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Course Outlines
Part I Linear Algebra

Introduction to Matrices: Definitions of matrices, sub-matrices, square
matrices, lower and upper triangular matrices, diagonal matrices, identity

matrices, symmetric matrices, skew-symmetric matrices.
Matrix Operations: Matrix transpose, addition, multiplication.

Linear Systems: Definition, homogeneous systems, elementary row
operations, echelon form of a matrix, row echelon form, reduced row

echelon form.

Vector Algebra: Linear combination, Linear independence, vector space,
vector subspaces, dimension and basis of a vector space, null space,

determinant, inverse and rank of matrices. 5
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Course Outlines (cont.)

Eigenanalysis of Matrices: Eigenvalues and eigenvectors, characteristic

equation, matrix diagonalization, quadratic forms.
Introduction to a Software Package - MATLAB
Part Il: Numerical Methods

Introduction to Numerical Methods: Numerical errors, absolute and

relative errors, stability and convergence of numerical algorithms.

Computation of Zeros: Bisection method, false position method, Newton

method, secant method and fixed-point method.

Interpolation: Lagrangian polynomials, Newton’s divided difference

method, least square approximation.
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Course Outlines (cont.)

Numerical Integration: Newton-Cotes Method, trapezoidal rule, Simpson’s

1/3 rule and Simpson’s 3/8 rule.

Numerical Solutions to Ordinary Differential Equations: Taylor series

method, Euler method, Runge-Kutta method.

Numerical Solutions to Partial Differential Equations: Classification of 2nd

order quasilinear PDE, numerical solutions.

4
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Lab and Final Examination

There will be a lab session for every student. It is to learn how to use
MATLAB, which is capable of realizing all computations and
algorithms covered in this course. The lab sessions will be held in
CAD/CAM center. Students are required to submit their lab reports

right after the lab session.
There will be a final examination at the end of the semester.
Your final grade of this course will be awarded as follows:

Final Grade = Lab Report Marks (max.=10) + 90% of Exam Marks.

5
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Lectures

Lectures will follow closely (but not 100%) the materials in the lecture

notes.

However, certain parts of the lecture notes will not be covered and

examined and this will be made known during the classes.

Attendance is essential.

ASK any guestion at any time during the lecture.

6
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Tutorials

The tutorials will start on Week 4 of the semester.

Although you should make an effort to attempt each question before the

tutorial, it is NOT necessary to finish all the questions.

Some of the guestions are straightforward, but quite a few are difficult

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any gquestion related to the tutorials and the course.

Z
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Reference Textbooks

« E. Kreyszig, Advanced Engineering Mathematics, Any Ed., Wiley.

* B. A. Ayyub and R. H. McCuen, Numerical Methods for Engineers,
Prentice Hall, 1996.
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Linear Equations and Matrices

Linear equations arise frequently in the analysis, design, and
synthesis of engineering systems. It is these equations that
form the focus of our study in the first half of this course. The
objective is two folds. The students are exposed to
systematic methods and the associated algorithms for some
of the most widely computational tasks in linear algebra.
Also, the occurrence of these tasks in engineering systems is

observed via simple examples.

9
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Definitions:

The simplest type of a linear equation is given by

ax=>b

where a and b are given and known, and x is unknown variable to be
determined. This equation is linear as it contains only x and nothing else.

It is simple to see that the equation has:
(a) a unique solutionifat 0
(b) no solutionif a=0andb?! 0
(c) multiple solutions ifa=0and b=0

Example:

The relationship between the voltage and current of a resistor, | R=V.
10
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A simple generalization of the one-equation-one-unknown linear system is

the two-equations-two-unknowns linear system:
841X +85,% =Dy
8% tayX, =b,
where a,;, a,,, a,,, 85, b; and b, are known constants and x, and x, are

unknown variables to be solved. In general, a linear system with m

equations and n unknowns can be written as the following form:

Qq1X FapXy too-Fa X, =y
A X tapX to-tay X, = b,

A1 X T X% -t a X, =h

amlxl_l_amzxz+"'+amnxn :bm 11
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We can re-write this set of linear equations in a compact form, i.e., a matrix

form: ,

ed; dp v Gy u89<10 aé)lo

€ u

éa.Zl a-.22 . a2n , (;XZ - (;bZ -

e o u (; -l data

.é o GE, g
coefficient & A2 arjnn Uuéxh g bm 4] vector

matrix \ ~ —— v
. A
o \
AX=Db vector of unknowns

Matrix A has mrows and n columns. Such a matrix is called an m”~ n matrix.

Each of the numbers that constitute the matrix is called an element of A.

The element sitting on the i-th row and j-th column, or simply the (i, j)-th

element, is denoted by &;; 12
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A matrix with one column or one row is also called a vector. For example,

=* . isacolumn vector of length n

b = G _ Is a column vector of length m

c=|1 3 2 4] isarow vector of length 4

13
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Example: : |
451 257
A 9 > -
2T<> 3 l4
2 4

KCL at Node A: Iy - I3-15=0
In a matrix form:

KCL at Node B; - Iy +i5=0

él 0 -1 0 -1geéu &0

KVL to left loop: 4l +2i3=2 S0 1 0 -1 1u§.u €U
é uéza é

KVL to right upper loop: & 0O 2 0] Oué;u=é&20
o € Ué U éyl

41, - 21, +3i5 =0 é4 -2 0 0 Bl]é“l] gOu

KVL to right lower loop: g) 0 2 -4 - 3@@5@ @Q

2'3' 4|4' 3'5:0 14
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More Definitions
Sub-matrix: A sub-matrix of A is a matrix obtained from A by deleting some

selected rows and columns.

Example: Given a matrix & 2 3
A=% 5 ¢!
e u
e/ 8 9
a1l 2¢ 51 2 3 _
Alzgl g A, =< H are submatricesof A
& 3( & 8 9

Square matrix: An m” n A is called a square matrix if m=n.

Example: The above matrix A and A, are a square one while A, is not.

15
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Diagonal Elements: All those elements of a matrix A, &; with i =] are called

main diagonal elements.

E le:
xample a4 2 3 14
_é u
A= é4 6 20 Diagonal elements of A are 1, 5 and 9.
e/ 8 30

Lower and Upper Triangular Matrices: A matrix is called a lower triangular

matrix if all the elements above the main diagonal are zero. Similarly, a

matrix is called an upper triangular matrix if all the elements below the main

diagonal are zero.

& 0 0 O el 2 3 8g
_é ( - .
A=%4 50 0O Bg0597@
&7 8 9 0f 0 0 9 3g

ISan upper triangular matrix 16
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Diagonal Matrix: A matrix that is both a lower and an upper triangular is

called a diagonal matrix.

Examples: & 0 0 Oy & 0 0y
A=%0 5 0 oY B=50 b oY

& ( 3 (

g 0 9 0f &0 0 cf

Identity Matrix: An identity matrix that is a square diagonal matrix with all

its diagonal elements equal to 1. It is denoted by | .

Examples: ) . gl 0O O Oy
¢l 0 O 9 10 oY

=9 10 "% 0 1 o

u

0 1f - ,

¢ 0 1g © 0 0 1Y

17
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Transpose of a Matrix: Given an m”~ n matrix A, the n” m matrix obtained

by listing the i-th row of A as its i-th column for all i =1, 2, ¥4 m, is called the

transpose of A and is denoted by AT

Examples:

edy; &y 8 U ed; 8y 8y U
e u e u
A = éagl a?z a?” G AT = Aa?z a.zz Am2
0o G
e U e U
&n1  Gmo Amn U &in Anm U

él 4 7

g2 o & 5 gl

A=%4 5 6 2! AT =€ v

57 8 9 35 &S 6 S

E O s {
d 2 30 5
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Symmetric Matrix: A matrix A is said to be symmetric if A = A'. Note that

a symmetric matrix must be square.

Examples: &l 2 3|
A e A C‘
A=2 5 &l B=g i
< y e ba
6 9§

Skew-symmetric Matrix: A matrix A is said to be skew-symmetric if

A =- AT. Note that a skew-symmetric matrix must be square as well, and

all its diagonal elements must be equal to zero.

Examples:
S RN
83 -6 0f

19
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Matrix Operations:

Equality of Matrices: Two matrices A and B are equal if they have the same

size and are equal element by element, i.e., they are identical.

Addition of Matrices: Two matrices can be added only if they have the same

size. The sum of two matrices is performed by taking the sum of the

corresponding elements.

Example:
& 2 3 1y O 2 7 Ty 61 4 10 8
A=%4 5 6 2 B=% 1 1 5Y c=Ao+B=65 6 7 7
e u e u e u
& 8 9 3§ & 3 5 2 gl4 11 14 5§

20
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Scalar Multiplication: The product of a matrix A with a scalar C is a matrix

whose (i,j)-th element is C ;.-

Examples:

O 2 7 70 é0 10 35 35
_ & ( =€ y
A_gL 1 1 5(1 — 5A §5 5 5 25L:J
& 3 5 2§ 835 15 25 10f

0 0 0O Oy

A+G-DA=% 0 0o o

e u

&0 0 0 0Of

A + (- DA =0,azero matrix, istrue in genera for any matrix A.

21
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Some Properties of Matrix Additions and Scalar Multiplications:

1. Commutative law of addition: A + B=B + A

2. Associative law of addition: (A+B)+C= A+ (B+C)

3. A +0=A, where Ois a zero matrix with a same size as A has.
4. A+(-A)=0

5.C(A+B)=cA + cB, where cis a scalar
6.(c+d)A=cA +dA, where cand d are scalars
7.(A+B) =AT+ BT

8.(CA )" =cAT, where cis a scalar .
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Inner Product of Two Vectors: Given two vectors a and b with same length

of N, the inner product is defined as
a-b=ab +a,b, +---a b,

Multiplication of Matrices: Given an mx n matrix A and an n x p matrix B,

P,

Ao

am2

Cio

Co

& U éb.u b;, b, u

u 90 u

rs I b o by Y

a g=€7

U e : U

y s U

amnH g:)nl a0 anp O
CipU where
c n

|:11m, J::L’p ’
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Example:

/12\

O 27 70 2343
A:nglsg 3:256@
u

87 3 5 2f A (
@ & of

OX+2X3+7X5+7X7 0XR2+2X4+7>X6+ 7>
C=AB=S14+1:8+16+57 1R+14+16+58 !
B/ X+3X3+5X%+2%X/ 7X+3X4+5X6+2>3(
éO0 106
=4 52!
&5 72(
Note that B A is not defined for the above matrices. Thus, in general,
AB1BA

24
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Example:

g o g o
A:?l :.:ll’ B:?l 3
S8 2 & 20
5 6 7 60
AB =S qlBA=&  u
& 10 8 8]
Example:
_&0 a0 o _el 2u
80 20~ & 0f
ag=E Miga=g ™
D 0f D 0f

Note that the product of two matrices can be equal to a zero matrix even

though none of them is a zero matrix.
25
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Properties of Matrix Multiplication
1.(cA)B= A(cB)
2.A(BC)= (AB)C
3. A+B)C=AC+BC
4. C(A+B)=CA+CB

5.(AB) = BTAT

26
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Solutions to Linear Systems: Let us recall the following linear system,

edy; ap - ainU39(10 6@10

é u9
e : : . ug -
: 18x 5 é
&Am Anz 0 A Xn bmﬂ
—

~

AX=D
If data vector b = 0, then the above linear system, i.e., Ax = 0, is called

a homogeneous system. It is easy to see that X = Ois a solution to the
homogeneous system. Such a solution in fact is called a trivial solution.

Any non-zero solution of the homogeneous system is called a non-trivial

solution. 57
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Augmented Matrix of Linear System:

édy; a, - &, bu
e u
- ~a a - a b, "
A=[a pj=g™ T2 P g
e . u
é ¥
eaml Adno 0 App bmu

The above augmented matrix contains all information about the given system.

Example: Given a linear system

X, 0

é0277u(;+£o §'0277ll;|
&1 15“'82 -2 = A=gl 1 1 5 2
@73529§ &35 & 3 5 2 3§

X4ﬂ

28
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A Basic Approach for Solving a Linear System:

Step 1. Use the first equation to eliminate X, from all the other equations, i.e.,

make the coefficients of X, equal to O in all equations except the first one.

Step 2. In the resulting system, use the second equation to eliminate X, from

all equations that follow it, i.e., make the coefficients of X, equal to O in the

3rd, 4th, ... equations.

Similarly, carry out steps 3, 4, ..., and so on, each time eliminating one
variable from all the equations below the equation being used. At the end of

these steps, we will have: the 1st equation contains all unknowns; 2nd

equation contains X, X, ..., X,; and finally the last equation contains only X,.

Then, one can solve for X,, and then X, ,, and so on.
29
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Elementary Operations for Equations
There are three elementary operations:
1. Interchange of two equations
2. Multiplication of an equation by a non-zero constant
3. Addition of a multiple of one equation to another equation.

If any of these three operations is performed on a linear system, we obtain
a new system (and hence a new augmented matrix), but the overall
solution x does not change. If x is a solution to the linear system, then x is
also a solution to the linear system after any of these three operations is
performed. Thus, we may perform any of these operations in order to

compute the solution.

30
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Elementary Row Operations (ERO) for Augmented Matrix

Since each equation in linear system is represented by a row in the augmented
maitrix, corresponding to the elementary operations for equations, we have the

following three elementary row operations for the augmented matrix:
ERO 1. Interchange of two rows
ERO 2. Multiplication of a row by a non-zero constant
ERO 3. Addition of a multiple of one row to another row.

Two augmented matrices are said to be equivalent if one can be obtained from
another by a series of elementary row operations. It is clear that if two
augmented matrices are equivalent, then their corresponding linear systems
have the same solution. Thus, the basic idea to to use these EROs to simplify

the augmented matrix of a linear system in order to obtain its solution. a1
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Example: Let the linear system be

- Xt X, +2X3 =2 &1 1 2 20
X -X+tX;=6 =P K:gs -1 1 63
- X +3X, +4X3 =4 &1 3 4 4§

If the elementary row operation is to replace the 2nd row by 2nd row + 3~

1st row, then the augmented matrix is simplified to

N

&1 1 2 2§ &1 1 2 2§
€0 2 7 1Y b €0 2 7 12U
e u e u
&1 3 4 4f 3rdrow - 1st row 60 2 2 2f

&1 1 2

= €0 2 7 12%\;X1+(-1)+2-2=2D X =1
e
eo0 0 -5 -10g 2%, +7-2=12p X, =-1

v 32
X3 =2
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Leading Entry in a Vector:

The first non-zero element in a vector is called its leading entry. A vector

with all its elements equal to zero is said to have no leading entry.

Example: In the following matrix

&1 1 2 2
A=%0 2 7 12U
e u
80 0 0 0f

The first row has a leading entry equal to - 1. The 2nd row has a leading

entry equal to 2 and the last one has no leading entry.

33
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Echelon Form of a Matrix:

A matrix is said to be in an echelon form if it satisfies the following:

e If there is a row containing all zeros, then it is put below the non-zero

FOWS.

* The leading entry of a row is to the right of the leading entry of any

other row above it.

Example: Consider the following matrices

&1 1 2 20 &1 1 2 239 &© 1 2 20)

€02 7 124 €10 7 124 & o0 7 12U

5 0 0 -5 10L'J 5 0 0 -5 -10p go 0 -5 109I

8 -5 -10g 8 -5 -10g -9 -

\ ) _ j
v

in an echelon form not in an echelon form 34
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The variables corresponding to the leading entries are called leading
variables. All other variables are called free variables. Given the augmented
matrix of a linear system, we will use elementary row operations to reduce it

to its echelon form and then compute its solution.

Example: Consider the echelon form

&1 1 2 20
€0 2 7 12U
e u
80 0 -5 -10g

All the three variables are leading variables and the solution is x;= 2, x, =- 1,
and x, = 1. Note the solution is unique (since all the variables are leading
variables and there are no free variables).

35
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Example: Consider the echelon form

e u

g0 0 0 0Of
In this case, X, and x; are leading variables and x; is a free variable. The
solution is written as x; =1 and x, = — X, + 5. X, being a free variable can

take any value and all such values are admissible as solutions. Thus, in

this case we have an infinite number of solutions.

Example: Consider the echelon form

&l 1 7 12y
© 1 2 2
e u
@ 0 0 9§

In this case, x, and x, are leading variables and x; is a free variable. There
36
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Row Echelon Form of a Matrix

A matrix is said to be in a row echelon form if
e it is in an echelon form, and
* the leading entries are all equal to 1

Example: Consider the echelon form

el 0 7 12

01 2 4

e u

g0 0 -5 -10q

Dividing the last row by - 5, we get the row echelon form as

él 0 7 124
0 12 4
e u
O 0 1 2§

37
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Reduced Row Echelon Form of a Matrix
A matrix is said to be in a reduced row echelon form if
e itisin a row echelon form, and

» each column that contains a leading entry 1 has zeros everywhere else

except those coefficients of free variables.

Examples: Consider the row echelon forms

6l 0 7 1250 61 0 7 125 &L 0 0 -20 &b e 20
912 > 10 o>d 10 oldixo=f o
0 0 1 25 @01 25 @& 01 2§ &g & 24
el 1 7 12y 6l 1 0 -2y 2,0 o 2-ap
901 28 > o1 b i= a -
0 0 0 Of 0 0 0 Og 8)(3582 538
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Vector Algebra

Linear Combination of a Set of Vectors

Given a set of nvectors v, v,, ..., vV,, which have a same length of m, a linear

combination of these vectors is defined as the vector

V=CV,+CV, +:--+CV,

Here c,, C,, ..., C, are scalars.

Example: Consider a set of vectors Can we express the following vectors
- B s 4 "
=1y o gjo e
Vlz(; 2 V2:(;4+ U—gi, W_g- :
8' 1% 825 ((:;)7ﬂ 8 8y
as a linear combinations of v, and v,?
39
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For the first vector u to be a linear combination of v, and v,, we must have

Thus,

1 6o

- f O :
2o+, 2 20105
& 1g
which is a linear system. The augmented matrix is

61 6 9
A=¢2 4 2Up
e u
g1 2 74

¢2+=Cig

@ @ D> D

Uac .
1 24722 S5

.8 -16Yp
u

BOP P,

2-+0C,
& g

g2+= Cig

40
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For the second vector w to be a linear combination of v, and v,, we must have

ed0 =lo 80 él 6o = 40
Fli=cd 2i+e,s b €2 436?9:8- 1.

C 1&C, g -
&8y &l &2 gl 28 °° &8y

which is a linear system. The augmented matrix is

61 6 4y & 6 4y &1 6 4
A=€2 4 - 1Up & -8 -dUp & -8 -9u
e u e u e u
&1 2 8 @& 8 12 @& 0 3

Thus, w cannot be expressed as a linear combination of v, and v,.

41
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Linear Dependence

Consider a set of n vectorsv,, v, ..., v,,, which have a same length of m. They
are said to be linearly dependent if there exist n scalars, c,, c,, ..., ¢,, hot all
zeros such that

cv,tCcyVv,+---+CcVvV_=0
It is clear that c, = c, = ... = ¢, = 0 satisfy the above equation trivially. Thus, for
linear dependence, we require at least one of them to be non-zero. If say c;* 0,

then we can write v1:§ G 3/2+---+§@ G/ Q.
Cig Ci g
Linear Independence

Consider a set of n vectorsv,, v, ..., v,,, which have a same length of m. They

are said to be linearly independent if

C1V1+C2V2 +'°'+CnVn :O

has only a trivial solutionc,=c,=... =¢, =0. 42
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How to Check for Linear Dependence/Independence?

Let . . B

/11 0 ®/12 0 ®/1n 0

¢C - ¢ - ¢ -

v =GV ¢V y =GV

S 2R L A

gvml ﬁ Vm2 ﬁ gvmn @

Then
(;;36/11@ 12 O @0  éVyp Vi o Vg, 08@1@
- - - é L,J -
Vo1 + Voo = Von+, _aVaa Va2 0 VouocCo+
01V1+"'+CnVn:g : +C-I-+g : +(‘;2+....|.g :n+Cn:g- ) . :ngg:+zo

x a x 2 Qg =
gvmlﬂ ngzﬂ gvrm (1] gvml Vm2 ° VmUéCh g

which is an m”~ n homogeneous system and it has a trivial solution. If this
trivial solution is the only solution, then the given vectors are linearly

iIndependent. If there are non-trivial solutions, then the vectors are linearly

dependent. 43
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Example: Determine whether the vectors

® 10 20 F0
& 3p &ly  &ly
are linearly independent or not.
2l @S S0 1 S Wimo
8 Sﬂ 8 1ﬂ 81g e 3 -1 1@803@‘ 8013
The augmented matrix is
Isafreevariable
é 1 5 3 0Oy él 5 3 0Oy G
A=$2 62 0iP D 16 8 O €, = ¢, =-0.5¢;
e 3-1120g @ -16 -8 0g \ There are non-trivial
él 5 3 O@ él 0 05 O@ solutions. Hence, they
b % 105 0'p 9 1 05 o |
e u e u are linearly dependent.
g0 0 O 0f g0 0 0 0f 44
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Vector Space

Given a set of n vectors v, v,, ..., v, which have a same length of m, the

set \V containing v, v,, ..., v, and their linear combinations is said to form a

vector space.
The vectors v, v,, ..., v, are said to span the vector space V.

In essence a vector space is a collection of vectors that satisfy the following

two properties:
1. Addition: If u and w belong to V then so does u + w.

2. Scalar Multiplication: If u belongs to V, then so does k u for all

arbitrary scalars k.

It is clear that O is a vectorinall V (k=0).

45
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o 2806 oA

Example: Picture a vector space spanned by v, = (25 v, =2+ v, = 4=z v, +v,
&35 &1 &5

10

54
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Vector Subspace

A vector space W s said to be a vector subspace of a vector space V if all

the vectors in \W are also contained in V.

Example: Consider all possible solutions to the homogeneous system

Ax =0. If x, and x, are two solutions then so is x,+ x,, as
A(X+X,)=AX+ AX,=0+0=0

Similarly, if x is a solution, then so is k x. As a result, all the possible

solutions to Ax =0 constitute a vector space called the solution space.

It is standard notation to write A" to denote the real n-dimensional vector
space, that is, all the vectors of length n having real numbers as their
components. It is clear A or A! denotes the real numbers, A2 the 2-D plane

and A3 the 3-D space and in general A", the n-dimensional space.

Prepared by Ben M. Chen



Example: Let

e 16 & 20 aal§
=15 vy =¢ 85 vy=gos
8§05 &1 &y

Determine whether these vectors span A 2. In other words, determine if every
vector in A3, sayx =[ X, X, X;] T can be expressed as a linear combination

of v, v,, vyor not. Let

aelt) an('j alo e1-2 1uae$1089<
9 G G_ 9 ¢

& OQ & 1ﬂ 8495 el 1 4I803ﬂ 8X3ﬂ

The augmented matrix _ _
A solution exists

€ 1 -2 1 xo e -21 % u* and hence the
A=%1 32 xYp 9 13 x+x, \ A
u e u vectors span A 3,
e 0 1 4 X309 0 0 1 X3- X - X[ 48
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Dimension and Basis of a Vector Space

We have described a vector space as the set of vectors v, v,, ..., v, called
the spanning vectors and all their linear combinations. Therefore, any

arbitrary vector, say v, in V can be expressed as
V=CV;+:-+C V., TCV,

In addition, if v, v,, ..., v, are linearly dependent, we can simplify the above

equation as follows. If v, v,, ..., v, are linearly dependent, then we have
a, Vi te- +an-1vn-l +anvn =0

with at least one of the coefficients is non-zero. For simplicity, we leta ,* 0.
Then ~
v, =& 3/ Q c’v
8 ap ﬂ 8

and v = ?& Cndty Ov +. é% C”a”'la Qvn_lzb1v1+---+bn_1vn_1 49
nd

Prepared by Ben M. Chen



It is clear that the same vector space VV can now be expressed as vectors v,

.., V., and all their possible linear combinations.

Now, suppose v,, ..., vV, are again linearly dependent. Then we have
8V, +---+a, V., =0

with at least one of the coefficients is non-zero. For simplicity, we leta, ; * 0.

Then

_ea/ G, .., @d,/ §
Vn-l_g_ 1an_l%/1+ +8 Zan_lc;}/n-Z

9V1+"'+§Bn-2' D18, >

9\/_ :gv +...+g_v_
an-lﬂ n-2 1v1 n-2vn-2

— b, &y
V_gbl- 1 an-lﬂ
- 50
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Using the same approach, we can get rid of all those vectors in the description
of VV that are linearly dependent. In the end, we are left only linearly
independent vectors, say, v, V,, ..., V4, and now V can be expressed as v, ...,
v, and all their possible linear combinations. We cannot reduce this set any

more as it is impossible to find a non-zero scalar in the following equation:

CV,+---+Cyvy =0
Thus, we have that
1.v,, ..., vy are linearly independent, and
2.V, ..., VgSpan V.
Such vectors are said to constitute a basis for the vector space V. The number

d, the largest number of linearly independent vectors in V, is called the

dimension of V. Note that the basis is non-unique but d is fixed for a given V.
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Example: Determine a basis and the dimension of the solution space of the

following homogeneous system,
- X3 - Xo ¥2X3- 3%, +%X5=0
Ox; +0X, + X3+ X, + X5 =0

The augmented matrix is

62 2 -3 0 1 0y & 2 -3 0 1 0o
- €1 -1 2 -3 1 0¢ © 0 05 -3 15 oY
A =€ Uu = € u
&1 1 -2 0 -1 04 @0 0 0 -3 0 0
€0 0 1 1 1 of € 0 0 0 -2 Of

Thus, X, X,, X; and x, are leading variables and x;= x,= x;= 0. X, IS a free

variable. Let x,=a. Then we have x, = - x,=- aall possible vectors look like
52
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0 eead 10

?(1+ (;‘, - (!‘ -
¢%+ ¢ a+ ¢ 1+
x:gxgj:g O::ag 0"
¢X+ ¢ O+ ¢ 0+
&g & Oy & Og

Row Space of a Matrix

e 1o
¢ 1
¢ OTisabasisvectorandd =1.
C 0+

¢ o;

Given an m”~ n matrix A, the vector space spanned by the rows of A is

called the row space of A.

Example:

v b Row Spaceof A={c¢[1 5 3|+c,[2 6 2]}

={[c,+2c, 5c,+6c, 3, +2c,]} %
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Column Space of a Matrix

Given an m~ n matrix A, the vector space spanned by the columns of A is

called the column space of A.

Example:
el 5 3 I élu, éu. é3ul
A = g P ColumnSpaceof A=j Ca 1t Ca. gt Ca.0Y
& 6 24 R = Sy ug

Remarks: Row space is a set of row vectors and column space is a set of
column vectors. Thus, in general the row space and column space of a

given matrix is different.
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Null Space of a Matrix

Given an m~ n matrix A, the vector space consists of all possible solutions

of AX = Ois called the null space of A.

Example: Consider

9153Up’&_,
&62u &€ 6 2 0O €0 -4 -4 o4
e1530upé10-200

p A P X, =-X,& X =2X
€ 1 1 oH € 1 1 o S
X0 e 20 | @20 u
P x= g x3_—x38 1- P Null Spaceof A = :XSE 1_, x3|sfree_'>_’/
X g & 1y b & 15 b
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Theorem:;

The row elementary operations (EROs) do not change the row space and

null space of a given matrix. It might change the column space of a matrix.

Rank and Nullity of a Matrix

The maximum number of linearly independent vectors of a matrix A, which
Is also the dimension of the row space of A, is called the row rank or simply

the rank of A.
Theorem:

The dimension of the row space of A = rank of A = the number of non-zero
rows in the echelon form of A. In fact, the non-zero rows of the echelon
form of A form a basis of the row space of A.
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Example: Determine the rank and a basis of the row space of the matrix

(o)

61 6 9y &l 6 9 &1 6 9
A=%2 4 2Up © -8 -16Yp S 1 2Y
e u e u e u
g1 279 @ 8 165 & 0 0f

Than rank of A equal to 2. The row space of A are spanned by
v,=[1 6 9], v,=[0 1 2]
Procedure for Determining Basis and Dimension of a Vector Space V

Given a vector space spanned by a set of column vectors v, v,, ..., v,,
which are not necessarily linearly independent, the following procedure

can be used to obtain a basis for it as well as its dimension:

S7
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Arrange

?’119 89/129 89/1n9
v _GgVar+ v _GV2 =+ v _CVon
L ¢:® "2 ¢ 7 g+
leB VmZB ngnE

to form a matrix

7 T ~\ ye \
v U eV Vy Vi U
e rtu u
A =&V20_ @ Vo Vmz
eé:u é: ; U
& 0 @ (
éVn glln Von Vi U

Then, Dimension of V = dimension of row space of A = rank of A.
Basis vectors of V = transpose of non-zero rows in the echelon form of A.

If dimension of VV = n, then v, v,, ..., v, are linearly independent. s
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Example: Find the dimension and a set of basis vectors for the vector space

V spanned by

& Op & 1z & 1y
For a matrix
éd 1 -1 Oy él -1 O dl -1 O
A=%2 3 4p % 1 4Yp O 1 24
e u e u e u
-1 2 1j é0 1 1§ é0 0 0Of

The dimension of V is equal to 2 (the rank of A is equal 2) and it has a basis

e 10 880
a, :g- 1. a, :gl;

& 05 &lp o
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Suppose now a given vector space V is spanned by a set of row vectors

a1:(5‘11 dip alm)
a2:(6121 dpy ¢ a2m)

Anm )

Q

>
I

—

Q
=

QO
)
N

Form a matrix

U €dy; 8y YU
e u u
A=l dn B2 A
e:u é: U
e U é U
e, (] €un op Ayn U

Then, the vector space V = the row space of A.
Dimension of V = dimension of row space of A =rank of A.

Basis vectors of VV = non-zero rows in the echelon form of A. o
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Example: Find the dimension and a set of basis vectors for the vector space

V spanned by

a,=(1 2 0 -1
a,=(2 6 -3 -3
a;=(3 10 -6 -6
For a matrix
&l 2 0 -1y . €l 2 0 -1
A= 6 -3 -3 p © 2 -3 -1
e u e u
83 10 -6 - 6Q @ 0 0 0f

The dimension of V is equal to the rank of A, which is equal 2 and V has a
basis

uu=(1 2 0 -1

u,=(0 2 -3 -1

61
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Nullity of a Matrix
Nullity of a matrix A is defined as the dimension of the null space of A.

Example: Find the nullity of

¢l 2 0 -y é 2 0 -1
:gz 6-3-3“ - 2-3-13
g310-6-5g @ 0 0 Of

Clearly, x; and x, are free variables and

2X, =3X3 + X, P X, =1.5%; +0.5%,, X, =-2X, +X, =-3X3- X, + X, =- 3%,

89(19 (? - 3Xg 0 (? 306 ge Oo basis vectors
« = 6% _¢l. X3+05X4—_ « ¢l 5_+x 905 for null space

Qx TG X3 _ 3¢ 1 4c O

g B g X4 B g Oﬂ g 1@’ NU”lty: 2
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Theorem:

Numbers of linearly independent rows of A = numbers of linearly independent

columns of A. In other words, row rank of A = column rank of A = rank of A.
Theorem:
For an mx n matrix A,

rank (A) + nullity (A) =n or nullity (A) =n- rank (A)

Example: Consider the previous example,

&l 2 0 -1 el 2 0 -1y
A=% 6 -3 -3 p © 2 -3 -u
e u e u
83 10 -6 - 5§ g 0 0 Of

n =4, rank (A) = 2 and nullity (A) = 2. It is verified.
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Existence and Uniqueness of Solutions of Linear Systems

Consider a linear

a1 9 n ugxz—:gbzf
& : a7 G T
é ' 2 2
&m  m2 amnH *h @ gbmﬂ

ed;; 8 - U éa; ap - &, b
e u e u
~a a cor Ao o -~ za a a b, %
a=e T2 gy Rog® T2 By
e : ; " U e : ; U
é ¥ é ¥
eaml Anp a'an eaml Ano 7 A bmu

has the same rank. Thus, if the above two matrices has different ranks, no

solution exists for the given system. 64
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If the rank of A and the rank of the augmented matrix have the same rank,

say k, and if k = n, the number of unknowns, then the linear system has a

unique solution (exactly one solution).

If k < n, the given system has infinitely many solutions. In this case, k
unknowns (leading variables) can be determined in terms of n - kunknowns

(free variables) that can be assigned arbitrary values.
Homogeneous System

The homogeneous system is a special class of systems with b =0, or A x =0.
Let k=rank (A). Then the homogeneous system has a unique solution if and
only if k = n, the number of unknowns. The solution is given by x =0. If k < n,

the homogeneous system always has infinitely many solutions.

Note that for homogeneous system, n 3 k (always true).
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Example: Consider the following linear system
2X; + 2%, - %3 =1

- X - X, +2X3 =2

X+ X, - X3 =3

The coefficient and the augmented matrices are given by

&2 2 -3 62 2 -3 1
A=€1 -1 20 A=€1 -1 2 2
e u e u
8l 1 -1y 81 1 -1 34

Using the EROs, the echelon forms are obtained as

& 2 -3 & 2 -3

Pal

© o0 059, © 0 05 25U
e u e u
@O 0 OQ g) 0 0 Og
It is clear that above two matrices have the same rank of 2, which is less than

the number of unknowns. Hence, the system has infinitely many solutions, all

which can be obtained by choosing arbitrary values for free variable. .
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Example: Consider the following linear system
2X; 2%, - 3%3 =1

- X - X, +2X3 =2

X+ X5 - X3 =0

The coefficient and the augmented matrices are given by

&2 2 -3 62 2 -3 1
A=¢1 -1 2 A=€1 -1 2 2
e u e u
a8l 1 -1 81 1 -1 0g

Using the EROs, the echelon forms are obtained as

&€ 2 -31 & 2 -3 1y

Pal

© 0 059, € 0 05 25U
e u e u
&0 0O Oy & O O -3
It is clear that above two matrices have ranks of 2 and 3, respectively. Hence,

the system has no solution at all.
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Example: Consider the following linear system
2X; + 2%, - %3 =1

- Xyt X, +2X3=2

X;+ X% +X%X3=0

The coefficient and the augmented matrices are given by

62 2 -3 62 2 -3 1
A=€1 1 2u A=€211 2 U
e u e u
81l 1 14 81 1 1 0g

Using the EROs, the echelon forms are obtained as

& 2 -3y & 2 -3 1

0 2058 % 205 25

&0 O 25g @O 0 25 —05g
It is clear that above two matrices have the same rank = 3 = the number of
unknowns. Hence, the system has a unique solution, and the solution is given

by x,= —1.1,X,=1.3,x3= —0.2. 68
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Determinant of a Matrix

Given a square n X n matrix

€y

€.
Aaz 1

A=€"°
e :

é
eanl

dy5
(o)

\anz

a‘1n u

AonV M,, is the det
| of this submatrix.

ann

define M; as the determinant of an order (n- 1) (n- 1) matrix obtained from

A by deleting its i-th row and j-th column. The determinant of A is given by

det(A) =a,Cj; +8,,C, +---+&,C,

N

where Cj; = (- 1) M j is called the co-factor of a;and M is called the

minor of a;.
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Determinant of a 2 x 2 Matrix

Given a 2 x 2 matrix

é,, Al €dy; U
A=z P b det(A)=detg " Zr=anag - andy
&1 Ay 1 AxUu

Determinant of a 3 x 3 Matrix

€dy; a5, 83U

e
det éam Aoy Qo3 .= Qgayyazy T AyA3,813 T A318538

- Qq3A99d31 - Ap1Qypaz3 - A1Ay3as,

. 3, All products of red-lined (solid) carry a positive sign
3Q and those of blue-lined (dashed) carry a negative one.
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Example: Compute the determinant of

-1 1y

3 1
u

2 1

>
I
I(D) M-~

™ D>
= N =

Solution:
¢ 1 -1 1

det(A)=det®& 2 3 U
e u

e-1 2 1
=13x+ (- 2) A+ (- DHX- 1)- (-1)x8xL- 24 x- 1X-1) X- 2)

=-1
or
PR TE TN - C RV [T Y < S 1V IR U - o 1V
Rl(A) =14 DRty (- 2 DPherg T D
=(3- 2)+2(-1- 2)- (-1- 3) =-1
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Properties of Determinant

1.

2.

det (A) = det (AT)

If all the elements of a row (or a column) of A are multiplied

by a scalar k, then det. of the resulting matrix = k det(A).

. If two rows of A are interchanged, then the determinant of

the resulting matrix is - det(A).

. If two rows (or two columns) of A are equal, then det(A) = 0.
. For any n x n matrices A and B, det (AB) = det(A) det(B).

. For an upper or a lower triangular matrix or a diagonal matrix

determinant = product of the diagonal elements.

72
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Example: Verify that det(AB)=det(A) det(B) with

elZl,JBe56u
ATe 40 BTg

Solution:

o
C>C -

él

.
det(A) = detg, “=4- 6=-2, det(B) = det 1= 40- 42=-2
&8 4y

P B

8
b det(A)det(B) =4

600_ 619 22(
det(AB) = detig. “0° OW_ ot (=19" 50- 22" 43=4
§g 47 8y &3 500

Example:
& 10000 1000000Q & 1 0 0u
deteO 2 9999 Y= det§2345 2 03:1' 2" 3=6

@o 0 3 g §6789 987654321 3jj
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Inverse of a Matrix

For a n x n matrix A, if there exists a square matrix B such that
AB = |
then B is called the inverse of A and we write B = A1, If we let

B=[b, b, - by]

then we have

20 29 29
0- 1. 0-
Abl:g. . Ab2 :(;. . Abn :Q.
C.~ C.~ C.~
(; —_ g - Q -
e0g &0y elg

Note that we need to solve n linear systems. In fact, we can solve them

all together by defining a combined augmented matrix:

74
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éall dp) a, 1 0 - Ol:J
_ - 1 ... oY
A=l 1= B2 0 8 D1
€ - -u
8anl A G 0O 0 - 1H

Reduce the above augmented matrix to a reduced row echelon form,

él O --- 0 bll b12 blnl}
u
p 29 Lo 0 b by b?”ti:[l B]
@: : L : " : u
g) o - 1 bnl bn2 bnnH

Then, the inverse of the given matrix A is given by matrix B.

Note that in order for the inverse of A to be existent,

A must has a rank of n or determinant of A must be non-zero.
75
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Example: Find the inverse of

61 -1 1y
A=€2 3 U
e u
B-1 2 1§
Form an augmented matrix
&1 -111 0 O &l -
A=62 3101 08 p S
e u e
B-1 2 1 0 0 1§ &
& -1 1 1 0 0 &l
pgo 1 3 2 10Upgo
@ 0 -1 -1 -1 13 &
& -1 0 0 -1 1 & 0 0
b % 10 -1-2 ¥ p % 10
e U e U
@ 01 1 1 -1j @01 1 1-19,
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Eigenvalues and Eigenvectors of a Matrix

Given an square n X n matrix

éall dpo Ajn U
e u
A a A-p,
A=¢€ .21 .22 .2n u
e : U
2 U
&y Ay 0 AnU

consider the vector equation

Ax=lx b (A-11)x=0, xt0

where | is a scalar quantity. In other words, we seek all those values of |

and non-zero vectors of x such that the above equation is satisfied.

All those values of | that satisfy the above equation are called the eigen-

values of A and their corresponding vectors x are called eigenvectors. -
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Remarks:
1. Eigenvalues and eigenvectors are only defined for square matrices.

2. x = 0 is a trivial solution for the eigenvector. We will discard such a

solution. In other words, we seeks only those x that are non-zero.
3. If x Is eigenvector, thensoisy = kx as

(A-1 Dy=k(A-1 1)x=0
Hence, eigenvectors are non-unique.

4. Eigenvalues can be complex valued even for real valued matrices.

78
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Procedure for Determining Eigenvalues and Eigenvectors
Recall that the eigenvalues and eigenvectors are defined as the solutions to
(A-1 Dx=0

This is a homogeneous system with a coefficient matrix A -1 |. Recall that a

homogeneous system has a non-zero solution if and only if
rank of the coefficient matrix < number of unknowns = n

Hence, non-zero solution will exist for all those values of | for which
rank[A- | I]<n

This is equivalent to saying that non-zero solutions will exist for all those

values of | for which
c(l)=det[A-11]=0
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Characteristic Polynomial
c(l)=det[A- | I]

which is a n-th degree polynomial of | , is called the characteristic polynomial
of the matrix A. And then the eigenvalues of A are given by the roots of this
characteristic polynomial. Thus, we can compute the eigenvalues and eigen-

vectors of a given matrix A as follows:
Step 1: Compute the characteristic polynomial of A.

Step 2: Find all n roots for the polynomial obtained in Step 1 and label them

asl I, ... |

ne

Step 3: Find corresponding eigenvectors x,, X, ..., X, by solving the

homogeneous system
(A-1,1)x =0, i=12,---,n
80
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Example: Consider a 3 x 3 matrix

el 2 3y
A=% 5 6Y
e u
€ 6 3¢
Step 1: Find the characteristic polynomial
él- | 2 3 U
det(A-n):detgo 5-1 6 3:(1-|)[(5-|)2-36]
8 0 6 5-1¢

=1-1)-1-1)21-1)
Step 2: The eigenvalues arel ;=1,1,=-1,and | ;= 11.
Step 3: Compute the corresponding eigenvectors

81
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Forl , =1, we have

él-1 2 3 X0 €0 2 301 0
(A - Ill)xlzg 0 5-1 £x12T Q0 4 6u“gx12_ 0

g6 o0 6 5- 1@%X13ﬂ 0 6 498X13ﬂ

10 8o
P X gxlz_—goz, as x, isafree variable.

8X13ﬂ 8()@

Forl ,=- 1, we have

& 2 30@(216 &10
(A-1,1)x, 220 6 uugxzz_—o p xzzg 2:
0 6 6xXsp & 25

Forl ; =11, we have

¢10 2 330 aé-o
(A' I 3|)X3 _g O = 6 U(;X32—_O ID X 2_
Ok ~ ¢

e
e O - 69%)(33@ 822 82
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Further Properties of Eigenvalues and Eigenvectors
1. Eigenvalues of A and AT are the same.

_ T _ T Ty — T
Proof. det(A-1 I)=det(A-1 1) =det(A" -1 1 )=det(A -11)

2. If a matrix is real valued, then either all its eigenvalues are real or they

occur in complex conjugate pairs.

3. C(0) =det[A - 0] = det(A)

Also, let C(I ):(| 1" | )(| 5 - | )(| - | ) we have
c(O=>.1-0)2-0)-(l,-0)=14,-1,=det(A)

4. Thus, the inverse of A exists if and only if A has no zero eigenvalues.

5. Eigenvalues of an upper or lower diagonal matrix, or a diagonal matrix

are equal to the diagonal elements of the given matrix. o
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Summary of Some Useful Properties Square Matrices:

For an n x n square matrix A, the following statements are equivalent:
Ais non-singular.
The inverse of A exists.
det(A) is nonzero.
rank (A) = n
A has no eigenvalues at O.

The following statement are also equivalent:
A'is singular.
The inverse of A does not exist.
det(A) is zero.
rank (A) <n

A has at least one eigenvalue at 0.
84
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Eigenvalues and Eigenvectors of an Orthogonal Matrix

An orthogonal matrix is defined as a matrix, say A, which satisfies the property
A't=AT b AA'=AA'=]

Thus, for an orthogonal matrix
det(AAT) =det(A)det(A") =det(A)* =det()=1 P det(A) =+1
Theorem: The eigenvalues of an orthogonal matrix have a absolute value

equal to 1.

Example: Verify the following matrix is orthogonal

é0 0 1y é | 0 10
_é U — At € U
&1 0 0f &1 0 -l

— 2 3 — — 85
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Symmetric Matrices
If A is a symmetric matrix, i.e, A = AT, then
1. All its eigenvalues are real, and

2. Its eigenvectors are real valued and are orthogonal to each other, i.e.,
X' X; =0, it ]
Proof. Let | and x be the eigenvalue and eigenvector of A, i.e.,
Ax=Ix b x'A"T=(AX)"'=(Ix)"=1"x" b x'A'x=x"Ax=1"x"x
—p Ax=Ix b x'Ax=Il x'x P Ix'x=I"x"x
—» | =1 b Hencel isred

86
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To show that the eigenvectors are orthogonal, we let

— — 1
AX; =1 Ay =1 1T
Thus, l
xi A =1 x'
and
X0 AX. =1 xI'x. P X'| x. =1.x'x.

Hence, they are orthogonal.
87
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Norm of a Vector

The norm of a vector is defined as

1

5 6, ug?

e, u.

M= e K€
€0

. 2 2 2
=+ o+ x,)

It is clear that norm is non-zero if the vector is non-zero.

Normalization of Eigenvectors

We normalize the eigenvectors by dividing their respective norms. Suppose

X1, X5, ... and X, are the eigenvectors of a symmetric matrix, the normalized

eigenvectors are given by

_ X X

, e, €=

G P lel=1,
n
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Let us define an eigenvector matrix for a symmetric matrix

P=le, & - &

It is simple to see that ?elTU

eeTU

Tp — T a8y
PTP=[e, e, - e e - en]—g:t,iel e, e

é 0

en

éje ee - eel é 0 - 00

S T T U @ Ul

%- . ° ° l:J é; . ° El:l

T T .U & (

£, €,6 - e.el 3) 0 10

Hence P ' =PT|[x|=x"x P g’ =le| P e e =]e| =1
89
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Example: Consider the following symmetric matrix

4 0 2
A=%0 3 o
e u
& 0 44
Its characteristic polynomial is
é4- | 0 2
det(A - | I):detg 0 3-1 O 3:36- 36| +11 2

g8 2 0 4-14¢
The roots of this characteristic polynomial are
1,=3 1,=6, [5=2

and their corresponding eigenvectors are
@9 aég e 19
Xq = gl_, X, = 80_, X5 = g 0.

;&5 6%

3
- |

90
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The norms of these eigenvectors are
=1 %[ =2, |x =2

Thus, the normalized eigenvectors are

a@o 8&/\50 2 120
el—gl ezzg 0 5 e3=g¢ 0+
0 @2y &

The eigenvector matrix

@ YV2 120
P=gl O 0;
D 12 -1-2
and it is simple to verify that
€@ 142 1206 0 1 oy él 0 O
PPT =21 O “?J/ﬁ 0 J/\FU go 1 ou

g0 12 1/&551/& 0 -U\2§ @ 0 1g @
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Skew-Symmetric Matrix

The eigenvalues of a skew-symmetric matrix A, i.e., A=— AT, is purely

Imaginary or zero, i.e., they are sitting on the imaginary axis.
The proof of the above result is similar to that for symmetric matrices.

Example: Consider the following skew-symmetric matrix
é¢ O 18 - 24
A=%18 0 40¢
e u

g8 24 -40 0

The roots of the characteristic polynomial are

(@)}

1,=0, 1,=50i, |,=-50i

They are either 0 or purely imaginary, as expected.
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Similarity of Matrices

Two matrices A and B are said to be similar if there exists a matrix S such

that B = STAS. Of course, S* much exist for the quantities to be defined.
Theorem:

A and B have the same eigenvalues.

Proof. Given A x =1 x, we define an new vectory=S'x b x =Sy to get
ASy=1Sy b (S'ASy=By=ly

Hence | is also an eigenvalue of B.

Note that this result can be used to find a matrix S for a given matrix A
such that its similarity or the transformed matrix B is a diagonal matrix.

Such a technique is very useful in solving some complicated problems.
93
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Diagonalization of a Matrix
Theorem:

Consider a n x n square matrix A has distinct eigenvalues. Let P be its

eigenvector matrix. Then we have D = P*AP is a diagonal matrix.

Proof. Letl ;, 1 ,, ... 1 , be the eigenvalues of A. Thus
AXl :l 1X1, I:) AX2 :I 2X2, Tty AXn :l an
or in a matrix form
A[Xl Xy v Xn]:[llxl I2X2 Inxn]
\ Y J él o ... Og\
€ 1, - oY b AP=PD
=[x, %, - xpJ€ u>D 9
€: : u p D=P AP
e
Y 0 O lnHJ

I € o4
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Example: Diagonalize the following symmetric matrix

We have computed its normalized eigenvector matrix in the previous example
© Nz Y2
P=%1 0 og
12 - 1/~2§

¢))

e

It is simple to verify that

6 0 1 Oued 0 2060 142 1420
D=P!AP=P'AP= %l/ﬁ 0 J/\Fueo 3 Ouel 0 ou
g2 0 - Y248 0 4930 Y2 J/ﬁa

800y R
_éo 5 Ol" which isadiagona matrix with itsdiagonal

e U’ elements being the eigenvaluesof A.

0 0 24 %
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Example: Diagonalize the following non-symmetric matrix

O 0 -5
A=% o
e u
8l 0 6y

It has three eigenvalues atl ,= 0,1 ,= 1,1 ;=5 and corresponding eigenvectors

200 &8 90 & 30 @ -5 3
X,=¢ln X,=¢ 45 X,=¢ 05 b P=31 4 0;
Oy  &lz &35 O -1 -3
It is tedious to compute that
1 ¢l2 18 12y €@ 0 Ou 4, 0 Ou
a1_ 41 é U 1ap — € u_ée u_
g1 0 -5¢ €0 0 59 80 0 1.4

96
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Quadratic Forms

Quadratic forms arise in many system analysis techniques. We study in the
next the behavior of quadratic forms in term of eigen-distribution of an

associated matrix.
A quadratic form of two variables x; and x, is
— 2 2
Q(X1,X) = axy +bx;X; +CX;
A quadratic form of three variables x;, X, and x; is
— 2 2 2
Q(Xy, %y, Xg) =ax, +bx; + x5 +dx X, +exX; + X, X,

A quadratic form of n variables x, x,, ..., X, is

Q(Xgs X550 +5 %)

[
1L Qo5
T Qo5

D
X
X

97
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A quadratic form can be expressed in terms of a matrix form

n n
QX Xp, -+, X)) = a a ;% X,

i=1j=1
€y, Qo A, UexXpu
é ué, U
o1 Ay Un - aX2 ¢

S P |
e . ue:- u
) ué, U
eanl an2 annugxnu

=x'AX
In general, one can can choose A such that it is a symmetric matrix. For
example, forn = 2,
éa b20éx0
83/2 oy 2H
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Forn=3,
Q(Xy, Xp, X3) = aXF +bX5 +Cx5 + dX; X, + €X X3 + X, Xs
é a d/2 e/Zgaele
=(X, X X gd/z b f/Zngz%
ge2 /2 ¢ f&xsp
Example: Given

Q(Xq, %o, X3) = X{ + X5 +3X5 + 6X, X, + 4% Xg - 10X, X

express it as a x"TAx with A being symmetric.

&6l 3 2
A=63 1 -gU
e u
& -5 3§

99
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Definitions: A quadratic form Q(x) = x"TAx is said to be
1. positive definite if Q(x) > Ofor all values of x except for x = 0.
The corresponding A is also said to be positive definite.
2. positive semi-definite if Q(x) 2 O for all values of x.
The corresponding A is also said to be positive semi-definite.
3. negative semi-definite if Q(x) [] O for all values of x.
The corresponding A is also said to be negative semi-definite.
4. negative definite if Q(x) < Ofor all values of x except for x = 0.
The corresponding A is also said to be negative definite.
5. indefinite if Q(x) > 0for some x and Q(x) < O for some other x.

The corresponding A is also said to be indefinite. 100
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Diagonal Quadratic Forms

Quadratic form Q(x) = x'Dx is said to be a diagonal quadratic form if D is a

diagonal matrix.

Q(%y, g, s %y) =X DX

édll O

€0 d
:[Xl X2 Xn] ? . -22

=

€0 O
— d11)(12 +d22X§ +"'+dnnX§

It is clear that the eigenvalues of D are d,;, d,,,

o O
e s e e e e
> (D> (D~
il
NN ONONCy

> (D> (D
%P @

o
-
=

.,and d,.

101
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How to Determine the Definiteness of a Diagonal Quadratic Form?
A guadratic form Q(x) = x'Dx with D being a diagonal matrix is
1. positive definite if and only if all the eigenvalues of D are positive.

2. positive semi-definite if and only if all the eigenvalues of D are

non-negative.

3. negative semi-definite if and only if all the eigenvalues of D are

non-positive.
4. negative definite if and only if all the eigenvalues of D are negative.

5. indefinite if and only if some eigenvalues of D are positive and

some are negative.

102
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Diagonalization of a General Quadratic Form

Given a quadratic form Q(x) = xTAx with A being a symmetric matrix, we
have shown that A has all real eigenvalues and eigenvectors. For an

normalized eigenvector matrix P, then P'=PT and D = PTAP is a diagonal

matrix.

We define a new variable y = PT x or equivalently x=Py

Q(X, %o+, %) =X Ax = (y 'PT)A(Py) =y ' (P'AP)y =y Dy = Q(y)

éd11 o - 0 uéyiu

€0 d, --- 0Ug U

P QLY Y=y Yo o val€. 2. 08P
ei i Pl

80 o - dnnHSynH

_ 2 2 2
=dpyp +dyys +---+d, Y,
103
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How to Determine the Definiteness of a General Quadratic Form?
A quadratic form Q(x) = xTAx with A being a symmetric matrix is
1. positive definite if and only if all the eigenvalues of A are positive.

2. positive semi-definite if and only if all the eigenvalues of A are

non-negative.

3. negative semi-definite if and only if all the eigenvalues of A are

non-positive.
4. negative definite if and only if all the eigenvalues of A are negative.

5. indefinite if and only if some eigenvalues of A are positive and

some are negative.

104
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Example: Show whether the following quadratic form is positive semi-definite

(X, X,) = X2 + 2% X, + X5
11 722 1 1772 2

We rewrite P
10
QX %) =X +2X% + % = (X %) a u% 5
i - 81 1geXo g
and obtain the matrix
1\ | 1 N
A=S ﬂ b det(A-11)= detgl g:|(2_|)
8" 1U e 1 1- I U

e /2/26 28/2/26

Pp 1,=0 1,=2 el:é-ﬁ/zé ez—gﬁ/zg

é [/2 x/7/2U
P P= a
& /2/2 f/zu
o )
Lety =PTx,we have Q(y;,Y,) =(y; yZ)Q) §?1§—2y230105
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Example: Show that the following quadratic is indefinite
Q(X) = X{ - X5 - 4% X, +4X,Xs

It can be written as

1 -2 Ouaao

e
Q) =(x X, X g 2 0 24 (}X2:
e 0 1@8)(3@
The eigenvalues and eigenvectors of matrix A are given by
£/3o 2= 130 e 2/30
1120, e, =¢V3L 1,=-3 e,=¢-2/3, 1,=3 e,=¢ 2/3.
£2/35 & 235 & V3g

Lety =PT x, we have

é0

2 16
QW) =(y; 2 Y3)20 - 3 Oggy ~=-3y? +3y2, indefinite!

&0

0 3&Ysg
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Part 2: Numerical M ethods

ISSUES IN NUMERICAL ANALYSIS
« WHAT IS NUMERICAL ANALYSIS?

— It is a way to do highly complicated mathematics problems on a

computer.

— Itis also known as a technique widely used by scientists and

engineers to solve their problems.

« TWO ISSUES OF NUMERICAL ANALYSIS:
— How to compute? This corresponds to algorithmic aspects;

— How accurate is it? That corresponds to error analysis aspects.
1
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ADVANTAGES OF NUMERICAL ANALYSIS:

— It can obtain numerical answers of the problems that have no

“analytic” solution.

— It does NOT need special substitutions and integrations by
parts. It needs only the basic mathematical operations:

addition, subtraction, multiplication and division, plus making

some comparisons.

IMPORTANT NOTES:
— Numerical analysis solution is always numerical.
— Results from numerical analysis is an approximation.

2
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NUMERICAL ERRORS

When we get into the real world from an ideal world and finite to

infinite, errors arise.
— SOURCES OF ERRORS:
« Mathematical problems involving quantities of infinite precision.

 Numerical methods bridge the precision gap by putting errors

under firm control.

« Computer can only handle quantities of finite precision.

3
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— TYPES OF ERRORS:

* Truncation error (finite speed and time) - An example:

s X" X x2 x30 o x"
eX:a :@1+_+ :+a
pg(X)+a

n4nl

» Round-off error (finite word length): All computing devices represent
numbers with some imprecision, except for integers.
« Human errors: (a) Mathematical equation/model. (b) Computing

tools/machines. (c) Error in original data. (d) Propagated error.

4
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— MEASURE OF ERRORS:
Let a be a scalar to be computed and let a be its approximation.
Then, we define

« Absolute error = | true value — approximated value |.

e:‘a-g‘

true value - approximated value
true value

e Relative error = ‘

a-a
a

e =

5
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Absolute Error and Accuracy in Decimal Places

no. of accurate 5 4 3 2 1 0
decimal places

absolute
error

10°° 10°° 10™% 1073 1072 101

Relative Error and Accuracy in Significant Digits

no. of accurate 6 5 4 3 2 1
significant digits

| R W |
(A

relative
error
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Example: Let the true value of p be 3.1415926535898 and its approximation
be 3.14 as usual. Compute the absolute error and relative error of such an

approximation.

The absolute error:

e=|p-p|=|31415926535898- 3.14|=0.0015926535898

which implies that the approximation is accurate up to 2 decimal places.

The relative error:

_0.0015926535898

= = 0.000506957382897
3.1415926535898

which implies that the approximation has a accuracy of 3 significant figures.

Z
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« STABILITY AND CONVERGENCE

— STABILITY in numerical analysis refers to the trend of error change

iterative scheme. It is related to the concept of convergence.

It is stable if initial errors or small errors at any time remain small
when iteration progresses. It is unstable if initial errors or small errors

at any time get larger and larger, or eventually get unbounded.

— CONVERGENCE: There are two different meanings of convergence

In numerical analysis:

a. If the discretized interval is getting finer and finer after dicretizing the

continuous problems, the solution is convergent to the true solution.

b. For an iterative scheme, convergence means the iteration will get

closer to the true solution when it progresses. g
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Solutions to Nonlinear Equations (Computing Zeros)

Problem: Given a function f (X), which normally is nonlinear, the

problem of “computing zeros” means to find all possible points, say

such that
f(X)=f(X)=..=1(X,)=0
However, it is often that we are required to find a single point )?O in certain

interval, say [a,b] such that

9
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General strategy Is to design an iterative process of the form
Xn+1 = g(xn)
with some starting point x,. So that the numerical solution as

X, ® X, as n® ¥

Thus, instead of finding the exact solution, we find an approximation.

We focus on the following methods for this subject:
Bisection Method + False Position Method + Newton Method +

Secant Method + Fixed Point Method + Your Own Method

10
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BISECTION METHOD

Given a function f (x) in [a, b] satisfying f (a) f (b)<O, find a zero of f (x) in [a, b].

f(x)>0 f(b)>0

f(a.)<0

StepO: Let X, :=a; X,:=b; n=1

+
Step 1: Cut the interval in the middle, i.e., find x := 2 . %

X IEX X=X It 1(x,)T(x)<0

Step 2: Define | =~ o :

1% =X %=X if f(x)F(x,) <0

Step 3: If x, is close enough to X, stop. Otherwise, ni=n+1 & go to Step 1.
11
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Advantages:

1. It is guaranteed to work if f (X) is continuous in [a, b] and a zero

actually exists.

2. A specific accuracy of iterations is known in advance. Few other

root-finding methods share this advantage.

Disadvantages:

a. It requires the values of a and b.
b. The convergence of interval halving is very slow.

c. Multiple zeros between a and b can cause problem.

12
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Example: Let f(x)=x*-1 Find its zero in [0, 1.5]

Of course, we know f (x) has a root at X, =1. Let us find it using the

Bisection Method:

Step O: X, =0, X,=15 n=1

Step 1: X = O+21'5 =0.75

Step 2 (%) f (%) = (1.52 - 1)0.75? - 1)=- 0.546875< 0
b X, = 0.752+ 1.5 _ 1195

_0.75+1.125

b X =09375 b x,=1.03125

13
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FALSE POSITION METHOD

The graph used in this method is shown in the following figure.

f (b)

LA

P
.
"
.
.

.
-----
lllll

e
R
®
e
‘n

f (a) f (Xl)

The key idea is to approximate the curve by a straight line within the
interval and identify a “false” position x,, which of course may not be a
true solution. We can keep repeating this procedure to get approximations

of the solution, x,, X3, .... Mathematically,

b- X
X — X, - (Xn)’ X =a 14

f(b)- f(x)
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Advantage:

Convergence is faster than bisection method.

Disadvantages:
1. It requires a and b.
2. The convergence is generally slow.
3. Itis only applicable to f (X) of certain fixed curvature in [a, b].

4. It cannot handle multiple zeros.

15
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Example: f(x)=x*- 1, Find its root in [0,1.5]

X, = X, - b - a f(a)
f(b)- f(a)
—0. —+°°0 (- 1) = 0.6667
1.25 - (- 1)
b - X,
X, = X, - f(x
2 OIS (X1)
= 0.6667 - 1.5- 0666 (- 0.5556 )
1.25 - (- 0.5556 )
= 0.9231
b- x,
X, = X, - f (X
T Ty T
= 0.9231 - 1.5- 0.9231 (- 0.1479 )
1.25 - (- 0.1479 )
= 0.9841

X ® 1 as n ® ¥ 16
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Newton Method

Assume that f'(x) exists and nonzero at x, for all n.

Zero-finding: The linear approximation based on one point (x;, y,) only is
given by
y =y +(X- %) ()

We look for a point x for which y = 0. As such we have the following iteration:

~T(x) ;

_ -x)f'(%)=0 P X, =
yn+1 yn + (Xn'"l Xn) (Xn) O Xn+l Xn f ' (Xn) Prepared by Ben M. Chen



Advantages:
1. Starting point x, can be arbitrary.

2. The convergence is faster than the previous two methods.

Disadvantages:
1. It needs f'(X).

2. The divergence may occur.

18
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Example: Find zero of f(X) = X? - 1in[0,1.5] using Newton’s Method

f(x) -1 1 ,,
f'(X)=2xP X, =X - =X - = +1
1
Starting with any initial X, = > 01 (0.1 +1) =5.05
point, say x,= 0.1, we X, = — 1 (5.05° +1) = 2.624
2" 5.05
have X, = —~__(2.6247 +1) = 15006
2 2.624
X, = — - (150067 +1) =1.084
2" 1.5026
1

=~ (1.084% +1) =1.003
%S 2’ 1.084( )

Agan, X, ® 1 asn® ¥ 19
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Secant Method

Secant Method is a modified version of Newton’s method in which f'(x.)

IS approximated by

FOG) - T(%0)

f*(x,) =

Xh-1
Substituting this into the iteration scheme of Newton’s method, we obtain

X K
F(x,)- T(x,,)

Xosp = Xn1 = F(X,.0)

 Advantage: 1) Convergence is fast and 2) it does dot need derivative.

« Disadvantage: The method may falil.

20
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Fixed Point Method

Start from f (x) =0 and derive a relation

X =g(x)

Example: Compute zero for f (x) with f (x) =e* - 4- 2x or find x such that

e“-4-2x=0
P x=2(e- 4)=g(9) @
b € =4+2x b x=In(4+2x)=9(Xx) (2)

The fixed-point method is simply given by

Xn+1 = g(xn)

Q: Does it work? Does it converge? A: Maybe yes and maybe not. o1
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Q: When does it converge?

A: Convergence Theorem

Consider a function f (x) and suppose it has a zero on the interval [a, b].

Also, consider the iteration scheme
X1 = 9(X;)
derived using fixed-point method. Then this scheme converges, i.e,
X ® X as n® ¥
if the following condition are satisfied:

(1)
(2) Start any initial point X,1 [a,b].

g'(x)| <1 for all X1 [a,Db]. g(x) is also said to be contraction in [a, b].

Remark: If the above conditions are not satisfied, the iteration scheme might

still converge as the above theorem only gives sufficient conditions. ”
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Example: Compute zeros of f (x)=e* - 4- 2X

Scheme 1: Scheme 2:
X:g(x):%(ex_ 4) X =g(x) =In(4+2x)

1 X — In(4+2Xn)1 X>-2
Xn+1 - _(exn - 4) 2

’ 9=,
9'(x) = —-e” X

g'(x)| <L xI (-¥,-3

with |g' (x)|<1 for - ¥ < x <0693 .
g'(x) <1, xI (-1¥)

Let us choose X, =-2,

Letx, =0, P
b x = %(e‘ 2. 4)=-19323 x, =1.3863 X, =1.9129,
1 Xy = 2.0574, x, =2.0937,
X, = E(e- 1992 4) =- 19276 X, =2.1026, x, =2.1048
X; = - 19273, X, = - 19272, X, =2.1053 X =2.1054,

X = - 19272 X =2.1054

23
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Applications: Compute \/5 . (Actual value = 1.73205)

Solution: Let x=+/3 b x*=3 b f(x)=x*-3=0

The problemistransformed to a problem of finding zero (or root) for
f(X)In[0,¥).

We use Newton’s Method with x,=1.

P =2x X, = (¢ +3) =175
_ f(%) _,  X3-3 2%
Xn+1_Xn'm_Xn' 2x. 1,
. " Xq :2—(x2 +3) =1.73214
= = (2 +3) &
2X,

X, :zi(xg +3) =1.73205

X = (G +3) =2 %
2% (good enough ) 24
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SUMMARY
e Bisection Method
Condition: Continuous function f (x) in [a, b] satisfying f (a) f (b) <O.
Convergence: Slow but sure. Lineatr.
» False position method
Condition: Continuous function f (x) in [a, b] satisfying f (a) f (b) <O.
Convergence: Slow (linear).
 Newton Method
Condition: Existence of nonzero f'(x)
Convergence: Fast (quadratic).
 Secant Method
Condition: Existence of nonzero f (X..,) —f (X))
Convergence: Fast (quadratic).
* Fixed-point Method
Condition: Contraction of g(x).
Convergence: Varying with the nature of g(x). -
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Interpolation

Problem: Given a set of measured data, say n+ 1 pairs,

(X0 Yo)» (X0 Y1)y - (X0 Y)
the problem of interpolation is to find a function f (x) such that

f(x)=y, 1=0,1...,n

x: Is called nodes;
f(x) is said to interpolate the data and is called interpolation function.
f(x) is said to approximate g(X) if the data are from a function g(x).

It is called interpolate (or extrapolate) if f(x) gives values within (or

outside) [X,, X,].
26
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A simple choice for f (X) is a polynomial of degree n:
f(X)=p,(X) =g, +ax+ax* +..+ax"

The existence and uniqueness have been verified. There is only one
polynomial existing for the interpolation.

LAGRANGIAN POLYNOMIALS
(a) Fitting Two Points

Fit the linear polynomial for two given points (X, Y,) and (X, Y,)-

y,  Pu(X)= I—o(X) Yo + Li(X)Y;

0 . @X- X0

7 X. Xom X g &% %z
P p(X) =Yy R(X)=Y .,
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(b) Fitting Three Points

Fit the quadratic polynomial for three given points.

Y1
Yo Y P p(%) =Y
/\ (%) = Y,
X, X, X, P.(X,) = Y,

00 X)X %) 8 20 (K %) 82X )X %) 8
0 R 0 200 x5 E0e- )0 X5 &0, %)0g X) 5
= L (9% + LOOY, L (0Y,

1L x=x 10, x=% 10, x=%
LO)=10 x=%  LO)={l x=x  L()={0 x=x
10, x=x, 10, x=x, 11, x=x

28
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(c) Fitting n+1 Points

Lagrangian polynomial for fitting n + 1 given points

(%0 Yo) s (Xs Y1)y s (X Y-

IS given by
P00 =8 Loy, =8 2y
k=0 kO k( )
where
— 1 - - - e oo - -
(9 = 70 X)X %) %)+ (- %)
1L, X=X
HZig w=x, jik

29
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NEWTON'S DIVIDED DIFFERENCE METHOD

The following two disadvantages of Lagrangian polynomial method lead

us to develop a new method for the interpolation. They are:
(1) it involves more arithmetic operations; and

(2) we essentially need to start over the computation if we desire to

add or subtract a point from the set of data.
The Basic Idea of Divided Difference:

Consider the n-th-degree polynomial written in a special way:

P.(X) =a,+(X- Xp)a + (X- X)(X- X)a, +...
+(X- %) (X- X)..(X- X,.,)a,.

The key idea is to find a,, ..., a, so that P, interpolates the given data:

(XO’ fo)1 (Xl’ fl)’ S (Xn’ fn) 30
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Define the first order divided difference between two notes x, and x,, as

f .
FIxoxal = = 10 = flXa ]

+1 i

the second order divided difference as
Xan Xl = 11X Xl _ 12
|
X2~ X
and the higher order divided differences as
1= D6 Xeml = D60 Xl
|
Kiem = K

as well as zero-th order divided difference:

f [Xl ’ Xi+1’ Xi+2] -

f[xl y Xis1r " K

f[x]=f = fi[O]

31
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Divided Difference Table:

)ﬁ fi f[Xi1)§+1] f[Xi’Xi+1’Xi+2] f[Xi,)(i+1,)(i+2,Xi+3]
S i’ s

X 1 fl[l] ¢ 2 fo i 0[4]
X fz f [1] 1[2] f1[3]

2
X3 f3 f [1] f2
X, f, 3
Example:
X f 1st Order  2nd Order  3rd Order  4th Order
32 220  gan0 -
2.7 17.8 5118 ' - 0.5280
10 142 6'342 2.012 ) ones 0.2560
4.8 38.3 | 2.263 '
16.750 32

5.6 51.7
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Idea: If

P (X) =a, +(X- X)) + (X~ %)(X- X)a, +...
(X X)(X= %) (X X A,

IS an interpolation of the given data:

(%, To)s (X0, 1), oo (X5, 1),

then we have
Pn()ﬁ) - fi; | =0,L---,n
Thus
P(%) = 8+ (X Xo)ay ¥ F (X = %) -++(X- X,1)a, =8, = fo = f”

fl' fo — f[1]
— o
X = Xo

P.(X) =ag +(X - Xp)ag = fo+ (X, - Xp)ay=1F, P a=

In general, we can show that | g, = fo[k], k=12--,n
33
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Thus, given a set of data:
(%o To) (%, 1),y (X0 1),

their n-th degree polynomial interpolation is given by

P.(X) = fg” +(x= %) g™ + (X )(X- %) fg™ ++--
+ (X %)(X= %) (X X, ) FL7,

The advantage of the above method is that there is no need to start all
over again if their additional pairs of data are added. We simply need to

compute additional divided differences.

Since n-th order polynomial interpolation of a given (n + 1) pairs of data

IS unique, thus the above polynomial and Lagrangian polynomial are

exactly the same.
34
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Example: Interpolate the following set of data

X f 1st Order  2nd Order  3rd Order  4th Order
3.2 22.0 8.400

2.856
1.0 142 6.342 2.012 00865 0.2560
4.8 38.3 16. 250 2.263 '
5.6 517 '

Interpolate from X, to X

P(X) =22.0+8.400(x- 3.2) + 2.856(x - 3.2)(x- 2.7)
- 0.528(x- 3.2)(x- 2.7)(x- 1.0
Interpolate from x, to X;:
P,(X) = P,(X) +0.256(X - 3.2)(x- 2.7)(x- 1.0)(x- 4.8)

35
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Evenly Spaced Data

The problem of interpolation from tabulated data is considerably simplified if
the values of the function are given at evenly spaced intervals of the

independent variable.

Difference Table:

Assume that the given set of data is evenly spaced, i.e.,
Xum % =N
(a) The first order differences of the functions are defined as:
Dfo = fl' 1:o al X,
D, :fi+1' 1:i al XI 37
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(b) The second order differences of the functions are given by:

O’f, = D(Df,) = Df, - Df, &t x,
D’f, = D(Df,) =Df, - Df,  atx,

D' f, = D(D,) = Df,,, - Df, at x;

(c) The n-th order differences of the functions are given by:

O'f =D0"f,, - O''f

38
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Newton Forward Method for Evenly Spaced Data:

Given a set of measured data

(X01 fO)! (X1’ f1)1 i (Xm 1:n),

in which X, - X% = h, then the Newton forward interpolation polynomial is

given by
P(X) = T+ %Dfo+§%ffo+ +&1,
@ 2¢ Ng
where
X% 280 _ s(s- 1)---(s- k+1) (=12 n

h B X ’

and D f, is the k-th order difference of the given data.

39
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Example: Interpolate the following set of data using Newton Forward Method

X f 1st Order  2nd Order  3rd Order  4th Order
0.2 0.203 ' 0.024

0220 pom 0.020
04 Q423 1261 | 0044
06 oeaa AL 0.085 -
0.8 1.030 8':5)’3(75 0.181 %ggg ............ 0.211
10 1557 0.488 |
12 2572 L1015

Assume that we only want to interpolate from 0.4 (X,) to 1.0 (Xy):

e o o
P,(X) = 0.423+0.261¢ 2+0.085¢ 2+ 0.096¢ =
%] Zﬂ Bg

- 0.4

=bx-
0.2 %o
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Least Squares Approximation
Least Squares Linear Fitting: If we are given a set of data points,

(x,y) 1=1L2,...n

can we use a line to fit these data points? The answer is positive.
If the line is expressed as
Yy =38, taX
where a; and a, are the two best values to be determined. Obviously, the

error € of each point ()(I : yl) with respectto y = a, + a, x will be

§=Yi- ylx:xi:yi - (89 +3yX;)

The least squares criterion requires that

S=g+&+.+e2=8 =8 (V- ax- a)°

.. i=1 i=1
be a minimum.
42
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At a minimum for S, the two derivatives S/fa, and S/fa, will both be

i=1

Zero.

1S _d _

—=a 2(y; - ayX - ay)(- x;) =0, a1ax +aoa.X| aXY.
fa, i=1 =1 i=1
ﬂS _ g o _ o
—=a 2(y;- a,x;- a,)(-1) =0 aaXt+tan=aqYy,

ﬂao i=1 =

Thus, a; and a, can be obtained so that the data points are linearly fitted.

In fact, we can write the above equations into a linear system:

éd 0 & d 0
ga:. (x;) .1(X Saea ngia:_lyiz
o4 () & (JEuS S uy
gll gizl 9

for solve it for a; and a,.
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Least Squares Polynomials:

Instead of matching the data in every node, the least square method is trying

to fit n pairs of data by a polynomial of a pre-determined degree, say m,

m
_ 2 - j
j=0

We define the fitting errors

5 5 , s® g @
e=VY-aax S=a&=aw-aax:
i=0 i=1 i:18 j=0 [7,]

In order to achieve minimal error S(least square error), all the partial

ﬂ%ao’ﬂsﬂai""’ﬂ%am

must equal to 0. Writing the equations for these given m+ 1 equations:
44
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S o . & g 0
—=9 2&y,-a ax (-)=0
T, g ANYS
s & & ¢ 0
—=a 2y -aaxi-x)=0
Ta, =5 8 j=0 J o

0 e n 0
1S :é_ 2%y, - éajxiji('xim)zo

G
ﬂam i=1 8 j=0

S

Or solving the following system

2n Sx  SX

¢Sx  Sx  SX
°Sx? oS¢ s

¢
¢

for ay, a,, ..., a,

0 o . O
gn+tagx +t--+taqadx =4V

Q o - Q ma1_ 2
A Xtag X t-raaAdx =d XY
> Q .2 2 3. Q . m2 _ 8 2
da X tag x +t—-+taadx “aXV

Q n 2 n+1 2 2m | Q m
Ha X tag X +tota,dx =d XY

/

88XIm lem+l S)gm+2 SXiZm : amg @SX.mY.Q

lem+2 -:gaz = eSXI Yilu
T 8 U
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Example:

To demonstrate how the method is used, we would fit a quadratic to the

following data:

x: 005 011 015 031 046 052 0.7/0 0.74 082 098 117
y.: 0956 0.890 0.832 0.717 0.5/1 0.539 0.378 0.3/0 0.306 0.242 0.104

These data are actually a perturbation of the relation
y=1- x+0.2x°

Obviously we have
Sx =6.01 Sx° =4.6545 Sx’ =41150 Sx* =39161
n=11 Sy =59050 Sxy, =21839 Sx’y =1.3357

Thus the equation system to be solved is:

46
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11.0000a, + 6.0100a, + 4.6545a, = 5.9050 a, =0.998
6.0100a, + 4.6545a, + 4.1150a, = 2.1839 a, =-1.018
4.6545a, + 4.1150a, + 3.9161a, = 1.3357 a, = 0.225

The above linear system can be solved using methods given in Part | of

of this course or using MATLAB software package.

Thus, the least square quadratic fit is given by

y = 0.998- 1.018x+ 0.225x"

Compare thisto y=1- x+0.2x*. We do not expect to reproduce the
coefficients exactly because of the error in the data. Figure of next page

shows a plot of the data and its fitting-curve.

a7
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Numerical Integration

Given a function f (x) and an interval, say [a, b], we want to find an algorithm

to approximate o

Of (0dx @
a
Newton-Cotes Integration Method
Using Newton-Gregory Forward Polynomial
R00= fo 5Dl + XS DD g+

to interpolate (approximate) f (x) in [a, b], i.e.,

6f (x)dx @C}n(x)dx

49
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NEWTON-COTES INTEGRATION

Although the analytical procedure could be used to find out the expression
of integrals, a large number of integrals do not have solutions in closed
form. Numerical integration applies regardless of the complexity of the

integrand or the existence of a closed form for the integral.

General Consideration:
A very simple method used in the numerical integration is the Newton-
Cotes forward polynomial, particularly the polynomial of degrees 1, 2 and 3;

l.e:

61‘ (x)dx @6Dn(xs)dx

50
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Let us now develop our three important Newton-Cotes formulas.

During the integration, we will need to change the variable of

Integration from x to s, since our polynomials are expressed in terms of

S. Observe that

s=X"% O dx=hxds P

h

Forn=1, we have
X1 R \1

c‘) f (X)dx @Q (f,+sDf,)dx = hg f, +sDf,)ds
0

—ehf s+ hDX,

:2[2f0+(f1- =2 (fo+ )

<

X=X,
)
s=2"% 0
h
X=X =X +h
)
X, +h- X _1
h

ol
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For n=2, we have

(5 f (x)dx @Qgero + SDF, +¥D2fogax

2 _ .
:h@éef0+sto+S(S 1)D2f0(—:)ds
X=X, =X +2h &
0 e s ' 2Ol
] = ghf,s+ hDf —+hD2f0—-—:u
@ Ty
=h& f, +2Df, + S 7 1,2
& 3 g
h
=— (fy+4f,+1,)
3

& 3h
For n =3, we have Q3f(x)dx @g(fo+3f1+3f2+ f3)
0

52
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The Trapezoidal Rule for Integration

Given f (x) and an interval [a, b]

f ;
f fl 2t : : : X
a:XoT X1 X2 XI T Xi+1 Xn—lTXn =b
h f0+ fl h fi + fi+1 h fn—1+ fn
2 2 E
Thus,
b
\f(X)dX@1f0+f1+hfl+f2+ +hfi+fi+1+._.+hfn-1 fn
Q 2 2 2
=ty 426,42, 40426, 4 1,)

53
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The Simpson’s % Rule for Integration

Given f (x) and an interval [a, b]

h
Newton-Cotes: §(f0 +4f, + 1,)

Thus,

Qbf (X)dx @g(fo A+ )+ (f , +4f  + 1)

h

:g(fo+4f1+2f2+4f3+2f4+---+2f

2 +4fn-1+ fn)
54
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The Simpson’s % Rule for Integration b- a

Given f (x) and an interval [a, b]

Newton-Cotes: %h(f0+3f1+3f2+ f3) """"" 3_8h(f”'3 3tz #3%h 0t f”)
Thus,
Qbf(x)dx @:%h(fo +3f, +31, + f3)+"'+3—8h(fn-3+3fn-2+3fn-1+ fo)
:%(fo +3f +3f,+2f,+3f, +..+2f ;+3f , +3f +f )
55
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Example: Evaluate

\2 2 2 . 2-1
QX cosxdx, f(Xx)=x"cosx with h:?: [a,b] =[1,2]

o |

True value:

2 2 . . 2 ; 2
@xz cosxdx = szd snx= (x2 sin x) [ - Ginx’ 2xdx = 2.7957 +2(yd cosx

2
=2.7957 + 2XCOSX | - 2(yposxdx =0.0505- 2sinx = -0.0851
Trapezoidal Rule:

2
L2 cosxdx=1[0.5403+ 2" 0535242 0.4182+2° 0.1592- 2° 0.2659- 2 0.8723- 1.6646]
Q 2
= - 0.0979

Simpson % Rule:

Qbf(x)dx:g[f0+4f1+2f2+4f3+2f4+4f5+ fe]

- 1_18[0.5403 +4705352+2 0.4182+4 0.1592- 2° 0.2659- 4" 0.8723- 1.6646]

=-0.08507
56
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Simpson’s g rule:

b
Qf (x)dx:3—8h[f0+3f1+3f2 +2f,+3f, +3f; + f(]

= %[0.5403 +3" 0.5352 +3" 0.4182 +2" 0.1592

- 37 0.2659 - 3" 0.8723 - 1.6646]
= -0.08502

1

Simpson’s 3 rule gives the best result!

. 3 .
In general, Simpson’s 3 rule would give the best results.

S7
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NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS

If the equation contains derivatives of an n-th order, it is said to be an n-th
order differential equation. For example, a second-order equation describing
the oscillation of a weight acted upon by a spring, with resistance motion

proportional to the square of the velocity, might be

48530 +0.6x=0

dt adt g
where x is the displacement and t is time.

The solution to a differential equation is the function that satisfies the
differential equation and that also satisfies certain initial conditions on the
function. The analytical methods are limited to a certain special forms of the

equations. Elementary courses normally treat only linear equations with

constant coefficients. 58
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Numerical methods have no such limitations to only standard forms. We
obtain the solution as a tabulation of the values of the function at various
values of the independent variable, however, and not as a functional

relationship.

Our procedure will be to explore several methods of solving first-order
equations, and then to show how these same methods can be applied to
systems of simultaneous first-order equations and to higher-order

differential equations. We will use the following form

dy _ _
& f (X’ Y), y(XO) = Yo

for our typical first-order equation.

59
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THE TAYLOR-SERIES MENTOD

The Taylor-series method serves as an introduction to the other techniques
we will study although it not strictly a numerical method. Consider the

example problem

XY YO)=-1x%=0

(This particularly simple example is chosen to illustrate the method so that

you can really check the computational work. The analytical solution,
y(X)=-3e"- 2x+2

Is obtained immediately by application of standard methods and will be

compared with our numerical results to show the error at any step.)

60
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Taylor Series Expansion:
We develop the relation between y and x by finding the coefficients of the

Taylor series expanded at x,

y' (%) 2, Y (%)
X - +

o X %) 3

If we let x—x,=h, we can write the series as

V(%) 2, Y 0%) o
2! 3

y(X) = Y(0%) + Y (%)(X- %) + (X- X)3 4

y(X) = Y(%) +y'(x)h+
Iterative Procedure:
Since y(xy) is our initial condition, the first term is known from the initial
condition y(x,) =—1. We get the coefficient of the second term by
substituting x=0, y =—1 in the equation for the first derivative

yox) =Y = 2x- Y|, -2 y(x) =20 - (D=1

X=X, 61
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Similarly, we have

d 5 d
y& x) = _@9—

dx &dx g  dx

(- 2x-y)=-2- y&x) P y&x)=-3

P y&x)=3 P y(x)=-3

We then write our series solution for y, letting x= h be the value at which

we wish to determine y:

y(h) =-1+1.0h- 1.5h* +0.5h° - 0.125h* + error term

Here shown is a case whose function is so simple that the derivatives of
different orders can be obtained easily. However, the differentiation of

f(x,y) could be very messy, say, those of x/(y—x?).
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EULER METHOD

As shown previously, the Taylor-series method may be awkward to apply if
the derivatives becomes complicated and in this case the error is difficult to
determine. In fact, we may only need a few terms of the Taylor series
expansion for good accuracy if we make h small enough. The Euler
method follows this idea to the extreme for first-order differential equations:

it uses only the first two terms of the Taylor series!

lterative Procedure:

Suppose that we have chosen h small enough that we may truncate after

the first-derivative term. Then
, (z
Y06+ 1) = y06) + )+ 2

where we have written the usual form of the error term for the truncated

Taylor-series.
63
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The Euler Method Iterative Scheme is given by

1ye= (X, ¥) Yo = Y(X)

|
T Yo = Y, Hhxy¢

Example: Using Euler Method with h =0.1, find solution to the following o.d.e.

d
d—y_f(X,Y):-ZX- y, Y0 =-1x=0
X
— ' \I,yrq::_zxn_ym y0:'11 XOZO
’:\yn+1 = Ya +O'1><' 2Xn - yn):O.9yn - 02Xn
Y1 =03y, - 02%, =-09 (- 0.9145)

y, =09y,- 02" 01=-083 (- 0.8562)
Yy, =09y,- 02" 02=-0787 (-0.8225)
y,=09y,- 02" 03=-0.7683 (- 0.8110)

-

() are true
>=

-

values
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Example (cont.): Let us choose h = 0.001

\l,yn =-2%-" Yy Yo=-1 x=0
I Lyt = Yo +0.0015- 2x, - y,)=0.999y, - 0.002x,

y, =0.999(- 1) - 0=-0.999 (- 0.999002 )
y, =0.999(- 0.999) - 0.002" 0.001 = - 0.998003 (- 0.998006)

Quite accurate, right? What is the price we pay for accuracy? Consider
y(10), for h=0.1, we need to compute it in 100 steps. For h=0.001, we

will have to calculate it in 10000 steps. No free lunch as usual.

65
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THE MODIFIED EULER METHOD

In the Euler method, we use the slope at the beginning of the interval, y',
to determine the increment to the function. This technique would be correct
only if the function were linear. What we need instead is the correct

average slope within the interval. This can be approximated by the mean of

the slopes at both ends of the interval.

Modified Euler Iteration:

Given an o.d.e. T y¢=1(x,,Y,) Yo = Y(Xo)
d 'I' Zn+1 = yn + hyrg;
F=txy) v =Yy l
dx Y Yo 0 : Zh+l = f (Xn+1’ Zn+1)
iy =y + Y2
The modified Euler iteration is: 70 n 2

+
The key idea is to fine-tune y', by using yf(‘t 22,%
67
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Example: Solveo.d.e. g—:-ZX- Y, Y(0)=-1,%,=0 with h=0.1
X

}-ylozf()%’YO):'zxo'YOz'zl 0-(-)=1
§ 2= Yothy,=(-D+0171=-09
Step 1. [ 7= 1(x,2)=-2"01- (-09)=07
yozzlh--1 % 0.1=-0915 (-0.9145)
|y, = f () =-2% - y,=-2 01+0915=0715
2=y +hy, =-0915+01 0715=- 08435
Step 2: 'Zz—f(xz, ) =-2%,- 2, = - 04+08435=04435

| Yo=Y +— (y1 +2,) =-0915+005(0.715+ 04435) =- 0.8571 (- 0.8562)

:TY1 Yot

: Y, = f(X,Y,)=-2X%,- Yy, =-2" 02+08571=04571
| Z= Y, +hy, =- 08571+01" 04571=- 08114
Step 3: iz = f(xg, )=-2x,- z,=-06+08114= 02114
| Vo= Y, + o (y2 +7,) =- 08571+ 005(04571+02114) = - 0.8237 (- 0.8225)
68
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THE RUNGE-KUTTA METHODS

The two numerical methods of the last two section, though not very
Impressive, serve as a good approximation to our next procedures.
While we can improve the accuracy of those two methods by taking
smaller step sizes, much greater accuracy can be obtained more
efficiently by a group of methods named after two German
mathematicians, Runge and Kutta. They developed algorithms that
solve a differential equation efficiently and yet are the equivalent of a
approximating the exact solution by matching the first n terms of The
Taylor-series expansion. We will consider only the fourth- and fifth-
order Runge-Kutta methods, even though there are higher-order
methods. Actually, the modified Euler method of the last section is a

second-order Runge-Kutta method.
69
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Fourth-Order Runge-Kutta Method:

Problem: To solve differential equation,

dy _ _
& = f (X’ y)’ yo - y(XO)

Algorithm: .
Yni1 = Yn +€(k1 +2K, + 2Ky + k4)’ Yo = Y(%) with

klzhf(xn’yn)

K, =ht& +ihy +2k,2
e 2 2 '@

1,0

—k, +

2 zg

ky = hf (x, +h,y, +k)

k3:hf§exn+%h,yn+

Proof: 1) Read textbook, or 2) forget about it. 0
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Example: Solve the following o.d.e. using Fourth-Order Runge-Kutta Method
%:-Zx- Y, y(0)=-1 x,=0, h=01
X

Step 1.
K, =hf (%, Y,) =0.(-2" 0+1) =0.1

k, = hf Sexo +1h,yo+3k19: 0122 2 01- (-1- = 0.1%= 085" 0.1=0.085
2l & 2 2 g
_hfa§<0+ Yo+ k 9-01" & 2 2 0.1+1- = 0.085%= 0.08575
& 2 2 2

k, = hf (xO + h, Y, + k3) = 0.1 (-2° 0.1+1- 0.08575) = 0.071425

1
V1= Yot (k, + 2k, + 2k +k, ) = - 0.9145125 | (- 0.9145123) -

true values

Step 2: l
k, =0.0715 k, =0.0579 Kk;=0.0586 k,=0.0456 y,=-0.8562 | (- 0.85619)
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Numerical Solutions to Partial Differential Equations

Introduction

General partial differential equations (PDE) is hard to solve! We shall only

treat some special types of PDE’s that are useful and easier to be solved.
Classification of 2nd order quasi-linear PDE’s

General form

2 2 2 .

a0 Y)Y 4 200, Y) 2+ oY) = F& y,u, 1 U

fx Ty T AR N %
qguasi-linear — linear in highest order derivatives
u=u(x,y) — unknown functions to be solved.

X,y — independent variable x andy.

72
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Some standard notations

u, := 'ﬂ_u, U, = E,
X Ty
Types of equations
Type Condition
elliptic b*- ac<0
parabolic  h?- ac=0
hyperbolic b*- ac>0

2 2 2
u u u
Uxx-:ﬂ—z’ Uyy :ﬂ—z’ Usy = !
X Ty Xy
Example
Uy, + U, =0

Laplace equation: { a=1b=0 c= 1}

k°u, =u,
Heat equation: { 2 b=0 O}
a= , D=0 C=
Al = Uy

Wave equation: {a_Az b=0.c=- 1}

Methods of solutions depended on the type of equations.

73
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Geometrically

| ,
S

Type may not be constant over R because a,b,c can vary over R, e.g,

elliptic in one part of R and parabolic in the other part of R.

Example:

(s-n2 y) U, + uyy = [U + (Sln y)ux]
%/_J
a

R:-3£Xx£3 -3£Yy£3

=0 parabolic
b a=sn?y,b=0,c=1b b’- ac=-sn2y£0 | .
i<0 elliptic
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General Approach to the Solutions of PDEs

Step 1: Define a grid on R with “mesh points”

y e
[ L > &R
K] Va
Y N [l
J — T mesh point p;=(ih, jk)
P S
i ‘n"\_v_l X
h
Step 2: Approximate derivatives at mesh points by central difference quotients
U... - U .. U ..-U .
u(ih, jk) = =2y (i, jk) =
(10, JK) o ,(ih, Jk) o
o U, .- 2u ,+U_,. o U ...-2U . +U .
Uy (ih, jK) = === uy (ih, jk) =
h K
These will bring a PDE to a difference equation relating u; to its neighbouring

75
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For example,

kzuiﬂ’j + kzui_l,j + hzui,jﬂ + hzui,j_1 - 2(k*+h%)u

Step 3: Arrange the resulting difference equation into a system of linear

equations

Taking into consideration of

u
u
3 > boundary conditions and solve
U it for U, Ups,...

DyD> D> D> D> M
*
oo *
Y e e e
N
N e e e
[

h@)_@)Z ...... k® —® —------ 76
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Solution to Elliptic Type’'s PDE

The general approach will be followed to solve these types of problems by
taking into account various kinds of boundary conditions in form of the

system of linear equations. We will illustrate this using the following PDE:

T°u  T°u
TN
R={(xy),0EXE30EL y£3]}

=U,+U, =f(xy)°0

Boundary condition u(x,y)=(1+y)log,,(1+ x)

We follow the step-by-step procedure given in the previous section.

77
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Step 1: Define a grid along with an order of mesh-points inside R. (We

have to be clear about R and h, k)

First, let us start with a crude grid h=k=3/N, forN=3 — h=k=1

Uz Uy
3 AT Zf o —- u=4log,,(1+Xx)
2 o . ulZuZZ ...... U,
u=0 -- e --- u=(1+y)log,,4
Uy iUy iUy f

0 1 T2 3

knowns: U5, U,g, Uss, Usy, Uns s Uy Uy, Usg unknowns: U, U, U, ,U,, 78
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Step 2: Approximate derivatives at mesh-points

Uy, +U,, :f(x,y):O p
U. 2U. . +U. ..

i+1,) i ] L0 U j+1 2U
h? k2
P U, tU. ;U 7t -4u, ;=0

"1:f”°o =123 j=123

At mesh-point (i, j) where ui’j IS unknown:

0.301
@ (1,1): 0=Ugy - Uy + Uy +Uyg - 2Up, + Uy, = -4y, + }'/‘ t Uy }4‘ + U,
1.204 0.477
@ (21): 0=uy +%1 + % T Uy, - AUy A
1.204 _ 0O Boundary values
; - + L)/ +
@@1.2: 0=u,+ %/ Uz = AU, e are known
1.908 1.806

@ (2,2 0=uy +y§3 tu, + %z - AUy, - .
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Step 3: Arrange the equation into matrix form

1 1 O0ae,0 e 12040

-4 0 1_gu22__ & 3.714-

e 4

¢ 1

é 1 0 -4 1°%u,7 & 03017
0

1 1 -4g§u213 g 16815

Solve the equations for

8@12 0 g@ 7560
Uz +_ 91 336
Gu, * Co. 483‘

b5 foers;

Step 4: Refine the step-size by choosing smaller h, k.

80
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Parabolic and Hyperbolic Types

Parabolic: Example — heat equation

Du,, =u,, where D is heat diffusion coefficient

XX

Hyperbolic: Example — wave equation

2. _ . . .
C°u, =U; where C2is wave propagation velocity

ta
f |--k-----!---------55 --------- :} --------- i\
Boundary condition: engerebennenneserneeanes S i | | Boundary condition:
ol I S e
W0 =u® || i s S a(L ) =, (1)

initial condition

We will use parabolic type U, = U, to illustrate the solution method,

which carries over to the hyperbolic type as well! o
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Notations:

. =1x, 1=0,1---,N, L=Nh Pp h:ﬁ
t=j%, j=0,1,
u|,j :U(Xi,t-)
UG, tan) = UK L) _ Ui jaa - W
ut(xi’tj)_ Jlk J : lk -
U(X4p,t) - 2u(%,t) +U(X 1,t) U= 20+ U g
U (%.17) = = e e
Then
kD

=Du, P ui,j+1'ui,j:hz(l+11'2u +u'1l)

To solve the equation, we start with j =0, then U, ’s are given as initial

conditions and can be used to solve for u,, i=1---,N-1

(8)
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Rewrite equation (8) as

. kD
Ui =9 Uiy +(1' 2g)ui,j TgU with g :F

In general, we can solve for u;;,4, 1 =1, %, N, if we know the j-th row.

A
I |
| I
|u U |
: Y i+1 N-1,j+1!
J +1 .............. :. ..... J+ ........................... J+| ............. boundary
| J : / condition
boundary | =¥, | e et L
condition J : :
I |
Uy Un-1,0! .
0 1 \ / N-1 N

initial condition
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Example: Solve the following boundary value problem,

O£Ex£El D=1 L=1
initial condition: u(x,0) =9n

We choose N =3 and hence h = 1/3 and choose two different k:

k=005 > g =045

ng Yo,

U, = Uy,

PX

boundary condition: u(0,t) =0, u(l,t) =1

k=01~ g=09

U; W; U jk ! U, U
0.00 0 0500 0.866 1 0.0 0500 0.866
0.05 0 0.434 0.762 1 0.1 0.379 0.657
0.10 0 0.387 0.724 1 0.2 0.288 0.716
0.15 0 0.364 0.696 1 0.3 0.414 0.587
0.20 0 0.350 0.684 1 0.4 0.197 0.803
0.25 0 0.343 0.676 1 05 0505 0435
0.30 0 0.338 0.672 1 0.6 - 0.061 1.061
0.35 0 0.336 0.667 1 0.7 1.003 - 0.003
0.40 0 0.335 0.668 1 0.8 - 0.804 1.805
0.45 0 0.334 0.668 1 0.9 2.269 - 1.269
0.50 0 0.333 0.667 1 1.0 - 2957 3.457

unstable

|
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A short discussion about hyperbolic type PDE:
PDE: u, =C*(x,t)u,, OE£X£1 t30
Initial conditions:  U(x,0) = f(X), U (x,0) = f,(x)
Boundary conditions:  U(0,t) = gy(t), u(Lt) = g,(t)

Following the usual procedure, we obtain an approximation:

* . . C%®
Uij1 = (2 29) tO MUy +g Y- Uy With g = h?

Note that at j =0, we have to deal with U; _, , which are not readily available.

Thus, we will have to compute these terms first.

U (x,0)=1,(x) P U -u_;=2K,(x) P Eui,—lzui,l' 2kf (%) |

85
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The difference equation can then be solved by using the direct method, e.q,

=(2- 20%)U, o +9* U1, +g*ui+1,0 - Uy
=(2- 20%)U o 9" U_ 150 +9* U0~ U +2KFH(X)

\

1 1 .
=(1- g%) f1(>§)+§9* f1(>ﬁ-1)+59* fL (%) KL (%), 1=L2--,N-1

Forj > 1, we still use

Ui = (2 29 ) +g’ Ui +g’ Uy~ Uijoq

The rest of computational procedure is exactly the same as that in the

parabolic case.
86
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Example: Solve
PDE : u, =u, OE£XEL t30
Initial conditions:  u(x,0) = f,(x) =
u,(x,0) = f,(x) = x+sin(px)
Boundary conditions: u(0,t)=g,(t)=0

u(Lt) = gy(t) = —sin(pt)
P

Let us choose h=k=0.25sothatg" =1

Determine U _; to start the solution or use formula on the previous page

to compute U, ,, 1=1,2,3,first, i.e.,
i U, =0.239
U, =0+kxf,(x)=0.25[x +sin@,)] P {u,, =0.375
Ly, =0.364

D.LY. to complete the solutions up to t = 2. g7
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