
Annex: A Past Year Exam Paper

Semester I: 1996/97



Q.1.(a). State the conditions under which the system of linear equation

has (i) no solution, (ii) exactly one solution, and (iii) more than one solutions.

Solution: Let the augmented matrix of the given system be

(i) if the above augmented matrix and A have different ranks, the given 

system has no solution.

(ii) if the augmented matrix and A have a same rank, which is equal to the 

number of unknowns, then the system has exactly one solution.

(iii) if the augmented matrix and A have a same rank, which is less than the 

number of unknowns, then the system has infinitely many solutions.
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Q.1.(b). Reduce the following augmented matrix to its (i) echelon form, (ii) 

row echelon form, and (iii) reduced row echelon form:

Solution: The echelon form can be found as the following

The row echelon form and reduced row echelon form are respectively
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Q.1.(c). Compute the determinant of the coefficient matrix A associated 

with the augmented matrix in part (b). Does the inverse of A exist (do not 

compute it)? Justify.

Solution: A is given by

Its determinant is given by

which is nonzero. Hence its inverse exists.
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Q.1.(d). Compute the rank of the augmented matrix in part (b).

Solution: The augmented matrix and its echelon form was computed as 

the following:

Hence, the rank of the augmented matrix is equal to 3.
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Q.1.(e). Consider the system

Solve the linear system for x, y and z. Is the solution unique? Justify.

Solution: The augmented matrix and its echelon form,

The ranks of the augmented matrix and A are both equal to 3, which is the 

number of unknowns. Hence, the solution is unique and is given by
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Q.2. Consider the vectors:

(a) Are these vectors linearly independent? Justify.

Solution: Arrange these vectors as rows of a matrix and reduce it to echelon 

form as the following:

which has a rank of 3. Hence, the given vectors are linearly independent.
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Q.2.(b). Let these vectors span a vector space V. Find the the dimension of 

V and a set of basis vectors for V.

Solution: Clearly, the dimension of V is 3. The following are two sets of bases 

for V:

or
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Q.2.(c). Does the vector v = [ 2  1  1  1 ] belong to the vector space V. Justify.

Solution: Assume that v can be expressed as

or 

Hence,
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Q.2.(d). Let v1, v2 and v3 be arranged as the first, second and third rows of 

a 3 × 4 matrix A. Let the null space of A be the vector space W. Determine 

the dimension of W.

Solution: W is the solution space of

The augmented matrix

The dimension of W is equal to 1 as there is only one free variable.
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Q.2.(e). Find a set of basis vector for W.

Solution: From the previous part, we have

Hence,

is a basis vector for W.
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Q.3. Consider the matrix given by

(a) Compute the eigenvalues and the eigenvector matrix, P, of the matrix A.

Solution: The characteristic equation of the given matrix,

Thus, the eigenvalues are 
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For λ1,

For λ2,

For λ3,

The normalized eigenvector matrix
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Q.3.(b). Compute the inverse of P. What is the determinant of P?

Solution:

and
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Q.3.(c). For the matrix A, compute A148. Leave your answer in terms of the 

eigenvalues and the eigenvector matrix.

Solution: It is known that

and hence
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Q.3.(d). Using the result in part (a). Show that the quadratic form

is positive semi-definite.

Solution: The given quadratic form can be re-written as

and A is symmetric with all its eigenvalues being non-negative. Hence, Q is 

positive semi-definite.

Q.3.(e). is skipped as the topic was not covered in the lectures.
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Q.4.(a). Assume that the true value of α = sin(π/5) = 0.587785 to six decimal 

places. Determine the absolute and relative errors in approximating α by 

α=0.588. Also, find the absolute and relative errors in approximating 50α by 

50α=29.39. 

Solution: The absolute error in approximating α by α is

and its relative error is

The absolute error in approximating 50α by 50α is

and its relative error is

000215.0≅− αα

41066.3 −×≅
−
α

αα

00075.05050 ≅− αα

51055.2
50

5050 −×≅
−
α

αα



Q.4.(b). Use Newton’s method to design an iterative equation that computes 

for a ≥ 1. Derive its associated absolute iterative error expression.

Solution: The solution is equivalent to the positive zero of the function,

The Newton’s iteration scheme is given by

Then the absolute iterative error

1−a

1)( 2 +−= axxf








 −
+=

+−
−=

′
−=+

n
n

n

n
n

n

n
nn x

a
x

x
ax

x
xf
xf

xx
1

2
1

2
1

)(
)( 2

1

( ) 222

11

2
1

1
2
1

)112(
2
1

1
2
1

11

n
n

n
n

nn
n

n
nnn

e
x

xa
x

axax
x

x
a

xaxae

−=−−−=−+−−−=








 −
+−−=−−= ++



Q.4.(c). Perform the 

formula of part (b) with 

x0 = 1 for six steps to 

obtain an 

approximation of 

(its exact value is 

equal to 2.236068). 

Show the details of all 

calculations.

Solution:
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Q.5. The following is a set of measured data for the function

(a) Find the least square quadratic fit to the given measured data and 

compute its average error,

Solution: The least square quadratic fit has the form

with coefficients being given by the solution of the linear system 

which leads to a solution
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Hence, the least square quadratic fit is

The errors at each points are

The average error
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Q.5.(b). Compute directly the exact value of

to four decimal places.

Solution:
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Q.5.(c). Compute directly the approximate value of

using the given measured data and the trapezoidal rule.

Solution:
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Q.5.(d). Compute directly the approximate value of

using the given measured data and the Simpson’s 1/3 rule.

Solution:

The above result is much closer to its true value than the previous one.
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Q.6. Consider a boundary value problem

To find an approximation of the solution u(x,y), place a grid with horizontal 

mesh spacing h=π/9 and vertical mesh spacing k=0.2 on the region:

(a) Draw a grid on R with 

appropriate mesh points.
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Q.6.(b). Use the central difference approximation to obtain a corresponding 

difference equation.

Solution: Recall that

Thus, 

and hence the difference equation is given by
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Q.6.(c). Use the obtained difference equation in part (b) and the given 

boundary conditions to derive a linear system that needs to be solved.

Solution: For u11,

For u12,

For u21,

For u22,
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