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Optimal Control Systems, Part 2 - Course Outline

• Revision: Introduction to control systems; ordinary differential equations; state 

space representation; Laplace transform; principle of feedback; modelling; 

system stability; PID control; Bode and Nyquist plot; gain and phase margins.

• Properties of linear quadratic regulation (LQR) control; returned differences; 

guaranteed gain and phase margins; Kalman filter; linear quadratic Gaussian 

(LQG) design technique.

• Introduction to modern control system design; H2 and H∞ optimal control; 

solutions to regular and singular H2 and H∞ optimal control problems; solutions to

some robust control problems.

• Loop transfer recovery (LTR) design technique; Issues on controller structures.
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Homework Assignments & Projects

There will be three (3) homework assignments for all students in this second part of the

course. Some of them are practical problems and most of them require computer

simulations. All students are expected to have knowledge in MATLABTM (Control Toolbox

and Robust Control Toolbox) and SIMULINKTM after completing these assignments.

Homework assignments are to be marked and counted as a certain percentage in your

final grade.

There will be one (1) design project for master of engineering and Ph.D. students. These

students are required to complete a control system design for a coupled tank system

using the techniques learnt in the class and implement it to the real system through a

web-based experiment facility available at http://vlab.ee.nus.edu.sg/vlab. The project

report is to be handed in to my office within one week after the completion of the course.
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Final Grades for Part 2

     1. For 5000 Level:

           Final Grade = 70% × Final exam marks for Part 2 (max = 50)  + …

                    30% × Homework assignments marks (max = 50)

     2. For 6000 Level:

           Final Grade = 70% × Final exam marks for Part 2 (max = 50)  + …

                    20% × Homework assignments marks (max = 50) +

                    10% × Design project marks (max = 50)
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Revision: Basic Concepts
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What is a control system?

System to be controlledController

Desired

performance:

REFERENCE

INPUT

to the

system

Information

about the

system:

OUTPUT

+
–

Difference:

ERROR

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key Issues: 1) How to describe the system to be controlled? (Modelling)

2) How to design the controller? (Control)

aircraft, missiles,

economic systems,

cars, etc
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Some Control Systems Examples:

System to be controlledController
+

–

OUTPUTINPUTREFERENCE

Economic System
Desired

Performance
Government

Policies
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A Live Demonstration on Control of a Coupled-Tank System through Internet Based

Virtual Laboratory Developed by NUS

The objective is to control the flow levels of two coupled tanks. It is a reduced-scale

model of some commonly used chemical plants.
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Modelling of Some Physical Systems

A simple mechanical system:

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied to an

object with a mass m and a is the acceleration, we have

A cruise-control

system

force u
friction

force bx&

x displacement

   accelerationx&&

mass

m

m
u

x
m
b

xxmxbu =+⇔=− &&&&&&

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can be

written as a 1st order ODE with respect to speed v =    :x&

← model of the cruise control system, u is input force, v is output.
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Controller
+

–

OUTPUTINPUTREFERENCE

A cruise-control system:

?
+

–

speed  vu90 km/h

m
u

v
m
b

v =+&
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Basic electrical systems:

v

i

R

resistor

Riv =

capacitor

Cv (t)

i (t)

dt
dv

Ci =

inductor

Lv (t)

i (t)

dt
di

Lv =

Kirchhoff’s Voltage Law (KVL): 

The sum of voltage drops around any
close loop in a circuit is 0.

v5

v1

v4

v3

v2

054321 =++++ vvvvv

Kirchhoff’s Current Law (KCL): 

The sum of currents entering/leaving a
note/closed surface is 0.
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i
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Modelling of a simple electrical system:

i

vi

R
C vo

To find out relationship between the input (vi) and the output (vo) for the circuit:

dt
dv

RCRivR
o==

dt
dv

Ci o=

By KVL, we have 0io =−+ vvv R

0i
o

oio =−+=−+ v
dt

dv
RCvvvv R

iooio
o vvvRCvv

dt
dv

RC =+⇔=+ & A dynamic model

of the circuit
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Controller
+

–

OUTPUTINPUTREFERENCE

Control the output voltage of the electrical system:

?
+

–

vovi230 Volts

vi
R

C vo

ioo vvvRC =+&
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Ordinary Differential Equations

Many real life problems can be modelled as an ODE of the following form:

This is called a 2nd order ODE as the highest order derivative in the equation is 2. The ODE

is said to be homogeneous if u(t) = 0. In fact, many systems can be modelled or

approximated  as a 1st order ODE, i.e.,

)()()()( 01 tutyatyaty =++ &&&

An ODE is also called the time-domain model of the system, because it can be seen the above

equations that y(t) and u(t) are functions of time t. The key issue associated with ODE is: how

to find its solution? That is: how to find an explicit expression for y(t) from the given equation?

)()()( 0 tutyaty =+&
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State Space Representation

Recall that many real life problems can be modelled as an ODE of the following form:

)()()()( 01 tutyatyaty =++ &&&

If we define so-called state variables,
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We can rewrite these equations in a more compact (matrix) form, 

This is called the state space representation of the ODE or the dynamic systems.

Prepared by Ben M. Chen



17

Laplace Transform and Inverse Laplace Transform

Let us first examine the following time-domain functions:
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A cosine function with a frequency f = 0.2 Hz.

Note that it has a period T = 5 seconds.

( ) ( ) ( )ttttx πππ 6.1cos8.0sin4.0cos)( +=

What are frequencies of this function?
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Laplace transform is a tool to convert a time-domain function into a frequency-domain one

in which information about frequencies of the function can be captured. It is often much

easier to solve problems in frequency-domain with the help of Laplace transform.
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Laplace Transform:

Given a time-domain function f (t), its Laplace transform is defined as follows:

{ } ∫
∞
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0

)()()( dtetftfLsF st

Example 1: Find the Laplace transform of a constant function f (t) = 1.

0)(,
1

1
1

0
1111

)()( 0

000

>=





 ⋅−−⋅−=






−−−=−=== ∞−

∞

−
∞

−
∞

− ∫∫ s
sss

e
s

e
s

e
s

dtedtetfsF ststst Re

Example 2: Find the Laplace transform of an exponential function f (t) = e – a t.
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Inverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to convert it back

to its original time-domain function f (t).
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Here are some very useful Laplace and inverse Laplace transform pairs:
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Some useful properties of Laplace transform:

{ } { } { } )()()()()()( 221122112211 sFasFatfLatfLatfatfaL +=+=+

1. Superposition:

2. Differentiation: Assume that f (0) = 0.
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( ) { } )(
1

)(
1

0

sF
s

tfL
s

dfL
t

==







∫ ζζ

Prepared by Ben M. Chen



21

Re-express ODE Models using Laplace Transform (Transfer Function)

Recall that the mechanical system in the cruise-control problem with m = 1 can be

represented by an ODE:

ubvv =+&

Taking Laplace transform on both sides of the equation, we obtain

{ } { } { } { } { }uLbvLvLuLbvvL =+⇒=+ &&

{ } { } { } )()()( sUsbVssVuLvbLvsL =+⇒=+⇒

( )
bssU

sV
sUsVbs

+
=⇒=+⇒

1
)(
)(

)()(

This is called the transfer function of the system model

)(sG=
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Controller
+

–

OUTPUTINPUTREFERENCE

A cruise-control system in frequency domain:

driver? auto?
+

–

speed  V (s)U (s)R (s)

bs
sG

+
=

1
)(
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In general, a feedback control system can be represented by the following block diagram:

+

  U (s)R (s)
)(sG)(sK

  Y (s)

–

E (s)

Given a system represented by G(s) and a reference R(s), the objective of control system

design is to find a control law (or controller) K(s) such that the resulting output Y(s) is as

close to reference R(s) as possible, or the error E(s) = R(s) –Y(s) is as small as possible.

However, many other factors of life have to be carefully considered when dealing with real-

life problems. These factors include:

R (s)

+   U (s)
)(sG)(sK

  Y (s)–

E (s)

disturbances noises
uncertainties

nonlinearities
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Control Techniques – A Brief View:

There are tons of research published in the literature on how to design control laws for various

purposes. These can be roughly classified as the following:

♦ Classical control: Proportional-integral-derivative (PID) control, developed in 1940s and used

for control of industrial processes. Examples: chemical plants, commercial aeroplanes.

♦ Optimal control: Linear quadratic regulator control, Kalman filter, H2 control, developed in

1960s to achieve certain optimal performance and boomed by NASA Apollo Project.

♦ Robust control: H∞ control, developed in 1980s & 90s to handle systems with uncertainties

and disturbances and with high performances. Example: military systems.

♦ Nonlinear control: Currently hot research topics, developed to handle nonlinear systems

with high performances. Examples: military systems such as aircraft, missiles.

♦ Intelligent control: Knowledge-based control, adaptive control, neural and fuzzy control, etc.,

researched heavily in 1990s, developed to handle systems with unknown models.

Examples: economic systems, social systems, human systems.
Prepared by Ben M. Chen
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Classical Control

Let us examine the following block diagram of control system:

+

  U (s)R (s)
)(sG)(sK

  Y (s)

–

E (s)

Recall that the objective of control system design is trying to match the output Y(s) to the

reference R(s). Thus, it is important to find the relationship between them. Recall that

)()()(
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)( sUsGsY
sU
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sG =⇒=

Similarly, we have                                  , and                                      .)()()( sEsKsU = )()()( sYsRsE −= Thus,
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==⇒ Closed-loop transfer function from R to Y.
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We’ll focus on control system design of some first order systems                               with a

proportional-integral (PI) controller,                                                   . This implies

Thus, the block diagram of the control system can be simplified as,

)()(1
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sKsG

sKsG
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+
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R (s) Y (s)

The whole control problem becomes how to choose an appropriate K(s) such that the

resulting H(s) would yield desired properties between R and Y.
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The closed-loop system H(s) is a second order system as its denominator is a polynomial s

of degree 2.
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Stability of Control Systems

Example 1: Consider a closed-loop system with,
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This system is said to be unstable because the

output response y(t) goes to infinity as time t is

getting larger and large. This happens because

the denominator of H(s) has one positive root at

s = 1.
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Example 2: Consider a closed-loop system with,
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This system is said to be stable because

the output response y(t) goes to 0 as time

t is getting larger and large. This happens

because the denominator of H(s) has no

positive roots.
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We consider a general 2nd order system,

The system is stable if the denominator of the system, i.e.,                                       ,  has no

positive roots. It is unstable if it has positive roots. In particular,

22
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ωζω
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R (s) = 0 Y (s)

02 22 =++ nn ss ωζω

Marginally Stable

Unstable

Stable
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Stability in the State Space Representation

Consider a general linear system characterized by a state space form,

Then,

1. It is stable if and only if all the eigenvalues of A are in the open left-half plane.

2. It is marginally stable if and only if A has eigenvalues are in the closed left-half

    plane with some (simple) on the imaginary axis.

3. It is unstable if and only if A has at least one eigenvalue in the right-half plane.

u
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L.H.P.

Stable Region
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Unstable Region
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Lyapunov Stability

Consider a general dynamic system,                   . If there exists a so-called Lyapunov function

V(x), which satisfies the following conditions:

1. V(x) is continuous in x and V(0) = 0;

2. V(x) > 0  (positive definite);

3.                                              (negative definite),

then we can say that the system is asymptotically stable at x = 0. If in addition,

then we can say that the system is globally asymptotically stable at x = 0. In this case, the

stability is independent of the initial condition x(0).

)(xfx =&

0)()( <∂
∂= xfx
VxV&

∞→∞→ xxV   as,)(
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Lyapunov Stability for Linear Systems

Consider a linear system,               . The system is asymptotically stable (i.e., the eigenvalues

of matrix A are all in the open RHP) if for any given appropriate dimensional real positive

definite matrix Q = QT > 0, there exists a real positive definite solution P = PT > 0 for the

following Lyapunov equation:

Proof. Define a Lyapunov function                          . Obviously, the first and second conditions

on the previous page are satisfied. Now consider

Hence, the third condition is also satisfied. The result follows.

Note that the condition, Q = QT > 0, can be replaced by Q = QT ≥ 0 and                    being

detectable.

xAx =&

QPAPA −=+T

xPxxV T=)(

( ) 0)()( <−=+=+=+= QxxxPAPAxxAPxxPxAxPxxPxxV TTTTTTT &&&






 2

1
, QA
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Behavior of Second Order Systems with a Step Inputs

Again, consider the following block diagram with a standard 2nd order system,

The behavior of the system is as follows:
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R (s) = 1/s Y (s)

r = 1

The behavior of the system is

fully characterized by ζ ,

which is called the damping

ratio, and ωn , which is called

the natural frequency.
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Control System Design with Time-domain Specifications

1% settling time

overshoot

rise time

st
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pM
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PID Design Technique:
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The key issue now is to choose parameters kp and ki such that the above resulting system

has desired properties, such as prescribed settling time and overshoot.

Compare this with the standard 2nd order system:
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To achieve an overshoot less than 25%, we obtain

from the figure on the right that 4.0>ζ

xTo achieve a settling time of 10 s, we use

767.0
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n

s t
t

ζ
ω
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6.0=ζTo be safe, we choose

Cruise-Control System Design

Recall the model for the cruise-control system, i.e.,                                 . Assume that the

mass of the car is 3000 kg and the friction coefficient b = 1. Design a PI controller for it

such that the speed of the car will reach the desired speed 90 km/h in 10 seconds (i.e., the

settling time is 10 s) and the maximum overshoot is less than 25%.

m
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The transfer function of the cruise-control system,
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Again, using the formulae derived, 
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Simulation Result:

The resulting

overshoot is

less than 25%

and the settling

time is about 10

seconds.

Thus, our

design goal is

achieved.
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Bode Plots

Consider the following feedback control system,
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Bode Plots are the the magnitude and phase responses of the open-loop transfer function,

i.e., K(s) G(s), with s being replaced by jω. For example, for the ball and beam system we

considered earlier, we have
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Nyquist Plot

Instead of separating into magnitude and phase diagrams as in Bode plots, Nyquist plot

maps the open-loop transfer function K(s) G(s) directly onto a complex plane, e.g.,
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–1

PM

GM
1

Gain and phase margins

The gain margin and phase margin can also be found from the Nyquist plot by zooming in

the region in the neighbourhood of the origin.

o180)()(,
)()(

1
=∠= ppp

pp

jGjK
jGjK

ωωω
ωω

that    such  is  whereGM

Mathematically,

1)()(  such  that  is  where,180)()(  PM =+∠= ggggg jGjKjGjK ωωωωω o

Remark: Gain margin is the maximum

additional gain you can apply to the

closed-loop system such that it will still

remain stable. Similarly, phase margin

is the maximum phase you can tolerate

to the closed-loop system such that it

will still remain stable.
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Example: Gain and phase margins of the ball and beam system: PM = 58°, GM = ∞
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Properties of LQR Control
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Linear Quadratic Regulator (LQR)

Consider a linear system characterized by

where (A, B) is stabilizable. We define the cost index

and               is detectable. The linear quadratic regulation problem is to find a control

law u = – F x such that ( A – B F ) is stable and J is minimized. It was shown in the first

Part of this course that the solution is given by

with

  uBxAx +=&

0,0,)(),,,(
0

>≥+= ∫
∞

RQdtRuuQxxRQuxJ TT

),( 2/1QA

P  BRF T1−=

01 =+−+ − QPBPBRPAPA TT
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If we arrange the LQR control in the following block diagram,

we can find its gain margin and phase margin as we have done in classical control. It is

clear that the open-loop transfer function,

The block diagram can be re-drawn as follows,

uBxAx +=&
–

F
 

BAsIPBRBAsIF 111 )()( −−− −=−= T   function   transfer   loop   Open

–
BAsIPBR 11 )( −− −T
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Return Difference Equality and Inequality

Consider the LQR control law. The following so-called return difference equality hold:

The following is called the return difference inequality:

Proof. Recall that

Then we have

])([])([)()( 111 BAIjFIRFAIjBIBAIjQAIjBR −−− −+−−+=−−−+ ωωωω TTTTT

RBAIjFIRFAIjBI ≥−+−−+ −− ])([])([ 11 ωω TTT

P  BRF T1−= 01 =+−+ − QPBPBRPAPA TT

0)()( 11 =+−+++− −− QPBRRPBRPAIPjPAIPj TTωω

QRFFPAIjAIjP =+−−+− TT )()( ωω
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TTTTT

Multiplying it on the left by                                 and on the right by                          , we obtain,1)( −−− TT AIjB ω BAIj 1)( −−ω

BAIjQAIjB

BAIjRFFAIjBBAIjPBPBAIjB
11

1111

)()(
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−−−+−+−−

ωω

ωωωω
TT

TTTTTT

Noting the fact that 

we have

RFPBRFPBP  BRF TTT ==⇒= − &1

BAIjQAIjB
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11

1111

)()(

)()()()(
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])([])([)()( 111 BAIjFIRFAIjBIBAIjQAIjBR −−− −+−−+=−−−+ ωωωω TTTTT
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Single Input Case

In the single input case, the transfer function

is a scalar function. Let Q = h hT. Then, the return difference equation is reduced to

bAsIf 1)( −−=   function   transfer   loop   Open

])(1[])(1[)()( 111 bAIjffAIjbrbAIjhhAIjbr −−− −+−−+=−−−+ ωωωω TTTTTT

2121 )(1)( bAIjfrbAIjhr −− −+=−+ ωωT

rbAIjfr ≥−+ − 21)(1 ω

.Inequality  Difference  Return 1)(1
21 ≥−+ − bAIjf ω
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Graphically,                                                                                                              implies that

–1

60°

PM ≥ 60°

1)01()(1)(1 121 ≥+−−−⇒≥−+ −− jbAIjfbAIjf ωω

Clearly, the phase margin resulting from

the LQR design is at least 60 degrees.

– 2

The gain margin is from [ 0.5, ∞∞ ).
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Example: Consider a given plant characterized by

Solving the LQR problem which minimizes the following cost function

we obtain

which results the closed-loop eigenvalues at                                 . Clearly, the closed-loop

system is asymptotically stable.

uxx 







+








−−

=
1

0

11

10
&

1.0,
00

01
with,)(),,,(

0

TT =







=+= ∫

∞

RQdtRuuQxxRQuxJ

[ ]1.37342.3166and
0.13730.2317

0.23170.6872
=








= FP

3814118671 . j . ±−

Prepared by Ben M. Chen



53

F re q u e n c y  (ra d / s e c )

P
h

a
s

e
 (

d
eg

);
 M

ag
n

it
u

d
e 

(d
B

)

B o d e  D ia g ra m s

-20

-10

0

1 0
From: U(1)

1 0 0 1 0 1
-100

-80

-60

-40

-20

0

T
o:

 Y
(1

)

PM = 84° GM = ∞
Prepared by Ben M. Chen



54

Kalman Filter
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Review: Random Process

A random variable X is a mapping between the sample space and the real numbers. A

random process (a.k.a stochastic process) is a mapping from the sample space into an

ensemble of time functions (known as sample functions). To every member in the sample

space, there corresponds a function of time (a sample function) X(t).

X(t)

time
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Mean, Moment, Variance, Covariance of Stationary Random Process

Let f (x,t) be the probability density function (p.d.f.) associated with a random process X(t).

If the p.d.f. is independent of time t, i.e., f (x,t) = f (x), then the corresponding random

process is said to be stationary. We will focus our attention only on this class of random

processes in this course. For this type of random processes, we define:

1) mean (or expectation): 2) moment ( j-th order moment)

3) variance 4) covariance of two random processes

Two random processes v and w are said to be independent if

[ ] ∫
∞

∞−

⋅== dxxfxXEm )( [ ] ∫
∞

∞−

⋅= dxxfxXE jj )(

[ ] ∫
∞

∞−

−=−= dxxfmxmxE )()()( 222σ [ ]])[])([(),(con wEwvEvEwv −−=

[ ] . and  of p.d.f.joint   theis ),(,0),( wvwvfdvdwwvvwfvwE == ∫ ∫
∞

∞−

∞

∞−
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Autocorrelation Function and Power Spectrum

Autocorrelation function is used to describe the time domain property of a random process.

Given a random process v, its autocorrelation function is defined as follows:

If v is a stationary process,

Note that Rx(0) is the time average of the power or energy of the random process.

Power spectrum of a random process is the Fourier transform of its autocorrelation function.

It is a frequency domain property of the random process. To be more specific, it is defined as

[ ])()(),( 2121 tvtvEttRx =

[ ])()(),()()(),( 1221 τττ +=+==−= tvtvEttRRttRttR xxxx

ττ
π

ω ωτ deR
j

S j
xx ∫

∞

∞−

= )(
2
1

)(
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White Noise, Color Noise and Gaussian Random Process

White Noise is a random process with a constant power spectrum, and an autocorrelation

function

which implies that a white noise has an infinite power and thus it is non existent in our real life.

However, many noises (or the so-called color noises, or noises with finite energy and finite

frequency components) can be modeled as the outputs of linear systems with an injection of

white noise into their inputs, i.e., any color noise can be generated by a white noise

Gaussian Process v is also known as normal process has a p.d.f.

)()( τδτ ⋅= qRx

while noise color noiseLinear System

 variance mean, ,
2

1
)( 22

)(
2

2

===
−−

σµ
πσ

σ
µv

evf
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Kalman Filter for a Linear Time Invariant (LTI) System

Consider a LTI system characterized by

Assume:   1) ( A,C ) is observable

         2) v(t) and w(t) are independent white noises with the following properties

         3)                   is stabilizable (to guarantee closed-loop stability).

 
noiset measuremen  theis )(

noiseinput   theis )(





+=
++=

wtwCxy

vtvBuAxx&

0)]([,0)]([ == twEtvE

0),()]()([,0),()]()([ TTTT >=−=≥=−= RRtRwtwEQQtQvtvE τδττδτ






 2

1
, QA

The problem of Kalman Filter is to design a state estimator to estimate the state x(t) by

such that the estimation error covariance is minimized, i.e., the following index is minimized:

)(ˆ tx

)}](ˆ)({)}(ˆ)([{ T txtxtxtxEJe −−=
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Construction of Steady State Kalman Filter

Kalman filter is a state observer with a specially selected observer gain (or Kalman filter gain).

It has the dynamic equation:

with the Kalman filter gain Ke being given as

where Pe is the positive definite solution of the following Riccati equation,

Let                 . We can show (see next) that such a Kalman filter has the following properties:
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Kalman Filter and Linear Quadratic Regulator – They Are Dual

 Recall the optimal regulator problem,

The LQR problem is to find a state feedback law u = – F x such that J is minimized. It was

shown that the solution to the above problem is given by

and the optimal value of J is given by                    . Note that x0 is arbitrary. Let us consider a

special case when x0 is a random vector with                                       .

Then, we have

( )  
0  and  0,
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The Duality

         ♣♣ Linear Quadratic Regulator ♠♠ Kalman Filter

P  BRF T1−= 1T −= RCPK ee

0T1T =+−+ − QPBPBRPAPA 01TT =+−+ − QCPRCPAPAP eeee

ePJ   traceoptimal =PJ   traceoptimal =

These two problems are equivalent (or dual) if we let

P

F

B

A

T

T

T

e

e

P

K

C

A

Prepared by Ben M. Chen



63

Proof of the Properties of Kalman Filter

Recall that the dynamics of the given plant and Kalman filter, i.e.,
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We have

with

Next, it is reasonable to assume that initial error e(0) and d(t) are independent, i.e.,
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Furthermore,

We will next show      is asymptotically stable and

and                                .  Recall that the solution to the following state equation from your

linear systems course notes:

i.e.,

A
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01TT =+−+ − QCPRCPAPAP eeee

Also, recall that                           and

We have

1T −= RCPK ee

01T1T1TT =++−+− −−− QCPRCPCPRCPAPCPRCPAP eeeeeeee
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

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
 2

1
, QASince Q = QT ≥ 0  and                     is assumed to be stabilizable, it follows from Lyapunov

stability theory that matrix                            is asymptotically stable.( )CKAA e−=
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Noting that        is deterministic, we have
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We next show that P(∞) = Pe, i.e., the solution associated with the Kalman filter ARE. Let

In view of                                , we have
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It is now simple to see that

Finally, we have
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Example: Consider a given plant characterized by the following state space model,

Solving the Kalman filter ARE, we obtain 
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Linear Quadratic Gaussian (LQG)
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Problem Statement

It is very often in control system design for a real life problem that one cannot measure all the

state variables of the given plant. Thus, the linear quadratic regulator, although it has a very

impressive gain and phase margins (GM = ∞ and PM = 60 degrees), is impractical as it utilizes

all state variables in the feedback, i.e., u = – F x. In most of practical situations, only partial

information of the state of the given plant is accessible or can be measured for feedback. The

natural questions one would ask:

• Can we recover or estimate the state variables of the plant through the partially measurable

   information? The answer is yes. The solution is Kalman filter.

• Can we replace x the control law in LQR, i.e., u = – F x, by the estimated state to carry out a

   meaningful control system design? The answer is yes. The solution is called LQG.

• Do we still have impressive properties associated with LQG? The answer is no. Any solution?

  Yes. It is called loop transfer recovery (LTR) technique (to be covered later).
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Linear Quadratic Gaussian Design

Consider a given plant characterized by

where v(t) and w(t) are white with zero means. v(t), w(t) and x(0) are independent, and

The performance index has to be modified as follows:

The Linear Quadratic Gaussian (LQG) control is to design a control law that only requires

the measurable information such that when it is applied to the given plant, the overall system

is stable and the performance index is minimized.
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Solution to the LQG Problem – Separation Principle

Step 1. Design an LQR control law u = – F x which solves the following problem,

             i.e., compute

Step 2. Design a Kalman filter for the given plant, i.e.,

            where

Step 3. The LQG control law is given by                   , i.e.,
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Block Diagram Implementation of LQG Control Law

Plant

Kalman FilterLQR Control

Reference

 x̂

u y
r

+

−

More Detailed Block Diagram

Plant
Reference u y

r
+

−

∫ eK

CKBFA e−−

+F x̂ x&̂

LQG Controller
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Closed-Loop Dynamics of the Given Plant together with LQG Controller

Recall the plant:                                       and the controller

We define a new variable                  and thus

and 
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Clearly, the closed-loop system is characterized by the following state space equation,









−

=+







+
















−

−
=








wKv

v
vvr

B

B

e

x

CKA

BFBFA

e

x

ee

~,~
0&

&

[ ]  0 w
e

x
Cy +








=

The closed-loop poles are given by                                               , which are stable.)()( CKABFA e−∪− λλ
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Homework Assignment 1 (Hand in your solutions next week)

Recall the dynamical model for the cruise-control system,

where x1 is the displacement of the car and u is the input force. For simplicity but no loss of

generality, we assume that m = 1 and b = 1. However, in practical situations, there are always

disturbances (due to rough road surfaces, etc.) presenting in the system. Thus, a more realistic

model should be the following,

Assume that only the displacement of the car can be measured, i.e., the measurement output

where w(t) is the measurement noise and is assumed to be white and independent of the

system noise in the ODE.

m
u

x
m
b

x =+ 11 &&&

noise  some 11 +=+ uxx &&&

)(1 twxy +=
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• Convert the ODE model of the system into a state space form                                    .

• Assume that v(t) is nonexistent and all states of the plant are available for feedback. Find

an LQR control law, which minimizes the following performance index:

What are the gain and phase margins resulting from your LQR design?

• Design a Kalman filter for the plant. Assume that both v(t) and w(t) have zero means and

• Design an LQG control law, which minimizes the following performance index:

What are the closed-loop eigenvalues? Simulate your design using SIMULINK with
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Introduction to Robust Control
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A Real Control Problem

responsedisturbances

sensor noise

Controller
commands

measurements
control input

Controller Objective: To provide desired  responses in face of

•  Uncertain plant dynamics     +  External  inputs

Plant

disturbances

sensor noise

control input
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Representation of Uncertain Plant Dynamics

Perturbation 

Nominal  Plant
response

measurements

disturbance

sensor noise

control inputs

•  Nominal Plant  is a FDLTI System

•  Perturbation is Member of Set of Possible Perturbations

Prepared by Ben M. Chen



80

Analysis Objectives

• Nominal Performance Question (H2 Optimal Control):

 Are  closed loop responses acceptable for disturbances? sensor noise? commands?

• Robust Stability Question (H∞∞ Optimal Control):

 Is  closed   loop system stable for nominal plant? for all possible perturbations?

• Robust Performance Question (Mixed H2 /H∞∞ Optimal Control):

Are closed loop responses acceptable for all possible perturbations and all external

inputs? Simultaneously?
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Complete Picture of Robust Control Problem

K

P
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Standard Feedback Loops in Terms of General Interconnection Structure
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H2 and H∞∞ Optimal Control
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Introduction to the Problems

Consider a stabilizable and detectable linear time-invariant system Σ with a proper controller

Σc

∑

cΣ

u

w z

y

where

w

w

w

D

E

u

u

u

D

B

x

x

x

C

C

A

z

y

x

0

0: 1

22

1

+
+
+

+
+
+

=
=
=







Σ

&

state controller

edisturbanc

input control

output controlled

tmeasuremen

variable state

⇔ℜ∈
⇔ℜ∈
⇔ℜ∈

⇔
⇔
⇔









ℜ∈
ℜ∈
ℜ∈

k

l

m

q

p

n

v

w

u

z

y

x

&

y

y

D

B

v

v

C

A

u

v

c

c

c

c

c +
+

=
=





Σ
&

:

Prepared by Ben M. Chen



85

The problems of H2 and H∞ optimal control are to design a proper control law Σc such that

when it is applied to the given plant with disturbance, i.e., Σ, we have

• The resulting closed loop system is internally stable (this is necessary for any control

   system design).

• The resulting closed-loop transfer function from the disturbance w to the controlled output z,

   say,          , is as small as possible, i.e., the effect of the disturbance on the controlled

   output is minimized.

• H2 optimal control: the H2-norm of            is minimized.

• H∞ optimal control: the H∞-norm of            is minimized.

)(sTzw

)(sTzw

)(sTzw

Note: A transfer function is a function of frequencies ranging from 0 to ∞. It is hard to tell if

it is large or small. The common practice is to measure its norms instead. H2-norm and H∞-

norm are two commonly used norms in measuring the sizes of a transfer function.
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The Closed Loop Transfer Function from Disturbance to Controlled Output

Recall that
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Thus, the closed-loop transfer function from w to z is given by

( ) clclclcl DBAsICsT zw +−= −1)(

Remark: For the state feedback case, C1 = I and D1 = 0, i.e., all the states of the given

system can be measured, Σc can then be reduced to u = F x and the corresponding

closed-loop transfer function is reduced to

The resulting closed-loop system is internally stable if and only if the eigenvalues of








 +
=

cc

cc

ACB

BCCBDA
A

1

1

cl

are all in open left half complex plane.

( ) ( ) EBFAsIFDCsTzw

1

22)( −−−+=

The closed-loop stability implies and is implied that A + B F has stable eigenvalues.
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H2-norm and H∞∞-norm of a Transfer Function

Definition: (H2-norm) Given a stable and proper transfer function Tzw(s), its H2-norm is

defined as
2
1

2
)()(

2
1

















= ∫

∞+

∞−

ωωω
π

djTjTT zwzwzw
Htrace

Graphically,

Note: The H2-norm is the total energy corresponding to the impulse response of Tzw(s).

Thus, minimization of the H2-norm of Tzw(s) is equivalent to the minimization of the total

energy from the disturbance w to the controlled output z.

ω

|Tzw(jω)|
H2-norm
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Definition: (H∞-norm) Given a stable and proper transfer function Tzw(s), its H∞-norm is

defined as
[ ])(sup max

0

ωσ
ω

jTT zwzw
∞<≤

∞
=

where σmax [Tzw(jω)] denotes the maximum singular value of Tzw(jω). For a single-input-single-

output transfer function Tzw(s), it is equivalent to the magnitude of Tzw(jω). Graphically,

Note: The H∞-norm is the worst case gain in Tzw(s). Thus, minimization of the H∞-norm of

Tzw(s) is equivalent to the minimization of the worst case (gain) situation on the effect from

the disturbance w to the controlled output z.

H∞-norm

ω

|Tzw(jω)|
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Infima and Optimal Controllers

Definition: (The infimum of H2 optimization) The infimum of  the H2 norm of the closed-loop

transfer matrix Tzw(s) over all  stabilizing proper controllers is denoted by γ2
*,  that is

{ }.inf:
2

*
2 ∑Σ= stabilizes internally czwTγ

Definition: (The infimum of H∞ optimization) The infimum of the H∞-norm of the closed-loop

transfer matrix Tzw(s) over all stabilizing proper controllers is denoted by γ∞
*, that is

{ }.inf:* ∑Σ=
∞∞ stabilizes internally czwTγ

Definition: (The H2 optimal controller) A proper controller Σc is said to be an H2 optimal

controller if it internally stabilizes Σ and                    .*
22

γ=zwT

Definition: (The H∞ γ-suboptimal controller) A proper controller Σc is said to be an H∞ γ-

suboptimal controller if it internally stabilizes Σ and                          .( )*
∞∞

>< γγzwT
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Critical Assumptions - Regular Case vs Singular Case

Most results in H2 and H∞ optimal control deal with a so-called a regular problem or regular

case because it is simple. An H2 or H∞ optimal problem is said to be regular if the following

conditions are satisfied,

1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix

2. The subsystem ( A,B,C2,D2 ) has no invariant zeros on the imaginary axis;

3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix

4. The subsystem ( A,E,C1,D1 ) has no invariant zeros on the imaginary axis;

An H2 or H∞ optimal problem is said to be singular if it is not regular, i.e., at least one of the

above 4 conditions is satisfied.
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Solutions to the State Feedback Problems - the Regular Case

The state feedback H2 and H∞ control problems are referred to the problems in which all the

states of the given plant Σ are available for feedback. That is the given system is

wE

u

u
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x

x

x
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z

y

x +

+

+

=
=
=
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



Σ

22

:

&

where ( A, B ) is stabilizable,  D2 is of maximal column rank and ( A, B, C2, D2 ) has no

invariant zeros on the imaginary axis.

In the state feedback case, we are looking for a static control law

xFu =
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Solution to the Regular H2 State Feedback Problem

Solve the following algebraic Riccati equation (H2-ARE)

( ) ( ) ( ) 022

1

222222 =++−++
−

PBCDDDDCPBCCPAPA TTTTTT

for a unique positive semi-definite solution P ≥ 0. The H2 optimal state feedback law is

then given by

( ) xPBCDDDxFu TTT +−== −
22

1
22 )(

It can be showed that the resulting closed-loop system Tzw(s) has the following property:

It can also be showed that                                             . Note that the trace of a matrix is

defined as the sum of all its diagonal elements.

.*
22

γ=zwT

[ ] 2
1*

2 )( PEE Ttrace=γ
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Example: Consider a system characterized by 
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Solving the following H2-ARE using MATLAB, 

we obtain a positive definite solution

and
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The closed-loop magnitude response from

the disturbance to the controlled output:

The optimal performance or infimum is

given by
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Classical Linear Quadratic Regulation (LQR) Problem is a Special Case of H2 Control

It can be shown that the well-known LQR problem can be re-formulated as an H2 optimal

control problem. Consider a linear system,

The LQR problem is to find a control law u = F x such that the following index is minimized:

where Q ≥ 0 is a positive semi-definite matrix and R > 0 is a positive definite matrix. The

problem is equivalent to finding a static state feedback H2 optimal control law u = F x for
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Solution to the Regular H∞∞ State Feedback Problem

Given γ > γ∞
*, solve the following algebraic Riccati equation (H∞-ARE)

for a unique positive semi-definite solution P ≥ 0. The H∞ γ-suboptimal state feedback law

is then given by
( ) xPBCDDDxFu TTT +−== −

22
1

22 )(

The resulting closed-loop system Tzw(s) has the following property:

Remark: The computation of the best achievable H∞ attenuation level, i.e., γ∞
*, is in general

quite complicated. For certain cases, γ∞
* can be computed exactly. There are cases in which

γ∞
* can only be obtained using some iterative algorithms. One method is to keep solving the

H∞-ARE for different values of γ until it hits γ∞
* for which and any γ < γ∞

*, the H∞-ARE does

not have a solution. Please see the reference textbook by Chen (2000) for details.

.γ<∞zwT

( ) 0)()(/ 22
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2222
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22 =++−+++
−

PBCDDDDCPBPPEECCPAPA TTTTTTT γ
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Example: Again, consider the following system
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It can be showed that the best achievable H∞

performance for this system is             . Solving

the following H∞-ARE using MATLAB with

γ =5.001, we obtain a positive definite solution

and
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The closed-loop magnitude response from

the disturbance to the controlled output:

Clearly, the worse case gain, occurred at

the low frequency is roughly equal to 5

(actually between 5 and 5.001)
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Solutions to the State Feedback Problems - the Singular Case

Consider the following system again,
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where ( A, B ) is stabilizable, D2 is not necessarily of maximal rank and ( A, B, C2, D2 )

might have invariant zeros on the imaginary axis.

Solution to this kind of problems can be done using the following trick (or so-called a

perturbation approach): Define a new controlled output
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small perturbations
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Now let us consider the perturbed system
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Obviously,      is of maximal column rank and                        is free of invariant zeros for any

ε > 0. Thus,     satisfies the conditions of the regular state feedback case, and hence we

can apply the procedures for regular cases to     find the H2 and H∞ control laws.

Example:

2

~
D )~,

~
,,( 22 DCBA

Σ~

Σ~

[ ] uxz

xy

wuxx

⋅+=

=









+








+








=

011

2

1

1

0

43

25
&

:Σ :
~Σ

uxz

xy

wuxx



















+



















=

=









+








+








=

ε
ε

ε
0

0

0

0

0

1

0

0

1

2

1

1

0

43

25
&

Prepared by Ben M. Chen



100

Solution to the General H2 State Feedback Problem

 Given a small ε > 0, Solve the following algebraic Riccati equation (H2-ARE)

( ) ( ) ( ) 0
~~~~~~~~~~~~

22

1

222222 =++−++
−

PBCDDDDCBPCCAPPA TTTTTT

for a unique positive semi-definite solution     ≥ 0. Obviously,      is a function of ε . The H2

optimal state feedback law is then given by
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It can be showed that the resulting closed-loop system Tzw(s) has the following property:

It can also be showed that
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Example: Consider a system characterized by 
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Solving the following H2-ARE using MATLAB

with ε = 1,  we obtain

,
~









=

18.251746.2778

46.2778186.1968
P [ ]18.251746.2778 −−=F

225.1*
2 =γ

The closed-loop magnitude response from

the disturbance to the controlled output:

The optimal performance or infimum is

given by

,
~









=

1.89754.9311

4.931121.2472
P [ ]18.974849.3111 −−=F

• ε = 0.1

• ε = 0.0001

,
~









=

0.01120.0424

0.04241.6701
P [ ]112.222423.742 −−=F
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Solution to the General H∞∞ State Feedback Problem

Step 1: Given a γ > γ∞
*, choose ε = 1.

Step 2: Define the corresponding

Step 3: Solve the following algebraic Riccati equation (H∞-ARE)

            for

Step 4: If            , go to Step 5. Otherwise, reduce the value of ε and go to Step 2.

Step 5: Compute the required state feedback control law

It can be showed that the resulting closed-loop system Tzw(s) has:
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
=

I

D

DI

C

C

ε
ε 0:

~
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( ) 0)~~~(~~)~~~(/~~~~~~
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1

2222
2

22 =++−+++
−

PBCDDDDCBPPEEPCCAPPA TTTTTTT γ
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Example: Again, consider the following system
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It can be showed that the best achievable H∞

performance for this system is                .

Solving the following H∞-ARE using MATLAB

with γ = 0.6 and ε = 0.001, we obtain a

positive definite solution

and








=

0.09810.9874

0.987415.1677
P

[ ]98.1161987.363 −−=F

5.0* =∞γ

The closed-loop magnitude response from

the disturbance to the controlled output:

Clearly, the worse case gain, occurred at

the low frequency is slightly less than 0.6.

The design specification is achieved.
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Solutions to Output Feedback Problems - the Regular Case

Recall the system with measurement feedback, i.e.,

where (A, B) is stabilizable and (A, C1) is detectable. Also, it satisfies the following regularity

assumptions:

1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix

2. The subsystem ( A,B,C2,D2 ) has no invariant zeros on the imaginary axis;

3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix

4. The subsystem ( A,E,C1,D1 ) has no invariant zeros on the imaginary axis;
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Solution to the Regular H2 Output Feedback Problem

Solve the following algebraic Riccati equation (H2-ARE)

( ) ( ) ( ) 022

1

222222 =++−++
−

PBCDDDDCPBCCPAPA TTTTTT

for a unique positive semi-definite solution P ≥ 0, and the following ARE

( )PBCDDDF TTT +−= −
22

1
22 )(

( ) ( ) ( ) 011

1

1111 =++−++
−

QCEDDDEDQCEEAQQA TTTTTT

for a unique positive semi-definite solution Q ≥ 0. The H2 optimal output feedback law is

then given by
( )





=
−++=

Σ
vFu

yKvKCBFAv
c

1:
&

( ) ( ) 1

1111

−+−= TTT DDEDQCKandwhere

Furthermore,

( )[ ]{ } 2
1

22
*
2 )( QCCPAPAPEE TTT tracetrace +++=γ
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Example: Consider a system characterized by 
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Solving the following H2-AREs using MATLAB, 

we obtain

and an output feedback control law,









=

1640

40144
P [ ]1741 −−=F

3.347*
2 =γ

The closed-loop magnitude response from

the disturbance to the controlled output:

The optimal performance or infimum is

given by









=

14.000023.3333

23.333349.7778
Q 








−
−

=
16.0000

24.3333
K
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−−=
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
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−
=Σ

vu

yvv
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16

24.3333
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Solution to the Regular H∞∞ Output Feedback Problem

Given a γ > γ∞
*, solve the following algebraic Riccati equation (H∞-ARE)

for a unique positive semi-definite solution P ≥ 0, and the following ARE

( ) ,)( 22
1

22 PBCDDDF TTT +−= −

( ) ( ) ( ) 0/ 11

1

1111

2

22 =++−+++ −
QCEDDDEDQCQCQCEEAQQA TTTTTTT γ

for a unique positive semi-definite solution Q ≥ 0. In fact, these P and Q satisfy the so-called

coupling condition:                    . The H∞ γ-suboptimal output feedback law is then given by

( ) ( ) .
1

1111

−
+−= TTT DDEDQCK

where

( ) 0)()(/ 22

1

2222
2

22 =++−+++
−

PBCDDDDCPBPPEECCPAPA TTTTTTT γ

( ) ( )PEDCKQPIBFPEEAA TT
c 1

2
1

122 −−−− +−+++= γγγ

( ) .,
12 FCKQPIB cc =−−= −−γ

and where
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Example: Consider a system characterized by 
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It can be showed that the best achievable H∞

performance for this system is                          .

Solving the following H∞-AREs using MATLAB

with γ = 97, we obtain









=

16.039240.1168

40.1168144.353
P

The closed-loop magnitude response from

the disturbance to the controlled output:









=

14.011823.3556

23.355649.8205
Q

[ ]





−−=









+








−−
−−

=Σ
vu

yvv
c

17.03941.116
894.227

1836.58

914.11259.414

1848.6638.814
&
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Clearly, the worse case gain, occurred at

the low frequency is slightly less than 97.

The design specification is achieved.
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Solutions to the Output Feedback Problems - the Singular Case

For general systems for which the regularity conditions are not satisfied, it can be solved

again using the so-called perturbation approach. We define a new controlled output:

and new matrices associated with the disturbance inputs:

The H2 and H∞ control problems for singular output feedback case can be obtained by

solving the following perturbed regular system with sufficiently small ε :
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Remark: Perturbation approach might

have serious numerical problems!

Prepared by Ben M. Chen



110

Some Robust Control Problems
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Robust Stabilization of Systems with Unstructured Uncertainties

Consider an uncertain plant with an unstructured perturbation,

cΣ

∑
u

w z

y

∑

w z

zwT

Small Gain Theory ( ! )

If      is stable and                            ,  then 

the interconnected system is stable.

1<⋅∆
∞∞

M

M

Assume                   . Then the system with

unstructured uncertainty if

γ<
∞zwT

γ
γ

1
1 <∆⇒<∆⋅<∆⋅

∞∞∞∞zwT
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Robust Stabilization with Additive Perturbation

Consider an uncertain plant with additive perturbations,

mΣ

eΣ

u y
+

mΣ has a transfer function mmmmm DBAsICsG +−= −1)()(

eΣ is an unknown perturbation.

mΣ and em Σ+Σ have same number of unstable poles.

Given a γa > 0, the problem of robust stabilization for plants additive perturbations is to find a

proper controller such that when it is applied to the uncertain plant, the resulting closed-loop

system is stable for all possible perturbations with their L∞-norm ≤ γa. (The definition of L∞-

norm is the same as that of H∞-norm except for L∞-norm, the system need not be stable.)

Such a problem is equivalent to find an H∞ γ-suboptimal control law ( with γ = 1/ γa ) for
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Robust Stabilization with Multiplicative Perturbation

Consider an uncertain plant with multiplicative perturbations,

mΣ

eΣ

u y
+

mΣ has a transfer function mmmmm DBAsICsG +−= −1)()(

eΣ is an unknown perturbation.

mΣ and em Σ×Σ have same number of unstable poles.

Given a γm > 0, the problem of robust stabilization for plants multiplicative perturbations is to

find a proper controller such that when it is applied to the uncertain plant, the resulting

closed-loop system is stable for all possible perturbations with their L∞-norm ≤ γm. Again,

such a problem is equivalent to find an H∞ γ-suboptimal control law ( with γ = 1/ γm ) for the

following system,
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Homework Assignment 2 (Hand in your solutions next week)

Rewrite the cruise-control system in Homework Assignment 1 as follows,

where

w

w

D

E

u

u
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[ ] car.  theof speed  thei.e.,  ,10and,
)(

)(~
2 xxz

tw

tv
w ==








=

• What is the best achievable H2-norm of the closed-loop system from      to z ? Design an

H2 suboptimal controller such that the H2-norm of the resulting closed-loop system is

reasonably close to the optimal value. Plot the singular values of the closed-loop system.

• What is the best achievable H∞-norm of the closed-loop system from      to z ? Design an

H∞ suboptimal controller such that the H∞-norm of the resulting closed-loop system is

reasonably close to the optimal value. Plot the  singular values of the closed-loop system.

w~

w~
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Loop Transfer Recovery Design
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Is an LQG Controller Robust?

It is now well-known that the linear quadratic regulator (LQR) has very impressive robustness

properties, including guaranteed infinite gain margins and 60 degrees phase margins in all

channels. The result is only valid, however, for the full state feedback case. If observers or

Kalman filters (i.e., LQG regulators ) are used in implementation, no guaranteed  robustness

properties hold. Still worse, the closed-loop system may become unstable if you do not design

the observer of Kalman filter properly. The following example given in Doyle (1978) shows the

unrobustness of the LQG regulators.

Example: Consider the following system characterized by

,
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
=& wxy += ]01[

where x, u and y denote the usual states, control input and measured output, and where w

and v are white noises with intensities 1 and  σ > 0, respectively.
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The LQG controller consists of an LQR control law + a Kalman filter.

 LQR Design: Suppose we wish to minimize the performance index

It is known that the state feedback law u = – F x which minimize the performance index J is

given by

For this particular example, we can obtain a closed-form solution,

It can be verified that the open loop of  LQ regulator with any q > 0 has an infinite gain margin

and a phase margin over 105 degrees. Thus, it is very robust.

[ ] 0,11
1

1
,1,)(

0

TT >







==+= ∫

∞

qqQRdtRuuQxxJ

  PBRF ,T1−= .0,0T1T >=+−+ − PQPBPBRPAPA

].11[]11[)42( fqF =++=
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It can also be shown that the Kalman filter gain for this problem can be expressed as,

which together with the LQR law result an LQG controller,

Suppose that the resulting closed-loop controller has a scalar gain 1 + ε (nominally unity)

associated with the input matrix, i.e.,

Tedious manipulations show that the characteristic function of  the closed-loop system

comprising the given system an the LQG controller is given by


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
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1

1
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)42( kK σ
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xFu

yKxKCBFAx
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ˆ)(&̂
yKKCBFAsIFu 1)( −++−−=or
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
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=+=
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)1(matrixinput actual the B
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A necessary condition for stability is that

It is easy to see that for sufficient large q and σ, the closed-loop could be unstable for a small

perturbation in B in either direction.  For instance, let us choose q = σ  = 60. Then it is simple

to verify the closed-loop system remains stable only when – 0.08 <  ε  < 0.01 .

The above example shows that the LQG controller is not robust at all!

What is wrong?

The answer is that the open-loop transfer function of the LQR design and the open-loop transfer

function of the LQG design are totally different and thus, all the nice properties associated with

the LQR design vanish in the LQG controller. It can be seen more clearly from the precise

mathematical expressions of these two open-loop transfer functions, and this leads to the birth

of the so-called Loop Transfer Recovery technique.

01and042 >−>−++ kffkkf εε
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Open-Loop Transfer Function of LQR

Open-loop transfer function: When the loop is broken at the input point of the plant, i.e., the

point marked ×, we have

Thus, the loop transfer matrix from u to          is given by

We have learnt from our previous lectures that the open loop transfer Lt(s) have very

impressive properties if the gain matrix F comes from LQR design.

BuAxx +=&

– F

x r = 0 ×û u

BuAsIFu 1)(ˆ −−−=

û−

BAsIFsLt
1)()( −−=
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Open-Loop Transfer Function of LQG

Open-loop transfer function: When the loop is broken at the input point of the plant, i.e., the

point marked ×, we have

Thus, the loop transfer matrix from u to          is given by

Clearly, Lt(s) and Lo(s) are very different and that is why LQG in general does not have nice

properties as LQR does.

û−

BuAxx +=&

– F ( sI – A + B F + K C )–1 K 

x r = 0 × u C
yû

BuAsIKCKCBFAsIFu 11 )()(ˆ −− −++−−=

BAsIKCKCBFAsIFsLo
11 )()()( −− −++−=
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Loop Transfer Recovery

The above problem can be fixed by choosing an appropriate Kalman filter gain matrix K such

that Lt(s) and Lo(s) are exactly identical or almost matched over a certain range of frequencies.

Such a technique is called Loop Transfer Recovery.

The idea was first pointed out by Doyle and Stein in 1979. They had given a sufficient condition

under which Lo(s) = Lt(s). They had also develop a procedure to design the Kalman filter gain

matrix K in terms of a tuning parameter q such that the resulting Lo(s) → Lt(s) as q → ∞, for

the invertible and minimum phase systems .

Doyle-Stein Conditions: It can be shown that Lo(s) and Lt(s) are identical if the observer gain

K satisfies

which is equivalent to B = 0 (prove it!). Thus, it is impractical.

111 )(,)()( −−− −=ΦΦ=Φ+ AsIBCBKCIK
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Classical LTR Design

The following procedure was proposed by Doyle and Stein in 1979 for left invertible and

minimum phase systems: Define

where Q0 and R0 are noise intensities appropriate for the nominal plant ( in fact, Q0 can be

chosen as a zero matrix and R0= I ), and V is any positive definite symmetric matrix (V can

be chosen as an identity matrix). Then the observer (or Kalman filter) gain is given by

where P is the positive definite solution of

It can be shown that the resulting open-loop transfer function Lo(s) from the above observer or

Kalman filter has

0
T2

0 , RRBVBqQQq =+=

1T −= RPCK

01TT =−++ − CPRPCQPAAP q

.),()( ∞→→ qassLsL to
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Example: Consider a given plant characterized by

with                                               and

This system is of minimum phase with one invariant zero at s = – 2. The LQR control law is

given by

The resulting open-loop transfer function Lt(s) has an infinity gain margin and a phase margin

over 85°. We apply Doyle-Stein LTR procedure to design an observer based controller, i.e.,

where K is computed as on the previous page with
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target

Lo(s) with

q2 = 500

Lo(s) with

q2 = 10000

Lo(s) with

q2 = 100000
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New Formulation for Loop Transfer Recovery

Consider a general stabilizable and detectable plant,

The transfer function is given by                                                            Also, let F be a state

feedback gain matrix such that under the state feedback control law u = – F x has the

following properties:

• the resulting closed-loop system is asymptotically stable; and

• the resulting target loop                              meets design specifications (GM, PM, etc).

Such a state feedback can be obtained using LQR design or any other design methods so

long as it meets your design specifications. Usually, a desired target loop would have the

shape as given in the following figure.





+=
+=

uDxCy

uBxAx&

.)(,)( 1−−=Φ+Φ= AsIDBCsP

BFsLt Φ=)(
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The problem of loop transfer recovery (LTR) is to find a stabilizing controller

such that the resulting open-loop transfer function from u to        , i.e.,

is either exactly or approximately equal to the target loop Lt(s). Let us define the recovery

error as the difference between the target loop and the achieved loop, i.e.,

Then, we say exact LTR is achievable if E(s) can be made identically zero, or almost LTR is

achievable if E(s) can be made arbitrarily small.

P(s)

C(s)

r u y

û−

ysCu )(−=

û−
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P(s)
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Full Order Observer
Based Controller

û−
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Observer Based Structure for C(s)

Dynamic equations of C(s):

Transfer function of

Achieved open-loop:





−==
−−++=

xFuu

uDxCyKuBxAx

ˆˆ

)ˆ(ˆ&̂

KKDFKCBFFsCsC o
11 )()()( −− −++Φ==

)()()()()( 11 DBCKKDFKCBFFsPsCsL oo +Φ−++Φ== −−

Prepared by Ben M. Chen



130

Lemma: Recovery error, Eo(s), i.e., the mismatch between the target loop and the resulting

open-loop of the observer based controller is given by

Proof.
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Loop Transfer Recovery Design

It is simple to observe from the above lemma that the loop transfer recovery is achievable if

and only if we can design a gain matrix K such that  M(s) can be made either identically

zero or arbitrarily small, where

Let us define an auxiliary system

).()()( 1 KDBKCFsM −+Φ= −






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+=

=
++=

Σ

uDxBz

xy

wFuCxAx

TT

TTT

aux :

&

+ xKu T−=

Closed-loop transfer function from w to z is ).())(( TT1TTTTTT sMFKCAsIKDB =+−− −

Thus, LTR design is equivalent to design a state feedback law for the above auxiliary system

such that certain norm of the resulting closed-loop transfer function is made either identically

zero or arbitrarily small. As such, all the design techniques in H2 and H∞∞ can be applied to

design such a gain. There is no need to repeat all over again once this is formulated.
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LTR Design via CSS Architecture Based Controller

Dynamic equations of C(s):

Transfer function of

Achieved open-loop:
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
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CSS  Based Controller

• CSS Structure was proposed by Chen, Saberi and Sannuti in 1992. It has the following:
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Lemma: Recovery error, Ec(s), i.e., the mismatch between the target loop and the resulting

open-loop of the CSS architecture based controller is given by

Proof.

)()()()( 1 KDBKCFsMsEc −+Φ== −
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It is clear that LTR via the CSS architecture based controller is achievable if and only if one

can design a gain matrix K such that the resulting M(s) can be made either identically zero or

arbitrarily small. This is identical to the LTR design via the observer based controller. Thus,

one can again using the H2 and H∞ techniques to carry out the design of such a gain matrix.
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What is the Advantage of CSS Structure?

Theorem. Consider a stabilizable and detectable system Σ characterized by (A, B, C,D)

and target loop transfer function Lt(s) = FΦB. Assume that Σ is left invertible and of

minimum phase, which implies that the target loop Lt(s) is recoverable by both observer

based and CSS architecture based controllers. Also, assume that the same gain K is used

for both observer based controller and CSS architecture based controller and is such that for

all ω ∈ Ω,  where Ω is some frequency region of interest,

Then, for all ω ∈ Ω,

Proof. See Chen, Saberi and Sannuti, Automatica, vol. 27, pp. 257-280, 1991. See also

Saberi, Chen and Sannuti, Loop Transfer Recovery: Analysis and Design, Springer, 1993.

,1)]([0 max <<< ωσ jM 1])([)]([ 1
minmin >>−= − BAIjFjLt ωσωσ

)].([)]([ maxmax ωσωσ jEjE oc <<
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Remark: In order to have good command following and disturbance rejection properties, the

target loop transfer function Lt(jω) has to be large and consequently, the minimum singular

value                         should be relatively large in the appropriate frequency region. Thus, the

assumption in the above theorem is very practical.

Example: Consider a given plant characterized by

Let the target loop Lt(s) = F ΦB be characterized by a state feedback gain

Using MATLAB, we know that the above system has an invariant zero at s = – 2. Hence it is

of minimum phase. Also, it is invertible. Thus, the target loop Lt(s) is recoverable by both the

observer based and CSS architecture based controllers. The following gain matrix K is

obtained by using the H2 optimization method,

[ ] uxyuxx ⋅+=
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Homework Assignment 3 (Hand in your solutions next week)

Recall the cruise-control system in Homework Assignment 1. Assume that the state feedback

gain matrix is obtained using the LQR technique as in Item 2 of Homework Assignment 1.

Design an observer and CSS architecture gain matrix K using the classical LTR method with

Q = q2 BBT and R = 1, i.e.,

for q2 = 500, 1000 and 10000, respectively.

ofsolution   theis 0,T >= PPCK 0TT2T =−++ CPPCBBqPAAP

• For each gain matrix K, plot the magnitudes of the target loop Lt(jω), the achieved loop

by observer based controller, Lo(jω), and CSS architecture based controller, Lc(jω),

over the frequency range 10 – 2 ≤ ω ≤ 10 2  rad / sec.

• For each gain matrix K, plot the magnitudes of the error functions, Eo(jω) and Ec(jω),

over the same range of frequencies. Comment on the outcomes.
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Design and Implementation of an
HDD Servo System:

 — A Robust and Perfect Tracking Approach
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A Typical Hard Disk Drive (HDD)
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Hard Disk Drive Servo Illustration

-100

-50

0

50

100

150

200

250

Track Seeking
Track Settling
Track Following

Track Seeking: to move R/W head from the present track to destination track in minimum

time using a bounded control effort.

Track Following: to maintain R/W head as close as possible to the center of destination

track while data reading and writing.

Prepared by Ben M. Chen



142

HDD Trends in Industry

• Smaller in size: Small 3.5” and 2.5” form factor disk drives are in broad use.

More compact and efficient disks are expected.

• Higher data capacity: Growth rate is 60% annually.

• Faster access time: High speed actuator motion and shorter data bands of the

smaller diameter disks is the reason. Low mass actuator design with highly

efficient VCM will lead to faster access time.

• Better reliability: Minimization the parts count, more integrated electronics etc.

will increase the reliability.
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Robust and Perfect Tracking (RPT) Design

• Robust and Perfect Tracking (RPT) Design (Liu, Chen and Lin, International

Journal of Control, Jan. 2001. See also Chen, Robust and H∞ Control,

Springer, 2000), which is to design a parameterized control law using the

framework of robust and H∞ control such that when it is applied to the given

system, the resulting closed-loop system has:

– Internal Stability;

– Robustly and perfectly tracks a given reference input, i.e. any Lp-norm of

the tracking error can be made zero, in face of external disturbance and

any initial condition.
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VCM Actuator Modeling

• Voice coil motor as the actuator of R/W head

• Fourth order model identified:

4.3817 x 10
10

s + 4.3247 x 10
15

s
2
(s

2
 + 1.5962 x 10

3
s + 9.6731 x 10

7
)

Bode Plot of VCM Actuator
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Design Specifications

• The control input should not exceed ± 2 volts.

• Overshoots and undershoots of step response should be less than 5%.

• The 5% settling time should be less than 2 ms.

• Sampling frequency in implementation is 4k Hz.
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Controller Design via RPT Approach

• Lower order plant consider in control design.

• Then, use the state feedback law to construct a reduced order measurement

feedback control law.

• The parameterized first order RPT control law is obtained:

[ ]76

2
10842.41062.1

1
)( xxRC −=

ε
εB

εε /7800)( −=RCA

εε /10063572.4)( 5−−= xRCC

[ ]280386.0036572.0
1

)(
2

−=
ε

εRCD

{ ε  is a tuning parameter,

which can be tuned to

meet the design specs.
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Parameterized RPT Controller Design - Simulation Result

1=ε

01.0=ε

Step response of closed-

loop system with

parameterized controller.

RPT problem is solved

as the tuning parameter

is pushed to be smaller

and smaller.
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Discretized RPT Controller

Step Response of the closed-loop System

)(43.453681)(933.15178)(04.0)1( kykrkxkx vv −+−=+

)(18421470)(03973250)(104267083)( 7 ky.kr.kx.ku v
-

v −+×−=
{

• We found that parameter with 0.9 meets the design specifications.

• The discretized control law with 4kHz sampling rate is given:
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Step Responses with Different Resonant Frequencies

• In real HDDs, the resonant frequency may vary ( = beta × nominal resonant frequency).

• Common method in practice: adding the notch filters.

• RPT controller can withstand the variation of resonance frequency in the actuator.

Step Response of the closed-loop System
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Test Against Run-out Disturbance

• Run-out: due to imperfectness of the data tracks and the spindle motor speeds.

• Disturbance injected: 0.5 + 0.1cos(345t) + 0.05sin(691t) and zero reference.

• The effect of this disturbance is minimal.
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Implementation Result: Track Following Test

• Compared with PID controller below (Done by Goh in his Master of Engineering

Thesis). The PID controller:

)(
25.025.1

10.023.013.0
2

2

yr
zz

zz
u −

+−
+−

=

Step Responses Control Signals
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Implementation Result: PES Test

• Position Error Signal (PES) is the measurement output in real HDD servo systems.

• Disturbances: Repeatable Run-outs (RRO) and Non-repeatable Run-Outs (NRRO).

• 3σ  of RPT controller was 0.095µm, while that for PID controller was about 0.175µm.

Histogram of RPT PES test Histogram of PID PES test
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Comparisons Between RPT and PID Designs

Our ControlOur Control PID ControlPID Control
Order of controller ü 1st order 2nd order

Closed Loop Resonance
Peak

ü No resonance peak Resonance peak of 6 dB

Settling Time for Track Seek Faster than PID method
(<2ms)

>5 ms

Overshoot during Track
seek

Lower overshoot (6%) 50 %

Closed Loop Bandwidth Similar bandwidth (500 Hz) Similar bandwidth (500 Hz)

The conclusion is obvious.
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  For classical optimal control techniques, see

     B. D. O. Anderson and J. B. Moore, Optimal Control, Prentice Hall, London, 1989.

     F. L. Lewis, Applied Optimal Control and Estimation, Prentice Hall, Englewood Cliffs, 1992.

  For more detailed treatment on H2 optimal control, see

     A. Saberi, P. Sannuti and B. M. Chen, H2 Optimal Control, Prentice Hall, London, 1995.

  For robust and H∞ control, see

     B. M. Chen, Robust and H∞ Control, Springer, London, 2000.

  For more on loop transfer recovery techniques, see

     A. Saberi, B. M. Chen and P. Sannuti, Loop Transfer Recovery: Analysis and Design,

      Springer, London, 1993.
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