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Optimal Control Systems, Part 2 - Course Outline

«  Revision: Introduction to control systems; ordinary differential equations; state
space representation; Laplace transform; principle of feedback; modelling;

system stability; PID control; Bode and Nyquist plot; gain and phase margins.

«  Properties of linear quadratic regulation (LQR) control; returned differences;
guaranteed gain and phase margins; Kalman filter; linear quadratic Gaussian

(LQG) design technique.

 Introduction to modern control system design; H, and Hy, optimal control;
solutions to regular and singular H, and H,, optimal control problems; solutions to

some robust control problems.

»  Loop transfer recovery (LTR) design technique; Issues on controller structures.
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Homework Assignments & Projects

There will be three (3) homework assignments for all students in this second part of the

course. Some of them are practical problems and most of them require computer
simulations. All students are expected to have knowledge in MATLAB™ (Control Toolbox
and Robust Control Toolbox) and SIMULINK™ after completing these assignments.
Homework assignments are to be marked and counted as a certain percentage in your

final grade.

There will be one (1) design project for master of engineering and Ph.D. students. These

students are required to complete a control system design for a coupled tank system
using the techniques learnt in the class and implement it to the real system through a

web-based experiment facility available at http://viab.ee.nus.edu.sg/viab. The project

report is to be handed in to my office within one week after the completion of the course.
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Final Grades for Part 2

/1. For 5000 Level:

Final Grade = 70% ~ Final exam marks for Part 2 (max = 50) + ¥4

30% ~ Homework assignments marks (max = 50) /

\_
/2. For 6000 Level: \

Final Grade = 70% ~ Final exam marks for Part 2 (max = 50) + ¥4

20% ~ Homework assignments marks (max = 50) +

\ 10% ~ Design project marks (max = 50) /
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Revision: Basic Concepts
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What is a control system?
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Objective: To make the syssem OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key Issues: 1) How to describe the system to be controlled? (Modelling)

2) How to design the controller? (Control)
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Some Control Systems Examples:

REFERENCE INPUT

O—>] contolls |—
AT

A

Desired Government
Performance Policies

Economic System
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A Live Demonstration on Control of a Coupled-Tank System through Internet Based

Virtual Laboratory Developed by NUS

Tank #1 Tank #2

o1 I (s JIl\ILQ,:,g

Figure 1 Diagram of coupled4iank control apparatus

The objective is to control the flow levels of two coupled tanks. It is a reduced-scale

model of some commonly used chemical plants.
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Modelling of Some Physical Systems

A simple mechanical system:

L___» X acceleration

A cruise-control
system friction
force bx forceu

— -

— X displacement

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied to an

object with a mass m and a is the acceleration, we have

. . -~ . b. wu
u- bx =mx U X+—X=—
m m

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can be

written as a 1st order ODE with respect to speed v =X :

- _ U | = model of the cruise control system, u is input force, v is output.
R . 10
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A cruise-control system:

OUTPUT
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Basic electrical systems:

| |
i i (t)

VT RIV=IR v(t)T::C

resistor capacitor inductor

i (1)

v v(t)T L=l &

Kirchhoff’s Voltage Law (KVL):

The sum of voltage drops around any
close loop in a circuit is 0.

v+, +,+v, =0

Kirchhoff’s Current Law (KCL):

The sum of currents entering/leaving a
note/closed surface is 0.

L+, +ig+1, +1,=0
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Modelling of a simple electrical system:

To find out relationship between the input (v;) and the output (v,) for the circuit:

v, = Ri = Rc I
dt
| «— dv
=C—-=_
> %A ! ”
R v_
V, T C :_T Vo

By KVL, we have |V, +V,- Vv, =0 =P»

dv, v =0
dt

dv . ;
E> RC —© +v, =V RC V,+Vv, =V A dynamic model
dt of the circuit
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Control the output voltage of the electrical system:

REFERENCE INPUT v 1 OUTPUT
5 F
T

230 Volts
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Ordinary Differential Equations

Many real life problems can be modelled as an ODE of the following form:

y(t) +a,y(t) +a,y(t) = u(t)

This is called a 2nd order ODE as the highest order derivative in the equation is 2. The ODE
is said to be homogeneous if u(t) = 0. In fact, many systems can be modelled or

approximated as a 1st order ODE, i.e.,

..........................................

..........................................

An ODE is also called the time-domain model of the system, because it can be seen the above
equations that y(t) and u(t) are functions of time t. The key issue associated with ODE is: how

to find its solution? That is: how to find an explicit expression for y(t) from the given equation?
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State Space Representation

Recall that many real life problems can be modelled as an ODE of the following form:

y(t) +a y(t) +a,y(t) = u(t)
If we define so-called state variables,
=Y } X=Yy=X
X =Y X, =y=-ay-ayt+tu=-ax-ax+u
We can rewrite these equations in a more compact (matrix) form,

X, o e 0 1 Gax, o €0 X, 0
* 0, Zreg V=S [1 O]E E
o &a -afiy af X, &
This is called the state space representation of the ODE or the dynamic systems.
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Laplace Transform and Inverse Laplace Transform

Let us first examine the following time-domain functions:

1= 2
N .
08 / \ / 15 A [
06 \\ \ / / : \ / / [ \\ “““ \‘\ ’/\\
. 02 \\ ““s‘ \ ;‘s . 0.5 “\ ] "“‘ \\ / ‘
g \ / \ g L AN / A
=) \\ / \ £ 0 \\ f‘s‘ ’J \
g \ / \ § \ VARER ‘
o2 \ | / 05 e / )
-06 \ /ﬂﬂ \\\ // U \ w“‘ v \\
-0.8 \ / \ / 15 \v““‘ \ /
-10 1 2 = 3 4 5 6 7 8 9 10 2O 1 2 3 4 5 6 7 8 9 10
TIME (Second) TIME (Second)
A cosine function with a frequency f = 0.2 Hz. X(t) = COS(0.4|Ot) +S n(0.8pt)cos(1.6pt)
Note that it has a period T = 5 seconds. What are frequencies of this function?

Laplace transform is a tool to convert a time-domain function into a frequency-domain one
in which information about frequencies of the function can be captured. It is often much

easier to solve problems in frequency-domain with the help of Laplace transform.
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Laplace Transform:

Given a time-domain function f (t), its Laplace transform is defined as follows:

¥

F(s) = L{f(t)}= Of (t)e d

Example 1: Find the Laplace transform of a constant function f (t) = 1.

NP . 1 - 1., &1,6 el o_1
F(s)=pf (H)esdt=cgdt=- ~€% =-=¢€" - -—e°——-—>O = =X*==, Re(s)>0
() 9 ® 93 s |, S 8 S g S 8 S g S (s)
Example 2: Find the Laplace transform of an exponential function f (t) = e —2a%,
. . - war| _ 1
F(s)=f ()esdt = cg e dt = cp *™'dt =- e = , Re(s)>-a
(s) 9 (t) 99 99 1A Tsra (s)
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Inverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to convert it back

to its original time-domain function f (t).

Here are some very useful Laplace and inverse Laplace transform pairs:

i) 0 F(s f) U F(s)
- 1 . . a
= snat U ——
1 U s 2 + 32
- 1 ~ S
Bl cosat U
t U P2 s*+a’
a L e*sinbt U b
Y s (s+af +b?
- 1 - +
te® U > e *cosht U > 2a .
(s+a) (s+af +b
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Some useful properties of Laplace transform:
1. Superposition:
Ha f,(t) +a, f, (0} = aL{ f,(O} + a,L{ f, (O} = aF.(s) +&,F,(9)

2. Differentiation: Assume that f (0) = 0.

ldf (1) _ _
R h Lt 0} = s{f @)} =sF(9)

Li = ?S {f o)=Lt m) = 2F(9)
3. Integration:

{f(t)}——F<s)
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Re-express ODE Models using Laplace Transform (Transfer Function)

Recall that the mechanical system in the cruise-control problem with m = 1 can be

represented by an ODE:

vV+bv=u

Taking Laplace transform on both sides of the equation, we obtain
{v+ovi={u} p L{v}+{bv}=1L{u}

b si{vi+b{v}={u} P sv(s)+bV(s)=U(s)

b (s+b)V(s)=U(s) b

This is called the transfer function of the system model -
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A cruise-control system in frequency domain:

Controller ==

REFERENCE OUTPUT

‘ driver? auto? i—
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In general, a feedback control system can be represented by the following block diagram:

R(S) E(s) U (s Y (s
M K(s) —» G(9) >

+ —_

Given a system represented by G(s) and a reference R(s), the objective of control system
design is to find a control law (or controller) K(s) such that the resulting output Y(s) is as

close to reference R(s) as possible, or the error E(s) = R(s) —Y(9) is as small as possible.
However, many other factors of life have to be carefully considered when dealing with real-

life problems. These factors include:

uncert_ainties

disturk_)ances noi:s,es
R(9) E(9 v
» K(s) —LT—» G(9 Y >
M U ~ Y

nonlinearities

23
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Control Techniques — A Brief View:

There are tons of research published in the literature on how to design control laws for various
purposes. These can be roughly classified as the following:

- Classical control: Proportional-integral-derivative (PID) control, developed in 1940s and used
for control of industrial processes. Examples: chemical plants, commercial aeroplanes.

- Optimal control: Linear quadratic regulator control, Kalman filter, H, control, developed in
1960s to achieve certain optimal performance and boomed by NASA Apollo Project.

" Robust control: Hy, control, developed in 1980s & 90s to handle systems with uncertainties
and disturbances and with high performances. Example: military systems.

" Nonlinear control: Currently hot research topics, developed to handle nonlinear systems
with high performances. Examples: military systems such as aircraft, missiles.

" Intelligent control: Knowledge-based control, adaptive control, neural and fuzzy control, etc.,
researched heavily in 1990s, developed to handle systems with unknown models.
Examples: economic systems, social systems, human systems. 24

Prepared by Ben M. Chen



Classical Control

Let us examine the following block diagram of control system:

R (9

E (9

+

»  K(9)

U () Y (9)
—»  G(9) >

Recall that the objective of control system design is trying to match the output Y(s) to the

reference R(s). Thus, it is important to find the relationship between them. Recall that

Y (s)
U (s)

G(s) =

p

Y(s) =G(s)U (s)

Similarly, we have U (s) = K(s)E(s),and E(S) = R(s) - Y (s). Thus,

Y (8) = G(S)U (5) = G(S)K (S)E(S) = G(S)K (9)[R(S) - Y (5)]

Y (s) = G(S)K(S)R(s) - G()K()Y(s) P [1+G(5)K(5)]Y(5) = G(5)K (S)R(S)

P | H(s)

_Y(s) _

G(s)K(s)

 R(s)

1+ G(s)K(s)

<

Closed-loop transfer function from Rto Y.
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Thus, the block diagram of the control system can be simplified as,

R(9) _ G(9)K(9) Y ()
»H ()= T G 9K(s)

>

The whole control problem becomes how to choose an appropriate K(s) such that the

resulting H(s) would yield desired properties between Rand .

We'll focus on control system design of some first order systems G(s) = + with a
s+a
o k _ kystk N
proportional-integral (PI) controller, K (s) =k +—=—F . This implies
S S
____________________ G(s)K(s)bkps+bk|

H(s) =

The closed-loop system H(s) is a second order system as its denominator is a polynomial s

of degree 2.
26

Prepared by Ben M. Chen



Stability of Control Systems

Example 1: Consider a closed-loop system with,

We have

Using the Laplace transform table, we obtain

y(t)

12000

10000

8000

6000

4000

2000

Y (s)

R(S):l 1
H(s) =
>H(s) s?-1
1 1

-

4 6 8
Time (seconds)

10

0.5

Y(s) = H(s)R(s) = 21 = G DG D) :@_

y(t) = o.““5“- e!)

0.5
s+1

- This system is said to be unstable because the

output response y(t) goes to infinity as time t is

getting larger and large. This happens because

the denominator of H(s) has one positive root at

s=1

L o mmmmmm o o7 T !
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Example 2: Consider a closed-loop system with,

R(s)=1 1 Y (s)
D> =
H(s) s +3s+2 >
We have
B - 1 - 1 _ 1 1
Y(S)_H(S)R(S)_52+3s+2_ (s+1)(s+2) s+l s+2
Using the Laplace transform table, we obtain y(t)=e'-e”
0.25
0.2 / \ This system is said to be stable because
i / \ the output response y(t) goes to O as time
y(t) / tis getting larger and large. This happens
0.1 \ because the denominator of H(s) has no
0.05 positive roots.
0 T
0 2 4 6 8 10

28
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We consider a general 2nd order system,

R(s)=0

2
Wn

Y (S)

>H(S):

S° +2ZW S+ W’

The system is stable if the denominator of the system, i.e., s* + 2zw _s+w’ = 0, has no

positive roots. It is unstable if it has positive roots. In particular,

[rmrmmm e -
3 1

& Imix)

e
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Stability in the State Space Representation

Consider a general linear system characterized by a state space form,

1X:Ax+Bu

%y:Cx+Du
Then,

1. Itis stable if and only if all the eigenvalues of A are in the open left-half plane.

2. Itis marginally stable if and only if A has eigenvalues are in the closed left-half

plane with some (simple) on the imaginary axis.

3. Itis unstable if and only if A has at least one eigenvalue in the right-half plane.

30
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Lyapunov Stability

Consider a general dynamic system, x = f (x) . If there exists a so-called Lyapunov function

V(X), which satisfies the following conditions:
1. V(x) is continuous in x and V(0) = 0;
2. V(x) > 0 (positive definite);
3.V(X) = ﬂ%x f(x) <0 (negative definite),
then we can say that the system is asymptotically stable at x = O. If in addition,
V(X)® ¥, as|X|® ¥

then we can say that the system is globally asymptotically stable at x = O. In this case, the

stability is independent of the initial condition x(0).

31
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Lyapunov Stability for Linear Systems

Consider a linear system, x = AX. The system is asymptotically stable (i.e., the eigenvalues
of matrix A are all in the open RHP) if for any given appropriate dimensional real positive
definite matrix Q = QT > 0, there exists a real positive definite solution P = PT > O for the
following Lyapunov equation:

A'P+PA=-Q
Proof. Define a Lyapunov function V (x) = x'P x. Obviously, the first and second conditions

on the previous page are satisfied. Now consider
V(X) = XPx+XPx=(AX)"Px+XPAx=x(AP+PAJx=-xQx<0
Hence, the third condition is also satisfied. The result follows.

Note that the condition, Q = Q" > 0, can be replaced by Q = Q" 3 0 and ? Q%g being

detectable. 3
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Behavior of Second Order Systems with a Step Inputs

Again, consider the following block diagram with a standard 2nd order system,

R(s) =1/s

> H(s) =

W2

n

Y (S
>

r=1

S° +2ZW S+ W’

The behavior of the system is as follows:

The behavior of the system is
fully characterized by z , |
which is called the damping

ratio, and w,, , which is called

the natural frequency.

33
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Control System Design with Time-domain Specifications

R(s)=1Us WE Y (s)
— > H(s) = L 5 >
r=1 S°+2zZw S+ W/
t over shoot 0
| !
| risetime
(3.1
1.8 5
t, @— : b
W, t,

»|| 1% settling time

t. @——

4.6

ZW
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PID Design Technique:

R(S) E(s) U (s Y(s)
" » K(s) —>» G(s) >
. k. k,s+k
with G(s) = and K(s) =k, +—-=-" results a closed-loop system:
s+a S S
(s = T() _ _G(9IK(s) _  bys+bk
R(s) 1+G(s)K(s) s*+(a+bk,)s+bk

Compare this with the standard 2nd order systery k_ZZWna
2zw = a+bk, i

W2

— n "E 2
H(S)_SZ+ZZW S + W2 Wﬁ:bki ;ki:Wn

The key issue now is to choose parameters k, and k; such that the above resulting system

has desired properties, such as prescribed settling time and overshoot. 35
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Cruise-Control System Design

V() . *m

Recall the model for the cruise-control system, i.e., = . Assume that the
Y U(s) s+b/

mass of the car is 3000 kg and the friction coefficient b = 1. Design a PI controller for it
such that the speed of the car will reach the desired speed 90 km/h in 10 seconds (i.e., the

settling time is 10 s) and the maximum overshoot is less than 25%.

To achieve an overshoot less than 25%, we obtain

from the figure on the right that |z > 0.4

To be safe, we choose |z = 0.6

To achieve a settling time of 10 s, we use

4.6 4.6 4.6
W= =

S n - , 20767 i . .-'" ' 0.4 i,
ZW zt.  0.6° 10

36
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The transfer function of the cruise-control system,

_Y(9) _ y _ %,ooo - _
G(s) = T S+% = S*%,ooo b a_b_%ooo_o.ooosss

Again, using the formulae derived,

kp _ 2ZW - a kp _ 2ZwW - a _ 2 0.6 10/:73?);0 1/ 3000 _ 27605
W ’ W 0767 _ |
T ' b 1/300

The final cruise-control system:

Reference
90 km/h

37
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Simulation Result:

120

/\

100

80

60

Speed in km/h

40 /
20

8

10
Time in Seconds

12

14

16

18

20

The resulting
overshoot is

less than 25%

and the settling

time is about 10

seconds.

Thus, our
design goal is

achieved.
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Bode Plots

Consider the following feedback control system,

r4>$i>+<(s)—> G(S Y, r :% - » KOG Yy ,
+A _ —

Bode Plots are the the magnitude and phase responses of the open-loop transfer function,

..e., K(s) G(s), with sbeing replaced by jw. For example, for the ball and beam system we

considered earlier, we have

K(s)G(9)_ = (0.37+0.23s) 2 =31*23s _ 37+ ]2
o S S=jw S S=jw - W
E\K(jw)e(jw)\:\/3'7 HEW) K (iw)G(jw) = tan B30 1g0-,
e w' ... e3lg
39
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Bode magnitude and phase plots of the ball and beam system:

60

ey
o

Magnitude (dB)
N
o

\

-20
E 0 1
10 10 10
Frequency (rad/sec)

-80

-100 —

-120

-140

Phase (degrees)

-160

-180 - o 1
10 10 10
Frequency (rad/sec)
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Gain and phase margins

20

gain

—

_—+— | margin

Magnitude (dB)
)
o

A
o

10 . 10° 10
. Frequency (rad/sec)
gain .
crossover - h
frequency ] phase
T crossover
-50
frequency
g”-lOO
g 53
8 150
i /
/
-200
phase —
- -250 "
margin 10™ 10° 10
Frequency (rad/sec)
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Nyquist Plot

Instead of separating into magnitude and phase diagrams as in Bode plots, Nyquist plot

maps the open-loop transfer function K(s) G(s) directly onto a complex plane, e.g.,

15

Imag Axis

-0.5F \\ / 4
\\\ - - ~
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Gain and phase margins

The gain margin and phase margin can also be found from the Nyquist plot by zooming in

the region in the neighbourhood of the origin.

Remark: Gain margin is the maximum
additional gain you can apply to the

closed-loop system such that it will still

remain stable. Similarly, phase margin

. is the maximum phase you can tolerate

to the closed-loop system such that it

Mathematically, . will still remain stable.

M= L
K(jw,)G(jw,)|’

wherew is such that B K(jw, )G(jw,) =180

PM =B K(jw,)G(jw,)+180°, wherew is such that ‘K(ng)G(jWg)‘ =1 -

Prepared by Ben M. Chen



Example: Gain and phase margins of the ball and beam system:| PM = 58", GM = ¥

60

ey
o

Magnitude (dB)
N
o

\

-
/
/

-20
1 0 1
10 10 10
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-80

-100

-120
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-160

-180
10" 10° 10"
Frequency (rad/sec)
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Properties of LQR Control

45
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Linear Quadratic Regulator (LQR)
Consider a linear system characterized by
X=Ax+Bu

where (A, B) is stabilizable. We define the cost index
¥
J(x,u,Q,R) = x'Qx+u'Ru)dt, Q3 0, R>0
0

and (A Q"?) is detectable. The linear quadratic regulation problem is to find a control
law u = —F x such that ( A— B F ) is stable and J is minimized. It was shown in the first

Part of this course that the solution is given by
F=R'B'P

with . 1mT
PA+A'P- PBR'B'P+Q=0
46
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If we arrange the LQR control in the following block diagram,

>Q —p| X=Ax+Bul—>»| F |—7>

we can find its gain margin and phase margin as we have done in classical control. It is

clear that the open-loop transfer function,
Open loop transfer function=F(sl - A*'B=R'B'P(sl - A'B

The block diagram can be re-drawn as follows,

—»?—» R'B'P(sl - A'B >

a7
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Return Difference Equality and Inequality

Consider the LQR control law. The following so-called return difference equality hold:

R+B™(- jwl - A)'Q(jwl - AB=[l +B"(- jwl - A *FTIR[I +F(jwl - A *B]

The following is called the return difference inequality:

...................................................................................................

..............................................................................................

Then we have
- Pjwl + PA+Pjwl + A'P- (PBR)R(R'B'P)+Q =0

v

P(jwl - A)+(- jwl - A)P+F'RF =Q
48
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Multiplying it on the leftby B"(- jwl - A")"* and on the right by (jwl - A) *B , we obtain,

B'(- jwl - ANY*P(jwl - A)(jwl - A B+B(- jwl - A (- jwl - ADP(jwl - A B
+B'(- jwl - A)'FTRF(jwl - A'B=B"(- jwl - A)'Q(jwl - A)'B

B'(- jwl - AN 'PB+B'P(jwl - A)*B+ B'(- jwl - AN *F'RF(jwl - A)'B
=B'(- jwl - AN)'Q(jwl - A)'B
Noting the fact that

we have
B'(- jwl - A)'F'R+RF(jwl - A)'B+B'(- jwl - A *F'RF(jwl - A'B
=B"(- jwl - A)'Q(jwl - A)'B

R+B™(- jwl - A)'Q(jwl - AB=[l +B"(- jwl - A *FTIR[I +F(jwl - A *B]
49
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Single Input Case

In the single input case, the transfer function

s a scalar function. Let Q = h h'. Then, the return difference equation is reduced to

r+b'(- jwl - ATy *hh'(jwl - Ab=r[1+b"(- jwl - ATy fT][1+ f (jwl - A) 0]

\

r+[ (i - A)b[ =1 |1+ f(jwl - A

\

r‘1+ f(jwl - A b ‘23 r

50
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PM3 60" \_

Clearly, the phase margin resulting from
the LQR design is at least 60 degrees. _
5l
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Example: Consider a given plant characterized by

€
£1 -4 8

we obtain

which results the closed-loop eigenvalues at - 11867 + j1.3814. Clearly, the closed-loop

system is asymptotically stable.

52
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Kalman Filter

54
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Review: Random Process

A random variable X is a mapping between the sample space and the real numbers. A

random process (a.k.a stochastic process) is a mapping from the sample space into an

ensemble of time functions (known as sample functions). To every member in the sample

space, there corresponds a function of time (a sample function) X(t).

A X(1)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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A < >
/N \\/ g
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/ N time
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Mean, Moment, Variance, Covariance of Stationary Random Process

Let f (x,t) be the probability density function (p.d.f.) associated with a random process X(t).
If the p.d.f. is independent of time t, i.e., f (X,t) = f (X), then the corresponding random
process is said to be stationary. We will focus our attention only on this class of random

processes in this course. For this type of random processes, we define:

1) mean (or expectation): 2) moment ( j-th order moment)
m=E[X]= i‘yXf (x)dx E[Xj]= i‘)xj xf (X)dx
- -¥
3) variance ¥ 4) covariance of two random processes
s 2 =E[(x- m)?]= ¥c‘i><- m)* f (x)dx con(v,w) = E[(v- E[V])(w- E[w])]
- ¥

Two random processes v and w are said to be independent if
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Autocorrelation Function and Power Spectrum

Autocorrelation function is used to describe the time domain property of a random process.

Given a random process v, its autocorrelation function is defined as follows:

R (t:t,) = E[V(t)v(t,)]
If vis a stationary process,
R(t,t) = R(t; - t) = Ri(t) = R (t,t+t) = E[v(t)v(t +t)]
Note that R (O) is the time average of the power or energy of the random process.

Power spectrum of a random process is the Fourier transform of its autocorrelation function.

It is a frequency domain property of the random process. To be more specific, it is defined as

S7
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White Noise, Color Noise and Gaussian Random Process

White Noise is a random process with a constant power spectrum, and an autocorrelation
function _

Hneto R(t)=ad(t)

which implies that a white noise has an infinite power and thus it is non existent in our real life.
However, many noises (or the so-called color noises, or noises with finite energy and finite

frequency components) can be modeled as the outputs of linear systems with an injection of

white noise into their inputs, i.e., any color noise can be generated by a white noise

whilenoises —» Linear System — color noise

Gaussian Process v s also known as normal process has a p.d.f.

~ 1 _(V_m%Z
f(v)—S@e ,

m=mean, S °=variance
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Kalman Filter for a Linear Time Invariant (LTI) System

Consider a LTI system characterized by

i X=Ax+Bu+v(t) vistheinput noise
% y = Cx+w(t) WwWis the measurement noise

Assume: 1) ( A,C) is observable

2) v(t) and w(t) are independent white noises with the following properties
E[v(t)]=0, E[w(t)]=0

E[v(t)v' (t)]=Qd(t-t), Q=Q"3 0, Efw(t)w' (t)]=Rd(t-t), R=R' >0
3) ?» Q% gis stabilizable (to guarantee closed-loop stability).

The problem of Kalman Filter is to design a state estimator to estimate the state x(t) by X(t)

such that the estimation error covariance is minimized, i.e., the following index is minimized:

Je = E[{x(1) - X(O)} {x(t)- X(1)}] 59
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Construction of Steady State Kalman Filter

Kalman filter is a state observer with a specially selected observer gain (or Kalman filter gain).

It has the dynamic equation:

X=AX+Bu+K_(y- 9), X0)isgiven
= CX

with the Kalman filter gain K, being given as
K,=PC'R"’
where P,is the positive definite solution of the following Riccati equation,
PA"+AP - PC'R'CP,+Q=0

Let e= X- X. We can show (see next) that such a Kalman filter has the following properties:

lim E[e(t)]:[g@ry E[x(t)- xt)]=0, lim J, =1im E[ (t) e(t)] = trace P,

t® ¥
60
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Kalman Filter and Linear Quadratic Regulator — They Are Dual

Recall the optimal regulator problem,
X = Ax+ Bu X(0) = %, given
¥
J =X Qx+uRu)dt, Q=Q"20and R=R" >0
0

The LQR problem is to find a state feedback law u = — F x such that J is minimized. It was

shown that the solution to the above problem is given by

F=R!B'P PA+A'P- PBR'B'P+Q=0, P=P" >0
and the optimal value of Jis given by J = x] P x, . Note that x, is arbitrary. Let us consider a
special case when X is a random vector with

E[%]=0, E[XX]=1
Then, we have
g &
E[J] = E[xPx,] =E&A & P;%iXo;

e|:l ji=1

=& a P, Elxi %, ]-a p, =traceP
i=1 j=1 61
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The Duality

8 Linear Quadratic Regulator a Kalman Filter
i_______________I_:___:__F_Q___l_éT_I_D_ ___________________ i i ............. _K;_:_P_e(_:;é_l __________________ i
PA+A'P- PBR'B'P+Q=0 PA"+AP - PC'R'CP,+Q=0
i Jopima = trace P i i Jopima = trace F, i

These two problems are equivalent (or dual) if we let

|
|
|
|
|
|
|
e |
!
|
|
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Proof of the Properties of Kalman Filter

Recall that the dynamics of the given plant and Kalman filter, i.e.,

X = AX+ Bu +v(t) 2 X= AX+Bu+K Y-Y)
y = Cx+w(t) y =CX
We have
e=X- X= Ax+Bu+v(t)- AX- Bu- K [Cx+w(t)- CX]
= (A- K.C)(x- R)+Vv(t)- K w(t)
=(A- K Cle+[I -K, ]g\/%: Ae+d(t)
with
: oa/(t) Ol _ aE[v(t)] 0 0
E[d(t)]=EdI - K - K g ==0
ol § A LR P L

Next, it is reasonable to assume that initial error e(0) and d(t) are independent, i.e.,

E[e(0) d" (t)] =0 .
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Furthermore,

ZE[VOV ()] E[VOW )06 | @
Efw(t)V' ()] E[wt)w' (t)]g& K. &
N 188d(t-t) 0 o9&l U

R BT Sy
=(Q+K,RK] )d(t-t)=Rd(t-t)

E[d®)d™®)]=[I - K]

We will next show A is asymptotically stable and
: T —
lim Efe(t) €' (t)]=P,

and PA" + AP, =- N Recall that the solution to the following state equation from your
linear systems course notes:
e=Ae+d(t)

64
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Also, recall that K, = P.C"R* and

PA"+AP - PC'R'CP,+Q=0
We have

PA"- PC'R'CP,+AP,- PC'R'CP,.+PC'R'CP,+Q=0
= P(A'-C'R'CP)+(A- PC'R'C)P,.+PC'R'CP,+Q=0
=» P(A"-C'K])+(A- KC)P.+PC'R'CP,+Q=0

—» PA"+AP.=-PC'R'CP,.-Q=-N£0
SinceQ=Q"2 0 and ?\ Q% Q js assumed to be stabilizable, it follows from Lyapunov
%]
stability theory that matrix A = (A- KeC) s asymptotically stable.
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Noting that €' is deterministic, we have

&uoq
o Oy

P(1) = Ele)e’ (0] = EEe™ () + oeA“ Vd(t )t ; xg‘ Ce' ve(0) + oeA“ () et

= eME[e(0)e’ (0)]e™ ! + (‘y"*(“ 'E[d(t )e" (0)]e™" >t
0
t - t t -
+ (g Ele(0)dT (1)]e* D odt + g dt (E[d(t)d (s )]t =) s
0 0 0
B U t -
=eME[e(0)e’ (0)]e" ' + o™Vt (Nd(t - s )e* ) xds
0 0
N AT - ~ AT N AT o ~ AT
=eME[e(0)e" (0)]e™ * + cpNe® “Vodt = eME[e(0)e" (0)]e™  + cp™"Ne™ " xah
0 0

Since A is stable, we have e ® 0, as t® ¥ . Thus,

PP J 66
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We next show that P(¥) = P, i.e., the solution associated with the Kalman filter ARE. Let
z=A"z, z(0) given b z(t)=e"z(0), z(¥)=0
Inview of PAT + AP, =- N, we have
Z'[PA"+AP]z=-2'Nz b ZzZ'PA'z+7z'APz=-2'Nz

b z'Pz+2'Pz=-z'Nz b %(ZTPGZ):-ZTNZ

Next, we have

Yo e & . U
oz Nzdt =¢¢' (0)e” 'Ne™ z(0)dt = z' (0)gc” ‘Ne™dtz(0) = z' (0)P(¥)z(0)
0 0 €o a
p4
(‘)(%(ZTPez)dt =z (t)Pez(t)E =7z'(¥)Pz(¥)- z' (0)P,z(0) =0- z' (0)P.z(0)
0
Thus, we have for every given z(0),
i e
Z' (0)Rz(0)= Z'(0)P(¥)z(0) b Pe:P(¥):prThNeAhdh 67;
| 0 i
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It is now simple to see that
limE[e()e’ ()] =P(¥)=FR, P limE[e'(t)e(t)] =trace R,

Finally, we have

Example: Consider a given plant characterized by the following state space model,

é0 1u &l é0.1 Oy
X=a “X+a qutvt), E[vivit)]=Qd(t-t)=a d(t-t)
{ G1 -1 & go of

y=[1 O]x+w(t), E[wt)w'(t)]=Rd(t-t)=0.2d(t-t)

Solving the Kalman filter ARE, we obtain

_6 00792 003430 _é 039620 | %= AR+Bu+K,(y- 9)
“"8 00343 00314 T E-01715] | iy=cx
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Linear Quadratic Gaussian (LQG)

69
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Problem Statement

It is very often in control system design for a real life problem that one cannot measure all the
state variables of the given plant. Thus, the linear quadratic regulator, although it has a very
impressive gain and phase margins (GM =¥ and PM = 60 degrees), is impractical as it utilizes
all state variables in the feedback, i.e., u = —F x. In most of practical situations, only partial
information of the state of the given plant is accessible or can be measured for feedback. The

natural questions one would ask:

« Can we recover or estimate the state variables of the plant through the partially measurable

information? The answer is yes. The solution is Kalman filter.

» Can we replace x the control law in LQR, i.e., u = — F X, by the estimated state to carry out a

meaningful control system design? The answer is yes. The solution is called LQG.

* Do we still have impressive properties associated with LQG? The answer is no. Any solution?

Yes. It is called loop transfer recovery (LTR) technique (to be covered later). 70
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Linear Quadratic Gaussian Design

Consider a given plant characterized by

i X=AXx+Bu+v(t) vistheinput noise
% y = Cx+w(t) Wis the measurement noise

where v(t) and w(t) are white with zero means. v(t), w(t) and x(0) are independent, and

E[v(t)v' (t)]=Qd(t-t), Q.2 0, Elw(t)w' (t)]=Rd(t-t), R >0, E[X(0)]=x,

The performance index has to be modified as follows:

J—IimlEéT‘ xTQx+uTRu)dtL:J Q3 0, R>0
_T®¥? gg H’ ’

The Linear Quadratic Gaussian (LQG) control is to design a control law that only requires
the measurable information such that when it is applied to the given plant, the overall system

is stable and the performance index is minimized.
71
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Solution to the LQG Problem - Separation Principle
Step 1. Design an LQR control law u = — F x which solves the following problem,
X=Ax+Bu J(X,U,Q,R):BXTQX+UTRU)dt, Q30 R>0
0
.e., compute
PA+A'P- PBR'B'P+Q=0, P>0, F=R'B"P.

Step 2. Design a Kalman filter for the given plant, i.e.,

X= AX+Bu+K (Y- Y)
CX

<>
1

where
K, = PeCT R, PeAT + AP, - PeCTF{;lCPe +Q,=0, P,>0.

Step 3. The LQG control law is givenby u=- F X i.e,,

...................................................................

1 N\
b
=> ! e
Co
! ’”~
Lo

X = AX+Bu+K_(y- CX)
u=-F X

— — —
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Block Diagram Implementation of LQG Control Law

Reference +
r Q)

Plant

More Detailed Block Diagram

Reference

LQR Control

Kalman Filter
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Closed-Loop Dynamics of the Given Plant together with LQG Controller

i X=Ax+Bu+v(t)
y = Cx+w(t)

(A- BF- KC) x+K,y
-F X+r

Recall the plant: and the controller

X
u

—_— —
— — —

We define a new variable e = x- X and thus
e=X- X= Ax- BFX+Br +v(t)- AXx+BFX+K_CX- K .Cx- K w(t)
= A(X- X)- K,C(x- X)+Br +v(t)- Kw(t) =(A- K,C)e+Br +v(t)- K w(t)
and
X = AXx+ Bu+Vv(t) = Ax- BFX+ Br +v(t) = Ax- BF(x- €)+ Br +v(t)
=(A- BF)x+BFe+Br +v(t)

Clearly, the closed-loop system is characterized by the following state space equation,

X0 éA- BF BF usx0 éBu . - & v 0

oo & 0 A-kcHEer &8UTTYV VTR kg
y=[C O]Ee—+w

The closed-loop poles are given by | (A- BF)E | (A- K_C) , which are stable. 74
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Homework Assignment 1 (Hand in your solutions next week)

Recall the dynamical model for the cruise-control system,

%+ b % = u
m m
where X, is the displacement of the car and u is the input force. For simplicity but no loss of
generality, we assume that m= 1 and b = 1. However, in practical situations, there are always
disturbances (due to rough road surfaces, etc.) presenting in the system. Thus, a more realistic
model should be the following,
X, + X, =U+some noise

Assume that only the displacement of the car can be measured, i.e., the measurement output

y =X +W(t)
where w(t) is the measurement noise and is assumed to be white and independent of the
system noise in the ODE.

75
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Convert the ODE model of the system into a state space form X = Ax+ Bu+v(t).

Assume that v(t) is nonexistent and all states of the plant are available for feedback. Find

an LQR control law, which minimizes the following performance index:

" T T el Ou
J(X,u,Q,R) = fx Qx+u" Ru)dt, Q=a g R=001
0 @ O-5u

What are the gain and phase margins resulting from your LQR design?

Design a Kalman filter for the plant. Assume that both v(t) and w(t) have zero means and
él Ou
E[vit)v' ()] =Qd(t-t), Q, = SD ot E[wt)w'(t)]=Rd(t-t), R =0.2
u

Design an LQG control law, which minimizes the following performance index:

. € u 51 O¢
lelmiEédeQx+uTRu)dtu, ngl ﬂ R=0.1
TR 5 9%% o

What are the closed-loop eigenvalues? Simulate your design using SIMULINK with
1 ¢ .

r=0, 0= 2 %0)=2

go 5 goz

55 76
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Introduction to Robust Control

77
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A Real Control Problem

disturbances >

Sensor noise >
>

Plant

» [ESPONSE

measurements

control input

Controller

4—_

<+— commands

Controller Objective: To provide desired responses in face of

 Uncertain plant dynamics  +

External inputs

disturbances
Sensor noise

control input
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Representation of Uncertain Plant Dynamics

Perturbation <

>
disturbance

Sensor noise

control inputs

response

Nominal Plant

measurements

* Nominal Plant is a FDLTI System

® Perturbation is Member of Set of Possible Perturbations
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Analysis Objectives

« Nominal Performance Question (H, Optimal Control):

Are closed loop responses acceptable for disturbances? sensor noise? commands?

* Robust Stability Question (H, Optimal Control):

Is closed loop system stable for nominal plant? for all possible perturbations?

« Robust Performance Question (Mixed H,/H, Optimal Control):

Are closed loop responses acceptable for all possible perturbations and all external

inputs? Simultaneously?
80
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Complete Picture of Robust Control Problem

A

— P
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Standard Feedback Loops in Terms of General Interconnection Structure

A |«
_,,f) .......................................... 7
r .
+ :
u M G :é
K |«
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H, and H, Optimal Control
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Introduction to the Problems

Consider a stabilizable and detectable linear time-invariant system S with a proper controller

SC
W Z
E— é >
Ur—> y
S, je—-
where
_:_x AX+ Bu+ Ew <. ‘[\'/:AV+BCy
S: |y C,x+ Ou+Dw ¢ %u:CCv+DCy

z C,x+D,u+ Ow

i xI A" U state variable ul A™U  controlinput
tyl AP0 measurement &  wi A'O disturbance
L'zl A®U  controlled output vl AU  controller state

84
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The problems of H, and H, optimal control are to design a proper control law S, such that

when it is applied to the given plant with disturbance, i.e., S, we have

* The resulting closed loop system is internally stable (this is necessary for any control

system design).

* The resulting closed-loop transfer function from the disturbance w to the controlled output z,
say, T, (s), is as small as possible, i.e., the effect of the disturbance on the controlled

output is minimized.
* H, optimal control: the H,-norm of T,,(s) is minimized.

* H, optimal control: the Hy-norm of T,,(s) is minimized.

Note: A transfer function is a function of frequencies ranging from 0 to ¥. It is hard to tell if
it is large or small. The common practice is to measure its norms instead. H,-norm and H-

norm are two commonly used norms in measuring the sizes of a transfer function. g5
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The Closed Loop Transfer Function from Disturbance to Controlled Output

Recall that N
IV=AV+BYy
iX=AX+ Bu+ Ew St i
T and tu=Cv+D_ y
S: jy=C, x+ Ou+D,w

.IIZ:C2X+ D,u+ Ow b V:AEV+Bc(C1X+D1W)
= Av+BCx+BDw
iX=Ax+ B(Cv+Dy)+ Ew

ID :’y:(:lX +D1W

¥Z:C2x+ DZ(CCV+ Dcy)

i Xx=Ax+BCyVv+BD,/(Cx+Dw)+Ew
} z=Cx+D,Cv+D,D_(Cx+D,w)

| X=(A+BD,C,)x+BCyv + (E + BD,D,)w

iX=Ax+BCyv+BD_.y+Ew i
i 1z=(C,+D,D.C)x+D,Cv+D,DDw

% z=Cx+D,Cv+D,D_y

iaXo EA+BDC, BC.0 axo ¢€E+BD_D,u

|g: a 1 =t a qW = A, X +B,w
p 1&Ve € B.C, A.uévg €& BD,

! =[C,+D,DC, D,C] 89(2 + D,.D.D, w=C,6X+D,w

{ Vg 86
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Thus, the closed-loop transfer function from wto zis given by

TZW(S) = Ccl (SI - Acl)-chl + Dcl

The resulting closed-loop system is internally stable if and only if the eigenvalues of

éA+BD _C, BC
Ay = a
g B.C A

cl
c1 C

Cc

- ey e

are all in open left half complex plane.

Remark: For the state feedback case, C, =1 and D, =0, i.e., all the states of the given
system can be measured, S, can then be reduced to u = F x and the corresponding

closed-loop transfer function is reduced to
T,(9)=(C,+D,F )(sl - A- BF)'E

The closed-loop stability implies and is implied that A + B F has stable eigenvalues.
87
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H,-norm and Hy-norm of a Transfer Function

Definition: (H,-norm) Given a stable and proper transfer function T,,(S), its H,-norm is

defined as

Graphically,

Note: The H,-norm is the total energy corresponding to the impulse response of T, (S).
Thus, minimization of the H,-norm of T, (S) is equivalent to the minimization of the total

energy from the disturbance w to the controlled output z
88
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Definition: (Hy-norm) Given a stable and proper transfer function T,,(S), its Hy-norm is

defined as

where s ... [T,,(Jw)] denotes the maximum singular value of T, (jw). For a single-input-single-

output transfer function T,,(S), it is equivalent to the magnitude of T, (jw). Graphically,
# Ta(W)]

/\/f .Hnormé

Note: The Hy-norm is the worst case gain in T,,(s). Thus, minimization of the H,-norm of
T,,(S) is equivalent to the minimization of the worst case (gain) situation on the effect from

the disturbance w to the controlled output z
89
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Infima and Optimal Controllers

Definition: (The infimum of H, optimization) The infimum of the H, norm of the closed-loop

transfer matrix T,,(S) over all stabilizing proper controllers is denoted by g,’, that is

g,:=inf{ | T, [, | S.intemnally stabilizes & }.

Definition: (The H, optimal controller) A proper controller S, is said to be an H, optimal

controller if it internally stabilizes Sand | T, |, =9 .

Definition: (The infimum of Hy, optimization) The infimum of the Hy-norm of the closed-loop

transfer matrix T,,(S) over all stabilizing proper controllers is denoted by g,, that is

gy :=inf{ | T, |, | S.intenally stabilizes & }.

Definition: (The Hy g-suboptimal controller) A proper controller S, is said to be an Hy, o

suboptimal controller if it internally stabilizes Sand | T,..|, <g (>¢;.)
%
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Critical Assumptions - Regular Case vs Singular Case

Most results in H, and Hy, optimal control deal with a so-called a regular problem or regular
case because it is simple. An H, or Hy, optimal problem is said to be regular if the following

conditions are satisfied,
1. D, is of maximal column rank, i.e., D, is a tall and full rank matrix [ ]
2. The subsystem ( A,B,C,,D,) has no invariant zeros on the imaginary axis;
3. D, is of maximal row rank, i.e., D, is a fat and full rank matrix [ ]
4. The subsystem ( A,E,C,,D,) has no invariant zeros on the imaginary axis;
An H, or Hy optimal problem is said to be singular if it is not regular, i.e., at least one of the
above 4 conditions is satisfied.

91
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Solutions to the State Feedback Problems - the Regular Case

The state feedback H, and Hy, control problems are referred to the problems in which all the

states of the given plant S are available for feedback. That is the given system is

iX=Ax+ Bu+Ew
S: :'y: X
lz=C,x+D,u

where (A, B) is stabilizable, D, is of maximal column rank and ( A, B, C,, D,) has no

invariant zeros on the imaginary axis.

In the state feedback case, we are looking for a static control law

92
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Solution to the Regular H, State Feedback Problem
Solve the following algebraic Riccati equation (H,-ARE)
AP + PA+CIC, - (PB+C]D,)(D!D,)* (D]C,+B'P)=0

for a unique positive semi-definite solution P 2 0. The H, optimal state feedback law is

then given by
u=F x=- (DJD,)*(DJC,+B"P)x

It can be showed that the resulting closed-loop system T, (s) has the following property:

| Tau 2 =02

It can also be showed that g, = [trace (E'PE )]%. Note that the trace of a matrix is

defined as the sum of all its diagonal elements.
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Example: Consider a system characterized by

A B E
=L 20, ,Du do
N T T
S: : y=X
% z=[1 1]x+1xu

C, D,

Solving the following H,-ARE using MATLAB,

we obtain a positive definite solution

él44 40
P=a (
840 16
and

F=[-41 -17]

The closed-loop magnitude response from

the disturbance to the controlled output:

10

A
6 \
4 \

2 \

10 10° 10° 10
Frequency (rad/sec)

Magnitude

The optimal performance or infimum is

given by

g, =19.1833
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Classical Linear Quadratic Regulation (LQR) Problem is a Special Case of H, Control

It can be shown that the well-known LQR problem can be re-formulated as an H, optimal

control problem. Consider a linear system,
X=Ax+Bu, x(0)=X,

The LQR problem is to find a control law u = F x such that the following index is minimized:
J = Q¥ (x'Q x + u"Ru ) dt |,

where Q 3 Qis a positive semi-definite matrix and R > Ois a positive definite matrix. The

problem is equivalent to finding a static state feedback H, optimal control law u = F x for

X=AX+Bu+ X, w

y=xX

Z=Aa 1/ X+t @ g u
€ = p?
eQAH e 0 f
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Solution to the Regular Hy State Feedback Problem

Given g> g, solve the following algebraic Riccati equation (H,-ARE)

AP +PA+CIC,+PEE'P/g?- (PB+CID,) (DID,) * (DIC, +B'P) =0

for a unique positive semi-definite solution P 2 0. The Hy g-suboptimal state feedback law
is then given by
u=F x=-(D;D,)*(DJC,+B"P)x

The resulting closed-loop system T, (s) has the following property: H T, H¥ <g.

Remark: The computation of the best achievable H,, attenuation level, i.e., g,, is in general
quite complicated. For certain cases, g,” can be computed exactly. There are cases in which
g, can only be obtained using some iterative algorithms. One method is to keep solving the
Hy-ARE for different values of guntil it hits g,” for which and any g< g, the Hy-ARE does

not have a solution. Please see the reference textbook by Chen (2000) for details.
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Example: Again, consider the following system

A B E
8 W, 0, 80,
el R

y=X
z=[1 1]x+1xu
c, D,

—_— o ——— —

It can be showed that the best achievable H,,

performance for this system is |g, =5|. Solving

the following Hy-ARE using MATLAB with

g =5.001, we obtain a positive definite solution

_ 63301115 110028.8(

~&1100288  26679.14
and

F =[- 110029.8 - 36680.1]

~ The closed-loop magnitude response from

the disturbance to the controlled output:

6

Magnitude

-2 0 2 4

10 10 10 10 10°
Frequency (rad/sec)

Clearly, the worse case gain, occurred at
the low frequency is roughly equal to 5

 (actually between 5 and 5.001)
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Solutions to the State Feedback Problems - the Singular Case
Consider the following system again,

i X=AXx+ Bu+Ew
S: : y= X
lz=C,x+D,u
where (A, B) is stabilizable, D, is not necessarily of maximal rank and ( A, B, C,, D,)
might have invariant zeros on the imaginary axis.

Solution to this kind of problems can be done using the following trick (or so-called a

perturbation approach): Define a new controlled output

éezu éCu ebu
s_é u_é 6~ L small perturbations
2= %07 é6|u Nk

eeug g0g e

Clearly, z1 z ife=0. o
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Now let us consider the perturbed system

X=Ax+Bu+Ew éC,u

_ ~._ €&, -
y = X where C,:= gl and D,:=
Z=C,x+D,u €

O

m!
l
> (D> (D> (D~
— O R
<o N e alfe?

o
[e @}
®

Obviously, D, is of maximal column rank and (A, B,C,,D,) is free of invariant zeros for any
e > 0. Thus, S satisfies the conditions of the regular state feedback case, and hence we

can apply the procedures for regular cases to S find the H, and H,, control laws.

Example:
& 20 u  éL k=5 “ix+Eyutsn
=8 A, o S T
S. B 4 &b &4 y= X

" y=x =» S: il

© ot o

z=[1 1]x+0xu Bt et

€+ AU éu

& 0g &g
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Solution to the General H, State Feedback Problem
Given a small e > O, Solve the following algebraic Riccati equation (H,-ARE)
AP +PA+CIC,- (PB+CID,) (D!D,)" (DIC, +B'P)=0

for a unique positive semi-definite solution p 3 0. Obviously, p is a function of e . The H,

optimal state feedback law is then given by

mm

u=F x=- (5;52)'1(5;62+BT5)X

It can be showed that the resulting closed-loop system T, (s) has the following property:
| T.|,®9, ase®0
It can also be showed that

[tra(:e(ETISE)]y2 ® g, ase® 0.
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Example: Consider a system characterized by  The closed-loop magnitude response from

& 20 u él the disturbance to the controlled output:

X=a gXtaguta.gw
8 4 &u &

y =X

2.5

=1

2 N
ezab\

I
I
!
|

i
i z:h_l]x+0m

815
Solving the following H,-ARE using MATLAB | £ \
_ _ -
with e = 1, we obtain = \\
, \ . o5l € =0.0001
5 _ €186.1968  46.27780 T
=€4620778 182517 F =[- 46.2778 - 18.2517] -
107 10° 10° 10'
ee=0.1 : Frequency (rad/sec)
_ 12472 49311
P :gz 15, F=[- 493111 - 18.9748] | . - .
& 4.9311 1.89753 . The optimal performance or infimum is
e e= 0.0001 -~ given by
_ 616701 0.0424) 9, =1.225
P=g F=[- 423742 -112.222] |
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Solution to the General Hy, State Feedback Problem CTTT T |

. eC.u éD,u

. * : ~ ._ € u N ._ e u:

Step 1: Given a g> @,”, choose e = 1. (Gi= @l and D= g0
' eo0p ely

Step 2: Define the corresponding C, and D,
Step 3: Solve the following algebraic Riccati equation (Hy-ARE)
AP +PA+CIC,+PEE'P/g* - (PB+CD,) (DIB,) (BIC, +B'P) =0

for P.

Step 4:1f P>0, go to Step 5. Otherwise, reduce the value of eand go to Step 2.

Step 5: Compute the required state feedback control law

™

u=F x=- (5;52)'1(5;62+BT5)X

It can be showed that the resulting closed-loop system T,(s) has: | T, ||, <9
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Example: Again, consider the following system  The closed-loop magnitude response from

(=& 2 &u elu  the disturbance to the controlled output:
PB4 &l e i
1 .08
S: | y=x !
% Z:[l l]X"‘O)U E 0.6
It can be showed that the best achievable H, 04
performance for this systemis |g, = 0.5|. \
Solving the following Hy-ARE using MATLAB .
with g = 0.6 and e = 0.001, we obtain a s : : 4
i 10 10 10 10
positive definite solution
€5.1677 0.9874y . Clearly, the worse case gain, occurred at
P=g , ;
§0.9874 0.0981 . the low frequency is slightly less than 0.6.

and

" The design specification is achieved.
F =[- 987.363 - 98.1161] :
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Solutions to Output Feedback Problems - the Regular Case

Recall the system with measurement feedback; i.e.,

iX=Ax+Bu+Ew
S: :'yzclx + D, w
lz=C,x+D,u

where (A, B) is stabilizable and (A, C,) is detectable. Also, it satisfies the following regularity

assumptions:
1. D, is of maximal column rank; i.e., D, is a tall and full rank matrix
2. The subsystem ( A,B,C,,D,) has no invariant zeros on the imaginary axis;
3. D, is of maximal row rank, i.e., D, is a fat and full rank matrix

4. The subsystem ( A,E,C,,D,) has no invariant zeros on the imaginary axis;
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Solution to the Regular H, Output Feedback Problem

Solve the following algebraic Riccati equation (H,-ARE)

0

AP + PA+CIC, - (PB+C]D,)(D!D,)* (D]C, + B'P)
for a unique positive semi-definite solution P 2 0, and the following ARE
QA" + AQ +EE" - (Qc] +ED])(D,D; ) (D,ET+CQ)=0

for a unique positive semi-definite solution Q 2 0. The H, optimal output feedback law is

then given by

(A+BF +KC,)v- Ky

1V
S,
Tu F v

where F =-(D]D,)*(D]C,+B'P) and K =- (QC!+ED,)(D,D,;)"
Furthermore,

g, = {trace (E'PE) + trace [(ATP + PA + CZTCZ) Q ]}%
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Example: Consider a system characterized by | The closed-loop magnitude response from

& 2u L0 el 5 the disturbance to the controlled output:

BT TT =T

y=[0 1]x + 1xw

200

L 50

]
|
|
I

T z_[1 1]x+1xu

Solving the following H,-AREs using MATLAB,

Magnitude
=
o
o

we obtain
gldd  40q
P= F=[-4 -17
&40 164 | |
0
_ 97778 2333330 & 24.3333) 10 Frequency (radisec) P
£3.3333  14.0000H ~ & 16.00004 ,
and an output feedback control law, - The optimal performance or infimum is
l,_¢ 5 -2330 @4333g o OVenby
V=a 1V T+ a ’ | "
S.:i " & 38 S0 T8 5 WY g, =347.3
fu= [4 -17] v
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Solution to the Regular Hy Output Feedback Problem

Given a g> g,’, solve the following algebraic Riccati equation (Hy-ARE)
A'P+PA+CIC, + PEE'P/g?- (PB+CID,) (DID,) " (DIC,+B"P)=0
for a unique positive semi-definite solution P 2 0, and the following ARE
QA"+ AQ + EE"+QC]C,Q/g*- (Qc] +ED;)(D,D] )" (D,E"+C.Q)=0

for a unique positive semi-definite solution Q 2 0. In fact, these P and Q satisfy the so-called

coupling condition: r (PQ) <g” The H, g-suboptimal output feedback law is then given by
IV=AV+B y

S,
ju=C_v

c

where A = A+g”EE"P+BF +(I - g°QP)'K(C, +g°D,E"P)

B.=-(1-9g°QP)'K, C.=F.

C

and where F =- (D! D,)*(D;C,+BP), K=- (Qc;+ED/)(D,D])"
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Example: Consider a system characterized by

_é& 2u eOu élu

& oA el "
y=[0 1]x + 13w
z=[1 1]x+1x

— — ——— —

It can be showed that the best achievable Hy,

performance for this system is |g. = 96.32864|.
Solving the following Hy-ARES using MATLAB

with g= 97, we obtain

§144353 4011680  ¢49.8205 23.3556()

P= - -
€0.1168 16,0392} £3.3556 14.0118

¢ 38.814 - 1848. 66u ¢1836.58 U

I
|
fu= [- 411186 -17039] v

& 59414 - 9141120" " Egoa 2078Y

The closed-loop magnitude response from

the disturbance to the controlled output:

100

<

80

D
o

\

Magnitude

AN
o

N
o

10° 10°
Frequency (rad/sec)

10

Clearly, the worse case gain, occurred at

the low frequency is slightly less than 97.

The design specification is achieved.
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Solutions to the Output Feedback Problems - the Singular Case

For general systems for which the regularity conditions are not satisfied, it can be solved

again using the so-called perturbation approach. We define a new controlled output:

ézu éCu éD, U
~_@é. . u_é. ,u én Ul
= X+ X S
Z gexu éelux eOuu

eeug e0 g ey

and new matrices associated with the disturbance inputs:
E=[E el 0] and D=[D, 0 el].

The H, and H,, control problems for singular output feedback case can be obtained by

solving the following perturbed regular system with sufficiently small e :

iX=Ax+ Bu+Ew _ _

~ ~ Remark: Perturbation approach might

S: jy=CX +D,wW
i=_~ ~ have serious numerical problems!
1Z=C,x+D,u 0
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Some Robust Control Problems
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Robust Stabilization of Systems with Unstructured Uncertainties

Small Gain Theory (!)

AN !' j
W Z | . 5
It Alisstableand |Df, ¥M|, <1, then

’ a the interconnected system is stable.
U—> y
—» A
S, |
\ 4 M e
W A z Assume | T, [l, <9 . Then the system with

unstructured uncertainty if

T, |
.l Apl, <gdpl, <1 b |D], <}
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Robust Stabilization with Additive Perturbation

Consider an uncertain plant with additive perturbations,

S, has atransfer function G (s)=C (sl - A)"'B, +D,

— Se |
U ‘ y S, Is an unknown perturbation.
— 1 3 S

S, and S +S, have same number of unstable poles.

Given a g, > 0, the problem of robust stabilization for plants additive perturbations is to find a
proper controller such that when it is applied to the uncertain plant, the resulting closed-loop
system is stable for all possible perturbations with their Ly-norm £ g,. (The definition of L-
norm is the same as that of Hy-norm except for L, -norm, the system need not be stable.)

Such a problem is equivalent to find an Hy g-suboptimal control law ( with g=1/ g, ) for

iX=Ax+B u+0w
:'y:me+Dmu+Iw

lz=0x+1u
112
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Robust Stabilization with Multiplicative Perturbation

Consider an uncertain plant with multiplicative perturbations,

S, has atransfer function G (s)=C (sl - A)"'B, +D,

S [
U r l y S, Is an unknown perturbation.
S S, and S ~ S have same number of unstable poles.

Given a g, > 0, the problem of robust stabilization for plants multiplicative perturbations is to
find a proper controller such that when it is applied to the uncertain plant, the resulting
closed-loop system is stable for all possible perturbations with their L,-norm £ g.. Again,
such a problem is equivalent to find an Hy, g-suboptimal control law ( with g=1/ g, ) for the

following system, T —

‘ iX=A Xx+B u+B w |
:’y:me+ D u+D w
¥z: Ox+ 1| u
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Homework Assignment 2 (Hand in your solutions next week)

Rewrite the cruise-control system in Homework Assignment 1 as follows,
IX= Ax+ Bu+Ew
S: | y=C, X + D, W
% z=C,x+D,u

where _ %/(t) 0
W= =

W(t) g
«  What is the best achievable H,-norm of the closed-loop system from w to z? Design an

and z=x,=[0 1]x, i.e,thespeedof thecar.

H, suboptimal controller such that the H,-norm of the resulting closed-loop system is

reasonably close to the optimal value. Plot the singular values of the closed-loop system.

«  What is the best achievable Hy-norm of the closed-loop system from yy to z? Design an
H, suboptimal controller such that the Hy-norm of the resulting closed-loop system is

reasonably close to the optimal value. Plot the singular values of the closed-loop system.
114
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Loop Transfer Recovery Design
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Is an LQG Controller Robust?

It is now well-known that the linear quadratic regulator (LQR) has very impressive robustness
properties, including guaranteed infinite gain margins and 60 degrees phase margins in all
channels. The result is only valid, however, for the full state feedback case. If observers or
Kalman filters (i.e., LQG regulators ) are used in implementation, no guaranteed robustness
properties hold. Still worse, the closed-loop system may become unstable if you do not design
the observer of Kalman filter properly. The following example given in Doyle (1978) shows the

unrobustness of the LQG regulators.

Example: Consider the following system characterized by

X—él 1l:Jx+(§ogu+élgv y=[1 O0]x+w
=a , =
O 1" @l &l

where X, u and y denote the usual states, control input and measured output, and where w

and v are white noises with intensities 1 and s > 0, respectively. 116
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The LQG controller consists of an LQR control law + a Kalman filter.

LQR Design: Suppose we wish to minimize the performance index

¥ 1~
J = (fx'Qx+u'Ru)dt, R=1, Q:q%[l 1,q>0
0

It is known that the state feedback law u = — F x which minimize the performance index J is
given by

F=R!'B'P, PA+A'P-PBR'B'P+Q=0, P>0.
For this particular example, we can obtain a closed-form solution,
F=(2+.4+q)[1 1]= f[1 1].

It can be verified that the open loop of LQ regulator with any g > 0 has an infinite gain margin

and a phase margin over 105 degrees. Thus, it is very robust.
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It can also be shown that the Kalman filter gain for this problem can be expressed as

K = (2+J4T)gﬂ gg

which together with the LQR law result an LQG controller,

.
~

I X=(A- BF- KC)X+Ky )
i oo u=-F(sl- A+BF +KC) " Ky
fu=-FX

Suppose that the resulting closed-loop controller has a scalar gain 1 + e (nominally unity)
associated with the input matrix, i.e.,

0
the actual input matrix =(1+e)B = .

o ey e

('MD) D~

e

Tedious manipulations show that the characteristic function of the closed-loop system
comprising the given system an the LQG controller is given by

_______________________________________________________________________________________________________________________________________
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A necessary condition for stability is that

2ekf +k+f-4>0 and 1-ekf >0

It is easy to see that for sufficient large g and s, the closed-loop could be unstable for a smalll
perturbation in B in either direction. For instance, let us choose q=s =60. Then itis simple

to verify the closed-loop system remains stable only when-0.08 < e <0.01.
The above example shows that the LQG controller is not robust at all!
What is wrong?

The answer is that the open-loop transfer function of the LQOR design and the open-loop transfer
function of the LQG design are totally different and thus, all the nice properties associated with
the LQR design vanish in the LQG controller. It can be seen more clearly from the precise
mathematical expressions of these two open-loop transfer functions, and this leads to the birth

of the so-called Loop Transfer Recovery technique.
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Open-Loop Transfer Function of LOR

(-
c
X

r=0 » X = AX+ Bu >

—F |e

Open-loop transfer function: When the loop is broken at the input point of the plant, i.e., the

point marked x, we have
Gd=-F(sl - A)'Bu
Thus, the loop transfer matrix fromuto - U is given by
L (s)=F(sl - A)'B

We have learnt from our previous lectures that the open loop transfer L(s) have very

impressive properties if the gain matrix F comes from LQR design.
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Open-Loop Transfer Function of LQG

<<

r=0,-0- u, x=ax+Bu X,] c

—F(sI—A+BF+KC)LK |

Open-loop transfer function: When the loop is broken at the input point of the plant, i.e., the

point marked x, we have

U=-F(sl - A+ BF +KC) *KC (sl - A)'Bu
Thus, the loop transfer matrix fromuto - U is given by
L,(s)=F(sl - A+BF +KC) 'KC(sl - A)''B

Clearly, L,(s) and L(s) are very different and that is why LQG in general does not have nice

properties as LOR does.
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Loop Transfer Recovery

The above problem can be fixed by choosing an appropriate Kalman filter gain matrix K such
that L,(s) and L(s) are exactly identical or almost matched over a certain range of frequencies.

Such a technique is called Loop Transfer Recovery.

The idea was first pointed out by Doyle and Stein in 1979. They had given a sufficient condition
under which L (s) = L,(s). They had also develop a procedure to design the Kalman filter gain
matrix K in terms of a tuning parameter q such that the resulting L (s) ® L,(s) asq® ¥, for

the invertible and minimum phase systems .

Doyle-Stein Conditions: It can be shown that L (s) and L,(s) are identical if the observer gain

K satisfies
K(l +CF K)'1 = B(CF B)'l, F = (sl - A)'1

which is equivalent to B = O (prove it!). Thus, it is impractical.
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Classical LTR Design

The following procedure was proposed by Doyle and Stein in 1979 for left invertible and

minimum phase systems: Define
Q,=Q,+0g°BVB’, R=R,
where Q, and R, are noise intensities appropriate for the nominal plant ( in fact, Q, can be
chosen as a zero matrix and R,= | ), and V is any positive definite symmetric matrix (V can
be chosen as an identity matrix). Then the observer (or Kalman filter) gain is given by
K=PC'R"
where P is the positive definite solution of
AP + PA' +Q, - PC'R'CP=0
It can be shown that the resulting open-loop transfer function L (s) from the above observer or

Kalman filter has
L.(S)® L, (s), as q® ¥. s
1
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Example: Consider a given plant characterized by

e 0 1u é0u é 35U

X=a 1 XtagUuta V. Y=[2 Yx+w
&3 -41 @O & 6lg

with E[v(t)] = E[w(t)] =0 and E[v(t)v(t)] = E[w(t)w(t )] =d (t- t).

This system is of minimum phase with one invariant zero at s = — 2. The LQR control law is
given by
u=-F x=-[50 10] x

The resulting open-loop transfer function L(s) has an infinity gain margin and a phase margin
over 85°. We apply Doyle-Stein LTR procedure to design an observer based controller, i.e.,

u=-F[F '+BF +KC] 'K y
where K is computed as on the previous page with
€1225 - 2135

é 35 00
=2 735 -6]+0%a 0 =&
< 3613[ 1 qSLH[ 1 & 2135 3721+ P8 1
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L} 1 1 L I I B

L,(S) with .|
0= 10000

3 :
E!
£
E /
4’i0 - : : .
L(s) with L(s) with
target | | 1 g?= 500 > = 100000
_3{] L L I T L | N T RS S8 2} | GO TN el e [ [} 1 1 beda AL 20
10-2 10-! 109 101 10?
Frequency (rad/sec)
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New Formulation for Loop Transfer Recovery

Consider a general stabilizable and detectable plant,

XxX=AXxX+Bu
y=Cx+Du

—) — —

The transfer function is given by P(s)=CFB+D, F =(sl - A)*. Also, let F be a state

feedback gain matrix such that under the state feedback control law u = — F x has the
following properties:

» the resulting closed-loop system is asymptotically stable; and

« the resulting target loop L, (s) = FF B meets design specifications (GM, PM, etc).

Such a state feedback can be obtained using LQR design or any other design methods so

long as it meets your design specifications. Usually, a desired target loop would have the
shape as given in the following figure.
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h " To avoid high-frequency
un-modolled dynammics

-~ -

To have a good
disturbance rejection

min singular values
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The problem of loop transfer recovery (LTR) is to find a stabilizing controller u=-C(s)y

such that the resulting open-loop transfer function fromuto - U, i.e.,

L,(s) =C(s)P(s)

P(s)

y

C(s)

>

is either exactly or approximately equal to the target loop L,(s). Let us define the recovery

error as the difference between the target loop and the achieved loop, i.e.,

E(s)=L,(s)- L,(s)=FFB- C(s)P(s)

Then, we say exact LTR is achievable if E(s) can be made identically zero, or almost LTR is

achievable if E(s) can be made arbitrarily small.
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Observer Based Structure for C(s)

_ G | ! FullOrder Observer . |
' Based Controller

_ _ ‘I);Z:A)'Z+BU+K(y-C)’Z-DU)
Dynamic equations of C(s): | _ "
ju=u=-F X

Transfer function of C(s)=C_(s)=F(F *+BF +KC- KDF) 'K

Achieved open-loop: L, (S) =C,(9)P(s) =F(F *+BF+KC- KDF) 'K(CF B+ 33
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Lemma: Recovery error, E (9), I.e., the mismatch between the target loop and the resulting

open-loop of the observer based controller is given by

E.(5)=M(s)[I +M(s)] '(1 +FFB), M(s)=F(F +KC)*(B- KD)

Prook | (9=C,(9P(9) = F(F * +BF +KC- KDF) *K(CFB+D)

=F[I +(F " +KC)"(B- KD)F](F *+KC)"K(CFB+D)
=[I +F(F ' +KC)(B- KD)] "F(F " +KC) *K(CFB+D)
=[1 +M(9)] '[F(F *+KC)"KCFB+F(F *+KC) "KD]

=[1 +M(T{F[I - (F*+KC)*FJFB+F(F* +KC) KD}
=[1 +M(9)] [FFB- F(F *+KC)*B+F(F ' +KC)*KD]
=[1 +M(s)]'{FFB- F(F *+KC)*(B- KD)]

=[1 +M (9] {FFB- M(9)

Note that we have used (F *+KC)*KC=1- (F *+KC)'F " Thus,

E =L-L =FFB-[l +M]{FFB- M]=M[l +M]*(l +FF B).
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Loop Transfer Recovery Design

It is simple to observe from the above lemma that the loop transfer recovery is achievable if
and only if we can design a gain matrix K such that M(s) can be made either identically

zero or arbitrarily small, where M (s) = F(F + KC) *(B- KD).

Let us define an auxiliary system

ix=A'x+C'u+F'w

1y =X + u=-K7T"x
z=B'x+D'u

0p)
—_—)— —\— —

Thus, LTR design is equivalent to design a state feedback law for the above auxiliary system
such that certain norm of the resulting closed-loop transfer function is made either identically
zero or arbitrarily small. As such, all the design techniques in H, and Hy, can be applied to

design such a gain. There is no need to repeat all over again once this is formulated.
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LTR Design via CSS Architecture Based Controller

" C

» CSS Structure was proposed by Chen, Saberi and Sannuti in 1992. It has the following:

_ _ iv=(A- KC)v+Ky
Dynamic equations of C(s): | .
ju=u=-Fv

Transfer function of C(s) =C_(s) =F(F *+KC) 'K

Achieved open-loop: L.(S) =C.(9)P(s) =F(F *+KC) *K(CFB+D) 130
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Lemma: Recovery error, E(S), i.e., the mismatch between the target loop and the resulting

open-loop of the CSS architecture based controller is given by

E.(S) =M(s) = F(F +KC) (B~ KD)

Proof.
E.(s) = L(s)- L.(9)

=FFB- F(F '+KC)'K(CFB+D)

=F(F '"+KC)'[(F "+ KC)FB- KCFB- KD]
=F(F '+KC)'(B+KCFB- KCFB- KD)
=M(s)

..............................................................................................................................................................

It is clear that LTR via the CSS architecture based controller is achievable if and only if one
can design a gain matrix K such that the resulting M(s) can be made either identically zero or
arbitrarily small. This is identical to the LTR design via the observer based controller. Thus, |

one can again using the H, and Hy, techniques to carry out the design of such a gain matrix.
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What is the Advantage of CSS Structure?

Theorem. Consider a stabilizable and detectable system S characterized by (A, B, C,D)
and target loop transfer function L(s) = FF B. Assume that Siis left invertible and of
minimum phase, which implies that the target loop L,(S) is recoverable by both observer
based and CSS architecture based controllers. Also, assume that the same gain K is used
for both observer based controller and CSS architecture based controller and is such that for

alwl W, where Wis some frequency region of interest,
0<s W [M(jW)]<<1 SmlL(W)]=s [F(jw - A)'B]>>1

Then, forallwl W

____________________________________________________________________________

Proof. See Chen, Saberi and Sannuti, Automatica, vol. 27, pp. 257-280, 1991. See also

Saberi, Chen and Sannuti, Loop Transfer Recovery: Analysis and Design, Springer, 1993.
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Remark: In order to have good command following and disturbance rejection properties, the
target loop transfer function L,(jw) has to be large and consequently, the minimum singular
value s ;.[L (Jw)] should be relatively large in the appropriate frequency region. Thus, the

assumption in the above theorem is very practical.

Example: Consider a given plant characterized by

¢0 e
3 -l Rl

Let the target loop L,(s) = F F B be characterized by a state feedback gainF = [50 10].

y:[2 1]x+0><u

Using MATLAB, we know that the above system has an invariant zero at s=—2. Hence it is
of minimum phase. Also, it is invertible. Thus, the target loop L,(s) is recoverable by both the
observer based and CSS architecture based controllers. The following gain matrix K is

obtained by using the H, optimization method,
é 6.90
K =25 -
3-84 6 135

Prepared by Ben M. Chen



Magnitude

Frequency (rad/sec)

Le(jw);
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Magnitude

Frequency (rad/sec)
E(jw); —_—

Eo(jw)
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Homework Assignment 3 (Hand in your solutions next week)

Recall the cruise-control system in Homework Assignment 1. Assume that the state feedback

gain matrix is obtained using the LQR technique as in Item 2 of Homework Assignment 1.

Design an observer and CSS architecture gain matrix K using the classical LTR method with
Q=0¢’BB"andR=1,i.e,

K=PC", P>O0isthesolution of AP+ PA" +g°BB'- PC'CP =0
for g7 = 500, 1000 and 10000, respectively.

«  For each gain matrix K, plot the magnitudes of the target loop L,(jw), the achieved loop
by observer based controller, L (jw), and CSS architecture based controller, L (jw),

over the frequency range 10-2£ w £ 102 rad / sec.

«  For each gain matrix K, plot the magnitudes of the error functions, E (jw) and E.(jw),

over the same range of frequencies. Comment on the outcomes.
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Design and Implementation of an
HDD Servo System:

— A Robust and Perfect Tracking Approach

139
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A Typical Hard Disk Drive (HDD)

YVoice Coil Motor
/ Actuator

Disk

Fy |
1 i _"'_-._____.____.-"
=]
\\\ " Data Track
_. Suspension and

Recording Head
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Hard Disk Drive Servo lllustration

Track Seeking: to move R/W head from the present track to destination track in minimum

time using a bounded control effort.

Track Following: to maintain R/W head as close as possible to the center of destination

track while data reading and writing.

250

200 T+

150

100

50

0

-50

-100

T T T T T T 171

—— Track Seeking
Track Settling
Track Following
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HDD Trends in Industry

Smaller in size: Small 3.5" and 2.5” form factor disk drives are in broad use.

More compact and efficient disks are expected.
 Higher data capacity: Growth rate is 60% annually.

 Faster access time: High speed actuator motion and shorter data bands of the
smaller diameter disks is the reason. Low mass actuator design with highly

efficient VCM will lead to faster access time.

Better reliability: Minimization the parts count, more integrated electronics etc.

will increase the reliability.
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Robust and Perfect Tracking (RPT) Design

» Robust and Perfect Tracking (RPT) Design (Liu, Chen and Lin, International
Journal of Control, Jan. 2001. See also Chen, Robust and H, Control,
Springer, 2000), which is to design a parameterized control law using the
framework of robust and Hy, control such that when it is applied to the given

system, the resulting closed-loop system has:
— Internal Stability;

— Robustly and perfectly tracks a given reference input, i.e. any L -norm of
the tracking error can be made zero, in face of external disturbance and

any initial condition.
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VCM Actuator Modeling

« Voice coil motor as the actuator of R/W head

* Fourth order model identified:

[+,
=

.
=

magmilede; dB
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i
i
i
i
i
i
\

g

10 15
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T2, 2 3 7
- S(s +1.5962 x10s+9.6731x10)

g

[=]
T
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144

Prepared by Ben M. Chen



Design Specifications

The control input should not exceed + 2 volts.

\s
®
\

« QOvershoots and undershoots of step response should be less than 5%.
» The 5% settling time should be less than 2 ms.

Sampling frequency in implementation is 4k Hz.

- ~.

~. .-
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Controller Design via RPT Approach

 Lower order plant consider in control design.

* Then, use the state feedback law to construct a reduced order measurement

feedback control law.

» The parameterized first order RPT control law is obtained:

(1 A (e)=-7800/e N i
e i : !
hich
C..(e) =-4.063572x10"° /e ; which can be tuned to |
1 " meet the design specs.
\ D_(e) :_2[ 0.036572 - 0.280386 |
e
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Parameterized RPT Controller Design - Simulation Result

g%° £ ' Step response of closed-
= R oo : :
“loop system with _
o : ol _ - parameterized controller.
e=1 i _
- . RPT problem is solved

as the tuning parameter

0.8

is pushed to be smaller

Actuator Output
=]
4]
Control Signal

“and smaller.

0.5
Time In Seconds

e=0.01 147
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Discretized RPT Controller

« We found that parameter with 0.9 meets the design specifications.

 The discretized control law with 4kHz sampling rate is given:

____________________________________________________________________________________________________________________________

{ x, (K +1) = - 0.04x, (K) +15178.933r (k) - 453681.43y(K)
Loy (k) = - 3426708 107 x (K) +00397325r (K) - 01842147y(k)

...........................................................................................................................

Step Response
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N o

b
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Step Responses with Different Resonant Frequencies

In real HDDs, the resonant frequency may vary ( = beta” nominal resonant frequency).

Common method in practice: adding the notch filters.

RPT controller can withstand the variation of resonance frequency in the actuator.

1.2 1.2
1 ./_H_K—“-h — . i /E\““———
IIIII ]
] (]
1
o.af ,|" o.af {
1
ki) I'l b7 !
— 1 = ]
= I = |
[l ) = i
£ o6 beta = 7E9% £ o6 [ beta = 1509
[ | = i
(=9 (=9
&= & |
£ | i |
oal | oal |
|
| |
|
ozl | =] 5 ,'
1
] |
II I
| |
e o
o] 0005 0.0 o] 0008 001
Time In Seconds Time In Seconds

Step Response of the closed-loop System
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Test Against Run-out Disturbance

Run-out: due to imperfectness of the data tracks and the spindle motor speeds.

Disturbance injected: 0.5 + 0.1cos(345t) + 0.05sin(691t) and zero reference.

The effect of this disturbance is minimal.

Disturbance & Rasponse
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Implementation Result: Track Following Test

« Compared with PID controller below (Done by Goh in his Master of Engineering

Thesis). The PID controller:

..........................................................................

B 0.13Z2*- 0.23z+0.10
U=——; (r-vy
Z - 1.25z2+0.25
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Implementation Result: PES Test

 Position Error Signal (PES) is the measurement output in real HDD servo systems.
 Disturbances: Repeatable Run-outs (RRO) and Non-repeatable Run-Outs (NRRO).

« 3s of RPT controller was 0.095um, while that for PID controller was about 0.175um.

280 . . . . . . . . . 160
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Histogram of RPT PES test Histogram of PID PES test 150
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Comparisons Between RPT and PID Designs

Our Control PID Control i
' Order of controller v 1order 2" order
Closed Loop Resonance v No resonance peak Resonance peak of 6 dB
i Peak i
. Settling Time for Track Seek  Faster than PID method >5 ms
| (<2ms) 5
. Overshoot during Track Lower overshoot (6%) 50 %
: seek !

Closed Loop Bandwidth Similar bandwidth (500 Hz)  Similar bandwidth (500 Hz)

The conclusion is obvious.
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