TE2402 Linear Algebra & Numerical Methods

Mid-term Test

Name:	 Metric No:	

Instructions: Answer all the questions below in the space provided.

Q.1. Given a linear system $\mathbf{A} \mathbf{x} = \mathbf{b}$, state under what conditions, the system has: i) a unique solution; ii) multiple solutions; and iii) no solution.

Ans: Let $\widetilde{\mathbf{A}} = [\mathbf{A} \ \mathbf{b}]$, the augmented matrix of the linear system.

- i) the system has a unique solution if $rank(A) = rank(\widetilde{A}) = no.$ of unknowns.
- ii) the system has multiple solutions if $rank(A) = rank(\widetilde{A}) < no.$ of unknowns.
- iii) the system has no solution if rank(A) \neq rank(\widetilde{A}).
- **Q.2.** Let \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 be a set of vectors with the same length, and let c_1 , c_2 and c_3 be coefficients such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = 0$. What can you conclude about these coefficients i) if the vectors are linearly independent? and ii) if they are linearly dependent?

Ans:

- i) All the coefficients are zero; and
- ii) At least one of them is non-zero.
- Q.3. What are the two key properties that a vector space V should hold?

Ans:

- i) For any \mathbf{v}_1 and \mathbf{v}_2 in \mathbf{V} , $\mathbf{v}_1 + \mathbf{v}_2$ should be in \mathbf{V} .
- ii) For any scalar k and vector \mathbf{v} in \mathbf{V} , $k\mathbf{v}$ is also in \mathbf{V} .
- Q.4. What are the properties for a basis of a vector space V? Is the basis unique?

Ans:

- i) Vectors form a basis have to be linearly independent; and
- ii) They span the whole vector space.

Q.5. Is *rank* defined for only square matrices? Give the definitions of the row rank and column rank of an appropriate matrix.

Ans:

No. Rank is defined for any matrix. Row rank is defined as the number of linearly independent row vectors in a matrix. Column rank is defined as the number of linearly independent column vectors of the matrix.

Q.6. Given two square matrices **A** and **B** with the same dimension, are the following statements true or false?

i) det (AB) = det(A) det(B) = det(B) det(A); and ii) A B = B A.

Ans:

i) is true and ii) is false.

Q.7. Given an $n \ge n$ matrix **A**, is it possible that the following statements might all be true?

i) A is a singular matrix; ii) A has a rank of n - 2; iii) A has an eigenvalue equal to 0; and iv) A has an eigenvalue equal to 3.

Ans: Yes.

Q.8. Are the concepts of eigenvalues and eigenvectors applicable to square matrices? Give the formal definitions of the eigenvalues and eigenvectors.

Ans:

Yes. A scalar λ and a nonzero vector **v** are said to be respectively the eigenvalue and eigenvector of a given matrix A, if they satisfy $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$.

Q.9. If a matrix **S** satisfies $\mathbf{S} \mathbf{S}^{T} = \mathbf{I}$, is this matrix said to be a symmetric matrix or a skew-symmetric matrix or both or something else? What is the inverse of **S**?

Ans:

S is an orthogonal matrix. The inverse of S is equal to S^{T} .

Q.10. When are two matrices A and B said to be similar? How are their eigenvalues related?

Ans:

A and B said to be similar if there exists a nonsingular matrix T such that $A = T^{-1} B T$.

They have the same set of eigenvalues.