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Part 1: Course Outline (Part 1)

* Introduction to control systems; ordinary differential equations; Laplace transform;

basic principle of feedback
«  Modeling of physical systems
«  Control system design — stability issues

«  Control system design time domain specifications: steady state errors, overshoot,

rise time and settling time.

«  Control system design using Proportional-Integral-Derivative (PID) control

technique.
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Lectures and Tutorials:

Total lecture hours for the 1st part: 5.5 hours

Total tutorial hours for the 1st part: 1.5 hours

An overview on UAV helicopter systems: 1.0 hour

In-class test for the 1st part: 1.0 hour

Reference Text:

e G.F. Franklin, J. D. Powell and A. Emami-Naeimi, Feedback Control of

Dynamic Systems, 3rd Edition, Addison Wesley, New York, 1994,

3

Prepared by Ben M. Chen



Introduction
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What is a control system?

( ) . . . Information
INPUT aircraft, missiles, bout th
. . about the
Desired Dife to the economic .
Performance Herence systems, cars, etc system:
REFERENCE ERROR OUTPUT y

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key Issues: 1) How to describe the system to be controlled? (Modeling)

2) How to design the controller? (Control)
5
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Some Control Systems Examples:

REFERENCE OUTPUT

Exz

Desired Government

Performance Policies

Economic System
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An Overview on a UAV Helicopter System to be given later...

Bare Helicopter

Command

_

Real-time Data

= Measurement

Onboard System

A
|
- |
|
|
|
|

Ground Station RC Joystick 7
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Background
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Background Material: Differentiation

Given a function of time, say f (1), its differentiation is the rate of change of the function.

Mathematically,

f(t)—df(t) f(”AAtz‘f(t), At is small

Example: Consider f (t) = 1. Obviously, the rate of change of a constant is zero, I.e., it

does not change at all.

df(t) f(t+At)—f(t) 1-1 0
At At At

f(t)= =0

Example: Consider f (t) = t. The rate of change of this function is

df (t) f(t+At)—f(t) (t+At)-t At
At At At
The rate of change of this function is constant.

f(t) =

=1
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Background Material: Integration

The integration of a function f (t) over a certain interval is the total area of the function within

the interval, e.g., A f (t)
a b
s
Mathematically, we write it as : J f(t)dt = F(t)\s1 = F(b)-F(a):, where F(t) = f(t).
Examples: 1) f(t)=1 < F(t)=t ) f()=e" < F(t):%ekt
.Ft_) _______________________________________________________________________ I I :_E) __________________________ b _______________________________
: ! : 1 1 1
|1dt=F@) =F()-F@=b-a i i|efdt==e ==g®_=¢
j O, =F®)-F@=b-a : j I
Ll : A_._._‘_._._._._‘_._._‘_._._._._._._._4_._._4_._._._.11 ......
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Modeling
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Modeling of Some Physical Systems

A simple mechanical system:

..... » X acceleration

o — X displacement
system friction

force bx
m— & —

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied to an

force u

object with a mass m and a is the acceleration, we have
. . . b . u
U—bx = mx & X+—X=—
m m

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can be

written as a 1st order ODE with respect to speed v = X :

v+ Bv _ U |« model of the cruise control system, u is input force, v is output.
— 13
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A cruise-control system:

REFERENCE OUTPUT

]

| Controller -—

90 km/h
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Basic electrical systems:

resistor capacitor inductor

' i(t)j/_ (t)
. - dv :Lﬂ
VT R I|V=IR v(t)TTc i = Y V(t)T BL v
I

Kirchhoff’'s Voltage Law (KVL): Kirchhoff’s Current Law (KCL):
The sum of voltage drops around any The sum of currents entering/leaving a
close loop in a circuit is 0. node/closed surface is 0.

V,+V, +HV+V,+V. =0

L+ +1+1, +1;=0
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Modeling of a simple electrical system:

To find out relationship between the input (v;) and the output (v,) for the circuit:

: v
VRZRIZRCdO
dt
I e v
> AN— =C—2°
T

v 1O " c=1v,

By KVL, we have |V, +Vy—Vv, =0 =P

dv, v, =0
dt

dv . ;
dt of the circuit

16
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Control the output voltage of the electrical system:

REFERENCE INPUT JF‘: OUTPUT
Vi C

230 Volts
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Control of a Fighter Aircraft

It can be showed that the vertical position of a fighter aircraft can be approximated by the

following equation:

y(t) +0.05y(t) = u(t)

where y(t) is the vertical position (in meters) above the sea level and u(t) is the thrust force.

Reference

10000 m u y
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Ordinary Differential Equations
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Ordinary Differential Equations

Many real life problems can be modelled as an ODE of the following form:

y(t) +a,y(t) +a,y(t) = u(t)

This is called a 2nd order ODE as the highest order derivative in the equation is 2. The ODE
Is said to be homogeneous if u(t) = 0. In fact, many systems can be modelled or

approximated as a 1st order ODE, i.e.,

y(t) +a,y(t) = u(t)

An ODE is also called the time-domain model of the system, because it can be seen the above
equations that y(t) and u(t) are functions of time t. The key issue associated with ODE is: how

to find its solution? That is: how to find an explicit expression for y(t) from the given equation?

20
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Solutions to a 1st order ODE for a fighter aircraft:

y(t) +0.05y(t) =0, y(0) = 5000, the initial condition

The ODE is homogeneous. Replace the ODE with

yt) o s'=s & y@t) © =1 =(s+0.05=0 = s=-0.05

The solution is then given by y(t) = ke™ = ke "%} where k is a constant to be determined.

Substitute this function into the ODE,

y(t) +0.05y(t) = %(keo'%t )+ 0.05(ke %) = —0.05ke % + 0.05ke ™" = 0

It is indeed a solution. To find k, we use initial condition

y(o) _ ke—o.o5t‘tzo _ keo _k =5000 —> y(t) — 5000e—0.05t
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Vertical Positions of the Fighter Aircraft:

5

(R (o8 e

Vertical Position (kilometers)

—

0 50 100 150
Time (seconds)
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Laplace Transform
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Laplace Transform and Inverse Laplace Transform

Let us first examine the following time-domain functions:

' 1 2 3 4 5 6 7 8 9 10 D : 2 3 ] 5 = T z 3 0
TIME (Second) TIME {S=cond)
A cosine function with a frequency f = 0.2 Hz. X(t) = cos(0.4t)+sin(0.87t)cos(1.67t)
Note that it has a period T = 5 seconds. What are frequencies of this function?

Laplace transform is a tool to convert a time-domain function into a frequency-domain one
In which information about frequencies of the function can be captured. It is often much
easier to solve problems in frequency-domain with the help of Laplace transform.
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Laplace Transform:

Given a time-domain function f (t), its Laplace transform is defined as follows:

0

!

Example 1: Find the Laplace transform of a constant function f (t) = 1.

F(s)=L{f(t)}=] f(t)edt

F(s) :j f (t)e dt =Ie-stdt _ Lo __le —(—le(’j _— o_(_ .1J 1
g a S o S S S S
Example 2: Find the Laplace transform of an exponential function f (t) = e -2*,
i —st ( —at ,—st [ —(s+a)t 1 —(s+a)t : 1
F(s)=[ f(t)edt=[e e dt=[edt=———e __ 1
5 g g S+a , S+a
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Inverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to convert it back

to its original time-domain function f (t).

Here are some very useful Laplace and inverse Laplace transform pairs:

f(t) < F(s) fit)y < F(s)
1 o 1 sinat < > 4 >
S S +a
1 S
il cosat <
t A g2 s’ +a°
e o i e %sinbt < b2 5
s+a (s+a) +b
at 1 at S+a
te” < 5 e cosht < ——
(s+a) (s+a)f +b*
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Some useful properties of Laplace transform:

1. Superposition:

L{al fl(t) + a‘2 f2 (t)}: alL{fl(t)}+ aZL{fZ (t)}: alFl(S) + a'2 FZ(S)

2. Differentiation: Assume that f (0) = 0.

{dfdit)} L{f ()= sL{F (t)}= sF(s)

JERIC
d2

|

L{F (t)}= s°L{f ()} = s2F (s)

3. Integration:

{j f(é)dé} L{f(t)}= —F(s)

27
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Re-express ODE Models using Laplace Transform

Recall that the mechanical system in the cruise-control problem with m = 1 can be

represented by an ODE:

V+bv=u

Taking Laplace transform on both sides of the equation, we obtain
L{v+bvi=L{u} = L{v}+L{bv}=L{u}

= sL{vi+bL{vj=L{u} = sV(s)+bV(s)=U(s)

= (s+b)V(s)=U(s) =

This is called the transfer function of the system model 28
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A cruise-control system in frequency domain:

REFERENCE OUTPUT

]

| Controller -—

T s
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Recall that the fighter aircraft vertical positioning system can be represented by an ODE: |

y+0.05y=u

Taking Laplace transform on both sides of the equation, we obtain
L{y+0.05y}=L{u} = L{y}+0.05L{y}=L{u}

= sY(s)+0.05Y(s)=U(s) = (s+0.05)Y(s)=U(s)

v

G(S)_Y(s)_ 1

S U(s) s+0.05
4

This is the transfer function of the fighter aircraft

30
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Control the fighter aircraft in frequency domain:

Reference

31
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Feedback Control

32

Prepared by Ben M. Chen



Why do we need a feedback controller?

To answer this question, let us consider the fighter aircraft vertical positioning system, i.e.,

Y(s) 1

G(8) = U(s) s+0.05

If we want the aircraft to reach 10000 m above the sea level without a controller, one might

guess that we need to apply an input force u(t) = 10000. Let us try to see whether this

works or not. From the Laplace transform table, we have

U(s) = L{10000}= @

1 10000 1

V() =6EUE) = e = zooooo(__

S S+ 0.05)

Taking inverse Laplace transform, we obtain | y(t) = 200000 (1 _ e—0-05t)

33
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ANUS
o) e
The vertical position of the aircraft: It reaches 200000 m instead of the desired 10000 m.

200

an
o

100

an
o

Vertical Position (kilometers)

0 50 100 150
Time (seconds)
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If we choose u = 500, the resulting position will be |y (t) =10000 (1 - e_O'OSt)

10

I (o)) o

A

Vertical Position (kilometers)

0 50 100 150
Time (seconds)

The aircraft will reach the desired level in about 130 seconds. Can we improve this?

The answer is yes and the solution is to use a feedback controller.
35
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In general, a feedback control system can be represented by the following block diagram”

R (s) E (s) U (s) Y (s)

O » K(s) G(s)
+ T_

Given a system represented by G(s) and a reference R(s), the objective of control system

y

\ 4

v

design is to find a control law (or controller) K(s) such that the resulting output Y(s) is as
close to reference R(s) as possible, or the error E(s) = R(s) —Y(s) is as small as possible.
However, many other factors of life have to be carefully considered when dealing with real-

life problems. These factors include:

uncertainties
disturbances noises

R (s) E (s) i
() K (s) *—  G(s) T
+ T— U (s) 7 Y (s)

nonlinearities

y

A\ 4

\ 4
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Control Techniques:

There are tons of research published in the literature on how to design control laws for various
purposes. These can be roughly classified as the following:

¢ Classical control: Proportional-integral-derivative (PID) control, developed in 1940s and used
for control of industrial processes. Examples: chemical plants, commercial aeroplanes.

¢ Optimal control: Linear quadratic regulator control, Kalman filter, H, control, developed in
1960s to achieve certain optimal performance and boomed by NASA Apollo Project.

¢ Robust control: H_ control, developed in 1980s & 90s to handle systems with uncertainties
and disturbances and with high performances. Example: military systems.

¢ Nonlinear control: Currently hot research topics, developed to handle nonlinear systems
with high performances. Examples: military systems such as aircraft, missiles.

¢ Intelligent control: Knowledge-based control, adaptive control, neural and fuzzy control, etc.,
researched heavily in 1990s, developed to handle systems with unknown models.
Examples: economic systems, social systems, human systems. 37

Prepared by Ben M. Chen



Classical Control

Let us examine the following block diagram of control system:

R (s) E (s) U (s) Y (s)

(O K(s) G(s)
+ _

\ 4

A

Recall that the objective of control system design is trying to match the output Y(s) to the

reference R(s). Thus, it is important to find the relationship between them. Recall that
Y (s)
U (s)

Similarly, we have U (s) = K(s)E(s),and E(s) = R(s)—Y (s). Thus,

G(s) = = Y (s)=G(s)U(s)

Y (3) = G(s)U (5) = G(5)K(S)E(s) = G(5)K(3)[R(5) - Y ()]
Y(s)=G(s)K(S)R(s)-G(s)K(s)Y (s) = [1+ G(s)K(s)]Y (s) =G(s)K(s)R(s)

Y(s) _ _G(s)K(s)

= )= R T TG (K ()

< Closed-loop transfer function from Rto Y. &g
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Thus, the block diagram of the control system can be simplified as,

RGO 14 (s) = _CIK() Y (5)
1+ G(s)K(s)

The whole control problem becomes how to choose an appropriate K(s) such that the

resulting H(s) would yield desired properties between R and Y.

We'll focus on control system design of some first order systems |G (s) = b with a
S+a
: : k. Kk, S+Kk, o
proportional-integral (PI) controller, |K (s) = k  + — = —* . This implies
S S
G(s)K(s) bk /s + bk;

R ) = T G ()K(s) s?+ (a+bk,) s+ bk,

The closed-loop system H(s) is a second order system as its denominator is a polynomial s

of degree 2.
39
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niversity
€

Example 1: The performance of the fighter aircraft with a Pl controller ( k= 0.05, k; :001)

12

/\ ’
@ 10 \w g g8
@ E
(] § &
S s
— o 4
= =
= / :
S 6 27
% / 0 E E
@) 0 50 100 150

Time (zecond=s)
2y
S
Q
g / Performance of the system
> 2 .
without a controller
0 (see Page 35)
0 50 100 150

Time (seconds)

The response is much faster compared to the system without a controller. The drawback

IS that there is a 20% overshoot. 40
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Example 2: The performance of the fighter aircraft with a Pl controller (k,= 0.1, k; = 001)

12
$10 i z
5
L % ' '
g s : i i
= / : o
- £ 5| ; :
o 6 = g |
"(?; I:! M !
o / ’ h.qrime rsecund;}m 1=
4
o]
*LE') / Performance of the system
S 2 without a controller

(see Page 35)
0
0 50 100 150

Time (seconds)

The response is faster and the overshoot is smaller. The controller does improve the overall

system performance a great deal. 41
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System Stability

42
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Stability of Control Systems

Example 1: Consider a closed-loop system with,

R(s)=1

\ 4

We have

Y (s) = H (s)R(S) = —~

H(s) =

1

Y (s)

A 4

s? -1

1

0.5

0.5

s+a
0.5e™ 05
s+1

&
05! < 05
s-1

Using the Laplace transform table on Page 26, we obtain y(t) = 0-5— e™)

12000

10000

8000

y(t) | 6000

4000 ///
2000

0

]

0

4 6 8
Time (seconds)

10

s2_1 (s+1)(s-1) - @ s+1

This system is said to be unstable because the
output response y(t) goes to infinity as time t is
getting larger and large. This happens because

the denominator of H(s) has one positive root at

s=1

43
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Example 2: Consider a closed-loop system with,

R(s)=1 1 Y (s)
H(s) =

\ 4

A 4

s2 +35+2

We have
1 1 1 1

YRR = T e T e st s+

t -2t

Using the Laplace transform table on Page 26, we obtain y(t)=e~" -¢

0.25
0.2 / \ This system is said to be stable because
/ \ the output response y(t) goes to O as time
y®]°* / tis getting larger and large. This happens
01 \ because the denominator of H(s) has no
0.05 positive roots.
0 [
0 2 4 6 8 10

Time (seconds) 44
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We consider a general 2nd order system,

R(s)=0 5 Y (8)
H (s) = “

v

n

S+ 20w, S+ w!

A 4

The system is stable if the denominator of the system, i.e., s* + 2w s + @’ = 0, has no

positive roots. It is unstable if it has positive roots. In particular,

|  Marginally
Elm:n e - Stable
Stable ‘W ]W
/,., i ><"~ o
. ~-RHP
,,_,' /,j \.‘.‘.\\\\\ Unstable
‘ ’.’_, ] - :_,Z;’
[ Re(s)
45
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Behavior of Systems
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Behavior of Second Order Systems with a Step Inputs

Again, consider the following block diagram with a standard 2nd order system,

R(s)=1/s 2 Y ()

@
*IH (s) = = L >
r=1 S°+2¢w .S+ w;

A 4

The behavior of the system is as follows:

2.0

1.8

The behavior of the system is

1.6

fully characterized by ¢,
yo 10| which is called the damping

ratio, and «, , which is called

the natural frequency.

12 47
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Control System Design with Time-domain Specifications

100

90

—> H (S) — n s . 60
2 2 £ 50
r=1 S +20w. S+ w; S
@
”(J,El 0.2 0.4 0.6
I overshoot | M,
| + 1%
| {/ | \ e _ﬂ_i__
T Rl s \;_/r—————"‘—"——_‘_____T__
|
rise time
1 8 0.1 _
tr = — ! 1:r t
@, ' ts : :
1% settling time

0.8 1.0

48
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Control System Design
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Recall that

R (s) E (s) U (s) Y (s)

»() »  K(s) »  G(9) >

+ T_

. b k. k. s+Kk
with |G (s) = and |K(s) =k, +—=-F results a closed-loop system:

S+a S S

sy = Y(8) - _GOK(s) _ bkys+bk

R(s) 1+G(s)K(s) s+ (a+bk,)s+Dbk,

Compare this with the standard 2nd order systery . _20,-a
20w, =a+ bk ’

2

w —
H(s) = ; 2
(5) s*+2{w,s+ o, w, = bk, k ==

The key issue now is to choose parameters k, and k; such that the above resulting system

has desired properties, such as prescribed settling time and overshoot. 50
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Fighter Aircraft Control System Design

We have seen earlier that it would take more than 2 minutes for the fighter aircraft to reach
10000 m if it is without a feedback controller. Let us design a PI controller for it such that the
aircraft will reach the desired vertical level in 30 seconds (i.e., the settling time is 30 sec)

and the maximum overshoot is less than 10%.

To achieve an overshoot less than 10%, we obtain

100

from the figure on the right that | > 0.6 0

To be safe, we choose | =0.8

To achieve a settling time of 30 sec., we use o
Lo A8, A6 46 e v |
ét()n é/ts 08 X 30 0.0 0.2 0.4 0.6 0.8 1.0

o1
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Recall that the fighter aircraft has a transfer function,
Y(s b 1
U(s) s+a s+0.05

Then, using the formulae we have just derived, we obtain

— a=0.05 b=1

K, = 20w, —a K, = 2§wg—a _ 2><O.8><O.1192—O.05 _0.957
2 ’ w? 0.192°
K = Lo k, = === = 0.0369
i b b
The final flight control system:
Reference Vertical

10000 m e | POSItiON
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Simulation Result:

Vertical Position (kilometers)

0 10 20 30 40 50 60
Time (seconds)

The resulting
overshoot is
about 10% and
the settling time
IS about 30

seconds.

Thus, our
design goal is

achieved.

53
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Cruise-Control System Design

Vi) M

Recall the model for the cruise-control system, 1.e., = . Assume that the
A CTOIES

mass of the car is 3000 kg and the friction coefficient b = 1. Design a PI controller for it
such that the speed of the car will reach the desired speed 90 km/h in 10 seconds (i.e., the

settling time is 10 s) and the maximum overshoot is less than 25%.

To achieve an overshoot less than 25%, we obtain 100

from the figure on the right that | > 0.4

To be safe, we choose | =0.6 g

Mp.

To achieve a settling time of 10 s, we use

4.6 46 46

s a = = 0.767 %.0 02 0.4 06 08 1.0
(o . 0.6x10

54
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The transfer function of the cruise-control system,

_Y(s) _ y _ %ooo o _
G(s)—U(S)—S+'%_S+%OOO = a=b=1/,,,=0000333

Again, using the formulae derived,

« 2w, —a K - 2w —a _ 2x0.6x0.767 —1/3000 _ 2760
P b ’ b 1/3000
2 I 2 2
K — ) ki _ (ON _ 0.767 — 1765
' b b 1/3000

The final cruise-control system:

Reference
90 km/h

55
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Simulation Result:

Speed in km/h

120

100

80

60

40

20

0 2 4 6 8 10 12 14 16 18 20
Time in Seconds

The resulting

overshoot is

less than 25%
and the settling
time is about 10

seconds.

Thus, our
design goal is

achieved.

56
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Final Remarks on the Implementation of Controllers

Reference Controller Vertical

10000 m | —— LTy

The implementation of the above controller can be done using analog
electronic devices such as resistors, inductors, capacitors, and operational
amplifiers. However, it iIs more common nowadays to implement
controllers using computers, as it is simple, low cost and reliable. More

Importantly, it is much easier to be re-programmed.

S7
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Tutorials
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Tutorial One - Modeling and Laplace Transforms

Q.1. Consider a simple RL circuit below.

a) Find an ordinary differential equation in terms of the current i to

characterize the dynamics of the circuit.
b) Find the transfer function from the input v; to the output v.,.

c) Given that v, is a unit step input, find the output voltage v,.

10 3 ]

59
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Solution: a) yo 3

V. TC) R=2 & T V.| =iR=2i

By KVL, | | . |

v.:vL+v0:Ld—|+iR:d—|+2i = d—|+2i:vi ODE
dt dt dt

b) Taking Laplace transform on the both sides of the above ODE, we have

I(s) 1

sl (s)+21(s)=V(s) = (s+2)I(s)=V(s) = V(s) s+2

Vo(s) 2I(s) 2
V.(s) V.(s) S+2

Transfer Function

60
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c) The Laplace transform of the unit step input is given by 1/s (see p. 26).

T T O LRV O I I P
V.(s) s+2 S+ 2

v

2 1 a b as+bs+2b (a+b)s+2b

S+2 S S+2 S (s+2)s (s+2)s

= a+b=0, 2b=2 =Db=1 a=-b=-1

= V,(s) = 4 +E:£— L
S+2 S S S+2

Taking inverse Laplace transform, we obtain

vo(t)=L‘1{l}—L‘1{ L }zl—e‘2t
S S+ 2 61
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The output voltage of the circuit:

The output voltage

Magnitude

0 : 2 3 4 5
Time in seconds
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Q.2. Consider a ball balancing mechanical system below.

a) Find an ordinary differential equation in terms of the position x to

characterize the dynamics of the system.
b) Find the transfer function from the input & to the output x.

c) Given that @ is a unit impulse input, find the response of the position x.

Assume the angle @ is changing in a small range. For simplicity,

assume that the gravity g = 9.8 ~ 10.
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By Newton’s law of motion, i.e.,F = ma, where a is the acceleration, m the mass and F is

the force acting on the object in the direction of the motion,

F=ma = mgsinfd=ma=mX = X=gsind

Since @ is assumed to be small, it can be shown that sin & ~ &. Thus,

X=gsingd = X=9g60 =106
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b) The transfer function from the input & to the output x can be obtained by

L{x}=L{106} = s*X(s)=100(s) =

X(s) 10
O(s) s

G(s) =

c) The Laplace transform of the unit impulse input is 1. From the above transfer function,

we obtain

X(s) = %@(s) = 2 =  X(1) = Ll{g} =10 Ll{%} =10t
S S S S
Obviously, the ball will roll off the beam after an impulse force acting on it. It is an unstable
system. A controller is definitely needed if one wish to balance the ball at the center of the
beam.
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The position of the ball due to an impulse input:

50

Magnitude
L BN
o o

r
-

—
o

_____________________________________________________________________________

""""""""""""""""""""""""""""""""""""""""""""""""

_____________________________________________________________________________

Time in seconds
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Tutorial Two - Control System Design

Q.1. Consider a simple RL circuit below. It was shown that in Tutorial One
that the settling time of the output response due to a step input is
about 2.5 seconds. Design a Pl controller (see the second figure)
such that when it is applied to the circuit, the resulting settling time

due to a unit step input is less than 1 second with a 10% overshoot.

M

v T L=1 R;g? T " T K(9)
| ‘

e RL Circuit « Control System

Y

\ 4

v

G(S) -
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Solution: Consider

K@)

G (9

V,(s) = G(s)V,(s) = G(S)K(S)E(s) = G(s)K (s)[R(s) -V, (s)]

= [L+G(s)K(s)V,(s) =G(s)K(s)R(s) =

 Recall from Q.1 of Tutorial One that

V.(s) 2

G(S):Vi(s) 542

and the PI controller has the form

k. k,s+Kk

K(s) =k, +~-=
S S

Vo(s) — G(s)K(s)
R(s) 1+G(s)K(s)
N\ J
Y

Vo(s) _ G(s)K(s)
R(s) 1+G(s)K(s)

e e

_1+( 2 )(kps-l-kij
S+ 2 S
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( 2 j(kps+kij 2(k,s +k;)
V,(s) \s+2 s  s(s+2) 2(k,s +k;)
R(s)_1+( 2 jkps+ki _1+2(kp5+ki)_s(s+2)+2(kps+ki)
S+ 2 S s(s+2)
Vo(s) _ 2K ;s + 2k

R(s) s®+2(1+k,)s+ 2k,

Comparing this with the standard 2nd order system

2
n

S° +2lw, S+ w!

H (s) = “

we can match almost all parameters by selecting:

260, =2(1+k,) = k,=¢w,-1 =2k

n I
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To achieve an overshoot less than 10%, we obtain from

the figure on the right that |£

> 0.6

To be safe, we choose [ =

To achieve a settling time of 1 sec., we use

0.8

100

r‘l’lfl, T

46 4.6

— 575 20

@, = =
as 0.8x1 10

Thus, we have

k,=¢w,~1=4.6-1=3.6

k. =

2
@,

5757

2

=16.5

0 -
0.0 0.2 0.4 0.6 0.8 1.0

a resistor

l

~ K(s)=3.6+ a capacitor
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» Output response of controlled system:  « Qutput response of uncontrolled system:

settling time = 1 second settling time = 2.5 seconds
overshoot=9 % < 10 % overshoot =0 %
19 | The Ic]utput vdtlage
AN

Magnitude
o
(@]

0 1 2 3 4 5 0 1 > 3 A 5
Time Iin seconds Time In seconds
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Q.2. Consider a ball balancing mechanical system below. It was shown that
In Tutorial One that the system is unstable. Design a PD controller (see
the second figure) such that when it is applied to the system, the

resulting settling time due to a unit step input is less than 4 second with

a 25% overshoot.

\ 4

v

K(S)

G(s)

» Ball Balancing System  Control System
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Solution: Consider

4_'_?__‘ K(s) " G(9) >

Following exactly the same procedure as in Q.1, we can derive

X(s)  G(s)K(s)
R(s) 1+G(s)K(s)

 Recall from Q.2 of Tutorial One that

G(s)_ 10 ~ X(s) __G(s)K(s)
(8)== R(s) 1+ G(s)K(s)
10
and the PD controller has the form > (s—zj(kp + K 5)
1+ (g)(kp + kds)
K(s) =k, +kys Y, S
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9k, +k,s)
X(s) _ Ls?) P ) a0k, +ks) | 10kgs+10Kk,
R(s) 1+(gj(kp+kds) s? +10(k, +k,5) |s?+10k,s +10k,

S2

Again, comparing this with the standard 2nd order system

2
n

S+ 2lw, S+ w!

H(s) = @

we can match almost all parameters by selecting:

20w, =10k, = k, =0.2lw, w: =10k, = k,=0.1w]
As usual, we have ignored the first term in the numerator of the transfer function from R to
X. This Is because that it does not affect much the overall response.
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To achieve an overshoot less than 25%, we obtain from

the figure on the right that | > 0.4

100

To be safe, we choose [ =0.6

To achieve a settling time of 4 sec., we use

r‘l’lfl, T

4.6 o —A8_ 46 _ g
(o, q, 0.6x4

0 -
0.0 0.2 0.4 0.6 0.8 1.0

Thus, we have

k, =0.2{w, =0.2x0.6x1.92 = 0.23 K (s) = 0.37 + 0.23s

>~ >

— 2 _ 2 _
k, = 0.1w? = 0.1x1.922 = 0.37 50 Controller
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 Qutput response of controlled system:

settling time = 4 seconds

overshoot = 25 %

1.4

=
N

|

o
®

©
o

Magnitude

o o
N EAN
\

o

o

2 3 4
Time in seconds

« Output response of uncontrolled system:
An unstable system

The ball will roll off the beam

50 :

o] B S L LI 1
o] SRR SSSSS A e |
g 5
£ E
-y || SRR SRR A R Res SRR .

1[0 ST CA— TR T SRR -

0 :
0 1 2 3 4 5

Time in seconds
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