aPHB ~ + B 2 = (apE1 -AEldPHA12)H2(s) .  

Thus (B.2) and (B.3) imply that 

(K,@~-I 1 + A21)P(s)  = - B ,  + ( 0 2 ~  + ga412)H2(s) .  

(B.3) 

(B.4) 

Using (B.4) and (2.13), 

F2('22 l + K, .A,2)-I(K,~- ,  l + A 2 , ) P ( s )  

= -Fz(ap221 + K r A t 2 ) - ' B r  + FzH2(s) 

= L(s)  - F,e( s )  - Mr(s). 

Now in view of (B.1) and (B.5), 

Lo,(S ) = [I,, + M , ( s ) ] - ' [ L ( s )  - mr(s)] .  

Thus we have 

eo,(S) = L(s )  - Lo,(S) 

= [1,~ + m r ( s ) ] - ' [ ( l  m + M r ( s ) )L ( s  ) - L ( s )  + M,(s)] 

= [1 m + Mr(S)] - IM, ( s ) ( I , .  + L(S))  

= mr(s)[ l , ,  + Mr(s)] - ' (1 , ,  + L(s)) .  

(8 .5 )  

A P P E N D I X  C: P R O O F  OF T H E O R E M  3 

Without loss of generality, we will assume that the given 
plant is in the form of a special coordinate basis as in (A.1) 
(see Appendix A). Then partit ioning the state variable x o as 
Xb = [X~,l, X$,2]' with y~ =Xbl ,  we can write the matrices A, B 
and C characterizing (A.1) as 

Lb]a A b l l  Ab12 

A =  Lb12 Ab21 Ab22 

_ Laf L ~  0 A ~  

B =  I ] c:[ 'o  o 1,, .  0 
0 

(c.1) 

The triple (A ,  B,  C)  in (C.1) assumes that the condition 1 of 
Theorem 3 is true. Then  in view of (C.1), (2.9) and (2.10), 
we have 

Eb2 
A22=[A022 A O ] ,  A , 2 = L A b ,  2 Ea],  

Also, it can be easily seen that the pair (Ab22, Abl2) is 
observable (Saberi and Sannuti,  1988). Hence there exists a 
Kb2 such that ~.(A~,22 ) are in the desired locations in ~ -  
where A~22 = Ab22 -- Kb2Abl2.  Now consider a reduced order 
observer gain matrix K, as 

gb2 

where Ko~ is arbitrary. It is then simple to verify that A,,  

[ A;2  2 0 ] 
A r =  A 2 2 -  Krml2 = 

I - K a s A b l 2  Aa~ 

is a stable matrix provided that the given plant is of minimum 
phase, i.e. Re ~.(Aa~) < 0. Fur thermore,  we note that 

B r = B 2 - K r B  1 = O. 

This in view of (2.22) shows that ELTRI  is achieved. Also, 
we note that all gains K, as in (C.2) with K,~ arbitrary form 
the class of gains 2Ke r. 

A P P E N D I X  D: P R O O F  OF L E M M A  8 

From (2.19), we have 

Eor($ ) =-- F t ~ n  - Cor($)e(s  ) 

= Mr(s)(1 m + M r ( s ) ) - ' ( I  m + F O B ) ,  
and hence 

tm + Co,(S)e(s)  

= 1,,. + F O B  - Eo,(S ) 

= I m + Fcl)n  - Mr($)[l  m + Mr($ ) l - l ( lm  + FdPB) 

= [1 m + Mr(s )] - ' ( l , ,  , + F O B ) .  

Thus 

Sor(s ) : SF(S)[I m + Mr(s)]. (D.1) 

Then using singular value inequalities, we have for each i = 1 
to m, 

oi[So,(jo))] <- a , [ S r ( j c o ) l  + Omax[Sv(jw)MAjoOI, 

and thus 

a,[So,(jco)} - ai[Sr(jo~)] -< 
¢7max[Sy(j~)]Omax[gr(jO))]. (D.2) 

Now rewriting (D.1) as, 

s t ( s )  = Sot(S) - S,~(s)gr(s),  

we have for each i - 1 to m ,  

a, l S ~ ( j , o ) ]  - a, [Sor(J~o)]  <-- 
am,,[SF(j~o)]a,,ax[Mr(jO~)]. (D.3) 

Then in view of (D.2) and (D.3), we get 

Ioi[Sor(jto)] - o,[Sv(jto)]l _= amax[Mr(jt0)]. 
Omax[SF(jto)] 

Next in view of (D.1), 

ror(S ) = 1,,, - So,(S ) = r r ( s  ) - Se ( s )Mr(s  ). 

Now using singular value inequalities and proceeding as 
above, we get 

Ioi[Tor(JW)] - oI[TF(j~o)]J < Omax[Mr(jw)]" 
Oma~[S~(jo')] 
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A P P E N D I X  E: P R O O F  OF T H E O R E M  8 

From (3.8), we have 

E¢(s) =- F * B  - Cc(s)P(s) = M(s),  

and hence 

1,, + C~(s)e(s) =/ , ,  + F * B  - M(s)  

= (1,, - m(s)[l,,, + F*B]- '}[I , , ,  + F . B ] .  

Thus 

&(s) = S?(s){l,. - M(s)[l., + F . B ] - ' } - '  

= S~(s){I., + M(s)[lm + F * B  - M(s)] -~} 

= St(s)  + Sv(s)M(s)[lm + F O B  - m(s) ]  - t .  (E.1) 

Then using singular value inequalities, we have for each i = 1 
to m, 

a, IS~(j~o)] ___ o,[&(j~o)] 
+ o,~,,{SF(j~)M(jto)[l,,, + F* ( j o~ )B  - M( j~o ) ] - ' } ,  

or equivalently 

oiIS~(j~o)] - o,[S~(jw)] 
G..,~{SF(j~o)M(joO[1., + F * ( j c o ) B  - M ( j w ) ] - t } .  

(E.2) 

Now rewriting (E.1) as 

S~(s) = S:(s) - S¢(s)M(s)[lm + F * B  - M ( s ) ] - ' ,  

we have for each i = 1 to m, 

oilSF(jto ) ] <-- oiIS~(jto )] 

+ G~,,,{S~(jto)M(jw)[I,,, + F * ( j t o ) B  - M(jto)]-~},  

or equivalently 

tri[Se(jto)] - oi[Sc(jto)] 

<- Oma,,{SF(j~o)M(j~o)[I,, + F*(jco)B - M(jos)]-~}. (E.3) 

Combining (E.2) and (E.3), we get for each i = 1 to m, 

IodS~(j~)]  - oi[St.(jog)] I 

OrnaxlSF(jto)] 
<- Om~x[M(j~o)]om~,{[l ~ + F * ( j t o ) B  - g ( j t o ) ]  -~} 

< °max[M(jta)] 
o,.i.[l~ + F * ( j t o ) B  - M(jto)] 

< °max[M(J¢°)] 
Om,.[f*(i~0)n]- *realM(j*')]- 1 

<< o~,~[M(j~o)] for all ~o • D~. (E.4) 

The last step in (E.4) follows from (3.15). Next, in view of 
(E.1), 

T~(s) = 1,,, - S . ( s )  

= lm -- S v ( S )  - S / s ) M ( s ) [ 1 , , ,  + F * B  - M(s)l -~ 
= T v ( s )  - & ( s ) g ( s ) [ l , . ,  + F O B  - M(s)]-L 

Now using singular value inequalities and proceeding as 
above, we get 

Io,[T~(lW)] o,[TF(109)]I 
• ' - -  " << O~a,[M(j~o)] for all to • D~. 

Or..d&(j~0)] 

A P P E N D I X  F: P R O O F  OF L E M M A  10 

In the reduced order compensator-based feedback control 
system of Fig. 5, at first we want to evaluate the loop transfer 
function Lc,(s) when the loop is broken at the input point of 
the plant. For this purpose,  consider the plant input u and 
the controller output  ~ as two separate variables. Then in 
view of (4.1) to (4.3), 

= (A22 - K,(o)AIE)W +Az~x ~ + Kr(O)(k ~ - A n x t ) .  (F.1) 

Hence 

w(s) = (*;21 + Kr(O)A,z)-l(A21 + 
K,(o)O{11)P(s)u(s). (F.2) 

Thus in view of (F.2), 

- a ( s )  

= ~ x ~ ( s )  + FEw(s )  

= IF 1 + F2('221 + Kr(tT)A1E)-I(AE1 + gr(o)*l l l )]p(s)u(s) .  
(F.3) 

Now using (B.5), 

Lc.(s ) = L(s) - M,(s). (F.4) 
Hence 

L($) - Lcr(S ) = M.(s). 

A P P E N D I X  G: P R O O F  OF T H E O R E M  9 

We first note the following: 

s / " - A ' * - I : [ * I - ' I L - A E I  ~A)2 ]  ' 

and hence 

• ,[,L]=oo, 
where 

• a = F - A ~  2] 
L 022 ' 

Thus 

F * * , ,  = F 2. (G.I) 

Using Aar as in (4.5), we have the following series of 
reductions: 

det [s/z._p - Act,.] 

F * ;  1 + K,A,2 + KrB,F2 - A 2 ,  + KrBIF 1 --KrA12 ] 
= det | B , F  2 *x-11 + B , ~  - A , ~  1 

k BzF2 -A21 + B2F1 "21 .] 
~4~'1221"~ KrBIF 2 -A21 --[- KrBIF1 -KrA12 ] 

= d e t l - A , 2 + B , F 2  * ; , ' + B , F 1  -A~2 I 
L , ~ 1  + B2F2 -A21 + B2F1 *22 -] 

= det ] -A12 + B1F E *~tt + B'F1 -A12 l 
L(B2 - KrB1)F2 (B2 -- K, B1)F1 " 2  "1 + K,A,z J 
f . ; d  + B2F2 _A21 + B2F1 . ; 1  ] 

= det I --ATE + B , F  z *~t 1 + B1F , , - A t z  I 
L(BE - K,.B,)F2 (B2 - KrB,)F, *22 + K.A,21 

I- *" '  + B,p, -A,~+ B,F~ -~': -I 
= det | -A21 + BEE 1 *;21 + n2F2 * ;2  / 

L(B2- K, B1)F1 (B2 - K,B,)F2 "2~ + K,AI2.] 
• f * - I + B F  *,~ 

= oet [(BE- K, BI)F *;I  + K,&E] 

= det [,t,;~' + K, AI~] 
• det { ~ - a  + BF - * ~ ( ' 2 ~  + KrA12)-l(B2 - KrBOF} 

= det [(I~221 + grAl2 ] det [~-1]  

• det {1. + [ ~ B  - ~ . ( ~ 2 2  ~ + K,.A~2)-'(B 2 - K.BO]F)  

= det [*;~ + K,A,21 det [ * - q  

• det {1,~ + F ~ B  - F * * ~ ( ~ 2 1  + K,-,4~2) t(B2 - K ,  B O }  

(0.2)  
= det [~2d + K, A121 det [~ -1  l 

• det (1,., + F * B  - F2(*~- d + KrAI2)- ' (B2 - K.B, ) )  (G.3) 

= det [*Kd + K.a12] det [* - ' ]  det {1.. + F * B  - Mr(s)} .  

(G.4) 

We used (G.I) in order to get (G.3) from (G.2). Noting that 
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since K, e ~ , ,  M,(s) -~ 0 and hence 

det [slz, ,_p - Act. ] 
= det [~21 + K,A12] det  [~-1]  det {I,,, + F ~ B }  

= det [~21 + K,-At2] det  [@-l] det  {1,. + aPBF} 

= det [a,~ ~ + K, AI~I det [~ -1  + BF]. 

This proves the theorem. 

APPENDIX H: P R O O F  OF T H E O R E M  10 

Since K,(o) ~ ~o,(a) ,  M,(s) tends to zero point-wise in s as 

o-'-~ m. Then from (G.4), 

det [sl2,,_p - Acl,] 

= det [~21 + K,(o)Atz  ] det l ~ - l ]  det  (1,,, + FaPB - M.(s)} 

---, det [~221 + K,(o)A12] det [~-1]  

• det {1., + FePB} as Mr(s)---,O 

= det [~22 l + K,(o)a12] det [tb - t ]  det  {I. + ¢PBF} 

= det [~21 + Kr(o)A~2] det [~-~  + BF1. 

This proves the theorem. 


