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Course Outlines

Part I: Linear Algebra

Introduction to Matrices: Definitions of matrices, sub-matrices, square 

matrices, lower and upper triangular matrices, diagonal matrices, identity 

matrices, symmetric matrices, skew-symmetric matrices.

Matrix Operations: Matrix transpose, addition, multiplication.

Linear Systems: Definition, homogeneous systems, elementary row 

operations, echelon form of a matrix, row echelon form, reduced row 

echelon form.

Vector Algebra: Linear combination, Linear independence, vector space, 

vector subspaces, dimension and basis of a vector space, null space, 

determinant, inverse and rank of matrices.
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Course Outlines (cont.)

Eigenanalysis of Matrices: Eigenvalues and eigenvectors, characteristic 

equation, matrix diagonalization, quadratic forms.

Introduction to a Software Package - MATLAB

Part II: Numerical Methods

Introduction to Numerical Methods: Numerical errors, absolute and 

relative errors, stability and convergence of numerical algorithms.

Computation of Zeros: Bisection method, false position method, Newton 

method, secant method and fixed-point method.

Interpolation: Lagrangian polynomials, Newton’s divided difference 

method, least square approximation.
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Course Outlines (cont.)

Numerical Integration: Newton-Cotes Method, trapezoidal rule, Simpson’s 

1/3 rule and Simpson’s 3/8 rule.

Numerical Solutions to Ordinary Differential Equations: Taylor series 

method, Euler method, Runge-Kutta method. 

Numerical Solutions to Partial Differential Equations: Classification of 2nd 

order quasilinear PDE, numerical solutions. 

Prepared by Ben M. Chen



5

Lab and Final Examination

There will be a lab session for every student. It is to learn how to use 

MATLAB, which is capable of realizing all computations and 

algorithms covered in this course. The lab sessions will be held in 

CAD/CAM center. Students are required to submit their lab reports 

right after the lab session. 

There will be a final examination at the end of the semester.

Your final grade of this course will be awarded as follows:

Final Grade =  Lab Report Marks (max.=10) + 90% of Exam Marks.
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Lectures

Lectures will follow closely (but not 100%) the materials in the lecture 

notes.

However, certain parts of the lecture notes will not be covered and 

examined and this will be made known during the classes.

Attendance is essential.

ASK any question at any time during the lecture.
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Tutorials

The tutorials will start on Week 4 of the semester. 

Although you should make an effort to attempt each question before the 

tutorial, it is NOT necessary to finish all the questions.

Some of the questions are straightforward, but quite a few are difficult 

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Reference Textbooks

• E. Kreyszig, Advanced Engineering Mathematics, Any Ed., Wiley.

• B. A. Ayyub and R. H. McCuen, Numerical Methods for Engineers,     

.  Prentice Hall, 1996.

Prepared by Ben M. Chen



9

Linear Equations and Matrices

Linear equations arise frequently in the analysis, design, and 

synthesis of engineering systems. It is these equations that 

form the focus of our study in the first half of this course. The 

objective is two folds. The students are exposed to 

systematic methods and the associated algorithms for some 

of the most widely computational tasks in linear algebra. 

Also, the occurrence of these tasks in engineering systems is 

observed via simple examples.
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Definitions:

The simplest type of a linear equation is given by

bxa =

where a and b are given and known, and x is unknown variable to be 

determined. This equation is linear as it contains only x and nothing else. 

It is simple to see that the equation has:

(a) a unique solution if a ≠ 0

(b) no solution if  a = 0 and b ≠ 0

(c) multiple solutions if a = 0 and b = 0 

Example:

The relationship between the voltage and current of a resistor, I R = V.

Prepared by Ben M. Chen



11

A simple generalization of the one-equation-one-unknown linear system is 

the two-equations-two-unknowns linear system:
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1212111

bxaxa

bxaxa

=+
=+

where a11, a12, a21, a22, b1 and b2 are known constants and x1 and x2 are 

unknown variables to be solved. In general, a linear system with m

equations and n unknowns can be written as the following form:
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We can re-write this set of linear equations in a compact form, i.e., a matrix 

form: 
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Matrix A has m rows and n columns. Such a matrix is called an m × n matrix. 

Each of the numbers that constitute the matrix is called an element of A. 

The element sitting on the i-th row and j-th column, or simply the (i, j)-th 

element, is denoted by aij.

coefficient
matrix

vector of unknowns

data
vector
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A matrix with one column or one row is also called a vector. For example,
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[ ]4231=c is a row vector of length 4
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Example:
4

2 4

2
3
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1i 2i

3i 4i
5i

A B

KCL at Node A: 0531 =−− iii

KCL at Node B: 0542 =+− iii

KVL to left loop: 224 31 =+ ii

KVL to right upper loop:

0324 521 =+− iii

KVL to right lower loop:

0342 543 =−− iii

In a matrix form:
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More Definitions

Sub-matrix: A sub-matrix of A is a matrix obtained from A by deleting some 

selected rows and columns.

Example: Given a matrix
















=

987

654

321

A

AAA  of ssubmatrice are
9

3

87

21
,

54

21
21 




=




=

Square matrix: An m × n A is called a square matrix if m = n. 

Example: The above matrix A and A1 are a square one while A2 is not.
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Diagonal Elements: All those elements of a matrix A, aij with i = j are called 

main diagonal elements.

Example:
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A Diagonal elements of A are 1, 5 and 9.

Lower and Upper Triangular Matrices: A matrix is called a lower triangular

matrix if all the elements above the main diagonal are zero. Similarly, a 

matrix is called an upper triangular matrix if all the elements below the main 

diagonal are zero.
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Diagonal Matrix: A matrix that is both a lower and an upper triangular is 

called a diagonal matrix.

Examples:
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Identity Matrix: An identity matrix that is a square diagonal matrix with all 

its diagonal elements equal to 1. It is denoted by I.

Examples:
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Transpose of a Matrix: Given an m × n matrix A, the n × m matrix obtained 

by listing the i-th row of A as its i-th column for all i = 1, 2, … m, is called the 

transpose of A and is denoted by AT

Examples:
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Symmetric Matrix: A matrix A is said to be symmetric if A = AT. Note that 

a symmetric matrix must be square.

Examples:
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Skew-symmetric Matrix: A matrix A is said to be skew-symmetric if 

A.=.−−AT. Note that a skew-symmetric matrix must be square as well, and 

all its diagonal elements must be equal to zero.

Examples:
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Matrix Operations:

Equality of Matrices: Two matrices A and B are equal if they have the same 

size and are equal element by element, i.e., they are identical.

Addition of Matrices: Two matrices can be added only if they have the same 

size. The sum of two matrices is performed by taking the sum of the 

corresponding elements. 

Example:
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Scalar Multiplication: The product of a matrix A with a scalar c is a matrix 

whose (i,j)-th element is c aij. 

Examples: 
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Some Properties of Matrix Additions and Scalar Multiplications:

1. Commutative law of addition: A + B = B + A

2. Associative law of addition: ( A + B ) + C =  A + ( B + C )

3. A + 0 = A, where 0 is a zero matrix with a same size as A has.

4. A + ( −− A ) = 0

5. c ( A + B ) = c A + c B, where c is a scalar

6. ( c + d ) A = c A + d A, where c and d are scalars

7. ( A + B )T = AT + BT

8. ( c A )T = c AT, where c is a scalar
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Inner Product of Two Vectors: Given two vectors a and b with same length 

of n, the inner product is defined as 

nnbababa L++=• 2211ba

Multiplication of Matrices: Given an m x n matrix A and an n x p matrix B, 
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Example:
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Note that B A is not defined for the above matrices. Thus, in general,

A B ≠≠ B A
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Example:
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Note that the product of two matrices can be equal to a zero matrix even 

though none of them is a zero matrix.
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Properties of Matrix Multiplication

1. (c A) B =  A (c B)

2. A ( B C ) =  (A B) C 

3. (A + B) C = A C + B C 

4. C (A + B) = C A + C B 

5. ( A B )T =  BT AT
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Solutions to Linear Systems: Let us recall the following linear system,
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If data vector b = 0, then the above linear system, i.e., Ax = 0,  is called 

a homogeneous system. It is easy to see that x = 0 is a solution to the 

homogeneous system. Such a solution in fact is called a trivial solution. 

Any non-zero solution of the homogeneous system is called a non-trivial 

solution.
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Augmented Matrix of Linear System:
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The above augmented matrix contains all information about the given system.

Example: Given a linear system
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A Basic Approach for Solving a Linear System:

Step 1. Use the first equation to eliminate x1 from all the other equations, i.e., 

make the coefficients of x1 equal to 0 in all equations except the first one.

Step 2. In the resulting system, use the second equation to eliminate x2 from 

all equations that follow it, i.e., make the coefficients of x2 equal to 0 in the 

3rd, 4th, … equations.

Similarly, carry out steps 3, 4, …, and so on , each time eliminating one 

variable from all the equations below the equation being used. At the end of 

these steps, we will have: the 1st equation contains all unknowns; 2nd 

equation contains x2,  x3 , …, xn; and finally the last equation contains only xn.

Then, one can solve for xn, and then xn-1, and so on.
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Elementary Operations for Equations

There are three elementary operations:

1. Interchange of two equations

2. Multiplication of an equation by a non-zero constant

3. Addition of a multiple of one equation to another equation.

If any of these three operations is performed on a linear system, we obtain 

a new system (and hence a new augmented matrix), but the overall

solution x does not change. If x is a solution to the linear system, then x is 

also a solution to the linear system after any of these three operations is 

performed. Thus, we may perform any of these operations in order to 

compute the solution.
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Elementary Row Operations (ERO) for Augmented Matrix

Since each equation in linear system is represented by a row in the augmented 

matrix, corresponding to the elementary operations for equations, we have the 

following three elementary row operations for the augmented matrix:

ERO 1. Interchange of two rows

ERO 2. Multiplication of a row by a non-zero constant

ERO 3. Addition of a multiple of one row to another row.

Two augmented matrices are said to be equivalent if one can be obtained from 

another by a series of elementary row operations. It is clear that if two 

augmented matrices are equivalent, then their corresponding linear systems 

have the same solution. Thus, the basic idea to to use these EROs to simplify 

the augmented matrix of a linear system in order to obtain its solution.
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Example: Let the linear system be
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If the elementary row operation is to replace the 2nd row by 2nd row + 3 ×

1st row, then the augmented matrix is simplified to 
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Leading Entry in a Vector:

The first non-zero element in a vector is called its leading entry. A vector 

with all its elements equal to zero is said to have no leading entry.

Example: In the following matrix

The first row has a leading entry equal to −1. The 2nd row has a leading 

entry equal to 2 and the last one has no leading entry.
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Echelon Form of a Matrix:

A matrix is said to be in an echelon form if it satisfies the following:

• If there is a row containing all zeros, then it is put below the non-zero 

rows.

• The leading entry of a row is to the right of the leading entry of any 

other row above it.

Example: Consider the following matrices

















−−

−

10

12

2

500

720

211

















−−

−

10

12

2

500

701

211

















−− 10

12

2

500

701

210

in an echelon form not in an echelon form
Prepared by Ben M. Chen



35

The variables corresponding to the leading entries are called leading 

variables. All other variables are called free variables. Given the augmented 

matrix of a linear system, we will use elementary row operations to reduce it 

to its echelon form and then compute its solution.

Example: Consider the echelon form

All the three variables are leading variables and the solution is x3= 2, x2 = −1,

and x1 = 1. Note the solution is unique (since all the variables are leading 

variables and there are no free variables).
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Example: Consider the echelon form

In this case, x1 and x3 are leading variables and x2 is a free variable. The 

solution is written as x3 = 1 and x1 = – x2 + 5. x2 being a free variable can 

take any value and all such values are admissible as solutions. Thus, in 

this case we have an infinite number of solutions.

Example: Consider the echelon form

In this case, x1 and x2 are leading variables and x3 is a free variable. There 

is no solution in this case as the last equation implies 0x3 = 9.
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Row Echelon Form of a Matrix

A matrix is said to be in a row echelon form if

• it is in an echelon form, and

• the leading entries are all equal to 1

Example: Consider the echelon form

Dividing the last row by − 5, we get the row echelon form as
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Reduced Row Echelon Form of a Matrix

A matrix is said to be in a reduced row echelon form if

• it is in a row echelon form, and

• each column that contains a leading entry 1 has zeros everywhere else 

except those coefficients of free variables.

Examples: Consider the row echelon forms
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Vector Algebra

Linear Combination of a Set of Vectors

Given a set of n vectors v1, v2, …, vn, which have a same length of m, a linear 

combination of these vectors is defined as the vector

Here c1, c2, …, cn are scalars.

Example: Consider a set of vectors
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as a linear combinations of v1 and v2?
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For the first vector u to be a linear combination of v1 and v2, we must have

which is a linear system. The augmented matrix is

Thus,
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For the second vector w to be a linear combination of v1 and v2, we must have

which is a linear system. The augmented matrix is

Thus, w cannot be expressed as a linear combination of v1 and v2.
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Linear Dependence

Consider a set of n vectors v1, v2, …, vn, which have a same length of m. They 

are said to be linearly dependent if there exist n scalars, c1, c2, …, cn, not all 

zeros such that

It is clear that c1 = c2 = … = cn = 0 satisfy the above equation trivially. Thus, for 

linear dependence, we require at least one of them to be non-zero. If say c1≠≠ 0, 

then we can write

Linear Independence

Consider a set of n vectors v1, v2, …, vn, which have a same length of m. They 

are said to be linearly independent if

has only a trivial solution c1 = c2 = … = cn = 0.
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How to Check for Linear Dependence/Independence?

Let 



















=



















=



















=

mn

n

n

n

mm v

v

v

v

v

v

v

v

v

M
L

MM
2

1

2

22

12

2

1

21

11

1 ,,, vvv

Then

02

1

21

22221

11211

2

1

2

2

22

12

1

1

21

11

11 =





































=



















++



















+



















=++

nmnmm

n

n

n

mn

n

n

mm

nn

c

c

c

vvv

vvv

vvv

c

v

v

v

c

v

v

v

c

v

v

v

cc
M

L

MOMM

L

L

M
L

MM
L vv

which is an m × n homogeneous system and it has a trivial solution. If this 

trivial solution is the only solution, then the given vectors are linearly 

independent. If there are non-trivial solutions, then the vectors are linearly 

dependent. 
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Example: Determine whether the vectors

are linearly independent or not.

The augmented matrix is
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 variablefreea  is 3c

321 5.0 ccc −==

There are non-trivial

solutions. Hence, they

are linearly dependent.
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Vector Space

Given a set of n vectors v1, v2, …, vn, which have a same length of m, the 

set V containing v1, v2, …, vn and their linear combinations is said to form a 

vector space.

The vectors v1, v2, …, vn are said to span the vector space V.

In essence a vector space is a collection of vectors that satisfy the following 

two properties:

1. Addition: If u and w belong to V then so does u + w.

2. Scalar Multiplication: If u belongs to V, then so does k u for all 

arbitrary scalars k.

It is clear that 0 is a vector in all V ( k = 0 ).
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Example: Picture a vector space spanned by 21321
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Vector Subspace

A vector space W is said to be a vector subspace of a vector space V if all 

the vectors in W are also contained in V.

Example: Consider all possible solutions to the homogeneous system 

Ax.=.0. If x1 and x2 are two solutions then so is x1+ x2, as

A ( x1+ x2 ) = A x1+ A x2 = 0 + 0 = 0

Similarly, if x is a solution, then so is k x. As a result, all the possible 

solutions to Ax.=.0 constitute a vector space called the solution space.

It is standard notation to write ℜℜn to denote the real n-dimensional vector 

space, that is, all the vectors of length n having real numbers as their 

components. It is clear ℜℜ or ℜℜ1 denotes the real numbers, ℜℜ2 the 2-D plane 

and ℜℜ3 the 3-D space and in general ℜℜn, the n-dimensional space.
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Example: Let

Determine whether these vectors span ℜℜ3. In other words, determine if every 

vector in ℜℜ3, say x = [ x1 x2 x3 ] T can be expressed as a linear combination 

of v1, v2, v3 or not. Let

The augmented matrix
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A solution exists 

and hence the 

vectors span ℜℜ3.
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Dimension and Basis of a Vector Space

We have described a vector space as the set of vectors v1, v2, …, vn called 

the spanning vectors and all their linear combinations. Therefore, any 

arbitrary vector, say v, in V can be expressed as 

In addition, if v1, v2, …, vn are linearly dependent, we can simplify the above 

equation as follows. If v1, v2, …, vn are linearly dependent, then we have

with at least one of the coefficients is non-zero. For simplicity, we let α n ≠ 0. 

Then

and

nnnn ccc vvvv +++= −− 1111 L

01111 =+++ −− nnnn vvv ααα L
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It is clear that the same vector space V can now be expressed as vectors v1, 

…, vn-1 and all their possible linear combinations. 

Now, suppose v1, …, vn-1 are again linearly dependent. Then we have

01111 =++ −− nnaa vv L

with at least one of the coefficients is non-zero. For simplicity, we let an–1 ≠ 0. 

Then

2
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n a

a
a

a vvv L
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a vvvvv γγββββ LL
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Using the same approach, we can get rid of all those vectors in the description 

of V that are linearly dependent. In the end, we are left only linearly 

independent vectors, say, v1, v2, …, vd, and now V can be expressed as v1, …, 

vd and all their possible linear combinations. We cannot reduce this set any 

more as it is impossible to find a non-zero scalar in the following equation:

Thus, we have that

1. v1, …, vd are linearly independent, and

2. v1, …, vd span V.

Such vectors are said to constitute a basis for the vector space V. The number 

d, the largest number of linearly independent vectors in V, is called the 

dimension of V. Note that the basis is non-unique but d is fixed for a given V.

011 =++ ddcc vv L
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Example: Determine a basis and the dimension of the solution space of the 

following homogeneous system,

The augmented matrix is

Thus, x5, x4, x3 and x1 are leading variables and x5 = x4 = x3 = 0. x2 is a free 

variable. Let x2 = a. Then we have x1 = − x2 = − a all possible vectors look like
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d 

Row Space of a Matrix

Given an m × n matrix A, the vector space spanned by the rows of A is 

called the row space of A.

Example:

[ ] [ ]{ }

[ ]{ }212121

21
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262351   of SpaceRow 
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cccccc
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+++=

+=⇒




= AA
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Column Space of a Matrix

Given an m × n matrix A, the vector space spanned by the columns of A is 

called the column space of A.

Example:

Remarks: Row space is a set of row vectors and column space is a set of 

column vectors. Thus, in general the row space and column space of a 

given matrix is different.
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Null Space of a Matrix

Given an m × n matrix A, the vector space consists of all possible solutions 

of Ax = 0 is called the null space of A.

Example: Consider 

3132 2 & 
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Theorem:

The row elementary operations (EROs) do not change the row space and 

null space of a given matrix. It might change the column space of a matrix.

Rank and Nullity of a Matrix

The maximum number of linearly independent vectors of a matrix A, which 

is also the dimension of the row space of A, is called the row rank or simply 

the rank of A. 

Theorem:

The dimension of the row space of A = rank of A = the number of non-zero 

rows in the echelon form of A. In fact, the non-zero rows of the echelon 

form of A form a basis of the row space of A.
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Example: Determine the rank and a basis of the row space of the matrix

Than rank of A equal to 2. The row space of A are spanned by

Procedure for Determining Basis and Dimension of a Vector Space V

Given a vector space spanned by a set of column vectors v1, v2, …, vn, 

which are not necessarily linearly independent, the following procedure 

can be used to obtain a basis for it as well as its dimension:
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[ ] [ ]210,961 21 == vv
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Arrange

to form a matrix

Then, Dimension of V = dimension of row space of A = rank of A.

Basis vectors of V = transpose of non-zero rows in the echelon form of A. 

If dimension of V = n, then v1, v2, …, vn are linearly independent. 
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Example: Find the dimension and a set of basis vectors for the vector space 

V spanned by

For a matrix

The dimension of V is equal to 2 (the rank of A is equal 2) and it has a basis
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Suppose now a given vector space V is spanned by a set of row vectors

Form a matrix

Then, the vector space V = the row space of A.

Dimension of V = dimension of row space of A = rank of A.

Basis vectors of V = non-zero rows in the echelon form of A.
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Example: Find the dimension and a set of basis vectors for the vector space 

V spanned by

For a matrix

The dimension of V is equal to the rank of A, which is equal 2 and V has a 

basis
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Nullity of a Matrix

Nullity of a matrix A is defined as the dimension of the null space of A.

Example: Find the nullity of

Clearly, x3 and x4 are free variables and
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for null space

Nullity = 2
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Theorem:

Numbers of linearly independent rows of A = numbers of linearly independent 

columns of A. In other words, row rank of A = column rank of A = rank of A.

Theorem:

For an m x n matrix A,

rank (A) + nullity (A) = n or  nullity (A) = n − rank (A)

Example: Consider the previous example,

n = 4, rank (A) = 2 and nullity (A) = 2. It is verified.
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Existence and Uniqueness of Solutions of Linear Systems

Consider a linear

The above linear system has a solution if and only if

has the same rank. Thus, if the above two matrices has different ranks, no 

solution exists for the given system.
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If the rank of A and the rank of the augmented matrix have the same rank, 

say k, and if k = n, the number of unknowns, then the linear system has a 

unique solution (exactly one solution).

If k < n, the given system has infinitely many solutions. In this case, k

unknowns (leading variables) can be determined in terms of n − k unknowns 

(free variables) that can be assigned arbitrary values.

Homogeneous System

The homogeneous system is a special class of systems with b = 0, or A x =0. 

Let k = rank (A). Then the homogeneous system has a unique solution if and 

only if k = n, the number of unknowns. The solution is given by x =0. If k < n, 

the homogeneous system always has infinitely many solutions.

Note that for homogeneous system, n ≥ k (always true).
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Example: Consider the following linear system

The coefficient and the augmented matrices are given by

Using the EROs, the echelon forms are obtained as

It is clear that above two matrices have the same rank of 2, which is less than 

the number of unknowns. Hence, the system has infinitely many solutions, all 

which can be obtained by choosing arbitrary values for free variable.
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Example: Consider the following linear system

The coefficient and the augmented matrices are given by

Using the EROs, the echelon forms are obtained as

It is clear that above two matrices have ranks of 2 and 3, respectively. Hence, 

the system has no solution at all. 
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Example: Consider the following linear system

The coefficient and the augmented matrices are given by

Using the EROs, the echelon forms are obtained as

It is clear that above two matrices have the same rank = 3 = the number of 

unknowns. Hence, the system has a unique solution, and the solution is given 

by x1 =  – 1.1, x2 = 1.3, x3 =  – 0.2.
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Determinant of a Matrix

Given a square n x n matrix

define Mij as the determinant of an order (n−1)×(n−1) matrix obtained from 

A by deleting its i-th row and j-th column. The determinant of A is given by

where                                  is called the co-factor of aij and Mij is called the 

minor of aij.
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M11 is the det

of this submatrix.
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Determinant of a 2 x 2 Matrix

Given a 2 x 2 matrix

Determinant of a 3 x 3 Matrix

21122211
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1211 det)det( aaaa
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All products of red-lined (solid) carry a positive sign

and those of blue-lined (dashed) carry a negative one.
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Example: Compute the determinant of

Solution:

or
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Properties of Determinant

1. det (A) = det (AT)

2. If all the elements of a row (or a column) of A are multiplied 

by a scalar k, then det. of the resulting matrix = k det(A).

3. If two rows of A are interchanged, then the determinant of 

the resulting matrix is − det(A).

4. If two rows (or two columns) of A are equal, then det(A) = 0.

5. For any n x n matrices A and B, det (AB) = det(A) det(B).

6. For an upper or a lower triangular matrix or a diagonal matrix

determinant = product of the diagonal elements.
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Example: Verify that det(AB)=det(A) det(B) with

Solution: 
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Inverse of a Matrix

For a n x n matrix A, if there exists a square matrix B such that

then B is called the inverse of A and we write B = A−1. If we let

then we have

Note that we need to solve n linear systems. In fact, we can solve them 

all together by defining a combined augmented matrix:

IAB =
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Reduce the above augmented matrix to a reduced row echelon form,

Then, the inverse of the given matrix A is given by matrix B.

Note that in order for the inverse of A to be existent, 

A must has a rank of n or determinant of A must be non-zero.
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Example: Find the inverse of

Form an augmented matrix
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Eigenvalues and Eigenvectors of a Matrix

Given an square n x n matrix 

consider the vector equation

where λ is a scalar quantity. In other words, we seek all those values of λ

and non-zero vectors of x such that the above equation is satisfied.

All those values of λ that satisfy the above equation are called the eigen-

values of A and their corresponding vectors x are called eigenvectors.
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Remarks:

1. Eigenvalues and eigenvectors are only defined for square matrices.

2. x = 0 is a trivial solution for the eigenvector. We will discard such a 

solution. In other words, we seeks only those x that are non-zero.

3. If x is eigenvector, then so is y = k x as

Hence, eigenvectors are non-unique.

4. Eigenvalues can be complex valued even for real valued matrices.

0xIAyIA =−=− )()( λλ k
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Procedure for Determining Eigenvalues and Eigenvectors

Recall that the eigenvalues and eigenvectors are defined as the solutions to

This is a homogeneous system with a coefficient matrix A −λ−λ I. Recall that a 

homogeneous system has a non-zero solution if and only if

rank of the coefficient matrix < number of unknowns = n

Hence, non-zero solution will exist for all those values of λλ for which

This is equivalent to saying that non-zero solutions will exist for all those 

values of λλ for which

0xIA =− )( λ

n<− ][rank IA λ

0][det)( =−= IA λλχ
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Characteristic Polynomial

which is a n-th degree polynomial of λλ, is called the characteristic polynomial 

of the matrix A. And then the eigenvalues of A are given by the roots of this 

characteristic polynomial. Thus, we can compute the eigenvalues and eigen-

vectors of a given matrix A as follows:

Step 1: Compute the characteristic polynomial of A.

Step 2: Find all n roots for the polynomial obtained in Step 1 and label them 

as λλ1, λλ2,  …, λλn.

Step 3: Find corresponding eigenvectors x1, x2, …, xn by solving the 

homogeneous system

][det)( IA λλχ −=

niii ,,2,1,)( L==− 0xIA λ
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Example: Consider a 3 x 3 matrix

Step 1: Find the characteristic polynomial

Step 2: The eigenvalues are λλ1 = 1, λλ2 = −1, and λλ3 = 11.

Step 3: Compute the corresponding eigenvectors 
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For λλ1 = 1,  we have
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Further Properties of Eigenvalues and Eigenvectors

1. Eigenvalues of A and AT are the same.

Proof.

2. If a matrix is real valued, then either all its eigenvalues are real or they

occur in complex conjugate pairs.

3.

Also, let                                                       ,  we have

4. Thus, the inverse of A exists if and only if A has no zero eigenvalues.

5. Eigenvalues of an upper or lower diagonal matrix, or a diagonal matrix 

are equal to the diagonal elements of the given matrix.

)det()det()(det)(det TTTT IAIAIAIA λλλλ −=−=−=−

)det(]0[det)0( AIA =−=χ

)())(()( 21 λλλλλλλχ −−−= nL

)det()0()0)(0()0( 2121 A==−−−= nn λλλλλλχ LL
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Summary of Some Useful Properties Square Matrices:

For an n x n square matrix A, the following statements are equivalent:

A is non-singular.

The inverse of A exists.

det(A) is nonzero.

rank (A) = n

A has no eigenvalues at 0.

The following statement are also equivalent:

A is singular.

The inverse of A does not exist.

det(A) is zero.

rank (A) < n

A has at least one eigenvalue at 0.
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Eigenvalues and Eigenvectors of an Orthogonal Matrix

An orthogonal matrix is defined as a matrix, say A, which satisfies the property

Thus, for an orthogonal matrix

Theorem: The eigenvalues of an orthogonal matrix have a absolute value 

equal to 1.

Example: Verify the following matrix is orthogonal

IAAAAAA ==⇒= −− 1TT1
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Symmetric Matrices

If A is a symmetric matrix, i.e, A = AT, then

1. All its eigenvalues are real, and

2. Its eigenvectors are real valued and are orthogonal to each other, i.e.,

Proof. Let λ and x be the eigenvalue and eigenvector of A, i.e.,

jixx ji ≠= ,0T

xxAxxxAxxxAxAxxAx T*TTTT*TTTT )()( λλλλ ==⇒===⇒=

xxxxxxAxxxAx T*TTT λλλλ =⇒=⇒=

real is  Hence* λλλ ⇒=
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To show that the eigenvectors are orthogonal, we let

Thus,

and 

Hence, they are orthogonal.

jijjjiii λλλλ ≠== xAxxAx

TT
iii xAx λ=

jiijjijiiji x xxxxxxAx TTTT λλλ =⇒=

0)( T =−⇒ jiji xxλλ

0T =ji xx
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Norm of a Vector

The norm of a vector is defined as

It is clear that norm is non-zero if the vector is non-zero.

Normalization of Eigenvectors

We normalize the eigenvectors by dividing their respective norms. Suppose 

x1, x2, … and xn are the eigenvectors of a symmetric matrix, the normalized 

eigenvectors are given by
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Let us define an eigenvector matrix for a symmetric matrix

It is simple to see that

Hence
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Example: Consider the following symmetric matrix

Its characteristic polynomial is

The roots of this characteristic polynomial are

and their corresponding eigenvectors are 
















=

402

030

204

A

32113636

402

030

204

det)det( λλλ
λ

λ
λ

λ −+−=

















−
−

−
=− IA

2,6,3 321 === λλλ

















−
=
















=
















=

1

0

1

,

1

0

1

,

0

1

0

321 xxx

Prepared by Ben M. Chen



91

The norms of these eigenvectors are

Thus, the normalized eigenvectors are

The eigenvector matrix

and it is simple to verify that

2,2,1 321 === xxx
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Skew-Symmetric Matrix

The eigenvalues of a skew-symmetric matrix A, i.e., A = – AT , is purely 

imaginary or zero, i.e., they are sitting on the imaginary axis.

The proof of the above result is similar to that for symmetric matrices.

Example: Consider the following skew-symmetric matrix

The roots of the characteristic polynomial are

They are either 0 or purely imaginary, as expected.
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Similarity of Matrices

Two matrices A and B are said to be similar if there exists a matrix S such 

that B = S–1AS. Of course, S–1 much exist for the quantities to be defined.

Theorem:

A and B have the same eigenvalues.

Proof. Given A x = λλ x, we define an new vector y = S–1 x ⇒⇒ x = S y to get

Hence λλ is also an eigenvalue of B.

Note that this result can be used to find a matrix S for a given matrix A

such that its similarity or the transformed matrix B is a diagonal matrix. 

Such a technique is very useful in solving some complicated problems.

yByAS)y(SSyASy 1 λλ ==⇒= −
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Diagonalization of a Matrix

Theorem:

Consider a n x n square matrix A has distinct eigenvalues. Let P be its 

eigenvector matrix. Then we have D = P–1AP is a diagonal matrix.

Proof. Let λλ1, λλ2, … λλn be the eigenvalues of A. Thus

or in a matrix form
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Example: Diagonalize the following symmetric matrix

We have computed its normalized eigenvector matrix in the previous example

It is simple to verify that
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Example: Diagonalize the following non-symmetric matrix

It has three eigenvalues at λλ1 = 0, λλ2 = 1, λλ3 = 5 and corresponding eigenvectors

It is tedious to compute that
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Quadratic Forms

Quadratic forms arise in many system analysis techniques. We study in the 

next the behavior of quadratic forms in term of eigen-distribution of an 

associated matrix.

A quadratic form of two variables x1 and x2 is

A quadratic form of three variables x1, x2 and x3 is

A quadratic form of n variables x1, x2, …,  xn is

2
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A quadratic form can be expressed in terms of a matrix form

In general, one can can choose A such that it is a symmetric matrix. For 

example, for n = 2,
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For n = 3,

Example: Given

express it as a xTAx with A being symmetric.  
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Definitions: A quadratic form Q(x) = xTAx is said to be

1. positive definite if Q(x) > 0 for all values of x except for x = 0.

The corresponding A is also said to be positive definite.

2. positive semi-definite if Q(x) ≥≥ 0 for all values of x.

The corresponding A is also said to be positive semi-definite.

3. negative semi-definite if Q(x) óó 0 for all values of x.

The corresponding A is also said to be negative semi-definite.

4. negative definite if Q(x) < 0 for all values of x except for x = 0.

The corresponding A is also said to be negative definite.

5. indefinite if Q(x) > 0 for some x and Q(x) < 0 for some other x.

The corresponding A is also said to be indefinite.
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Diagonal Quadratic Forms

Quadratic form Q(x) = xTDx is said to be a diagonal quadratic form if D is a 

diagonal matrix.

It is clear that the eigenvalues of D are d11, d22, …, and dnn. 
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How to Determine the Definiteness of a Diagonal Quadratic Form?

A quadratic form Q(x) = xTDx with D being a diagonal matrix is

1. positive definite if and only if all the eigenvalues of D are positive.

2. positive semi-definite if and only if all the eigenvalues of D are 

non-negative.

3. negative semi-definite if and only if all the eigenvalues of D are 

non-positive.

4. negative definite if and only if all the eigenvalues of D are negative.

5. indefinite if and only if some eigenvalues of D are positive and           

some are negative.
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Diagonalization of a General Quadratic Form

Given a quadratic form Q(x) = xTAx with A being a symmetric matrix, we 

have shown that A has all real eigenvalues and eigenvectors. For an 

normalized eigenvector matrix P, then P–1= PT and D = PTAP is a diagonal 

matrix.

We define a new variable y = PT x or equivalently x = P y
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How to Determine the Definiteness of a General Quadratic Form?

A quadratic form Q(x) = xTAx with A being a symmetric matrix is

1. positive definite if and only if all the eigenvalues of A are positive.

2. positive semi-definite if and only if all the eigenvalues of A are 

non-negative.

3. negative semi-definite if and only if all the eigenvalues of A are 

non-positive.

4. negative definite if and only if all the eigenvalues of A are negative.

5. indefinite if and only if some eigenvalues of A are positive and           

some are negative.
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Example: Show whether the following quadratic form is positive semi-definite

We rewrite

and obtain the matrix

Let y = PT x, we have
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Example: Show that the following quadratic is indefinite

It can be written as

The eigenvalues and eigenvectors of matrix A are given by

Let y = PT x, we have
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Part 2: Numerical Methods

ISSUES IN NUMERICAL ANALYSIS

• WHAT IS NUMERICAL ANALYSIS?

– It is a way to do highly complicated mathematics problems on a 

computer.

– It is also known as a technique widely used by scientists and 

engineers to solve their problems.

• TWO ISSUES OF NUMERICAL ANALYSIS:

– How to compute? This corresponds to algorithmic aspects;

– How accurate is it? That corresponds to error analysis aspects.
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• ADVANTAGES OF NUMERICAL ANALYSIS:

– It can obtain numerical answers of the problems that have no 

“analytic” solution.

– It does NOT need special substitutions and integrations by 

parts. It needs only the basic mathematical operations: 

addition, subtraction, multiplication and division, plus making 

some comparisons.

• IMPORTANT NOTES:

– Numerical analysis solution is always numerical.

– Results from numerical analysis is an approximation.
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• NUMERICAL ERRORS

When we get into the real world from an ideal world and finite to 

infinite, errors arise.

– SOURCES OF ERRORS:

• Mathematical problems involving quantities of infinite precision.

• Numerical methods bridge the precision gap by putting errors 

under firm control.

• Computer can only handle quantities of finite precision.
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– TYPES OF ERRORS:

• Truncation error (finite speed and time) - An example:
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• Round-off error (finite word length): All computing devices represent 

numbers with some imprecision, except for integers.

• Human errors: (a) Mathematical equation/model. (b) Computing

tools/machines. (c) Error in original data. (d) Propagated error.
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– MEASURE OF ERRORS:

Let      be a scalar to be computed and let      be its approximation.

Then, we define

• Absolute error = | true value – approximated value |.

• Relative error =

α

ααε −=

α

 valuetrue
 valueedapproximat   valuetrue −

α
αα

ε
  −

=r
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Absolute Error and Accuracy in Decimal Places

absolute
error

no. of accurate
decimal places

610− 510− 410− 310− 210− 110−

5 4 3 2 1 0

Relative Error and Accuracy in Significant Digits

relative
error

no. of accurate
significant digits

610− 510− 410− 310− 210− 110−

6 5 4 3 2 1

710−
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Example: Let the true value of π be 3.1415926535898 and its approximation 

be 3.14 as usual. Compute the absolute error and relative error of such an 

approximation.

The absolute error:

which implies that the approximation is accurate up to 2 decimal places.

The relative error:

which implies that the approximation has a accuracy of 3 significant figures.

8980015926535.014.38981415926535.3 =−=−= ππε

975069573828000.0
8981415926535.3

8980015926535.0  
==

−
=

π
ππ

ε r
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• STABILITY AND CONVERGENCE

– STABILITY in numerical analysis refers to the trend of error change 

iterative scheme. It is related to the concept of convergence.

It is stable if initial errors or small errors at any time remain small 

when iteration progresses. It is unstable if initial errors or small errors 

at any time get larger and larger, or eventually get unbounded. 

– CONVERGENCE: There are two different meanings of convergence 

in numerical analysis:

a. If the discretized interval is getting finer and finer after dicretizing the 

continuous problems, the solution is convergent to the true solution.

b. For an iterative scheme, convergence means the iteration will get 

closer to the true solution when it progresses.
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• Problem: Given a function f (x), which normally is nonlinear, the  

problem of “computing zeros” means to find all possible points, say

such that

However, it is often that we are required to find a single point in certain 

interval, say [a,b] such that 

nxxx ~,,~,~
10 L

0)~(...)~()~( 10 ==== nxfxfxf

Solutions to Nonlinear Equations (Computing Zeros)

0
~x

0)~( 0 =xf
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General strategy is to design an iterative process of the form

with some starting point x0. So that the numerical solution as

Thus, instead of finding the exact solution, we find an approximation.

We focus on the following methods for this subject:

Bisection Method + False Position Method + Newton Method +

Secant Method + Fixed Point Method + Your Own Method

)(1 nn xgx =+

∞→→ nxxn   as,~
0
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BISECTION METHOD

Given a function f (x) in [a, b] satisfying f (a) f (b)<0, find a zero of f (x) in [a, b].
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Step 3: If xn is close enough to    , stop. Otherwise, n:=n+1 & go to Step 1.
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Advantages:

1. It is guaranteed to work if f (x) is continuous in [a, b] and a zero

actually exists.

2. A specific accuracy of iterations is known in advance. Few other

root-finding methods share this advantage.

Disadvantages:

a. It requires the values of a and b.

b. The convergence of interval halving is very slow.

c. Multiple zeros between a and b can cause problem. 
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Example: Let                   .  Find its zero in [0, 1.5]

Of course, we know f (x) has a root at          .  Let us find it using the 

Bisection Method:

Step 0:
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FALSE POSITION METHOD

The graph used in this method is shown in the following figure.
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The key idea is to approximate the curve by a straight line within the

interval and identify a “false” position x1, which of course may not be a 

true solution. We can keep repeating this procedure to get approximations 

of the solution, x2, x3, …. Mathematically,

axxf
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n
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−
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Advantage:

Convergence is faster than bisection method. 

Disadvantages:

1. It requires a and b.

2. The convergence is generally slow.

3. It is only applicable to f (x) of certain fixed curvature in [a, b].

4. It cannot handle multiple zeros.
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Example: . Find its root in [0,1.5]1)( 2 −= xxf

∞→→

=

−
−−

−
−=

−
−

−=

=

−
−−

−
−=

−
−

−=

=−
−−

−
−=

−
−

−=

nx

xf
xfbf

xb
xx

xf
xfbf

xb
xx

af
afbf

ab
xx

n     as    1

...

9841.0

)1479.0(
)1479.0(25.1

9231.05.1
9231.0

)(
)()(

9231.0

)5556.0(
)5556.0(25.1

6667.05.1
6667.0

)(
)()(

6667.0)1(
)1(25.1

05.1
0

)(
)()(

2
2

2
23

1
1

1
12

01

Prepared by Ben M. Chen



17

Newton Method

Assume that f’(x) exists and nonzero at xn for all n.

Zero-finding: The linear approximation based on one point (x1, y1) only is 

given by

We look for a point x for which y = 0. As such we have the following iteration: 

)(')( 11 xfxxyy −+=

)('
)(

0)(')( 111
n

n
nnnnnnn xf

xf
xxxfxxyy −=⇒=−+= +++

b

)(bf

1x

)( 1xf

2x

)( 2xf

0
~x

Prepared by Ben M. Chen



18

Advantages:

1. Starting point x1 can be arbitrary.

2. The convergence is faster than the previous two methods.

Disadvantages:

1. It needs f’(x).

2. The divergence may occur.
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Example: Find zero of                           in [ 0,1.5 ] using Newton’s Method1)( 2 −= xxf
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xStarting with any initial 

point, say x0 = 0.1, we 

have
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Secant Method

Secant Method is a modified version of Newton’s method in which f’(xn)

is approximated by

Substituting this into the iteration scheme of Newton’s method, we obtain

• Advantage: 1) Convergence is fast and 2) it does dot need derivative.

• Disadvantage: The method may fail.

)()(
)(

1

1
111

−

−
−−+ −

−
−=

nn

nn
nnn xfxf

xx
xfxx

1

1)()(
)('

−

−

−
−

=
nn

nn
n xx

xfxf
xf

Prepared by Ben M. Chen



21

Fixed Point Method

Start  from                 and derive a relation  

Example: Compute zero for f (x) with                               or find x such that 

The fixed-point method is simply given by

Q: Does it work? Does it converge? A: Maybe yes and maybe not.

0)( =xf

)(xgx =
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)(1 nn xgx =+
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Q: When does it converge?

A: Convergence Theorem

Consider a function f (x) and suppose it has a zero on the interval [a, b].

Also, consider the iteration scheme  

derived using fixed-point method. Then this scheme converges, i.e,

if the following condition are satisfied:

(1)                  for all                 . g(x) is also said to be contraction in [a, b].

(2) Start any initial point 

Remark: If the above conditions are not satisfied, the iteration scheme might 

still converge as the above theorem only gives sufficient conditions. 
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Applications: Compute        .   (Actual value = 1.73205)

Solution:
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SUMMARY

• Bisection Method

Condition: Continuous function f (x) in [a, b] satisfying f (a) f (b) < 0.

Convergence: Slow but sure.  Linear.

• False position method

Condition: Continuous function f (x) in [a, b] satisfying f (a) f (b) < 0.

Convergence: Slow (linear).

• Newton Method

Condition: Existence of nonzero f '(x)

Convergence: Fast (quadratic).

• Secant Method

Condition: Existence of nonzero f (xn+1) – f (xn)

Convergence: Fast (quadratic).

• Fixed-point Method

Condition: Contraction of g(x).

Convergence: Varying with the nature of g(x).
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Interpolation

Problem: Given a set of measured data, say n + 1 pairs, 

the problem of interpolation is to find a function f (x) such that

),(...,),,(),,( 1100 nn yxyxyx

niyxf ii ...,,1,0    ,)( ==

• xi is called nodes;

• f(x) is said to interpolate the data and is called interpolation function.

• f(x) is said to approximate g(x) if the data are from a function g(x).

• It is called interpolate (or extrapolate) if f(x) gives values within (or    

. outside) [x0, xn].
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A simple choice for f (x) is a polynomial of degree n:

The existence and uniqueness have been verified. There is only one

polynomial existing for the interpolation.

LAGRANGIAN POLYNOMIALS

(a) Fitting Two Points

Fit the linear polynomial for two given points (x0, y0) and (x1, y1).

n
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(b) Fitting Three Points

Fit the quadratic polynomial for three given points.
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(c)  Fitting n+1 Points

Lagrangian polynomial for fitting n + 1 given points
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is given by

where 
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NEWTON’S DIVIDED DIFFERENCE METHOD

The following two disadvantages of Lagrangian polynomial method lead 

us to develop a new method for the interpolation. They are:

(1) it involves more arithmetic operations; and

(2) we essentially need to start over the computation if we desire to 

add or subtract a point from the set of data.

The Basic Idea of Divided Difference:

Consider the n-th-degree polynomial written in a special way:

The key idea is to find a0, …, an so that Pn interpolates the given data:
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Define the first order divided difference between two notes xi and xi+1 as
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and the higher order divided differences as
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as well as zero-th order divided difference:

]0[][ iii ffxf ==
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Divided Difference Table:

ix
if ],[ 1+ii xxf ],,[ 21 ++ iii xxxf ],,,[ 321 +++ iiii xxxxf

0x

1x

2x

3x

4x 4f
3f
2f
1f
0f ]1[

0f
]1[

1f
]1[

2f
]1[

3f

]2[
0f

]2[
1f

]2[
2f

]3[
0f

]3[
1f

ix
if

2.3

7.2
0.1
8.4
6.5 7.51

3.38
2.14

8.17
0.22 400.8

118.2

342.6

750.16

856.2

012.2

263.2

5280.0−

0865.0

Example:

1st Order 2nd Order 3rd Order 4th Order

2560.0

]4[
0f
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Idea: If 

is an interpolation of the given data:

),,( ...,),,(),,( 1100 nn fxfxfx
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In general, we can show that nkfa k
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Thus, given a set of data:

),,( ...,),,(),,( 1100 nn fxfxfx

their n-th degree polynomial interpolation is given by
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L

The advantage of the above method is that there is no need to start all 

over again if their additional pairs of data are added. We simply need to

compute additional divided differences.

Since n-th order polynomial interpolation of a given (n + 1) pairs of data

is unique, thus the above polynomial and Lagrangian polynomial are 

exactly the same.
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ix
if

2.3

7.2
0.1
8.4
6.5 7.51

3.38
2.14

8.17
0.22 400.8

118.2

342.6

750.16

856.2

012.2

263.2

5280.0−

0865.0

Example: Interpolate the following set of data

1st Order 2nd Order 3rd Order 4th Order

2560.0

)0.1)(7.2)(2.3(528.0

)7.2)(2.3(856.2)2.3(400.80.22)(3

−−−−
−−+−+=

xxx

xxxxP

Interpolate from x0 to x3:

Interpolate from x0 to x4:

)8.4)(0.1)(7.2)(2.3(256.0)()( 34 −−−−+= xxxxxPxP
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Evenly Spaced Data

The problem of interpolation from tabulated data is considerably simplified if 

the values of the function are given at evenly spaced intervals of the 

independent variable.

Difference Table:

Assume that the given set of data is evenly spaced, i.e.,

(a) The first order differences of the functions are defined as:
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(b) The second order differences of the functions are given by:

(c)  The n-th order differences of the functions are given by:
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Newton Forward Method for Evenly Spaced Data:

),,( ...,),,(),,( 1100 nn fxfxfx

Given a set of measured data

in which                     , then the Newton forward interpolation polynomial is

given by
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k∆and            is the k-th order difference of the given data. 

Prepared by Ben M. Chen



40

ix
if

0.0

2.0
4.0
6.0
8.0 030.1

684.0
423.0

203.0
000.0 203.0

220.0
261.0

346.0

017.0

041.0

085.0

024.0

044.0

Example: Interpolate the following set of data using Newton Forward Method

1st Order 2nd Order 3rd Order 4th Order

020.0

Assume that we only want to interpolate from 0.4 (x0) to 1.0 (x3):
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Least Squares Approximation

Least Squares Linear Fitting: If we are given a set of data points,                          

can we use a line to fit these data points? The answer is positive. 

If the line is expressed as 

where a0 and a1 are the two best values to be determined. Obviously, the 

error      of each point                 with respect to y = a0 + a1 x will be

The least squares criterion requires that

be a minimum.
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At a minimum for S, the two derivatives               and                will both be 

zero:

Thus, a0 and a1 can be obtained so that the data points are linearly fitted. 
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In fact, we can write the above equations into a linear system:
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for solve it for a0 and a1.
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Least Squares Polynomials:

Instead of matching the data in every node, the least square method is trying 

to fit n pairs of data by a polynomial of a pre-determined degree, say m,

We define the fitting errors

In order to achieve minimal error S (least square error), all the partial 

derivatives    

must equal to 0. Writing the equations for these given m + 1 equations:
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Or solving the following system

for a0, a1, …, am.
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22.01 xxy +−=

3357.1183929050511

9161311504  6545.4  01.6
2

432

=Σ=Σ=Σ=

=Σ=Σ=Σ=Σ

iiiii

iiii

yx  .yx   .y        n

.x  .xxx

Example:

To demonstrate how the method is used, we would fit a quadratic to the 

following data: 

These data are actually a perturbation of the relation          

Obviously we have

Thus the equation system to be solved is:
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2225.0018.1998.0 xxy +−=

22.01 xxy +−=

3357.19161.31150.46545.4

1839.21150.46545.40100.6

9050.56545.40100.60000.11
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210

210

=++

=++
=++

aaa

aaa

aaa

Compare this to .  We do not expect to reproduce the 

coefficients exactly because of the error in the data. Figure of next page 

shows a plot of the data and its fitting-curve.

225.0

018.1

998.0

2

1

0

=
−=

=

a

a

a

Thus, the least square quadratic fit is given by

The above linear system can be solved using methods given in Part I of

of this course or using MATLAB software package.
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∫ ≅
b

a

dxxf ?)(

L+∆
−

+∆+= 0
2

00 !2

)1(
)( f

ss
fsfxPn

∫ ∫≅
b

a

b

a
n dxxPdxxf )()(

Numerical Integration

Given a function f (x) and an interval, say [a, b], we want to find an algorithm 

to approximate

Newton-Cotes Integration Method

Using Newton-Gregory Forward Polynomial

to interpolate (approximate) f (x) in [a, b], i.e.,
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NEWTON-COTES INTEGRATION

Although the analytical procedure could be used to find out the expression 

of integrals, a large number of integrals do not have solutions in closed 

form. Numerical integration applies regardless of the complexity of the 

integrand or the existence of a closed form for the integral.

General Consideration:

A very simple method used in the numerical integration is the Newton-

Cotes forward polynomial, particularly the polynomial of degrees 1, 2 and 3; 

i.e;

∫∫ ≅
b

a
sn

b

a
dxxPdxxf )()(
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• Let us now develop our three important Newton-Cotes formulas. 

During the integration, we will need to change the variable of 

integration from x to s, since our polynomials are expressed in terms of 

s. Observe that

⇒⋅=⇔−= dshdx
h

xx
s 0

00

0

=
−

=

=

h
xx

s

xx

c

100

01

=−+=

+==

h
xhx
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hxxx

c

)(
2

)](2[
2

2

1

2

)()()(

10010

00

1

0

2

00

1

0
0000

1

0

1

0

ff
h

fff
h

ffh
s

fhshf

dsfsfhdxfsfdxxf
x

x

x

x
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 ∆+=








∆+=

∆+=∆+≅ ∫∫∫

For n = 1, we have
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For n = 2, we have

( )210
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23
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0
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For n = 3, we have ( )3210 33
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3
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The Trapezoidal Rule for Integration

Given f (x) and an interval [a, b]

0xa = 1x 2x ix 1+ix 1−nx bxn =

1f
0f 2f

if 1+if
1−nf

nf

2
10 ff

h +
2

1++ ii ff
h

2
1 nn ff

h +−

( )nn

nnii
b

a

fffff
h

ff
h

ff
h

ff
h

ff
hdxxf

+++++=

+
++

+
++

+
+

+
≅

−

−+∫
1210

112110

222
2

2222
)(

L

LL

Thus,

n
ab

h
−

=
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The Simpson’s       Rule for Integration

Given f (x) and an interval [a, b]

0xa = 1x 2x 2−nx bxn =

1f
0f

2−nf 1−nf

( )210 4
3

fff
h

++

even is  , n
n

ab
h

−
=3

1

nf

Newton-Cotes: LLL

Thus,

( ) ( )

( )nnn

nnn

b

a

ffffffff
h

fff
h

fff
h

dxxf

++++++++=

++++++≅
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1243210

12210

422424
3

4
3

4
3

)(

L

L

LLL

( )nnn fff
h

++ −− 12 4
3

2f

1−nx
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The Simpson’s       Rule for Integration

Given f (x) and an interval [a, b]

0xa = 1x 2x 2−nx bxn =

1f
0f 2f

2−nf
1−nf

( )3210 33
8

3
ffff

h
+++ ( )nnnn ffff

h
+++ −−− 123 33

8

3

mn
n

ab
h 3, =

−
=8

3

1−nx

nf

Newton-Cotes: LLL

Thus,
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a
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Example: Evaluate

True value:

Trapezoidal Rule:

]21[][
6

1

6

12
   withcos)(   ,cos

2

1

22 ,a,b.       
-

hxxxfxdxx ====∫

( )
0851.0|sin20505.0cos2|cos27957.2

cos27957.22sin|sinsincos

2
1

2

1

2
1

2

1

2

1

2
1

2
2

1

2
2

1

2

−=−=−+=

+=×−==

∫
∫∫∫∫

xxdxxx

xxdxdxxxxxdxxdxx

09796.0

]6646.18723.022659.021592.024182.025352.025403.0[
2

cos
2

1

2

−=

−×−×−×+×+×+=∫
h

xdxx

Simpson       Rule:3
1

08507.0

]6646.18723.042659.021592.044182.025352.045403.0[
18

1

]42424[
3

)( 6543210

−=

−×−×−×+×+×+=

++++++=∫ fffffff
h

dxxf
b

a
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Simpson’s       rule:

Simpson’s       rule gives the best result!

In general, Simpson’s       rule would give the best results.

8
3

08502.0

]6646.18723.032659.03

1592.024182.035352.035403.0[
48

3

]33233[
8

3
)( 6543210

−=
−×−×−

×+×+×+=

++++++=∫ fffffff
h

dxxf
b

a

3

1

8
3
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NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS

If the equation contains derivatives of an n-th order, it is said to be an n-th

order differential equation. For example, a second-order equation describing 

the oscillation of a weight acted upon by a spring, with resistance motion 

proportional to the square of the velocity, might be

where x is the displacement and t is time.

06.04
2

2

2

=+





+ x

dt
dx

dt
xd

The solution to a differential equation is the function that satisfies the 

differential equation and that also satisfies certain initial conditions on the 

function. The analytical methods are limited to a certain special forms of the 

equations. Elementary courses normally treat only linear equations with 

constant coefficients. 
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Numerical methods have no such limitations to only standard forms. We 

obtain the solution as a tabulation of the values of the function at various 

values of the independent variable, however, and not as a functional 

relationship.

Our procedure will be to explore several methods of solving first-order 

equations, and then to show how these same methods can be applied to 

systems of simultaneous first-order equations and to higher-order 

differential equations. We will use the following form

for our typical first-order equation.

00)(),,( yxyyxf
dx
dy ==
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THE TAYLOR-SERIES MENTOD

The Taylor-series method serves as an introduction to the other techniques 

we will study although it not strictly a numerical method. Consider the 

example problem

(This particularly simple example is chosen to illustrate the method so that 

you can really check the computational work. The analytical solution,

is obtained immediately by application of standard methods and will be 

compared with our numerical results to show the error at any step.)

  0,1)0(,2 0 =−=−−= xyyx
dx
dy

223)( +−−= − xexy x
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Taylor Series Expansion:

We develop the relation between y and x by finding the coefficients of the 

Taylor series expanded at x0 

If we let x – x0 = h , we can write the series as

Iterative Procedure:

Since y(x0) is our initial condition, the first term is known from the initial 

condition y(x0) = – 1. We get the coefficient of the second term by 

substituting x = 0, y = – 1 in the equation for the first derivative

L+−+−+−+= 3
0

02
0

0
000 )(

!3
)('''

)(
!2

)("
))((')()( xx

xy
xx

xy
xxxyxyxy

L++++= 3020
00 !3

)('"

!2

)("
)(')()( h

xy
h

xy
hxyxyxy

( ) 1)1()0(2)(22)( 000
0

0

=−−−=−−=−−==′
=

=

xyxyx
dx
dy

xy
xx

xx
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Similarly, we have

( ) 3)()(22)( 0 −=′′⇒′−−=−−=





=′′ xyxyyx

dx
d

dx
dy

dx
d

xy

3)(3)( 0
)4(

0 −=⇒=′′′⇒ xyxy

We then write our series solution for y, letting x = h be the value at which 

we wish to determine y:

error term125.05.05.10.11)( 432 +−+−+−= hhhhhy

Here shown is a case whose function is so simple that the derivatives of 

different orders can be obtained easily. However, the differentiation of 

f(x,y) could be very messy, say, those of  x / ( y – x2 ).
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EULER METHOD

As shown previously, the Taylor-series method may be awkward to apply if 

the derivatives becomes complicated and in this case the error is difficult to 

determine. In fact, we may only need a few terms of the Taylor series 

expansion for good accuracy if we make h small enough. The Euler 

method follows this idea to the extreme for first-order differential equations: 

it uses only the first two terms of the Taylor series!

Iterative Procedure:

Suppose that we have chosen h small enough that we may truncate after 

the first-derivative term. Then

where we have written the usual form of the error term for the truncated 

Taylor-series.

2
000 2

)("
)(')()( h

y
hxyxyhxy

ζ
++=+
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The Euler Method Iterative Scheme is given by





′⋅+=
==′

+ nnn

nnn

yhyy

xyyyxfy

1

00 )(),,(

Example: Using Euler Method with h = 0.1, find solution to the following o.d.e.

  0,1)0(,2),( 0 =−=−−== xyyxyxf
dx
dy

( )



−=−−⋅+=
=−=−−=′

+ nnnnnn

nnn

xyyxyy

xyyxy

2.09.021.0

0,1,2

1

00

0.8110)(   76830302090

0.8225)(       7870202090

0.8562)(        830102090

0.9145)(             902090

34

23

12

001

−−=×−=
−−=×−=

−−=×−=
−−=−=

  ...y.y

...y.y

  ...y.y

   .x.y.y
( • ) are true

values
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Example (cont.): Let us choose h = 0.001

( )



−=−−⋅+=
=−=−−=′

+ nnnnnn

nnn

xyyxyy

xyyxy

002.0999.02001.0

0,1,2

1

00

)999002.0(999.00)1(999.01 −−=−−=y

)998006.0(998003.0001.0002.0)999.0(999.02 −−=×−−=y

Quite accurate, right? What is the price we pay for accuracy? Consider

y(10), for h = 0.1, we need to compute it in 100 steps. For h = 0.001, we 

will have to calculate it in 10000 steps.  No free lunch as usual.
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x

y

x0 x1 x2 x3

y0
y1

y2

y3

h h h h
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THE MODIFIED EULER METHOD

In the Euler method, we use the slope at the beginning of the interval, y'n

to determine the increment to the function. This technique would be correct 

only if the function were linear. What we need instead is the correct 

average slope within the interval. This can be approximated by the mean of 

the slopes at both ends of the interval.

Modified Euler Iteration:
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′+=

==′
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+

+++

+

h
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yy

zxfz

yhyz

xyyyxfy

nn
nn

nnn

nnn

nnn

2

),(

)(),(

1
1

111

1

00

The key idea is to fine-tune y'n by using 
2

1+′+′ nn zy

Given an o.d.e. 

The modified Euler iteration is:

00)(),( yxyyxf
dx
dy

==
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:3 Step

:2 Step

:1 Step

    with     o.d.e. Solve   :Example
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THE RUNGE-KUTTA METHODS

The two numerical methods of the last two section, though not very 

impressive, serve as a good approximation to our next procedures. 

While we can improve the accuracy of those two methods by taking

smaller step sizes, much greater accuracy can be obtained more 

efficiently by a group of methods named after two German 

mathematicians, Runge and Kutta. They developed algorithms that 

solve a differential equation efficiently and yet are the equivalent of a 

approximating the exact solution by matching the first n terms of The 

Taylor-series expansion. We will consider only the fourth- and fifth-

order Runge-Kutta methods, even though there are higher-order 

methods. Actually, the modified Euler method of the last section is a 

second-order Runge-Kutta method.
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Fourth-Order Runge-Kutta Method:

Problem: To solve differential equation,

Algorithm:

)(    ),,( 00 xyyyxf
dx
dy
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( )
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Proof: 1) Read textbook, or 2) forget about it.
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Example: Solve the following o.d.e. using Fourth-Order Runge-Kutta Method 

1.0,0,1)0(,2 0 ==−=−−= hxyyx
dx
dy

( )

( )

)856190(8562.00456.00586.00579.00715.0
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 ×−−−××−=






 ++=

=+×−==

   :2 Step

:1 Step

true values
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Numerical Solutions to Partial Differential Equations

Introduction

General partial differential equations (PDE) is hard to solve! We shall only 

treat some special types of PDE’s that are useful and easier to be solved.

Classification of 2nd order quasi-linear PDE’s

General form

quasi-linear — linear in highest order derivatives

u = u(x, y) — unknown functions to be solved. 

x, y — independent variable x and y.
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∂
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yx

u
yxb

x
u

yxa ,,,,),(),(2),( 2

22

2
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Some standard notations

Types of equations

Type            Condition               Example

elliptic

parabolic

hyperbolic

yx
u

u
y
u

u
x
u

u
y
u

u
x
u

u xyyyxxyx ∂∂
∂=

∂
∂=

∂
∂=

∂
∂=

∂
∂=

2

2

2

2

2

:,:,:,,:

02 <− acb

02 =−acb

02 >− acb

Laplace equation: { }1,0,1

0

===

=+

cba

uu yyxx

Heat equation: { }0,0,2

2

===

=

cbka

uuk txx

Wave equation: { }1,0,2

2

−===

=

cbAa

uuA ttxx

Methods of solutions depended on the type of equations.
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Geometrically

Type may not be constant over R because a,b,c can vary over R, e.g, 

elliptic in one part of R and parabolic in the other part of R.

Example:

          

elliptic

parabolic
  

R




<
=

≤−=−⇒===⇒

≤≤−≤≤−

+−=+

0

0
0sin1,0,sin

33,33:

])(sin[)(sin

222

2

yacbcbya

yx

uyuuu

a

y xyyxx43421

R
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General Approach to the Solutions of PDEs

Step 1: Define a grid on R with “mesh points”

k

j

R

h
i x

y

mesh point pij=(ih, jk)

Step 2: Approximate derivatives at mesh points by central difference quotients

2

1,,1,

2

,1,,1

1,1,,1,1

2
),(,

2
),(

,
2

),(,
2

),(

k

uuu
jkihu

h

uuu
jkihu

k

uu
jkihu

h

uu
jkihu

jijiji
yy

jijiji
xx

jiji
y

jiji
x

−+−+

−+−+

+−
=

+−
=

−
=

−
=

These will bring a PDE to a difference equation relating uij to its neighbouring

points in the grid.
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For example,

0
22

0 2

1,,1,

2

,1,,1 =
+−

+
+−

⇒=+ −+−+

k

uuu

h

uuu
uu jijijijijiji

yyxx

0)(2 ,
22

1,
2

1,
2

,1
2

,1
2 =+−+++ −+−+ jijijijiji uhkuhuhukuk

Step 3: Arrange the resulting difference equation into a system of linear 

equations



















=





































*

*

*

****

***

***

12

11

MM

L

MOMM

L

L

u

u

,..., 1211 uu

Taking into consideration of 

boundary conditions and solve 

it for

Step 4: change grid size for a more accurate approximation.

LLLL
4242

kk
k

hh
h →→→→
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Solution to Elliptic Type’s PDE

The general approach will be followed to solve these types of problems by 

taking into account various kinds of boundary conditions in form of the 

system of linear equations. We will illustrate this using the following PDE:   

0),(2

2

2

2

≡=+=
∂
∂

+
∂
∂

yxfuu
y
u

x
u

yyxx

)1(log)1(),( 10 xyyxu ++=   condition Boundary

{ }30,30),,( ≤≤≤≤= yxyxR

We follow the step-by-step procedure given in the previous section.
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Step 1: Define a grid along with an order of mesh-points inside R. (We 

have to be clear about R and h, k )

First, let us start with a crude grid h = k = 3/N, for N=3 —>  h = k = 1

11u 21u
31u01u

20u
10u

32u22u12u02u

13u 23u

0 1 2 3

1

2

3 )1(log4 10 xu +=

4log)1( 10yu +=

)1(log10 xu +=

0=u

knowns: 2010010231322313 ,,,,,,, uuuuuuuu unknowns: 22211211 ,,, uuuu
Prepared by Ben M. Chen



79

Step 2: Approximate derivatives at mesh-points

At mesh-point (i, j) where          is unknown:

04

3,2,13,2,10
22

0),(

,1,1,,1,1

2

1,,1,

2

,1,,1

=−+++⇒

==≡=
+−

+
+−

⇒==+

−+−+

−+−+

jijijijiji

ij
jijijijijiji

yyxx

uuuuu

jif
k

uuu

h

uuu

yxfuu

jiu ,

 1210210111121110211101 4220 uuuuuuuuuuu ++++−=+−++−=

2122203111 40 uuuuu −+++=

@ (1,1):
0 0.301

@ (2,1):
1.204 0.477

@ (1,2): 1222021311 40 uuuuu −+++=
1.204 0

@ (2,2): 2232122321 40 uuuuu −+++=
1.908 1.806

Boundary values

are known
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Step 3: Arrange the equation into matrix form

Solve the equations for

Step 4: Refine the step-size by choosing smaller h, k.
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Parabolic and Hyperbolic Types

Parabolic: Example — heat equation

Hyperbolic: Example — wave equation

We will use parabolic type                  to illustrate the solution method, 

which carries over to the hyperbolic type as well!

tcoefficien diffusion heat is  where DuDu txx ,=

ttxx uuC =2

txx uu =

where C 2 is wave propagation velocity

R

0=x Lx =
h

k
Boundary condition:

u(L, t) = uL(t)

Boundary condition:

u(0, t) = u0(t)

initial condition

t
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Notations:

Then

To solve the equation, we start with j = 0, then        ’s  are given as initial 

conditions and can be used to solve for 

2
,1,,1

2
11

,1,1

,

2),(),(2),(
),(

),(),(
),(

),(

,1,0,

,,,1,0,

h

uuu

h

txutxutxu
txu

k

uu

k

txutxu
txu

txuu

jkjt
N
L

hNhLNihix

jijijijijiji
jixx

jijijiji
jit

jiji

j

i

−+−+

++

+−
=

+−
=

−
=

−
=

=

=⋅=

=⇒==⋅=

L

L

  

        

( )jii,j,jii,ji,jxxt uuu
h
kD

uu D  uu ,1121 2 −++ +−=−⇒=

0,iu

1,,1,1, −= Niui L   

(♣)
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Rewrite equation (♣) as

( )
2,111 with  21

h
kD

uuuu jii,j,jii,j =⋅+−+⋅= −++ γγγγ

In general, we can solve for ui,j+1, i = 1, …, N, if we know the j-th row.

0 1 1−N N

j

1+j

0,1u 0,1−Nu

ju ,1 jNu ,1−

1,1 +− jNu1,1 +ju
boundary
condition

boundary
condition

initial condition
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Example: Solve the following boundary value problem,

We choose N = 3 and hence h = 1/3 and choose two different k:

1,1,10, ==≤≤= LDxuu xxt

2
sin)0,(

x
xu

π=initial condition: 1),1(,0),0( == tutu   boundary condition:

45.005.0 == γak 9.01.0 == γak
i

jk ju ,0 ju ,1 ju ,2 ju ,3 ju ,1 ju ,2
i

jk
866.0500.00.01866.0500.0000.0

657.0379.01.01762.0434.0005.0
716.0288.02.01724.0387.0010.0
587.0414.03.01696.0364.0015.0
803.0197.04.01684.0350.0020.0
435.0505.05.01676.0343.0025.0
061.1061.06.01672.0338.0030.0 −
003.0003.17.01667.0336.0035.0 −
805.1804.08.01668.0335.0040.0 −
269.1269.29.01668.0334.0045.0 −
457.3957.20.11667.0333.0050.0 −

unstable

case
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A short discussion about hyperbolic type PDE:

0,10,),(2 ≥≤≤= txutxCu xxtt     

Initial conditions: )()0,(),()0,( 21 xfxuxfxu t ==

PDE:

Boundary conditions: )(),1(),(),0( 10 tgtutgtu ==

( )
2

22
*

1,,1
*

,1
**

1 22
h

kC
uuuuu jijijii,ji,j =−⋅+⋅+−= −+−+ γγγγ   with

Following the usual procedure, we obtain an approximation:

Note that at j = 0, we have to deal with         , which are not readily available.

Thus, we will have to compute these terms first.

1,−iu

)(2)(2)()0,( 21,1,21,1,2 iiiiiit xkfuuxkfuuxfxu −=⇒=−⇒= −−

Prepared by Ben M. Chen



86

The difference equation can then be solved by using the direct method, e.g,

)(2***)22(

**)22(

21,0,10,10,

1,0,1
*

0,10,1,

iiiii

iiiii

xkfuuuu

uuuuu

+−++−=

−++−=

+−

−+−

γγγ

γγγ

1,,2,1),()(*
2

1
)(*

2

1
)(*)1( 2111111, −=+++−= +− Nixkfxfxfxfu iiiii Lγγγ

For j > 1, we still use

( ) 1,,1
*

,1
**

1 22 −+−+ −⋅+⋅+−= jijijii,ji,j uuuuu γγγ

The rest of computational procedure is exactly the same as that in the 

parabolic case.
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Example: Solve

Let us choose h = k = 0.25 so that γ* = 1

Determine          to start the solution or use formula on the previous page

to compute       , i = 1, 2, 3, first, i.e.,

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )ttgtu

tgtuconditionsBoundary

xxxfxu

xfxuconditionsInitial

txuuPDE

t

xxtt

π
π

π

sin
1

,1

0,0

sin0,

00,:

0,10:

1

0

2

1

==

==
+==

==
≥≤≤=

                            

  : 

                      

   

     

1,iu
1,−iu

[ ]








=
=
=

⇒+=⋅+=
364.0

375.0

239.0

)sin(25.0)(0

1,3

1,2

1,1

21,

u

u

u

ðxxxfku iiii

D.I.Y. to complete the solutions up to t = 2.
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