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Instructions:Instructions:Instructions:Instructions: Answer all the questions below in the space provided. 
 
Q.1. Given a linear system A x = b, state under what conditions, the system has: i) a unique 

solution; ii) multiple solutions; and iii) no solution. 

Ans: Let ]~ bA[A = , the augmented matrix of the linear system. 

 i) the system has a unique solution if rank(A) = rank( A~ ) = no. of unknowns. 
ii) the system has multiple solutions if rank(A) = rank( A~ ) < no. of unknowns. 
iii) the system has no solution if rank(A) ≠ rank( A~ ). 

 
 

Q.2. Let v1, v2 and v3 be a set of vectors with the same length, and let c1, c2 and c3 be coefficients 

such that 0332211 =++ vvv ccc . What can you conclude about these coefficients i) if the 

vectors are linearly independent? and ii) if they are linearly dependent? 

 Ans: 
 

i) All the coefficients are zero; and 

ii) At least one of them is non-zero. 

 
 
Q.3. What are the two key properties that a vector space V should hold? 

 Ans: 

i) For any v1 and v2 in V, v1 + v2 should be in V. 

ii) For any scalar k and vector v in V, kv is also in V. 

 

Q.4. What are the properties for a basis of a vector space V? Is the basis unique? 

 Ans: 

i) Vectors form a basis have to be linearly independent; and 

ii) They span the whole vector space. 
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Q.5. Is rank defined for only square matrices? Give the definitions of the row rank and column rank 

of an appropriate matrix. 

 Ans: 

 No. Rank is defined for any matrix. Row rank is defined as the number of linearly independent 

row vectors in a matrix. Column rank is defined as the number of linearly independent column 

vectors of the matrix. 

Q.6. Given two square matrices A and B with the same dimension, are the following statements 

true or false?  

i) det (AB) = det(A) det(B) = det(B) det(A);    and    ii) A B = B A. 

Ans: 

i) is true and ii) is false. 

Q.7. Given an n x n matrix A, is it possible that the following statements might all be true? 

i) A is a singular matrix; ii) A has a rank of n – 2; iii) A has an eigenvalue equal to 0; and iv) A 

has an eigenvalue equal to 3. 

Ans:  Yes. 

 

Q.8. Are the concepts of eigenvalues and eigenvectors applicable to square matrices? Give the 

formal definitions of the eigenvalues and eigenvectors. 

 Ans:  

Yes. A scalar λ and a nonzero vector v are said to be respectively the eigenvalue and 

eigenvector of a given matrix A, if they satisfy A v = λ v. 

Q.9. If a matrix S satisfies S ST = I, is this matrix said to be a symmetric matrix or a skew-symmetric 

matrix or both or something else? What is the inverse of S? 

 Ans: 

 S is an orthogonal matrix. The inverse of S is equal to ST. 

 

Q.10. When are two matrices A and B said to be similar? How are their eigenvalues related? 

 Ans:  

A and B said to be similar if there exists a nonsingular matrix T such that A = T −1 B T. 

They have the same set of eigenvalues. 
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