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Course outline — Part 2

• Introduction to control systems; control system examples; basic principle of 

feedback control; brief review of control development history.

• Digital control systems design: Time domain specifications; Dynamic response  

to unit step and ramp functions. Stability of discrete time systems; Digital PID 

design; Pole placement design.

• Digital Control system design: Frequency domain specifications; Gain and  

phase margins; Compensator design with bilinear transformations.

• Digital control system design through state space approach: State space 

description of discrete systems; State feedback design via pole placement; 

State estimator design; Controller design with state estimator.
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Textbook — Primary selection

• GF Franklin, JD Powell and ML Workman, Digital Control of Dynamic Systems, 
3rd Edition, Addison Wesley, 1998.

Homework assignments

• There will be 3 homework assignments for this second part. The homework 

assignments will be graded and credited as 10% of the final grade. 

Additional note on supporting software

• Students are expected to be familiar with the computational software tool 

MATLAB and its package SIMULINK.
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1. Introduction & Revision
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1.1. What is a control system?

System to be controlledController

Desired 

performance:

REFERENCE

INPUT
to the 

system

Information 
about the 
system: 

OUTPUT

+
–

Difference:

ERROR

Objective: To make the system OUTPUT and the desired REFERENCE as close 

as possible, i.e., to make the ERROR as small as possible.

Key Issues: 1) How to describe the system to be controlled? (Modelling)

2) How to design the controller? (Control)

aircraft, missiles, 
economic systems, 

cars, etc 
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1.2. Some control systems examples:

System to be controlledController
+

–

OUTPUTINPUTREFERENCE

Economic System
Desired 

Performance 
Government 

Policies
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1.3. A live demonstration on control of a coupled-tank system 

through Internet based virtual laboratory in ECE Dept, NUS

The objective is to control the flow levels of two coupled tanks. It is a reduced-scale 

model of some commonly used chemical plants.
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1.4. Modeling of a physical system ⎯ A simple mechanical system

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied to an 

object with a mass m and a is the acceleration, we have

A cruise-control 
system

force u
friction 
force bx&

x displacement

accelerationx&&

mass
m

m
ux

m
bxxmxbu =+⇔=− &&&&&&

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can be 

written as a 1st order ODE with respect to speed v = :x&

m
uv

m
bv =+& ← model of the cruise control system, u is input force, v is output.
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Controller
+

–

OUTPUTINPUTREFERENCE

1.5. A cruise-control system:

?
+

–

speed vu100 km/h

m
uv

m
bv =+&



10

Prepared by Ben M. Chen

1.6. Re-express ODE models using Laplace transform

Recall that the mechanical system in the cruise-control problem can be represented by an 

ODE:
ubvvm =+&

Taking Laplace transform on both sides of the equation, we obtain

{ } { } { } { } { }uLbvLvmLuLbvvmL =+⇒=+ &&

{ } { } { } )()()( sUsbVsmsVuLvbLvmsL =+⇒=+⇒

( )
bmssU

sVsUsVbms
+

=⇒=+⇒
1

)(
)()()(

This is called the transfer function of the system model

)(sG=
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Controller
+

–

OUTPUTINPUTREFERENCE

1.7. A cruise-control system in frequency domain:

driver? auto?
+

–

speed V (s)U (s)R (s)

bms
sG

+
=

1)(
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In general, a feedback control system can be represented by the block diagram below:

+

U (s)R (s)
)(sG)(sD

Y (s)

–

E (s)

Given a system represented by G(s) and a reference R(s), the objective of control system 

design is to find a control law (or controller) D(s) such that the resulting output Y(s) is as 

close to reference R(s) as possible, or the error E(s) = R(s) –Y(s) is as small as possible. 

However, many other factors of life have to be carefully considered when dealing with real-

life problems. These factors include:

R (s)

+ U (s)
)(sG)(sD

Y (s)–

E (s)

disturbances noises
uncertainties

nonlinearities
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1.8. Brief view of control techniques:

There are tons of research published in the literature on how to design control laws for various 
purposes. These can be roughly classified as the following:

♦ Classical control: Proportional-integral-derivative (PID) control, developed in 1940s and used 
for control of industrial processes. Examples: chemical plants, commercial aeroplanes.

♦ Optimal control: Linear quadratic regulator control, Kalman filter, H2 control, developed in 
1960s to achieve certain optimal performance and boomed by NASA Apollo Project.

♦ Robust control: H∞ control, developed in 1980s & 90s to handle systems with uncertainties 
and disturbances and with high performances. Example: military systems.

♦ Nonlinear control: Currently hot research topics, developed to handle nonlinear systems 
with high performances. Examples: military systems such as aircraft, missiles.

♦ Intelligent control: Knowledge-based control, adaptive control, neural and fuzzy control, etc.,
researched heavily in 1990s, developed to handle systems with unknown models. 
Examples: economic systems, social systems, human systems.
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1.9. Classical feedback control in continuous setting

Let us examine the following block diagram of control system: 

+

U (s)R (s)
)(sG)(sD

Y (s)

–

E (s)

Recall that the objective of control system design is trying to match the output Y(s) to the 

reference R(s). Thus, it is important to find the relationship between them. Recall that

)()()(
)(
)()( sUsGsY

sU
sYsG =⇒=

Similarly, we have                                  , and       .)()()( sEsDsU = )()()( sYsRsE −= Thus,

[ ])()()()()()()()()()( sYsRsDsGsEsDsGsUsGsY −===

[ ] )()()()()()(1)()()()()()()( sRsDsGsYsDsGsYsDsGsRsDsGsY =+⇒−=

)()(1
)()(

)(
)()(

sDsG
sDsG

sR
sYsH

+
==⇒ Closed-loop transfer function from R to Y.
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Thus, the block diagram of the control system can be simplified as,

)()(1
)()()(
sDsG

sDsGsH
+

=
R (s) Y (s)

The problem becomes how to choose an appropriate D(s) such that H(s) will have desired 

properties. Furthermore, we have

)()(1
)()(

)()(1
)()(1)()()()()()(

sDsG
sRsR

sDsG
sDsGsRsHsRsYsRsE

+
=⎥

⎦

⎤
⎢
⎣

⎡
+

−=−=−=

The problem is equivalent to finding an appropriate control law D(s) such that the resulting 

error function e(t) goes to zero as quick and as smooth as possible, which is the same as 

saying that the output y(t) is tracking the given reference r(t) as quick and as smooth as 

possible. In our class, we will mainly focus on the cases when r(t) is either a step function 

or a ramp function.

r (t) y (t)
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1.10. Design a digital controller — from continuous to digital

There are two ways to design a digital controller or a discrete-time control system:

• Follow whatever we have learnt in EE2010 or EE2131 to design a continuous-

time controller and then discretize it using ZOH or bilinear transformation or any 

discretization technique to obtain an equivalent digital controller. 

+

U (s)R (s)
)(sG)(sD

Y (s)

–

E (s)

+

R(s) 
)( zD )(sG

Y(s)

– T

The above design works very well if sampling period T is sufficiently small.

ZOH
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• Alternatively, one could discretize the plant first to obtain a sampled-data system 

or discrete-time system and then apply digital control system design techniques 

to design a digital controller:

+

U (z)R (z)

)(sG)( zD
Y (z)

–

E (z)

T

+

U (z)R (z)
)(zG)( zD

Y (z)

–

E (z)

ZOH

It should be shown in Part 1: ( )
⎭
⎬
⎫

⎩
⎨
⎧−= −

s
sGzzG )(1)( 1 Ζ (Show this as an exercise !)
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1.11. Why digital control?

• Control systems in continuous-time setting in the past are usually implemented 

using analogue devices such resistors, capacitors, inductors and operational 

amplifiers together with some necessary mechanical components. These devices 

are neither economical nor durable. The advances in computer technologies 

make the implementation of control systems in discrete-time setting (i.e., digital 

controllers) much more efficiently and economically possible. 

• Most of control systems nowadays are implemented using either computers such 

as PCs or Digital Signal Processes (DSP), which are specially designed to carry 

out computations related to control algorithm realizations. The advantages of 

digital controllers using PC or DSP are obvious — it is fast, reliable, reusable and 

can be modified thru simple recoding whenever needed.
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1.12. Feedback control in discrete setting

Let us examine the following block diagram of control system: 

+

U (z)R (z)
)( zG)( zD

Y (z)

–

E (z)

Note that
)()()(

)(
)()( zUzGzY

zU
zYzG =⇒=

Similarly, we have                                  , and       .)()()( zEzDzU = )()()( zYzRzE −= Thus,

[ ])()()()()()()()()()( zYzRzDzGzEzDzGzUzGzY −===

[ ] )()()()()()(1)()()()()()()( zRzDzGzYzDzGzYzDzGzRzDzGzY =+⇒−=

)()(1
)()(

)(
)()(

zDzG
zDzG

zR
zYzH

+
==⇒ Closed-loop transfer function from R to Y.
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Thus, the block diagram of the control system can be simplified as,

)()(1
)()()(
zDzG

zDzGzH
+

=
R (z) Y (z)

The problem becomes how to choose an appropriate D(z) such that H(z) will yield desired 

properties. As in the continuous-time case, we have

)()(1
)()(

)()(1
)()(1)()()()()()(

zDzG
zRzR

zDzG
zDzGzRzHzRzYzRzE

+
=⎥

⎦

⎤
⎢
⎣

⎡
+

−=−=−=

The problem is equivalent to finding an appropriate control law D(z) such that the resulting 

error function e(k) goes to zero as quick and as smooth as possible, which is the same as 

saying that the output y(k) is tracking the given reference r(k) as quick and as smooth as 

possible. In our class, we will mainly focus on the cases when r(k) is either a step function 

or a ramp function.

r (k) y (k)
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2. Design Specifications



22

Prepared by Ben M. Chen

+

w

r
)(zG)(zD

y

–

e

+

+

2.1. Time domain design specifications:

Recall the unit feedback control system with disturbance w,

overshoot

1% settling time

rise time
steady state error

• steady state accuracy

• stability

• rise time

• overshoot

• settling time

• disturbance rejection

• others
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Case 1: If r(t) is a unit step,                   , by the final value theorem of Laplace Transform
s

sR 1)( =

p
ss KDGsDsGs

sssEe
+

=
+

=
+

⋅⋅==∞
→→ 1

1
)0()0(1

1
)()(1

11lim)(lim)(
00

Case 2: If r(t) is a unit ramp,                    , by the final value theorem2

1)(
s

sR =

vs
ss KsDssGsDsGs

sssEe 1
)()(lim

1
)()(1

11lim)(lim)(
0

200
==

+
⋅⋅==∞

→
→→

proportional 
error constant

velocity error constant

Obviously, we need the proportional error constant to be infinity, which implies G(s)D(s)

has at least a factor of 1/s (TYPE I SYSTEM) in order to make e(∞) zero. If Kp is a finite 

scalar, the open-loop system G(s)D(s) is said to be a TYPE 0 system.

Similarly, we need the velocity error constant to be infinity, which implies G(s) D(s) has 

at least a factor of 1/s2 (TYPE II SYSTEM) in order to make e(∞) zero.

2.2. Steady state accuracy — Continuous systems
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Case 1: If r(k) is a unit step,                        , by the final value theorem of z-Transform
1

)(
−

=
z

zzR

p
zz KDGzDzGz

zzzEze
+

=
+

=
+

⋅
−

⋅−=−=∞
∆

→→ 1
1

)1()1(1
1

)()(1
1

1
)1(lim)()1(lim)(

11

Similarly, as in the continuous-time case we need the proportional error constant Kp= ∞, 

i.e., G(z)D(z) has at least a factor of 1/(z–1) (TYPE I SYSTEM) in order to make e(∞) zero. If 

Kp is a finite scalar, the open-loop system G(z)D(z) is said to be a TYPE 0 system.

Case 2: If r(k) is a unit ramp,                              , by the final value theorem 2)1(
)(

−
=

z
TzzR

vz
z KzDzGz

T
zDzGz

Tzze 1
)()()1(lim)()(1

1
)1(

)1(lim)(
1

21
=

−
=

+
⋅

−
⋅−=∞

→
→

Similarly, we need the velocity error constant Kv = ∞, which implies G(z)D(z) has at 

least a factor of 1/(z–1)2 (TYPE II SYSTEM) in order to make e(∞) zero.

2.3. Steady state accuracy — Discrete systems
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2.4. Stability — Continuous systems

A continuous-time system is said to be stable if its denominator of the system has no roots 

or poles with a positive real part. It is unstable if it has poles or roots with a positive real part. 

In particular,
Marginally Stable

Unstable

Stable
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2.5. Stability — Discrete systems

A discrete-time system is said to be stable if its denominator of the system has no roots or 

poles outside unit circle. It is unstable if it has poles or roots outside unit circle. In particular,

Marginally Stable

Unstable

Stable

xx

x

x

x

x

x

x

x

1
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2.6. Behavior of continuous 2nd order systems with unit step input

Consider the following block diagram with a standard 2nd order system,

The behavior of the system is as follows:

22

2

2
)(

nn

n

ss
sH

ωζω
ω

++
=

R (s) = 1/s Y (s)

r = 1

The behavior of the system is 

fully characterized by ζ , 

which is called the damping 

ratio, and ωn , which is called 

the natural frequency.
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2.7. Rise time, overshoot and settling time — Continuous systems

1% settling time

overshoot

rise time

st
rt

pM

22

2

2
)(

nn

n

ss
sH

ωζω
ω

++
=

R (s) = 1/s Y (s)

r = 1

t
n

rt ω
8.1

≅

n
st ζω

6.4
≅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥

100
%in  

16.0 pM
ζ
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2.8. Rise time, overshoot and settling time — Discrete systems

))((
)1)(1(

)(
pp

pp

zzzz
zz

zH
−−

−−
=

y (k)r (k) = 1

x

1T  with  5.0,256.1sec 3.7%,18  :Example ===⇒== ζω nsp tM

47.025.0 jz p +==x

29
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2.9. Rise time, overshoot and settling time — Discrete systems

Let us verify the example given on the previous page using MATLAB SIMULATION to check 

whether the resulting discrete-time system indeed produces pre-specified overshoot and 

settling time or not. The resulting discrete-time system is given by

2929.05.0
7929.0

)48.025.0)(48.025.0(
)48.025.01)(48.025.01()( 2 +−
=

+−−−
+−−−

=
zzjzjz

jjzH

• Simulation block in SIMULINK

The system output to a step input

0 2 4 6 8 10 12 14
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

ou
tp

ut
 y
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2.10. Disturbance rejection

Recall the block diagram below. We set the reference r = 0 for simplicity and for the study of 

the effects of the disturbance w (unwanted signal) on the system output.

+

w

r = 0
)(zG)(zD

y

–

e

+

+ u

Exercise: Show that the output and the disturbance 

are related as follows:

where Y(z) and W(z) are respectively z-transforms 

of y and w.

)(
)()(1

)()( zW
zGzD

zGzY
+

=

Consider the case when w is a unit 

step function. We have 

)1()1(1
)1(

)()(1
)(

1
)1(lim

)()1(lim)(

1

1

GD
G

zGzD
zG

z
zz

zYzy

z

z

+
=

+
⋅

−
⋅−=

−=∞

→

→

In order to make y(∞) = 0, we need 

either G(1) = 0, which is impractical 

(why?), or D(1) = ∞, i.e., it has a 

factor 1/(z −1).
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2.11. Other considerations

noises

R (z)

+ U (z)
)( zG)( zD

Y (z)–

E (z)

disturbances

nonlinearities

• Plant nonlinearities ⎯ nonlinear plants ⎯ nonlinear control

• Plant parameter uncertainties ⎯ robust control

• Control input nonlinearities (control saturations) ⎯ nonlinear control

• Sensor nonlinearities ⎯ nonlinear control

• Noise rejection ⎯ robust control, optimal control

These issues are too complicated to be considered in this third year level course… 

Come back for postgraduate studies if you are interested in these topics.
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3. Time Domain Design
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3.1. Digital control system design using emulation

In this approach, we design a continuous-time controller that meets all design specifications 

and then discretize it using a bilinear transformation or other discretization technique to obtain 

an equivalent digital controller.

+

U (s)R (s)
)(sG)(sD

Y (s)

–

E (s)

+

R(s) 
)( zD )(sG

Y(s)

– T

ZOH

This method works if the sampling rate is 30 times faster than the system bandwidth. Further 

refinement is necessary for the case where the sampling rate is 6 times the bandwidth.  
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D(s)
+ –

y = vur = 100
bms

sG
+

=
1)(

3.2. Design example:

Consider a car (BMW), which has a weight m = 1000 kg. Assuming the average friction 

coefficient b = 100, design a cruise control system such that the car can reach 100 km/h

from 0 km/h in 8 s with an overshoot less 20%.

Let us try a PI controller, i.e.,                           . The first component is proportional to the error 

and the second consists of an integration action. Following results derived earlier, we have
s
kksD i

p +=)(

ip

ip

ksks
ksk

sDsG
sDsG

sR
sYsH

001.0)001.01.0(
001.0001.0

)()(1
)()(

)(
)()( 2 +++

+
=

+
== ( * )
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3.3. Deriving ζ and ωn from the design specifications

1% settling time

overshoot

rise time

st
rt

pM

22

2

2
)(

nn

n

ss
sH

ωζω
ω

++
=

R (s) = 1/s Y (s)

r = 1

t
82.0

87.0
6.46.4

6.4

=
×

=≅

⇒≅

s
n

n
s

t

t

ζ
ω

ζω

x

7.046.0 =⇒≥ ζζ

67.015.1
67.0)(function  transfer loop-closed desired 2desired ++

=⇒
ss

sH



37

Prepared by Ben M. Chen

3.4. Calculating desired controller parameters

Recall from ( * ) the closed-loop transfer function of the cruise control system with the PI 

control law, i.e.,

ip

ip

ksks
ksk

sDsG
sDsG

sR
sYsH

001.0)001.01.0(
001.0001.0

)()(1
)()(

)(
)()( 2 +++

+
=

+
==

and the desired transfer function that produces desired performance

67.015.1
67.0)( 2desired ++

=
ss

sH

Comparing the coefficients on the denominators, we have

105015.1001.01.0 =⇒=+ pp kk 67067.0001.0 =⇒= ii kk

67.015.1
67.005.1)(function  transfer loop-closed resulting  theand 2 ++

+
=

ss
ssH
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3.5. Verification through SIMULINK

0 2 4 6 8 10 12
0

20

40

60

80

100

120

ou
tp

ut
 y

Time (seconds)

overshoot = 18%

settling time = 7s

10-1 100 101
-20

-15

-10

-5

0

5

M
ag

ni
tu

de
 in

 d
B

Frequency in rad/sec

bandwidth = 1.8 rad/sec = 0.3 Hz
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3.6. Digital controller with a sampling rate 30 times the bandwidth

We first discretize the continuous-time PI control law with T = 1/(30×0.3) ≈ 0.1 seconds 

using a bilinear transformation method, i.e.,

0 2 4 6 8 10 12
0

20

40

60

80

100

120

Time (seconds)

ou
tp

ut
 y

1
5.10165.1083

1
12

670
1
121050

6701050)()(
1
121

12

−
−

=

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+⎟
⎠
⎞

⎜
⎝
⎛

+
−

=

+
==

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
⎟
⎠
⎞

⎜
⎝
⎛

+
−

=

z
z

z
z

T

z
z

T

s
ssDzD

z
z

T
sz

z
T

s

Performance is about 
the same as the 
continuous-time case.
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3.7. Digital controller with a sampling rate 6 times the bandwidth

We now discretize the continuous-time PI control law with T = 1/(6×0.3) ≈ 0.6 seconds using 

the bilinear transformation method, i.e.,

Performance is not as 
good as the 
continuous-time case.

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

Time (seconds)

ou
tp

ut
 y

1
8491251

1
1

6.0
2

670
1
1

6.0
21050

6701050)()(
1
121

12

−
−

=

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+⎟
⎠
⎞

⎜
⎝
⎛

+
−

=

+
==

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
⎟
⎠
⎞

⎜
⎝
⎛

+
−

=

z
z

z
z
z
z

s
ssDzD

z
z

T
sz

z
T

s
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3.8. Digital PID control system design via pole placement technique

In this approach, we discretize the continuous-time plant first or directly work on a discrete-

time plant to design a digital controller using the well known PID framework.

+

U (z)R (z)

)(sG)( zD
Y (z)

–

E (z)

T

+

U (z)R (z)
)(zG)( zD

Y (z)

–

E (z)

where                                               and D(z) is taken to be a PID controller.( )
⎭
⎬
⎫

⎩
⎨
⎧−= −

s
sGzzG )(1)( 1 Ζ

ZOH
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3.9. PID Control

PID control is widely used in process control and most of industrial control systems. Unknown 

source reports that more than 90% of industrial processes are actually controlled by PID type 

of controllers. PID control consists of three essential components, namely, P (proportional 

control), I (integral control) and D (derivative control).

Proportional Control

A discrete implementation of proportional control is identical to continuous. The continuous is

The discrete is

where e(t) or e(k) is the error signal as given in the feedback block diagram.

pp ksDtektu =⇒= )()()(

pp kzDkekku =⇒= )()()(
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Derivative Control

The continuous derivative control is

The discrete derivative control is

Integral Control

The continuous integral control is

The discrete integral control is

sksDtektu dd =⇒= )()()( &
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T
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Digital PI Control (conventional version)

Digital PI control consists of only P and I actions and is given by

Digital PD Control (conventional version)

Digital PD control consists of only P and D actions and is given by

Digital PID Control (conventional version)
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Digital PID Control (via bilinear transformation)
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where α0, α1 and α2 are design parameters.

Digital PI Control (via bilinear transformation) – the same as the previous version

1)1(2
)1()( 01

1
12 −

+
=

−
+

+=⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛

+
−

= z
z

z
zTkk

s
kkzD i

p

z
z

T
s

i
p

αα

Digital PD Control (via bilinear transformation)
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3.10. Design example:

Consider a car (BMW), which has a weight m = 1000 kg. Assuming the average friction 

coefficient b = 100, design a cruise control system such that the car can reach 100 km/h

from 0 km/h in 8 s with an overshoot less 20%.

Assuming the sampling period T = 0.6 seconds, design a digital PI controller that achieve 

the above specifications.

discretized plant with T = 0.6
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3.11. Discretized plant with digital PI controller:
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The resulting closed-loop transfer function from r to y is given by
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3.12. Desired closed-loop transfer function:

From the design in 3.3, we obtain the desired ζ = 0.7 and ωn = 0.82 in continuous setting, 

which would achieve the design specifications. Using the following chart with T = 0.6

Tn
πω 16.082.0 ≈=

x

2.07.0 jz p +=

The desired poles:
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13.0
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3.13. Determination of the PI controller parameters

Comparing the denominator of the actual closed-loop transfer function

with that of the desired one

we obtain

and a digital PI controller
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Note: we cannot 

do much with the 

numerators of 

these transfer 

functions. It does 

affect the overall 

performance.
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3.14. Simulation of the digital controller with discretized plant

We simulate the digital controller with the discretized plant to see whether the specifications 

are fulfilled in the discrete-time setting:
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Remark: The overshoot is 

slightly larger than the 

design specification. But, 

the settling time meets the 

specification. The 

performance can be fine 

tuned by re-selecting the 

desired pole locations in 

z-plane.
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3.15. Simulation of the digital controller with actual plant

We simulate the digital controller with the actual plant.
Remark: When the control 

law is implemented onto 

the actual continuous-time 

plant, the overshoot and 

the settling time are above 

the same as those 

obtained with the 

discretized system. All 

design specifications are 

met with a sampling period 

T = 0.6 seconds.
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3.16. Disturbance rejection

From the analysis in 2.10, it was shown that a step disturbance can be rejected when the 

controller has an integral action. Since we are using a PI controller, step disturbance should 

be rejected in our design although we haven’t explicitly considered such a property in our 

design. We verify this through simulation by injecting a step function into the plant input. To 

see the effect of the disturbance on the system output, we let the reference to be zero.

0 2 4 6 8 10 12
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time (seconds)

ou
tp

ut
 y

A step disturbance with magnitude = 100

nicely is rejected from the output ! How 

about a ramp disturbance? D.I.Y. 52
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3.17. Remarks on higher order systems

When the given plant has a dynamic order higher than 1 and/or a general PID controller is used, 

the overall closed-loop transfer function from r to y will have an order larger than 2, e.g.,

In this case, we should place the poles of the above transfer function by comparing it to the 

following desired transfer function

i.e., by placing all the rest poles close to the origin, which is the fastest location in digital control. 

Eventually, dynamics associated with the poles close to the origin will die out very fast and the 

overall system is dominated by the pair left. This is left for students to practice in tutorial 

questions.
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3.18. Deadbeat controller design

A unique feature of digital control is that we can design a control law such that the resulting 

system output is capable of following the reference input in a finite number of steps, i.e., in 

finite time interval, which can never be achieved in continuous-time setting. Such a control 

law is called deadbeat controller, which in fact places all the closed-loop system poles at the 

origin. Thus, the desired closed-loop transfer function under the deadbeat control is

The deadbeat control can only guarantee the system output to reach the target reference in 

n steps. The resulting overshoot could be huge and the control input could be very high 

(which is equivalent to that the energy required to achieve such a performance is large). As 

such, deadbeat control is generally impractical and rarely used in practical situations.

nz
zH 1)(desired =
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3.19. Design example:

We now design a deadbeat PI controller for the cruise control system. Recall
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3.20. Simulation results

The system out settles down to the target reference in 2 steps, i.e., 2 x 0.6 = 1.2 seconds 

(very fast). But, it has about 100% overshoot and huge control input. Such a controller 

cannot be implemented in real life, period ! However, there could be applications (such as 

military applications) that deadbeat control might be desirable.
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Homework assignment 1 (hand in your solution next week):

2

7106
)(
)()(

ssU
sYsG ×

==

A typical hard disk drive actuator can be modeled quite accurately as a double integrator:

where y is the displacement of the read/ write head in micrometer and u is actuator input 

voltage in volts. The sampling rate used in a typical hard disk drive servo system is about 

10 kHz, which is equivalent to a sampling period T = 1/10000 = 0.0001 seconds. It is 

required to design an appropriate control law such that the resulting closed-loop system has 

an overshoot less than 25% and a settling time less than 8 milliseconds due to a step

• Design a digital PD or PI or PID controller that meets the above design specifications using the 

emulation method.

• Design a digital PD or PI or PID controller that meets the design specifications using the pole 

placement technique.

Show all the detailed design procedures and simulation results. Use MATLAB and SIMULINK whenever is possible.

reference of 1 micrometer.
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4. Frequency Domain Design
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4.1. Bode diagrams for continuous systems ⎯ A revisit

Bode diagram is the frequency responses (both magnitude response and phase response with 

respect to frequency). Consider a standard unit feedback system:

which has a closed-loop transfer function H(s). Interestingly, if the open-loop transfer function 

D(s)G(s) is not unstable, then its frequency responses (or Bode diagram) can be easily used 

to determine the stability of the closed-loop system H(s). As such, it is often to plot the Bode 

diagram for the open-loop system D(s)G(s). Magnitude & phase responses are defined as:
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4.2. Example: Bode diagrams of the open-loop system in 3.4 & 3.5
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4.3. Nyquist stability theory in continuous systems ⎯ A revisit

Nyquist plot is to draw the frequency response of the open-loop system in a single complex 

plane instead of separating the magnitude and phase responses into two individual diagrams 

as in the Bode plot.
Nyquist Stability Criterion

Let N be the number of clockwise encirclements 

of the point −1 in the Nyquist plot, P be the 

numbers of unstable poles of the open-loop 

system D(s)G(s). Then, the number of unstable 

pole of the closed-loop system H(s), say Z, is 

given by Z = P + N.

If D(s)G(s) is stable, i.e., P = 0, then N has to 

be zero in order to guarantee the stability of the 

closed-loop system H(s).
61
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–1

PM

GM
1

4.4. Gain and phase margins in the Nyquist plot

Assuming the open-loop system is stable, the gain margin and phase margin can be found 

from the Nyquist plot by zooming in the region in the neighbourhood of the origin. 

o180)()(  such  that  is  where,
)()(

1GM =∠= ppp
pp

jGjD
jGjD

ωωω
ωω

Mathematically,

1)()(  such  that  is  where,180)()(  PM =+∠= ggggg jGjDjGjD ωωωωω o

Remark: Gain margin is the maximum 

additional gain that can be applied to 

the closed-loop system such that it will 

still remain stable. Similarly, phase 

margin is the maximum phase that the 

closed-loop system can tolerate such 

that it will still remain stable.
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4.5. Gain and phase margins in the Bode diagram
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4.6. Bode diagram for discrete systems

Bode diagram for discrete systems consists of both the magnitude and phase responses of a 

discrete system, which are defined as follows:
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Example: Let us draw Bode 

diagram for the open-loop 

system in 3.14, where
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Note: Both magnitude and phase 

responses repeat after 2π/T.
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4.7. Frequency domain design specifications

The time domain design specifications can be translated into the requirement on phase margin 

and some other frequency domain properties. In particular, we have the following relationships 

for typical second order systems:

o
v
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h
o
o
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s
n tζ

ω 6.4
≅settling time ng ωω ≅frequency crossover gain  loop-open
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4.8. Frequency domain design methods

There are three commonly used frequency domain design methods, namely Lead Compensator, 

which is an approximation of PD control, Lag Compensator, which is an approximation of PI 

control, and lastly the PID Compensator. The frequency domain design methods for continuous 

systems and discrete systems are basically the same. For discrete systems, the idea is to use a 

so-called w-transformation (actually it is a bilinear transformation) to transform the discrete 

system into a w-domain system, which is pretty much the same as a continuous system. 

Everything we have learnt from the compensation design for continuous systems can be directly 

applied to yield a necessary compensator in w-domain, which can be transformed back to a 

discrete version through an inverse w-transformation (= an inverse bilinear transformation).

given G(z)
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design a compensator D(w) using a continuous method to meet all specs

1
12)()(

+
−

⋅=
=

z
z

T
w

wDzD



67

Prepared by Ben M. Chen

4.9. Lead compensation

Lead compensation has a transfer function of                    . Clearly for 

small α, it is an approximation of PD control.

The frequency response of a typical lead compensator is shown in the figure below:

1,
1

1)( <
+
+

= α
ατ
τ

s
sKsD

Here parameters K, φmax and ωmax are to be determined from design specifications.
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4.10. Uncompensated and lead-compensated systems

The Kay Idea

The key idea using the lead 

compensation is enlarge the 

gain crossover frequency 

and add additional phase. 

Thus, if the desired gain 

crossover frequency is larger 

than that of KG(s), the lead 

compensation should be 

used, period. 
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4.11. Lead Compensation Design Procedure

Step 1: Determine open-loop gain K to satisfy requirements on steady state error.

Step 2: Find new open-loop cross over freq. from desired 

ωn=ωmax, the point the phase lead is added.

Step 3: Evaluate the PM of KG(w) at the desired cross 

over frequency ωn.

Step 4: Allow for some extra PM (5° to 12°), and determine 

the needed phase lead φmax.

Step 6: Verify the design using MATLAB. Redo if necessary.

αω
τ

φ
φα

maxmax

max 1,
sin1
sin1

=
+
−

=Step 5: Compute



70

Prepared by Ben M. Chen

4.12. Design example

An electric motor can be modelled with a sampling period T = 0.1s as follows:

Design a digital control system with a lead compensator such that the resulting system output 

tracks a step reference with a settling time less than 1s with an overshoot less 20% and 

steady state error less than 12.5% .

Converting this to w-plane (see 4.8), we have
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Bode Diagram
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Finally, we obtain the lead compensator in w-domain:
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which can be converted back to z-domain using the inverse bilinear transformation (see 4.8)

The above the digital lead compensator. However, nothing is certain without verification. We 

need to first verify our design in frequency domain. More importantly, it should also meet the 

design specifications in time domain.
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Bode Diagram
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4.13. Verification in w-domain (pseudo s-domain)

The resulting gain crossover frequency is 9.2 rad/sec and PM=180-127 = 53°. Perfect !
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4.14. Verification in z-domain
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The resulting gain crossover frequency is 8.5 rad/sec and PM=50°. Perfect !
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why?

see 4.6
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4.15. Verification in time domain
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The steady state error = 12.5%, settling time = 1s and overshoot = 26 % (almost there) !
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state 
error

settling 
time

overshoot

rise 
time

Simulink 
block
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4.16. Lag compensation

Lag compensation has a transfer function of                     . For large α, it 

is an approximation of PI control.

The frequency response of a typical lag compensator is shown in the figure below:

1,
1

1)( >
+
+

= α
ατ
τα

s
sKsD

Kay Idea: Lag 

compensator 

reduce the gain 

crossover 

frequency to 

where the 

phase margin 

required. 
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4.17. PID Compensation

Note that the lead compensation is the approximation of PD control and the lag compensation 

approximates PI control. PID compensation is nothing more than the combination of lead 

compensation (PD) and lag compensation (PI), which has the following frequency responses:

Design procedures for the lag compensation and PID compensation can be found in almost 

any textbook on introduction to classical control including class notes for EE2131. Students 

who forget these design procedures are urged to dig out the old notes and textbooks and ...
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Homework assignment 2 (hand in your solution next week):

2

7106
)(
)()(

ssU
sYsG ×

==

Reconsider the hard disk drive servo system in the Homework Assignment 1, i.e.,

where y is the displacement of the read/ write head in micrometer and u is actuator input 

voltage in volts. The sampling rate is again chosen to be 10 kHz, which gives a sampling 

period T = 1/10000 = 0.0001 seconds. It is required to design an appropriate compensator 

such that the resulting closed-loop system has an overshoot less than 25% and a settling 

time less than 8 milliseconds as well as a steady state error to be less 1% due to a step

• Can you design a digital lead compensator that would achieve the above design specifications?

If your answer is yes, please give your solutions together with all detailed derivations and simulation results. If 

your answer is no, please give your reasons together with detailed justifications. Again, make use of MATLAB

and SIMULINK whenever is possible.

reference of 1 micrometer.
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5. State Space Approach
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5.1. Why state space?

State variable technique is to convert transfer function system representations into some first 

order difference equations (in a matrix form), which many advanced matrix theories and 

computational tools can be applied to. Thus, control system design using the state variable 

technique can be done in a very systematic fashion and many well-developed commercial 

software tools such as MATLAB can be readily and easily utilized. Solutions to the control 

problem can be done in a straightforward manner.

There are two important equations associated with such a technique, the state equation and 

the output equation, which completely characterized the properties of a linear system. As we 

have seen in EE2008, any linear time-invariant system can be represented by a state space 

model with four constant matrices regardless its dynamical order. As such, most advanced 

control theories are and continue to be developed in the state space setting. The main idea of 

this section is to given a brief introduction to this technique.
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5.2. State space representation of discrete systems

Consider the simplest discrete system (1st order) with a transfer function in the z-domain

0

0

)(
)()(

az
b

zU
zYzD

+
== ( ) )()( 00 zUbzYaz =+

)()()1( 00 kubkyaky =++

Define a so-called state variable )()( kykx =

)()()()()1()1( 0000 kubkxakubkyakykx +−=+−=+=+

⎩
⎨
⎧

=
+=+

)()(
)()()1(

kky
kukk

xC
BxAx

⎪⎩

⎪
⎨
⎧

=

+−=+
⇒

)()(

)()()1( 00

kxky

kubkxakx

It is trivial ! Nonetheless, the same idea can be used to convert more complicated transfer 

functions into a corresponding state space representation… 
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5.3. Let us consider a 2nd order discrete system with a transfer function in the z-domain
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5.4. Next, consider another type of 2nd order systems with a transfer function in the z-domain
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5.5. We now consider a general system characterized by
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Using the partial fraction technique, we can rewrite this general system as
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The state space representation of the complicated system is then given by
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and [ ]kCCCC L10= Fortunately, function tf2ss in MATLAB can do this for us.
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5.6. Example

Convert the discrete transfer function in 4.12 into a state space representation.

45.04.1
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Recall the formula we have derived in 5.4, i.e.,
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⎦

⎤
⎢
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⎡
−

= DCBAExercise: Verify that for this example,

DBAIC +−= −1)()( zzG

You can verify this using MATLAB. But, show that the above identity is true in general.
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5.7. Example

Now, convert the following discrete transfer function into a state space representation,

Again, use the formula in 5.4, i.e.,
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Exercise: Verify that using MATLAB

that the eigenvalues of A are exactly

the poles of G(z) or the roots of the denominator of G(z). Prove that it is true in general.
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5.8. Digital control system design with state feedback

Once we obtain a state space model for the discrete system, the control system design in the 

state space setting is straightforward and systematic. We know by now any system can be 

represented as

Assume that the state variable, i.e., x(k), is measurable. We can design a state feedback 

controller that meets design specifications. The controller has the following structure:

⎪⎩

⎪
⎨
⎧

+=
+=+

)()()(
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kukk

DxC
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)()()( krJkku +−= xF
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Substituting this into ( ** ), we have
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The design procedure is very straightforward:

• Find an F is to such that the eigenvalues of A – BF are in the locations, which 

would yield desired overshoot, settling time, etc. (how? Pole placement…)

• Find J such that the static gain or DC gain from r to y equal to unity.

5.9. State feedback design via pole placement

The closed-loop system ( 3* ) under the the state feedback control again can be written as

⎪⎩
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,
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which has a new transfer function
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11
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5.10. Design example

Re-consider the example in 4.12. The motor modelled with a sampling period T = 0.1s has a 

transfer function:

We are now to design a digital control system with a state feedback control law such that the 

resulting system output tracks a step reference with a settling time less than 1s with an 

overshoot less 5% and zero steady state error.

It was done in 5.6 that the state space description of the above system is given by
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Step 0: Translate the design specs into the requirements on desired pole locations:

x
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Step 1: Find an F is to such that the eigenvalues of A – BF are in the locations. Let
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In real life, the function place in MATLAB can do all the tedious calculations for us…
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Step 2: Find J such that the DC gain from r to y equal to unity. Compute the DC gain for
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We finally note that all computations in the above design can be easily done using MATLAB… 

Let us now verify our design use MATLAB SIMULINK.

Overshoot = 2.5% and Settling time < 1 s

Perfect! This is the beauty of the state space design!
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5.11. State estimator

Note that in the state feedback design, we have assume the state variable x of the plant being 

available for feedback (see 5.8). Unfortunately, this is usually not the case in most practical 

situations. In real life, usually, we can only access to the system output, i.e., y, instead. In order 

to implement the beauty of the state feedback control, we will have no choice but to estimate 

the state variables using only the system output and hope the implementation using such an 

estimation works, which turns out indeed the case. As such, implementing a state feedback 

control through a state estimator becomes the standard approach in modern control nowadays.

The first question one would ask is: Can we estimate the state variables using only system 

output? The answer is yes, fortunately, for most of systems and thus we will take it as doable for 

all situations considered in our class. The second question comes naturally: How can we 

estimate the state? The answer is again pretty simple — copy or duplicate of the original 

dynamical equation.
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5.12. Estimator design

Let’s be a copy cat for a while. Consider a system described by a state space representation:

)()()(),0(),()()1( 0 kukkykukk DxCxxBxAx +==+=+

Of course, if the state x is unknown, usually, the initial condition x0 is unknown too. In order to 

estimate the state x (using a computer), it is very natural to follow its dynamics. Thus, let us try 

( $ )

)0(ˆˆ),()(ˆ)1(ˆ 0 xxBxAx =+=+ kukk ( 2$ )

Will this work? Let us see whether the estimated state will follow the true state. Define the 

estimation error as the difference between the true state and the estimated state, i.e.,

)()()(ˆ)()()1(ˆ)1()1(

)(ˆ)()(
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eABxABxAxxe

xxe

=−−+=+−+=+
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Will this error e(k) go to zero as k progresses?
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5.13. Example

Recall the motor example (see 5.6), i.e.,
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Computer simulation show on the next page clearly show for this example, the estimation 

error goes to zero as k is getting larger and larger. It works !
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5.14. Another example

Let us consider another 2nd order example, which is slightly modified from the previous one
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Computer simulation show on the next page clearly show for this example, the estimation 

error goes to infinity as k is getting larger and larger. It does not work !
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5.15. What is going wrong?

The problem is pretty straightforward. The system in 5.13 is stable while the one in 5.14 is 

unstable. These can be seen by computing their poles or the eigenvalues of matrix A.
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To fix the problem, we will have to make use of information we can get from the system, i.e., 

the system output y. We modify the estimator dynamical equation in ( 2$ ) as follows:

)0(ˆˆ),()(ˆ)(ˆ)],(ˆ)([)()(ˆ)1(ˆ 0 xxDxCKBxAx =+=−++=+ kukkykykykukk

Exercise: Show that the error dynamical equation for the system ( $ ) in 5.12. 

with the above estimator is given by

We can then choose an appropriate estimator gain K to make A – KC stable.

)(ˆ)()( where),()()1( kkkkk xxeeKCAe −=−=+
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5.16. Deadbeat estimator

In principle, we can choose the estimator gain K such that the eigenvalues of A – KC can 

be placed anywhere we like so long as they are stable. If we place eigenvalues of A – KC

all in the origin, then the resulting estimator is called an deadbeat estimator, which is capable 

of rendering the error to zero in n steps, where n is the order of the given system. We now 

proceed to design a deadbeat for the motor in 5.13, i.e.,

Let
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Exercise: The MATLAB function F = place(A,B,poles), where poles is a 

vector containing the desired poles, is meant for finding state feedback gain F. 

Show that the same function can be adopted to find the estimator gain K, where 

K = place(A’,C’,poles)’

Then, design a deadbeat estimator for the unstable system given in 5.14 and 

verify your result by computing the estimation error up to 3 steps. 
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5.18. Control system design with state feedback and estimator

Instead of implementing the control law with a state (not available) feedback, we can realize it 

by replacing the true state with the estimated state thru an estimator, which only requires the 

information of the system output. Such a control system is practically feasible and has 

become the standard approach in modern control theory using state space approach. To 

summarize, we recall 
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5.19. Block diagram of the state space control system
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5.20. Summary of control system design procedure using estimator

Step 1: Determine the desired closed-loop pole locations from the given design specs.

Step 2: Find the state feedback gain F (row vector) such that the eigenvalues of A – BF

coincides with the desired pole locations obtained in Step 1.

Step 3: Find the constant gain J such that

Step 4: Find the estimator gain K (column vector) such that the eigenvalues of A – KC are 

in pre-specified locations (or place all at 0 otherwise to yield a deadbeat estimator).

Step 5: Compute

Step 6: The digital controller in state space form: 

.1]))([( 1 =++−− − JDBBFAIDFC
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Remark: All computations in Steps 2 to 6 can be done in MATLAB.
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5.21. Design example

Re-consider the example in 5.10. The motor modelled with a sampling period T = 0.1s has a 

state space representation (see 5.10):

We are now to design a digital control system with a deadbeat estimator feedback control law 

such that the resulting system output tracks a step reference with a settling time less than 1s

with an overshoot less 5% and zero steady state error.

Steps 1 to 3 were done in 5.10, which gave

Step 4 was done in 5.16, which gave a deadbeat estimator gain 
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Steps 5 & 6: Compute the controller in the state space form:

Let us verify our design again using MATLAB SIMULINK…
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Our design is perfect. This once again shows the beauty of the state space approach. 
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Homework assignment 3 (hand in your solution to my office next week):

2

7106
)(
)()(

ssU
sYsG ×

==

Reconsider the hard disk drive servo system in the Homework Assignments 1 and 2, i.e.,

where y is the displacement of the read/ write head in micrometer and u is actuator input 

voltage in volts. The sampling period is chosen to be T = 1/10000 = 0.0001 seconds. It is 

required to design an appropriate compensator such that the resulting closed-loop system 

has an overshoot less than 5% and a settling time less than 2 milliseconds due to a step 

reference of 1 micrometer.

Design a digital control system using the state space approach with a deadbeat estimator. Show all your design 

procedures together with simulation results. Again, make use of MATLAB and SIMULINK whenever is possible.

By now, you have designed the same system using four different approaches. Please comment the advantages 

and disadvantages of these methods. Which one would you recommend?

~~ THE ~ END ~~




