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Part 1: Course Outline (Part 1) Part 1: Course Outline (Part 1) 

• Introduction to control systems; ordinary differential equations; Laplace transform; 

basic principle of feedback

• Modeling of physical systems

• Control system design — stability issues

• Control system design time domain specifications: steady state errors, overshoot, 

rise time and settling time.

• Control system design using Proportional-Integral-Derivative (PID) control 

technique.
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Lectures and Tutorials:Lectures and Tutorials:

• Total lecture hours for the 1st part: 5.5 hours

• Total tutorial hours for the 1st part: 1.5 hours

• An overview on UAV helicopter systems: 1.0 hour

• In-class test for the 1st part: 1.0 hour

Reference Text:Reference Text:

• G. F. Franklin, J. D. Powell and A. Emami-Naeimi, Feedback Control of 

Dynamic Systems, 3rd Edition, Addison Wesley, New York, 1994.
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IntroductionIntroduction
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ControllerController

What is a control system?What is a control system?

System to be controlledSystem to be controlled

Desired Desired 
PerformancePerformance

RREFERENCEEFERENCE

IINPUTNPUT

to the to the 

systemsystem

Information 

about the 

system:

OUTPUT

+
–

DifferenceDifference

EERRORRROR

Objective:Objective: To make the system OUTPUT and the desired REFERENCE as close 

as possible, i.e., to make the ERROR as small as possible.

Key Issues:Key Issues: 1) How to describe the system to be controlled? (Modeling)

2) How to design the controller? (Control)

aircraft, missiles, aircraft, missiles, 

economic economic 

systems, cars, etcsystems, cars, etc
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Some Control Systems Examples:Some Control Systems Examples:

System to be controlledController
+

–

OUTPUT
INPUTREFERENCE

Economic System
Desired 

Performance 
Government 

Policies
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Command

RC JoystickRC Joystick

Onboard SystemOnboard System

Ground StationGround Station

Bare HelicopterBare Helicopter

Measurement

Control Signal

Real-time Data

Operation

An Overview on a UAV Helicopter System to be given laterAn Overview on a UAV Helicopter System to be given later……
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BackgroundBackground
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Background Material: DifferentiationBackground Material: Differentiation

Given a function of time, say f (t), its differentiation is the rate of change of the function. 

Mathematically,

small is ,)()()()( t
t

tfttf
dt

tdftf Δ
Δ

−Δ+
==

Example: Consider f (t) = 1. Obviously, the rate of change of a constant is zero, i.e., it 

does not change at all.

0011)()()()( =
Δ

=
Δ
−

=
Δ

−Δ+
==

ttt
tfttf

dt
tdftf

Example: Consider f (t) = t. The rate of change of this function is 

( ) 1)()()()( =
Δ
Δ

=
Δ

−Δ+
=

Δ
−Δ+

==
t
t

t
ttt

t
tfttf

dt
tdftf

The rate of change of this function is constant.
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More examples for the differentiation (or derivative or the rate of change):

♦ The rate of change of displacement (x) is called speed (v), i.e., 

♦ The rate of change of speed (v) is called acceleration (a), i.e.,

♦ The derivative of a sine function is cosine, i.e.,

♦ The derivative of a cosine function is minus sine, i.e.,

♦ The derivative of an exponential function is an exponential function, i.e.,

dt
tdxtxtv )()()( ==

2

2 )()()()(
dt

txdtxtvta ===
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td ωωω cossin
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Background Material: IntegrationBackground Material: Integration

The integration of a function f (t) over a certain interval is the total area of the function within 

the interval, e.g.,  

a b

f (t)

Mathematically, we write it as                                  , where                       .)()()()( aFbFtFdttf b

a

b

a

−==∫ )()( tftF =
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Modeling Modeling 
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Modeling of Some Physical SystemsModeling of Some Physical Systems

A simple mechanical system:

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied to an 

object with a mass m and a is the acceleration, we have

A cruise-control 
system

force u
friction 
force bx

x displacement

accelerationx

mass
m

m
ux

m
bxxmxbu =+⇔=−

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can be 

written as a 1st order ODE with respect to speed v = :x

m
uv

m
bv =+ ← model of the cruise control system, u is input force, v is output.
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Controller
+

–

OUTPUTINPUTREFERENCE

A cruiseA cruise--control system:control system:

?
+

–

speed vu90 km/h

m
uv

m
bv =+
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Basic electrical systems:Basic electrical systems:

v

i

R

resistor

Riv =

capacitor

Cv (t)

i (t)

dt
dvCi =

inductor

Lv (t)

i (t)

dt
diLv =

Kirchhoff’s Voltage Law (KVL):

The sum of voltage drops around any 
close loop in a circuit is 0.

v5

v1

v4

v3

v2

054321 =++++ vvvvv

Kirchhoff’s Current Law (KCL):

The sum of currents entering/leaving a 
node/closed surface is 0.

i i

i
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ModelingModeling of a simple electrical system:of a simple electrical system:

i

vi
R

C vo

To find out relationship between the input (vi) and the output (vo) for the circuit:

dt
dvRCRivR

o==

dt
dvCi o=

By KVL, we have 0io =−+ vvv R

0i
o

oio =−+=−+ v
dt

dvRCvvvv R

iooio
o vvvRCvv

dt
dvRC =+⇔=+ A dynamic modelA dynamic model

of the circuitof the circuit
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Controller
+

–

OUTPUTINPUTREFERENCE

Control the output voltage of the electrical system:Control the output voltage of the electrical system:

?
+

–

vovi230 Volts

vi
R C vo

ioo vvvRC =+
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Control of a Fighter AircraftControl of a Fighter Aircraft

It can be showed that the vertical position of a fighter aircraft can be approximated by the 

following equation:

where y(t) is the vertical position (in meters) above the sea level and u(t) is the thrust force.

)()(05.0)( tutyty =+

Controller
+ –

OutputInputReference

?
+ –

10000 m
)()(05.0)( tutyty =+

u y
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Ordinary Differential EquationsOrdinary Differential Equations
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Ordinary Differential EquationsOrdinary Differential Equations

Many real life problems can be modelled as an ODE of the following form:

This is called a 2nd order ODE as the highest order derivative in the equation is 2. The ODE 

is said to be homogeneous if u(t) = 0. In fact, many systems can be modelled or 

approximated  as a 1st order ODE, i.e., 

)()()()( 01 tutyatyaty =++

An ODE is also called the time-domain model of the system, because it can be seen the above 

equations that y(t) and u(t) are functions of time t. The key issue associated with ODE is: how 

to find its solution? That is: how to find an explicit expression for y(t) from the given equation?

)()()( 0 tutyaty =+
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Solutions to a 1st order ODE for a fighter aircraft:Solutions to a 1st order ODE for a fighter aircraft:

condition initial  the,5000)0(,0)(05.0)( ==+ ytyty

The solution is then given by                                   , where k is a constant to be determined.  tst kekety 05.0)( −==

( ) ( ) 005.005.005.0)(05.0)( 05.005.005.005.0 =+−=+=+ −−−− tttt kekekeke
dt
dtyty

Substitute this function into the ODE,

It is indeed a solution. To find k, we use initial condition

5000)0( 0

0

05.0 ====
=

− kkekey
t

t

The ODE is homogeneous. Replace the ODE with

1)(&)( 01 =⇔=⇔ styssty 05.0005.0 −=⇒=+ ss

tety 05.05000)( −=
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Vertical Positions of the Fighter Aircraft:Vertical Positions of the Fighter Aircraft:
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Laplace TransformLaplace Transform
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Laplace Transform and Inverse Laplace TransformLaplace Transform and Inverse Laplace Transform

Let us first examine the following time-domain functions:

0 1 2 3 4 5 6 7 8 9 10
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de

A cosine function with a frequency f = 0.2 Hz. 

Note that it has a period T = 5 seconds.

( ) ( ) ( )ttttx πππ 6.1cos8.0sin4.0cos)( +=

What are frequencies of this function?

Laplace transform is a tool to convert a time-domain function into a frequency-domain one 

in which information about frequencies of the function can be captured. It is often much 

easier to solve problems in frequency-domain with the help of Laplace transform.
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Laplace Transform:Laplace Transform:

Given a time-domain function f (t), its Laplace transform is defined as follows: 

{ } ∫
∞

−==
0

)()()( dtetftfLsF st

Example 1: Find the Laplace transform of a constant function f (t) = 1.
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Example 2: Find the Laplace transform of an exponential function f (t) = e – a t.
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Inverse Laplace TransformInverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to convert it back 

to its original time-domain function f (t).
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Here are some very useful Laplace and inverse Laplace transform pairs:
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Some useful properties of Laplace transform: Some useful properties of Laplace transform: 

{ } { } { } )()()()()()( 221122112211 sFasFatfLatfLatfatfaL +=+=+

1. Superposition:

2. Differentiation: Assume that f (0) = 0.
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ReRe--express ODE Models using Laplace Transformexpress ODE Models using Laplace Transform

Recall that the mechanical system in the cruise-control problem with m = 1 can be 

represented by an ODE:

ubvv =+

Taking Laplace transform on both sides of the equation, we obtain

{ } { } { } { } { }uLbvLvLuLbvvL =+⇒=+

{ } { } { } )()()( sUsbVssVuLvbLvsL =+⇒=+⇒

( )
bssU

sVsUsVbs
+

=⇒=+⇒
1

)(
)()()(

This is called the transfer function of the system model

)(sG=
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Controller
+

–

OUTPUTINPUTREFERENCE

A cruiseA cruise--control system in frequency domain:control system in frequency domain:

driver? auto?
+

–

speed V (s)U (s)R (s)

bs
sG

+
=

1)(
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Recall that the fighter aircraft vertical positioning system can be represented by an ODE:

Taking Laplace transform on both sides of the equation, we obtain

{ } { } { } { } { }uLyLyLuLyyL =+⇒=+ 05.005.0

05.0
1

)(
)()(

+
==

ssU
sYsG

This is the transfer function of the fighter aircraft

uyy =+ 05.0

( ) )()(05.0)()(05.0)( sUsYssUsYssY =+⇒=+⇒
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Control the fighter aircraft in frequency domain:Control the fighter aircraft in frequency domain:

Controller
+

–

OutputInputReference

?
+

– 05.0
1)(
+

=
s

sG
U(s) Y(s)R(s)
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Feedback ControlFeedback Control
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Why do we need a feedback controller?Why do we need a feedback controller?

To answer this question, let us consider the fighter aircraft vertical positioning system, i.e., 

05.0
1

)(
)()(

+
==

ssU
sYsG

If we want the aircraft to reach 10000 m above the sea level without a controller, one might 

guess that we need to apply an input force u(t) = 10000. Let us try to see whether this 

works or not. From the Laplace transform table, we have

{ }
s

LsU 1000010000)( ==

⎟
⎠
⎞

⎜
⎝
⎛

+
−=
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05.0
1120000010000

05.0
1)()()(

ssss
sUsGsY

Taking inverse Laplace transform, we obtain ( )tety 05.01200000)( −−=
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The vertical position of the aircraft: It reaches 200000 m instead of the desired 10000 m.
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If we choose u = 500, the resulting position will be ( )tety 05.0110000)( −−=

The aircraft will reach the desired level in about 130 seconds. Can we improve this?

The answer is yes and the solution is to use a feedback controller.
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In general, a feedback control system can be represented by the following block diagram:

+

U (s)R (s)
)(sG)(sK

Y (s)

–

E (s)

Given a system represented by G(s) and a reference R(s), the objective of control system 

design is to find a control law (or controller) K(s) such that the resulting output Y(s) is as 

close to reference R(s) as possible, or the error E(s) = R(s) –Y(s) is as small as possible. 

However, many other factors of life have to be carefully considered when dealing with real-

life problems. These factors include:

R (s)

+ U (s)
)(sG)(sK

Y (s)–

E (s)

disturbances noises
uncertainties

nonlinearities
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Control Techniques:Control Techniques:

There are tons of research published in the literature on how to design control laws for various 
purposes. These can be roughly classified as the following:

♦ Classical control: Proportional-integral-derivative (PID) control, developed in 1940s and used 
for control of industrial processes. Examples: chemical plants, commercial aeroplanes.

♦ Optimal control: Linear quadratic regulator control, Kalman filter, H2 control, developed in 
1960s to achieve certain optimal performance and boomed by NASA Apollo Project.

♦ Robust control: H∞ control, developed in 1980s & 90s to handle systems with uncertainties 
and disturbances and with high performances. Example: military systems.

♦ Nonlinear control: Currently hot research topics, developed to handle nonlinear systems 
with high performances. Examples: military systems such as aircraft, missiles.

♦ Intelligent control: Knowledge-based control, adaptive control, neural and fuzzy control, etc.,
researched heavily in 1990s, developed to handle systems with unknown models. 
Examples: economic systems, social systems, human systems.
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Classical ControlClassical Control

Let us examine the following block diagram of control system: 

+

U (s)R (s)
)(sG)(sK

Y (s)

–

E (s)

Recall that the objective of control system design is trying to match the output Y(s) to the 

reference R(s). Thus, it is important to find the relationship between them. Recall that

)()()(
)(
)()( sUsGsY

sU
sYsG =⇒=

Similarly, we have                                  , and       .)()()( sEsKsU = )()()( sYsRsE −= Thus,

[ ])()()()()()()()()()( sYsRsKsGsEsKsGsUsGsY −===

[ ] )()()()()()(1)()()()()()()( sRsKsGsYsKsGsYsKsGsRsKsGsY =+⇒−=

)()(1
)()(
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)()(

sKsG
sKsG

sR
sYsH

+
==⇒ Closed-loop transfer function from R to Y.
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We’ll focus on control system design of some first order systems   with a 

proportional-integral (PI) controller,                                       . This implies 

Thus, the block diagram of the control system can be simplified as,

)()(1
)()()(
sKsG

sKsGsH
+

=
R (s) Y (s)

The whole control problem becomes how to choose an appropriate K(s) such that the 

resulting H(s) would yield desired properties between R and Y.

ip

ip

bksbkas
bksbk

sKsG
sKsGsH

+++
+

=
+

=
)()()(1

)()()( 2

The closed-loop system H(s) is a second order system as its denominator is a polynomial s

of degree 2.
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Example 1:Example 1: The performance of the fighter aircraft with a PI controller ( kp = 0.05, ki = 0.01)
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The response is much faster compared to the system without a controller. The drawback 

is that there is a 20% overshoot.

Performance of the system 
without a controller 

(see Page 35)
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Example 2:Example 2: The performance of the fighter aircraft with a PI controller ( kp = 0.1, ki = 0.01)

The response is faster and the overshoot is smaller. The controller does improve the overall 

system performance a great deal.
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without a controller 

(see Page 35)
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System StabilitySystem Stability
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Stability of Control SystemsStability of Control Systems

Example 1:Example 1: Consider a closed-loop system with, 

1
1)( 2 −

=
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R (s) = 1 Y (s)

We have 
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Using the Laplace transform table on Page 26, we obtain
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This system is said to be unstable because the 

output response y(t) goes to infinity as time t is 

getting larger and large. This happens because 

the denominator of H(s) has one positive root at    

s = 1.
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Example 2:Example 2: Consider a closed-loop system with, 
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Using the Laplace transform table on Page 26, we obtain tt eety 2)( −− −=
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This system is said to be stable because 

the output response y(t) goes to 0 as time 

t is getting larger and large. This happens 

because the denominator of H(s) has no 

positive roots.
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We consider a general 2nd order system,

The system is stable if the denominator of the system, i.e.,    ,  has no 

positive roots. It is unstable if it has positive roots. In particular,

22
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2
)(

nn
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ωζω
ω

++
=

R (s) = 0 Y (s)

02 22 =++ nn ss ωζω

Marginally 

Stable

Unstable

Stable
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Behavior of SystemsBehavior of Systems
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Behavior of Second Order Systems with a Step InputsBehavior of Second Order Systems with a Step Inputs

Again, consider the following block diagram with a standard 2nd order system,

The behavior of the system is as follows:

22
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2
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nn
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sH

ωζω
ω
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=

R (s) = 1/s Y (s)

r = 1

The behavior of the system is 

fully characterized by ζ , 

which is called the damping 

ratio, and ωn , which is called 

the natural frequency.
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Control System Design with TimeControl System Design with Time--domain Specificationsdomain Specifications
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Control System DesignControl System Design
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Recall that
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=+=)(with                             and                            results a closed-loop system: 
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The key issue now is to choose parameters kp and ki such that the above resulting system 

has desired properties, such as prescribed settling time and overshoot.

Compare this with the standard 2nd order system:
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Fighter Aircraft Control System DesignFighter Aircraft Control System Design

We have seen earlier that it would take more than 2 minutes for the fighter aircraft to reach 

10000 m if it is without a feedback controller. Let us design a PI controller for it such that the 

aircraft will reach the desired vertical level in 30 seconds (i.e., the settling time is 30 sec) 

and the maximum overshoot is less than 10%.

To achieve an overshoot less than 10%, we obtain       

from the figure on the right that 6.0>ζ

x

To achieve a settling time of 30 sec., we use

192.0
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6.46.46.4
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×
==⇒=
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n
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t
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ω
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8.0=ζTo be safe, we choose
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Recall that the fighter aircraft has a transfer function,
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Then, using the formulae we have just derived, we obtain
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The final flight control system:
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Simulation Result:

The resulting 

overshoot is 

about 10% and 

the settling time 

is about 30 

seconds.

Thus, our 

design goal is 

achieved.
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To achieve an overshoot less than 25%, we obtain       

from the figure on the right that 4.0>ζ

xTo achieve a settling time of 10 s, we use

767.0
106.0

6.46.46.4
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t
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ω
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6.0=ζTo be safe, we choose

CruiseCruise--Control System DesignControl System Design

Recall the model for the cruise-control system, i.e.,                                 . Assume that the 

mass of the car is 3000 kg and the friction coefficient b = 1. Design a PI controller for it 

such that the speed of the car will reach the desired speed 90 km/h in 10 seconds (i.e., the 

settling time is 10 s) and the maximum overshoot is less than 25%.
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The transfer function of the cruise-control system,
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Again, using the formulae derived, 
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The final cruise-control system:
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Simulation Result:

The resulting 

overshoot is 

less than 25% 

and the settling 

time is about 10 

seconds.

Thus, our 

design goal is 

achieved.
0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

Time in Seconds

S
pe

ed
 in

 k
m

/h

Prepared by Ben M. Chen



57

Final Remarks on the Implementation of ControllersFinal Remarks on the Implementation of Controllers

+
–

Vertical 
Position

Reference 
10000 m

s
0369.0257.0 +

The implementation of the above controller can be done using analog 

electronic devices such as resistors, inductors, capacitors, and operational 

amplifiers. However, it is more common nowadays to implement 

controllers using computers, as it is simple, low cost and reliable. More 

importantly, it is much easier to be re-programmed.

Controller
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TutorialsTutorials
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i

vi

L=1
R=2 vo

Tutorial One Tutorial One -- Modeling and Laplace TransformsModeling and Laplace Transforms

Q.1. Consider a simple RL circuit below. 

a) Find an ordinary differential equation in terms of the current i to

characterize the dynamics of the circuit.

b) Find the transfer function from the input vi to the output vo.

c) Given that vi is a unit step input, find the output voltage vo.
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i

vi

L=1
R=2 vo

Solution: a)

iiR 2==

By KVL,
ioLi vi

dt
dii

dt
diiR

dt
diLvvv =+⇒+=+=+= 22

dt
diLv =L

b) Taking Laplace transform on the both sides of the above ODE, we have
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Transfer Function
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c) The Laplace transform of the unit step input is given by 1/s (see p. 26).
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Taking inverse Laplace transform, we obtain
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The output voltage of the circuit:

Prepared by Ben M. Chen



63

Q.2. Consider a ball balancing mechanical system below. 

a) Find an ordinary differential equation in terms of the position x to 

characterize the dynamics of the system.

b) Find the transfer function from the input θ to the output x.

c) Given that θ is a unit impulse input, find the response of the position x.

Assume the angle θ is changing in a small range. For simplicity,   

assume that the gravity g = 9.8 ≈ 10.

θx
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θ

x

Solution: a) The only force acts on the system is the weight of the ball

mg

mg sin θ θ

By Newton’s law of motion, i.e.,               , where a is the acceleration, m the mass and F is 

the force acting on the object in the direction of the motion,

maF =

θθ sinsin gxxmmamgmaF =⇒==⇒=

Since θ is assumed to be small, it can be shown that sin θ ≈ θ. Thus,

⇒= θsingx θθ 10== gx
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b) The transfer function from the input θ to the output x can be obtained by

{ } { } ⇒Θ=⇒= )(10)(10 2 ssXsLxL θ
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⎧=⇒=Θ= −−

c) The Laplace transform of the unit impulse input is 1. From the above  transfer function, 

we obtain

2
10

)(
)()(

ss
sXsG =

Θ
=

Obviously, the ball will roll off the beam after an impulse force acting on it. It is an unstable 

system. A controller is definitely needed if one wish to balance the ball at the center of the 

beam.
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The position of the ball due to an impulse input:
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i

vi

L=1
R=2 vo

Tutorial Two Tutorial Two -- Control System DesignControl System Design

Q.1. Consider a simple RL circuit below. It was shown that in Tutorial One

that the settling time of the output response due to a step input is 

about 2.5 seconds. Design a PI controller (see the second figure) 

such that when it is applied to the circuit, the resulting settling time 

due to a unit step input is less than 1 second with a 10% overshoot.

• RL Circuit

+
ViR

)(sG)(sK
Vo

–

E

• Control System
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Solution: Consider
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Comparing this with the standard 2nd order system

we can match almost all parameters by selecting: 

1)1(22 −=⇒+= nppn kk ζωζω
2

2
2

2 n
iin kk ωω =⇒=
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To achieve an overshoot less than 10%, we obtain from 

the figure on the right that 6.0>ζ

x

To achieve a settling time of 1 sec., we use

75.5
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6.46.46.4
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8.0=ζTo be safe, we choose

Thus, we have

6.316.41 =−=−= npk ζω

5.16
2
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sK 5.166.3)( +=

a resistor

a capacitor
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• Output response of controlled system:

settling time = 1 second

overshoot = 9 % < 10 %

• Output response of uncontrolled system:

settling time = 2.5 seconds

overshoot = 0 %
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Q.2. Consider a ball balancing mechanical system below. It was shown that 

in Tutorial One that the system is unstable. Design a PD controller (see

the second figure) such that when it is applied to the system, the 

resulting settling time due to a unit step input is less than 4 second with 

a 25% overshoot.

θx

• Ball Balancing System

+
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)(sG)(sK
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–

e

• Control System
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Solution: Consider
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• Recall from Q.2 of Tutorial One that

and the PD controller has the form
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Following exactly the same procedure as in Q.1, we can derive
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Again, comparing this with the standard 2nd order system

we can match almost all parameters by selecting:

nddn kk ζωζω 2.0102 =⇒= 22 1.010 nppn kk ωω =⇒=

As usual, we have ignored the first term in the numerator of the transfer function from R to 

X. This is because that it does not affect much the overall response.
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To achieve an overshoot less than 25%, we obtain from 

the figure on the right that 4.0>ζ

x

To achieve a settling time of 4 sec., we use
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Thus, we have

ssK 23.037.0)( +=
23.092.16.02.02.0 =××== ndk ζω

37.092.11.01.0 22 =×== npk ω PD Controller
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• Output response of controlled system:

settling time = 4 seconds

overshoot = 25 % 

• Output response of uncontrolled system:

An unstable system

The ball will roll off the beam
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