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Course outline — Part 2

e Introduction to control systems; control system examples; basic principle of

feedback control; brief review of control development history.

« Digital control systems design: Time domain specifications; Dynamic response
to unit step and ramp functions. Stability of discrete time systems; Digital PID

design; Pole placement design.

«  Digital Control system design: Frequency domain specifications; Gain and

phase margins; Compensator design with bilinear transformations.

«  Digital control system design through state space approach: State space
description of discrete systems; State feedback design via pole placement;

State estimator design; Controller design with state estimator.
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Textbook — Primary selection

«  GF Franklin, JD Powell and ML Workman, Digital Control of Dynamic Systems,
3'd Edition, Addison Wesley, 1998.

Homework assignments

«  There will be 3 homework assignments for this second part. The homework

assignments will be graded and credited as 10% of the final grade.

Additional note on supporting software

«  Students are expected to be familiar with the computational software tool

MATLAB and its package SIMULINK.
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1. Introduction & Revision



1.1. What is a control system?

_______ o " - o W - - — = =
" - ”_II\IDL;I' I« aircraft, missiles, | ; Information |
Desired T [ I I economic systems, * | aboutthe |
" ‘ . .« Difference: | | tothe I o
" performance: o \ | system | [ cars, etc « | system: |
| REFERENCE »+_ ERROR | — - === A1 output |
s = 2 o= = = = < === = =

“ System to be controlled {

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key Issues: 1) How to describe the system to be controlled? (Modelling)

2) How to design the controller? (Control)
5
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1.2. Some control systems examples:

REFERENCE

Desired Government
. conomic System
Performance Policies Yy
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1.3. A live demonstration on control of a coupled-tank system

through Internet based virtual laboratory in ECE Dept, NUS

Baffle

N

A

Tank #1 Tank #2

Ql:ll “I" Q3 HHLQOE

Figure 1 Diagram cof coupledtank centrol apparatus

The objective is to control the flow levels of two coupled tanks. It is a reduced-scale

model of some commonly used chemical plants.
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1.4. Modeling of a physical system —A simple mechanical system

..... » X acceleration

A cruise-control
system friction

force bx
m— & —

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied to an

— x displacement

force u

object with a mass m and a is the acceleration, we have
b. u

U —bX = mx & X+—X=
m m

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can be

written as a 1st order ODE with respect to speed v = X :

v+ Bv _ U« model of the cruise control system, u is input force, v is output.
m m a
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1.5. A cruise-control system:

REFERENCE INPUT

oS C
+ L |

OUTPUT

[
»

A 4

v

100 km/h —
—O0O—_+ |
+ I
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1.6. Re-express ODE models using Laplace transform

Recall that the mechanical system in the cruise-control problem can be represented by an

ODE:

mv +bv =u

Taking Laplace transform on both sides of the equation, we obtain
Limv+bvj=L{u} = L{mv}+L{bv}=L{u}

= msL{v}+bL{v}=L{u} = msV(s)+bV(s)=U(s)

OSSN
U(s) ms+Db =

e "

This is called the transfer function of the system model

= (ms+b)V(s)=U(s) =

10
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1.7. A cruise-control system in frequency domain:

REFERENCE INPUT

oS C
I

OUTPUT

[
»

A 4

R (s) U (s)
|
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In general, a feedback control system can be represented by the block diagram below: ~

R (s) E (s) U () Y (s)

o( ) > G
N T— D(s) (s)

Given a system represented by G(s) and a reference R(s), the objective of control system

y

\ 4

v

design is to find a control law (or controller) D(s) such that the resulting output Y(s) is as
close to reference R(s) as possible, or the error E(s) = R(s) —Y(s) is as small as possible.
However, many other factors of life have to be carefully considered when dealing with real-

life problems. These factors include:

uncertainties
disturbances noises

R (s) E (s) i
O D(s) s G(s) T
+ T— U (s) 7 Y (s)

nonlinearities

y

A\ 4

v
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1.8. Brief view of control techniques:

There are tons of research published in the literature on how to design control laws for various
purposes. These can be roughly classified as the following:

¢ Classical control: Proportional-integral-derivative (PID) control, developed in 1940s and used
for control of industrial processes. Examples: chemical plants, commercial aeroplanes.

¢ Optimal control: Linear quadratic regulator control, Kalman filter, H, control, developed in
1960s to achieve certain optimal performance and boomed by NASA Apollo Project.

¢ Robust control: H_ control, developed in 1980s & 90s to handle systems with uncertainties
and disturbances and with high performances. Example: military systems.

¢ Nonlinear control: Currently hot research topics, developed to handle nonlinear systems
with high performances. Examples: military systems such as aircraft, missiles.

¢ Intelligent control: Knowledge-based control, adaptive control, neural and fuzzy control, etc.,
researched heavily in 1990s, developed to handle systems with unknown models.
Examples: economic systems, social systems, human systems. 13
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1.9. Classical feedback control in continuous setting

Let us examine the following block diagram of control system:

R (s) E (s) U () Y (s)

»() 2 G
N T— D (s) (s)

Recall that the objective of control system design is trying to match the output Y(s) to the

reference R(s). Thus, it is important to find the relationship between them. Recall that

Y (s)
U (s)

Similarly, we have U (s) = D(s)E(s),and E(s) = R(s)—-Y (s). Thus,

G(s) = = Y (s)=G(s)U(s)

Y (s) = G(s)U (s) = G(s)D(S)E(s) = G(s)D(s)[R(s) - Y (s)]
Y(s)=G(s)D(s)R(s)-G(s)D(s)Y(s) = [1+ G(s)D(s)]Y (s)=G(s)D(s)R(s)

= | H(s) = Y(s) __G(s)D(s) | Closed-loop transfer function from R to Y.
| R(s) 1+G(s)D(s) | 14
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Thus, the block diagram of the control system can be simplified as,

R Y
(8) H(s) = G(s)D(s) (8)
r(t) 1+G(S)D(S) y (1)

The problem becomes how to choose an appropriate D(s) such that H(s) will have desired

properties. Furthermore, we have

~_G(s)D(s)
1+G(s)D(s)

R(s)
1+G(s)D(s)

E(s):R(s)—Y(s):R(s)—H(s)R(s):{l }R(s):

The problem is equivalent to finding an appropriate control law D(s) such that the resulting
error function e(t) goes to zero as quick and as smooth as possible, which is the same as
saying that the output y(t) is tracking the given reference r(t) as quick and as smooth as
possible. In our class, we will mainly focus on the cases when r(t) is either a step function

or a ramp function.
15
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1.10. Design a digital controller — from continuous to digital
There are two ways to design a digital controller or a discrete-time control system:

«  Follow whatever we have learnt in EE2010 or EE2131 to design a continuous-

time controller and then discretize it using ZOH or bilinear transformation or any

discretization technigue to obtain an equivalent digital controller.

R (s) E (s) U (s) Y (s)
* D(s)  G(s) >
A
_____________________ 6
Ao, V(s
— D(Z) _l_ »  G(s) >

....................................................

The above design works very well if sampling period T is sufficiently small. 16
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Alternatively, one could discretize the plant first to obtain a sampled-data system
or discrete-time system and then apply digital control system design techniques

to design a digital controller:

2 ) - ) 0 ZOH o

AT— b ()} —| T F—{eel—" - :
A

R (2) E (2) U (2) v Y (2)

-O——{ D(2)
+ T_

It should be shown in Part 1: G (z) = (1— 2 )Z{&} (Show this as an exercise !)

y

v
Q)
—~
N
~—
4

S
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1.11. Why digital control?

«  Control systems in continuous-time setting in the past are usually implemented
using analogue devices such resistors, capacitors, inductors and operational
amplifiers together with some necessary mechanical components. These devices
are neither economical nor durable. The advances in computer technologies
make the implementation of control systems in discrete-time setting (i.e., digital

controllers) much more efficiently and economically possible.

«  Most of control systems nowadays are implemented using either computers such
as PCs or Digital Signal Processes (DSP), which are specially designed to carry
out computations related to control algorithm realizations. The advantages of
digital controllers using PC or DSP are obvious — it is fast, reliable, reusable and

can be modified thru simple recoding whenever needed.

18
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1.12. Feedback control in discrete setting

Let us examine the following block diagram of control system:

R (2)

E (2)

U (2)

+

Note that

D(z)

Y (2)

G(z)

G(2) =

Y(z)

= Y(2)=G(2)U (2)

Similarly, we have U (z) = D(z)E(z),and E(z) =R(z)-Y (z). Thus,

Y (2) = G(2)U (2) = G(2)D(2)E(2) = G (2)D(2)[R(2) - Y (2)]

Y(z2)=G(z2)D(z2)R(z)-G(z)D(2)Y(z) = [1+ G (z)D(z)]Y (z)=G(z)D(z)R(2)

= | H(z)=

Y(2) _

G(2)D(7)

R(z)

1+G(z)D(z)
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Thus, the block diagram of the control system can be simplified as,

R Y
@) JH(2) = G(z)D(z) @) :
r (K) 1+G(z)D(2) y (K)

The problem becomes how to choose an appropriate D(z) such that H(z) will yield desired

properties. As in the continuous-time case, we have

G(z)D(z)
1+G(z)D(2)

R(z)
1+G(z)D(z)

E(z):R(z)—Y(z):R(z)—H(z)R(z):{l— }R(z):

The problem is equivalent to finding an appropriate control law D(z) such that the resulting
error function e(k) goes to zero as quick and as smooth as possible, which is the same as
saying that the output y(k) is tracking the given reference r(k) as quick and as smooth as

possible. In our class, we will mainly focus on the cases when r(k) is either a step function

or a ramp function.
20
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2. Design Specifications
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2.1. Time domain design specifications:

Recall the unit feedback control system with disturbance w,

: .............................................. : r e + y
-« steady state accuracy D(2) + 'é_’ G(2)

 stability

A 4

AL time ove rshoot M,

0.9

.+ overshoot o

e settling time

il

E-disturbance rejection ‘

..............................................

22
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2.2. Steady state accuracy — Continuous systems

Case 1. If r(t) Isa unit step, R(s) = % by the final value theorem of Laplace Transform

e(e0) = lim SE (s) = lim s 1 1 _ 1 _ 1 proportional
o 507 s 1+G(s)D(s)  1+G(0)D(0)  1+(K, ) eror constant

Obviously, we need the proportional error constant to be infinity, which implies G(s)D(s)

has at least a factor of 1/s (TYPE | SysTEm) in order to make e(co) zero. If K is a finite

scalar, the open-loop system G(s)D(s) is said to be a TYPE 0 system.

Case 2: If r(t) is a unit ramp, R(s) = Siz by the final value theorem

e(w0) = Islirg) SE(s) = Islinos' 32 '1+G(5)D(S) - Lm sG (s)D(s) ) @

______________________________________________

..............................................

Similarly, we need the velocity error constant to be infinity, which implies G(s) D(s) has

at least a factor of 1/s? (TYPE Il SYSTEM) in order to make e(cc) zero. 23
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2.3. Steady state accuracy — Discrete systems

Case 1: If r(k) isa unit step, R(z) = il by the final value theorem of z-Transform

z 1 - 1 a1
z-1 1+G(z)D(z) 1+G@)D@) 1+K,

e(w) = lim (2 ~1)E(2) = lim (2 1) -

Similarly, as in the continuous-time case we need the proportional error constant K = o,
.e., G(z)D(z) has at least a factor of 1/(z—1) (TYPE | SYSTEM) in order to make e(oo) zero. If

K, Is a finite scalar, the open-loop system G(z)D(z) is said to be a TyPE O system.

Case 2: If r(k) is a unit ramp, R(z) = by the final value theorem

2 1

Tz 1 - T 1
(z-1)2 1+G(z2)D(z) lim (2 -1)G(2)D(2) K

e(w) = Iziﬂ(z -1)-

v

Similarly, we need the velocity error constant K, = oo, which implies G(z)D(z) has at

least a factor of 1/(z—1)? (TYPE Il SYSTEM) in order to make (o) zero. ”
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2.4. Stability — Continuous systems

A continuous-time system is said to be stable if its denominator of the system has no roots
or poles with a positive real part. It is unstable if it has poles or roots with a positive real part.

In particular,

Stable

Re(s)

25
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2.5. Stability — Discrete systems

A discrete-time system is said to be stable if its denominator of the system has no roots or

poles outside unit circle. It is unstable if it has poles or roots outside unit circle. In particular,

Stable

) | Marginally Stable

\ 4

Unstabie

26
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2.6. Behavior of continuous 2" order systems with unit step input

Consider the following block diagram with a standard 2nd order system,

R(s)=1/s 2 Y (s)

@
*IH (s) = — L >
r=1 S°+2¢w, S+ o,

A 4

The behavior of the system is as follows:

2.0

j: { The behavior of the system is
” fully characterized by ¢, '
G :u | which is called the damping
ratio, and o, , which i called
n:; the natural frequency. i
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2.7. Rise time, overshoot and settling time — Continuous systems

100 § !.-_ ................................ . ............ .
90 [\ i M P g %
o\ £ >06]|1- !
_ N N 100 ;
R(s) =1/s o> Y (s) | RS I
—_— H (S) _ n s . 60 -
2 2 < 50
r=1 S°+20w .S+ w; =
30
"
”(J.E} 0 0.4 ().€ 0.8 1.0
I overshoot | M
| l +1%
I / ! \ ™ —‘_i——
rise time
SR I _
't~ 18 ot . .
= | 5 .6
SR k .|| 19 settling time t=——
| J 5@
28
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1 L=

; > = 20T
-1.0 -0.8 =0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
z = plane loci of roots of constant { and w,,
S“_“_;wniiwnvl_f _
5 = Ts rk =1 | 1-z)1-7.) y (K)
T = sampling period > H ( Z) — p p :
| (Z_Zp)(z_zp) ;
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2.9. Rise time, overshoot and settling time — Discrete systems

Let us verify the example given on the previous page using MATLAB SIMULATION to check

whether the resulting discrete-time system indeed produces pre-specified overshoot and

settling time or not. The resulting discrete-time system is given by

(1-0.25— j0.48)(1-0.

25+j0.48)  0.7929

H(z)=

(z—0.25— j0.48)(z—0.25+ j0.48) 7% —0.5z +0.2929

1.4

|
0.8~~~ 4

|
T
|

*******************************************

0.6~~~

output y

0.4F -~

0.2F -1

-0.2

*********************************************

——————————————————————————————————————————————

777777777777777777777777777777777777777777777

777777777777777777777777777777777777777777777

4 6 8 10 12 1
Time (seconds)

.........................................................................

........................................................................

e Simulation block in SIMULINK

0.7939 ]
E 72.0.52+0.2929 o
Step Example Scope
30

4
Prepared by Ben M. Chen



2.10. Disturbance rejection

Recall the block diagram below. We set the reference r = 0 for simplicity and for the study of

the effects of the disturbance w (unwanted signal) on the system output.

___________________________________________________________________

w . Consider the case when w is a unit

r=0 ¢ e y .
T D(2) — G(2) » = Step function. We have
+ ¥ — + |

y() = lim(z-1)Y (2)

 Clime-1)—2.— 8@
L 71 z-1 1+ D(2)G(2)
./ Exercise: Show that the output and the disturbance - - G(1)
are related as follows: 1+DOG)
In order to make y(c0) = 0, we need
V(@) =——8 () )
1+ D(2)G(z) ' either G(1) = 0, which is impractical

where Y(z) and W(z) are respectively z-transforms (why?), or D(1) = oo, i.e., it has a

"‘"»\Qf yand w. factor 1/(z —-1). 31
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2.11. Other considerations

disturbances noi_ses
R (2) _ E (2) E =
> » D ( 7 ) y  G(z k4 >
o1 - U @) 7 Y @)
nonlinearities

«  Plant nonlinearities — nonlinear plants — nonlinear control

«  Plant parameter uncertainties — robust control

«  Control input nonlinearities (control saturations) — nonlinear control
«  Sensor nonlinearities — nonlinear control

«  Noise rejection — robust control, optimal control

These issues are too complicated to be considered in this third year level course...

Come back for postgraduate studies if you are interested in these topics.
32
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3. Time Domain Design

33
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3.1. Digital control system design using emulation

In this approach, we design a continuous-time controller that meets all design specifications

and then discretize it using a bilinear transformation or other discretization technique to obtain

an equivalent digital controller.

R (s) E (s) U (s) Y (s)
O 2 D(s) " G(9) >
+ —
"
e Voo
R(s) - 208 Y(s)
Yo L@ I 1 66 —

....................................................

This method works if the sampling rate is 30 times faster than the system bandwidth. Further

refinement is necessary for the case where the sampling rate is 6 times the bandwidth.

34
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3.2. Design example:

Consider a car (BMW), which has a weight m = 1000 kg. Assuming the average friction
coefficient b = 100, design a cruise control system such that the car can reach 100 km/h

from O km/h Iin 8 s with an overshoot less 20%.

r =100 u G(s) 1 y=vV
—» > S)= >
+ D(S) ms+Db

Let us try a Pl controller, i.e., D(s) =k +£. The first component is proportional to the error
S

and the second consists of an integration action. Following results derived earlier, we have

Y(s)  G(s)D(s) 0.001k s + 0.001k, _ )
R(s) 1+G(s)D(s) s° +(01+0001k )s+0001k (*)

................................................................................................................................

35
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3.3. Deriving {and w, from the design specifications

R(s)=1/s 2 Y (s)
= H(s) =— . > >
r=1 S°+20w, S+ w;
overshoot

rise time

| /!!\l
« g ~—

:1![1, %

100

90

oU

1% settling time

= desired closed - loop transfer function H .. (S) =

s2+1.15s+0.67  °
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3.4. Calculating desired controller parameters

Recall from ( * ) the closed-loop transfer function of the cruise control system with the PI

control law, I.e.,

H(s)=Y() _ G(ID(s) _ 0.001k s + 0.001k;
R(s) 1+G(s)D(s) s°+(0.1+0.001k,)s +0.001k,

...........................................................................................................................................

....................................................................

H desired (S) =

......................................................................................................................................................

1.05s+0.67
s®+1.155+0.67

and the resulting closed - loop transfer function H(s) =
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.........

T
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[ I

o

]
Scope

1
1000s+100
Flant

OF==—=""F--—-L - -

om
°
£
[0}
-
=
S
=)
a -
=

106505+670
5
Fl Controller

ling

sett

=100

Step

A indino

3.5. Verification through SIMULINK

0

10"

10"

0

1
Frequency in rad/sec

12

10

38

Time (seconds)

Prepared by Ben M. Chen



3.6. Digital controller with a sampling rate 30 times the bandwidth

We first discretize the continuous-time PI control law with T = 1/(30x0.3) ~ 0.1 seconds

using a bilinear transformation method, i.e.,

D(z) = D(s)| _2

]

Step =100

————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

”””””””””””””””””””””””””””””””

_— e

.............................................

| | Performance is about

. the same as the

Digital controller ZOH

10505 +670 |
Z+ S _2 7.1 100—77777/,;,:
=& s 7
1050 — 2(z-1 1+ 670 >
Tlz+1 A
Z(Hj o \
T\z+1 A0 of===-- ‘
~ 1083.5z7 -1016.5 all
z-1 0
1083.52-1016.5 1
Y ) ! d —I_LL 1000s+100
Plant Scope

. continuous-time case.
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3.7. Digital controller with a sampling rate 6 times the bandwidth

We now discretize the continuous-time PI control law with T = 1/(6x0.3) =~ 0.6 seconds using

the bilinear transformation method, i.e.,

................................................................................ 140 ; ; ; ; ‘
1050s + 670 g | i 1
D(z) = D(S)\S 2(2—1) = S I N A . ]
T\ 711 S S=2(Z—1j [ N | | |
Uiz 100~/ 3
2 (z-1 | 3 i ‘ 1
1050 +670 S BOL ERRREES -
0.6\z+1 E | | |
2 (2-1 D A e .
0.6\z+1 dof T S -
12517849 ol SRR R S —_— |
_______________________ z=1
0O 2 4 6 8 10 12
Time (seconds)
——— 1 __ pee— _
| s ZE ..._fL‘__.. — > Performance is not as |
Step =100 Digital controller ZOH Plant Scope : gooq as the .
. continuous-time case.

40
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TANUS
95 s
3.8. Digital PID control system design via pole placement technique

In this approach, we discretize the continuous-time plant first or directly work on a discrete-

time plant to design a digital controller using the well known PID framework.

o c o R / o
4T— D(z) — T F—c)— -~ .
A
R (2) E (2) U (2) v Y (2)
—O—— D(2) | G(2) ,

where G(z) = (1— zl)Z{@} and D(z) is taken to be a PID controller.
S
41
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3.9. PID Control

PID control is widely used in process control and most of industrial control systems. Unknown
source reports that more than 90% of industrial processes are actually controlled by PID type
of controllers. PID control consists of three essential components, namely, P (proportional

control), | (integral control) and D (derivative control).
Proportional Control

A discrete implementation of proportional control is identical to continuous. The continuous is

———————————————————————————————————————————————————————

The discrete is

—————————————————————————————————————————————————————————

where e(t) or e(k) is the error signal as given in the feedback block diagram.
42
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Derivative Control

The continuous derivative control is

————————————————————————————————————————————————————————

_________________________________________________________________________________________________

— — — _l —
u(k) =k, AP Bls—) = D(z) =k, 1-2 :de_l
_______________________________________________________________________________________ Tz
Integral Control
................... —_——
: : : 1
The continuous integral controlis |  u(t) =k je(t)dt = D(s) =k, <
to
The discrete integral control is
(k) =u(k-1)+kTe(k) = D(z)=—al__ K2
1-2 z-1

43
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Digital PID Control (conventional version)

______________________________________________________________________________________________________________

_______________________________________________________________________________________________________________

Digital Pl Control (conventional version)

Digital PI control consists of only P and | actions and is given by

—————————————————————————————————————————————————————————————————

Digital PD Control (conventional version)

Digital PD control consists of only P and D actions and is given by

———————————————————————————————————————————————————————————————————

44
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Digital PID Control (via bilinear transformation)

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

y +kiT(z+1)+2kd(z—1)_a222+alz+a0§
2(z-1)  T(z+1) (z-1)(z+1)

____________________________________________________________________________________________________________________________

where o, o, and «, are design parameters.

Digital Pl Control (via bilinear transformation) — the same as the previous version

——————————————————————————————————————————————————————————————————————————————————————

D(Z)Z(k +£j _ Kk +kiT(Z+1):0512+050§
=2(Z_lj " 2(2—1) 71

——————————————————————————————————————————————————————————————————————————————————————

______________________________________________________________________________________
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3.10. Design example:

Consider a car (BMW), which has a weight m = 1000 kg. Assuming the average friction
coefficient b = 100, design a cruise control system such that the car can reach 100 km/h

from O km/h In 8 s with an overshoot less 20%.

Assuming the sampling period T = 0.6 seconds, design a digital Pl controller that achieve

the above specifications.

11
ms+b 1000s+100

G(z) =(1- z%Z{?} = (1—- zl)Z{

G(s) =

0.001 | z—lz{0.01_ 0.01 }
s(s+0.1) Z s s+0.1

....................

z-1 Z Z . : ) |
=0.01- : - = <1 discretized plant with T = 0.6
A L—l z—e‘°'1x°'6} z-0.942 @ P |

_____________________
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3.11. Discretized plant with digital Pl controller:

‘ ® |k, +k)z-k. | " | 0.00058 Yoo
+ T_ z-1 7 —-0.942 '

The resulting closed-loop transfer function from r to y is given by

0.00058 (k, +k,)z -k,

H (2) = G(z)D(z) z—0.942 z-1
1+G(z)D(2) L. 0.00058  (k; +k)z—k,
z—0.942 z-1

0.00058 (k, + k,)z —0.00058 k.
22 +[0.00058 (k, +k,) —1.942]z + (0.942 — oooossk)
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3.12. Desired closed-loop transfer function:

From the design in 3.3, we obtain the desired £ = 0.7 and @, = 0.82 in continuous setting,

which would achieve the design specifications. Using tH‘e following chart with T = 0.6

Im axis

126°

I
|- L44° . “ﬂ. 0.3
5T
0.4
0.5
S
162°--£ 10T 0.7
0.8
. "~ -.‘\. \\\\ .
/ - e 9.9
= T .
“n T L . {=1.0] | >
—1.0 -0.8 =0.6 —-0.4 -0.2 0.0 0.2 0.4 ' Q.6 0.8 1.0
z = plane loci of roots of constant { and w, _
;=—§w,,ijw,,vl—§ H (1_Zp)(l_zp) 0-13 48
z=elt desired ( Z) —

r = sampling erod (z-z,)(z-17,) 2°-1.4z+0.53
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3.13. Determination of the PI controller parameters

Comparing the denominator of the actual closed-loop transfer function

0.00058 (k, +k,)z — 0.00058 k.,

H(z)=
(2)=" +[0.00058 (k, + k,)—1.942]z + (0.942 — 0.00058 k, )
with that of the desired one
e | ~ Note; we cannot -
’ _ 0.13 i .
_______ Mo ()= 27 1474053 | el
we obtain - numerators of
0.00058 (k, + k,)—1.942 = —1.4 k, = 224 - these transfer :
= a a
0.942 —0.00058 k, = 0.53 k, =710 functions. It does

and a digital PI controller 0SS CEE]

performance. -
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3.14. Simulation of the digital controller with discretized plant

We simulate the digital controller with the discretized plant to see whether the specifications

are fulfilled in the discrete-time setting:

..................................................

=Ya S e |  Remark: The overshoot s -
Step = 100 Digital contraller Eis-c-'sti.;_;ﬂ plnat Soope | i

slightly larger than the :

design specification. But,

140 :

"  the settling time meets the :

100 specification. The -

80 performance can be fine :

2 60 :

E tuned by re-selecting the -

0 T o . _ ]

| | | | | desired pole locations in :

P e e e et T - !

o | e
2% 2 4 6 8 10 12 50

Time (seconds) Prepared by Ben M. Chen



3.15. Simulation of the digital controller with actual plant

We simulate the digital controller with the actual plant.

9342710 1 ]
+_ - hJ_I—L - -
z-1 10005+100
=gl Digital controller ZOH Plant Scope
140 ‘ ‘ ‘
0l SR S S S S ]
/’/ | |
100 - —-—— -~ S L e o _
-~ 80,,,,,H,,,,\,,,,,,,,,L,,,,,,,,,L,,,,,,,,J: ,,,,,,,,,,,,,,,,,, —
5 |
o |
3 |
L YNS——S————Y—NY—}M]}NM]SZTIT—TMSMST .
AO |~ .
207( 77777777777777777 T T T T T r---- - T‘ 777777777 T T T T T T ]
ol 1
0 2 4 6 8 10 12

Time (seconds)

R T R e -

Remark: When the control
law is implemented onto |
the actual continuous-time
plant, the overshoot and

the settling time are above
the same as those

obtained with the

discretized system. All
design specifications are -
met with a sampling period

T = 0.6 seconds.

Prepared by Ben M. Chen



3.16. Disturbance rejection

From the analysis in 2.10, it was shown that a step disturbance can be rejected when the

controller has an integral action. Since we are using a PI controller, step disturbance should

be rejected in our design although we haven't explicitly considered such a property in our

design. We verify this through simulation by injecting a step function into the plant input. To

see the effect of the disturbance on the system output, we let the reference to be zero.

0.09

0.08

0.07

0.06

0.05

output y

-0.01

0.04 ;;
0.03| |
0.02
0.01

0 |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

**********************************************************

——————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

—————————————————————————————————————————————————————————

Time (seconds)

Step =100

934z-710 1
miht -
z-1 1000s+100

Step=0 Digital controller  ZCH Plant Scope

.................................................................................

A step disturbance with magnitude = 100
| nicely IS rejected from the output ! How

about a ramp disturbance? D.LY.
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3.17. Remarks on higher order systems

When the given plant has a dynamic order higher than 1 and/or a general PID controller is used,
the overall closed-loop transfer function from r to y will have an order larger than 2, e.g.,

b.z"+b 2"+ 4+ bz +Db,

n n-1 !
z"+a, 2"+ +a,2+a,

H(z)= m<n, n>2

In this case, we should place the poles of the above transfer function by comparing it to the

following desired transfer function

.e., by placing all the rest poles close to the origin, which is the fastest location in digital control.
Eventually, dynamics associated with the poles close to the origin will die out very fast and the
overall system is dominated by the pair left. This is left for students to practice in tutorial

questions. 53
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3.18. Deadbeat controller design

A unique feature of digital control is that we can design a control law such that the resulting
system output is capable of following the reference input in a finite number of steps, i.e., in
finite time interval, which can never be achieved in continuous-time setting. Such a control
law is called deadbeat controller, which in fact places all the closed-loop system poles at the

origin. Thus, the desired closed-loop transfer function under the deadbeat control is

1
H,.,(z)=—
desired ( ) Zn

The deadbeat control can only guarantee the system output to reach the target reference in
n steps. The resulting overshoot could be huge and the control input could be very high
(which is equivalent to that the energy required to achieve such a performance is large). As

such, deadbeat control is generally impractical and rarely used in practical situations.
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3.19. Design example:

We now design a deadbeat PI controller for the cruise control system. Recall

‘ ® |k, +k)z-k. | " | 0.00058 Yoo
+ T_ z-1 z—0.942 ]
The resulting closed-loop transfer function from r to y is given by
H (2) = 0.00058 (k, + k,)z — 0.00058 k, .
z? +[0.00058 (k, +k,)—1.942]z + (0.942 — 0.00058 k) z°

— k, =1624.137931, k, =1724.137931

Dy ket k,)lz —k, _ 3348.275862 7 —11624 1137931
L — L —
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3.20. Simulation results
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,,,,,,,,,,

,,,,,,,,,,
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77777777777777777777777777777777777777777

*****************************************

””””””””””””””””””””””””””””

77777777777777777777777777777777777777777

*****************************************

1 15 2
Time (seconds)

The system out settles down to the target reference in 2 steps, i.e., 2 x 0.6 = 1.2 seconds

(very fast). But, it has about 100% overshoot and huge control input. Such a controller

cannot be implemented in real life, period ! However, there could be applications (such as

military applications) that deadbeat control might be desirable.

56

Prepared by Ben M. Chen



Homework assignment 1 (hand in your solution next week):

A typical hard disk drive actuator can be modeled quite accurately as a double integrator:

where y is the displacement of the read/ write head in micrometer and u is actuator input
voltage in volts. The sampling rate used in a typical hard disk drive servo system is about

10 kHz, which is equivalent to a sampling period T = 1/10000 = 0.0001 seconds. Itis

required to design an appropriate control law such that the resulting closed-loop system has

an overshoot less than 25% and a settling time less than 8 milliseconds due to a step reference of 1 micrometer.

. Design a digital PD or Pl or PID controller that meets the above design specifications using the

emulation method.

. Design a digital PD or Pl or PID controller that meets the design specifications using the pole

placement technique.

Show all the detailed design procedures and simulation results. Use MaTLAB and SiMULINK whenever is possible.

S7
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4. Frequency Domain Design

58



4.1. Bode diagrams for continuous systems —A revisit

Bode diagram is the frequency responses (both magnitude response and phase response with

respect to frequency). Consider a standard unit feedback system:

R (S) .....................................................................

+’T_ (P66 o Y(s) __G(s)D(s)

1) =R " 12 6(5)D(s)

which has a closed-loop transfer function H(s). Interestingly, if the open-loop transfer function
D(s)G(s) Is not unstable, then its frequency responses (or Bode diagram) can be easily used
to determine the stability of the closed-loop system H(s). As such, it is often to plot the Bode

diagram for the open-loop system D(s)G(s). Magnitude & phase responses are defined as:

Magnitude Response =| D(j®)G(jo) |
Phase Response = Z D(jo)G(jw)
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4.2. Example: Bode diagrams of the open-loop system in 3.4 & 3.5
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4.3. Nyquist stability theory in continuous systems —A revisit

Nyquist plot is to draw the frequency response of the open-loop system in a single complex
plane instead of separating the magnitude and phase responses into two individual diagrams

as In the Bode plot : ................................................................................. :
| Nyquist Stability Criterion |

Ajlm GD

D(s)G(s)-plane

Let N be the number of clockwise encirclements
of the point —1 in the Nyquist plot, P be the |
numbers of unstable poles of the open-loop _
system D(s)G(s). Then, the number of unstable

pole of the closed-loop system H(s), say Z, is

égiven byZ=P +N.

If D(s)G(s) is stable, i.e., P = 0, then N has to

be zero in order to guarantee the stability of the

closed-loop system H(s).
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4.4. Gain and phase margins in the Nyquist plot

Assuming the open-loop system is stable, the gain margin and phase margin can be found

from the Nyquist plot by zooming in the region in the neighbourhood of the origin.

A

______ Remark: Gain margin is the maximum

1 “additional gain that can be applied to

the closed-loop system such that it will

v

e - still remain stable. Similarly, phase

margin is the maximum phase that the

closed-loop system can tolerate such

Mathematically, that it will still remain stable.

1

GM = ,
D(jo,)G(jo,)

where @, Is such that Z D(jw,)G(jw,) =180

PM = £ D(jo,)G(ja,)+180°, where o, is such that |D(ja,)G(ja,)|=1 -
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4.5. Gain and phase margins in the Bode diagram

20 .

gain
0 | } . — | margin |

Magnitude (dB)
N}
o

\
™
-40
I
-60 1 . 0 I
P | 10 1 10 I
i g a| n : ///| Frequency (rad/sec) I\
. crossover ! ! o ;
frequency | F— | g . phase
T T ' & — I : crossover :
. l ' frequency
@ N : SN ;
® 100 I~ !
g < ™ !
\q_; /'r .
£-150 .
)/ \ |
e _ -200
i : T
. phase !
. margin | i 0
e E Frequency (rad/sec)
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4.6. Bode diagram for discrete systems

Bode diagram for discrete systems consists of both the magnitude and phase responses of a

discrete system, which are defined as follows:

Magnitude =| D(2)G(z) |, ;» Phase= 2 D(2)G(2) . ~r<ol <rx
80 T T 1 e )
= -+ Example: Let us draw Bode
E - diagram for the open-loop
= - system in 3.14, where
0.5417 z —0.4118
- D(2)G(2) = .
2’ ~1.9427+0.942
< B A S S Rt R R 18 Note: Both magnitude and phase
San T egonges repeat e 2n/T
P R I I R R R
10° 10 0™ 10° 10" 64

Frequency (rad/sec)
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4.7. Frequency domain design specifications

The time domain design specifications can be translated into the requirement on phase margin

and some other frequency domain properties. In particular, we have the following relationships

for typical second order systems:

100

.....................................

0.8} — continuous
o~ 1+ " | = T=0.2 sec (o =30x wp)
e T=1sec (0s=6x w0y

Damping Ratio, {

0 10 20 30 40 50 60 70 80

—~ O O O Iu!Ww = < O
M

2 (). 8 )
0.0 0.2 0.4 0.6 0 1.( Phase margin

Damping ratio of a second-order system versus phase margin

.......

settllng tlme =, o, ~ 0 open loop gain crossover frequency o, _a)
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4.8. Frequency domain design methods

There are three commonly used frequency domain design methods, namely Lead Compensator,
which is an approximation of PD control, Lag Compensator, which is an approximation of Pl
control, and lastly the PID Compensator. The frequency domain design methods for continuous
systems and discrete systems are basically the same. For discrete systems, the idea is to use a
so-called w-transformation (actually it is a bilinear transformation) to transform the discrete
system into a w-domain system, which is pretty much the same as a continuous system.
Everything we have learnt from the compensation design for continuous systems can be directly
applied to yield a necessary compensator in w-domain, which can be transformed back to a

discrete version through an inverse w-transformation (= an inverse bilinear transformation).

A 4

G(W) — G(Z)‘ZZZ/T+W D(Z) - D(W)‘W:2.2—1

2/T-w T z+1

‘, T

design a compensator D(w) using a continuous method to meet all specs | 66
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4.9. Lead compensation

.........................................................

Lead compensation has a transfer function of D(s) =K

small ¢, it is an approximation of PD control. S .

The frequency response of a typical lead compensator is shown in the figure below:

TI &
10K !
2K
D) K
0.2K ' i ™ ' : | { | | _ .
' 0.1 Wy T 10 100
Wi 1 @, T 10 100 T
w T
1-sin 1
— : ¢max and T =
1+SIn @, o [0

Here parameters K, ¢, ., and .., are to be determined from design specifications. &7

max
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4.10. Uncompensated and lead-compensated systems

— e ) (5)G(S)

Magnitude
Decibels

- Lead zero

Phase

The Kay Idea

The key idea using the lead
compensation is enlarge the
gain crossover frequency
and add additional phase.
Thus, if the desired gain
crossover frequency is larger
than that of KG(s), the lead
compensation should be

éused,peﬂod.
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4.11. Lead Compensation Design Procedure

Step 1. Determine open-loop gain K to satisfy requirements on steady state error.

Step 2: Find new open-loop cross over freg. from desired

0, =W the point the phase lead is added.

Step 3: Evaluate the PM of KG(w) at the desired cross

over frequency a,.

Step 4: Allow for some extra PM (5" to 12°), and determine

the needed phase lead ¢, ...

1-sin ... B 1

Step 5: Compute (@ = _ , T =
p 1+sin ¢max @ ax \/E

Step 6: Verify the design using MATLAB. Redo if necessary. ' .. "

69
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4.12. Design example

An electric motor can be modelled with a sampling period T = 0.1s as follows:

0.5z+0.5

C) =05z 0.9)

Design a digital control system with a lead compensator such that the resulting system output
tracks a step reference with a settling time less than 1s with an overshoot less 20% and

steady state error less than 12.5% .

Converting this to w-plane (see 4.8), we have

20 +w
i 0.5 +0.5
G(W)=G(2) ro = 20 —w _ 20(20 — w) |
i 2= (20+W_0.5)(20+W_0.9j (1.5w+10)(1.9w + 2)
20 —w — W !

..............................................................................................................................................................
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0_9 ...........................................................................................................................................
9(0) H
V 0.8 |- — continuous O OO SOOI SRR A
N+t e 3 - T=0.2 sec (wg=30x @) K
; L e R [ T=1sec (0g=6xw,)
e ! ] 0.7+ S n e s St )_ ................... -
. 20% I
r =¥» | I\ | | ‘.- et s _ ;
€ 6(0) ‘ l é
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= 30 | => g
= |
h 40 i g
!
O 30 1
|
0 20 y
10
0= i .
t 0 | 0 10 20 30 40 50 60 70 80
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Phase margin

Damping ratio of a second-order system versus phase margin

settling time

—» |w, = ——| —» |open-loop gain crossover frequency o, = @,

1 second

=~ =92 = |0,Z2w®,=9] < Step 2

< i-05Y1-09) '

=0125 = K,=D@)G@)=K-1.
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Step 3:

Bode Diagram

target gain
g crossover |
g frequency
g

5 90 oo e B e B B Bl e T =Sy v
ﬁ | A N R | . . | Frequency (rad/sec): 9.01 Ty |
g 135 T phase(deg):-161 ——original
S phase
S . S A B —©  margin
270 b RS S N U S I S ISR DR L T B '

-1 0 1 2

10 10 10 10

Frequency (rad/sec)

Step 4.

Pnax = Desired PM — Original PM + Allowance =50 — (180 —161) +4 =35
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Yr7hs/ Mational Universi
= =4 of Singapore
SHeP 5L, )
1
1 1

oMby 178N _5op 1 _gon

1+sin ¢ 1+ sin 35° o

max

1 7e1 7t 1.8482-1.148
2 z-1 , 216z-0.16

The above the digital lead compensator. However, nothing is certain without verification. We
need to first verify our design in frequency domain. More importantly, it should also meet the

design specifications in time domain.
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4.13. Verification in w-domain (pseudo s-domain)

Magnitude (dB)

Phase (deg)

| | | | [ A | | | [

| | | | [ A | | | [ |
-90 e i M St e Al e e Sy G At e i Bl

| | | | [ A | | | T |

Bode Diagram

20 ; — T T ; S S B

T L T Sysem: oS
10 R A

' Frequency (rad/sec): 9.2 [

. 1 Magnitude (dB): o
0 77777777777777777777777777777777777777777777777 \777777\77777\777\77\77\77\7\7\
L T S
-30
O——— 777 T T T T T T

e ——_————————

N System: sys

. || Phase (deg): -127

A3 e -
B0 f b

D25 [ T

T
e

| | | | | | [ | | | | | | | | | | | | | |
| | | | | | [ | | | | | | [ | | | | | | [
270 oo e e e e e e e e e

Frequency (rad/sec): 9.2 ,,i,‘

10 10 10

Frequency (rad/sec)

gain crossover
frequency

margin

The resulting gain crossover frequency is 9.2 rad/sec and PM=180-127 = 53°. Perfect !
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4.14. Verification in z-domain

20

gain crossover
frequency

Magnitude (dB)

(@)

S

(8]
3 e i .
o 300 D D IR - achieved phase
SR SRR T margin !
400 ] Y ;

10 10 10 10

Frequency (rad/sec)

The resulting gain crossover frequency is 8.5 rad/sec and PM=50°. Perfect !
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4.15. Verification in time domain

L
1.848z-1.148 0.52+0.5 —l ] . .
J = o 2 16z0.18 o 221 4740 45 o : ~ ! S|mUI|nk
Step Lead Cmp Flant Socope : h : blOCk

! settling

fme or e

0 1 1 1 ‘ 1 ‘ 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)

The steady state error = 12.5%, settling time = 1s and overshoot = 26 % (almost there) !
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4.16. Lag compensation

..........................................................

IS an approximation of PI control.

The frequency response of a typical lag compensator is shown in the figure below:
Kay Idea: Lag

- compensator

reduce the gain

Mugmitude

0.1 | 10

- crossover
- frequency to

where the

phase margin

érequhed.
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4.17. PID Compensation

Note that the lead compensation is the approximation of PD control and the lag compensation
approximates PI control. PID compensation is nothing more than the combination of lead

compensation (PD) and lag compensation (PI), which has the following frequency responses:

4

1 2 10 100 0.1 0.2 2 10 100

Design procedures for the lag compensation and PID compensation can be found in almost
any textbook on introduction to classical control including class notes for EE2131. Students

who forget these design procedures are urged to dig out the old notes and textbooks and ...
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Homework assignment 2 (hand in your solution next week):

Reconsider the hard disk drive servo system in the Homework Assignment 1, i.e.,

where y is the displacement of the read/ write head in micrometer and u is actuator input

voltage in volts. The sampling rate is again chosen to be 10 kHz, which gives a sampling

period T = 1/10000 = 0.0001 seconds. It is required to design an appropriate compensator
such that the resulting closed-loop system has an overshoot less than 25% and a settling

time less than 8 milliseconds as well as a steady state error to be less 1% due to a step reference of 1 micrometer.

 Can you design a digital lead compensator that would achieve the above design specifications?

If your answer is yes, please give your solutions together with all detailed derivations and simulation results. If
your answer is no, please give your reasons together with detailed justifications. Again, make use of MATLAB

and SIMULINK whenever is possible.

79

Prepared by Ben M. Chen



5. State Space Approach
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5.1. Why state space?

State variable technique is to convert transfer function system representations into some first
order difference equations (in a matrix form), which many advanced matrix theories and
computational tools can be applied to. Thus, control system design using the state variable

technique can be done in a very systematic fashion and many well-developed commercial

software tools such as MATLAB can be readily and easily utilized. Solutions to the control

problem can be done in a straightforward manner.

There are two important equations associated with such a technique, the state equation and
the output equation, which completely characterized the properties of a linear system. As we
have seen in EE2008, any linear time-invariant system can be represented by a state space

model with four constant matrices regardless its dynamical order. As such, most advanced

control theories are and continue to be developed in the state space setting. The main idea of

this section is to given a brief introduction to this technique. o1
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5.2. State space representation of discrete systems

Consider the simplest discrete system (15t order) with a transfer function in the z-domain

Y(z) Db
U(z) z+a,

D(z) = —> (z+a,) Y (z) =b,U (2)

— y(k+1) +a,y(k) =Dbu(k)

....................................
....................................
____________________________________________________________________________________________________________________________

——  x(k+1) = y(k+1) = —a,y(k) +byu(k) = —a,x(k) +byu(k)

X(k+1) = —a, x(k)+bu(k) © {x(k+l):Ax(k)+Bu(k)
= y(k) = x(K) 1 v =cxK)

It is trivial ! Nonetheless, the same idea can be used to convert more complicated transfer

functions into a corresponding state space representation...
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5.3. Let us consider a 2" order discrete system with a transfer function in the z-domain

_Y(z) b,
U(z) z°+az+a,

D(z)

— (z2 +alz+aO)Y(z) =b,U (2)

—> y(k+2)+a,y(k+1)+a,y(k) =b,u(k)

Define a set of so-called state variables,

ooy Rk =y =x(l) 5
)= yka) T XekrD) = y(k+2) = —ay(k+1)-ay(k) +byu(k)
R | o =X (k) —agx (k) +bu(k) !
E (|:X1(k+l):|_|:o .......... 1:||:X1(k):|+|:0i|u(k)
. 4 X, (k +1) —a, —a,||x,(k) b, {x(k+1)=Ax(k)+Bu(k)
| (k) = x, (k) = [1 0] Xl(k) => ......... y(k):CX(k)
AR PR (Y 5
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5.4. Next, consider another type of 2" order systems with a transfer function in the z- dorﬁa]n

Y(z)  Dbiz+b,
U(z) z°+a,z+a,

D(z) = —>  (22+az+a,)Y(2)=(b,z+b,)U (2)

—> y(k+2)+a,y(k+1)+a,y(k)=bu(k +1)+b,u(k)

Define (k)= y(k), %K) =y +D bu(k)

x, (k +1) = y(k +1) = x, (k) + bu (k)
X, (k+1) = y(k +2)=bu(k +1) .
= —a,y(k+1)—a,y(k) +bu(k +1) + b,u(k) - bu(k+1)
—a,X, (k) —abu(k) —a x, (k)+byu(k) |

= —aoxl(k) - a,X, (k) + (b, —a,b; Ju(k)

..................................................................................................
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5.5. We now consider a general system characterized by

Y(z) b,z"+b, 2"+ +bz+h,

o n n-1 , Nzm
U (z) z'+a, 2  +--+az+3a,

D(z) =

Using the partial fraction technique, we can rewrite this general system as

D(Z):Y(Z): b,z +by, P b, Z+Dby .\ b,
U(z) z°+a,z+ay, z’+a, z+a,, Z+a,

I e e N

............................................

;{xl(k +1):A1x1(k)+Blu(k)§ {x J(k+D) =A%, (k)+B, u(k) {x o(k+1) = A X, (k) +B, u(k)

Y, (k) = Cyx, (k) Yi (k) = Cx, (k) Yo (K) = CoX, (k)

__________________________________________________________________________________________________

_____________________________________________ _ 0 A, O 0 | EN
k +1) = Ax(k) + Bu(k |
Jxlkah)= X()+u()W|th:x=X.1,A=OA.1 | B=|"| D-=d
y(k) = Cx(k) + Du(k) | : - :
______________________________________________ . o o oAl e
and | C=[C, C, - C,] | Fortunately, function tf2ss in MATLAB can do this for us.
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5.6. Example

Convert the discrete transfer function in 4.12 into a state space representation.

0.5z+0.5 B 0.5z+0.5

G(Z): - 2
(z-0.5)(z-0.9) 2°-1.42+0.45

Recall the formula we have derived in 5.4, i.e.,

..................................................................................................

y(k) = x,(K) = [1 0]{)( (k)} .......... y(k)_Cx(k)+Du(k)
X, (k) .
................................................................................................... with
o e ;
Exercise: Verify that for this example, ;A{_O% 1.4} . B :L-Z} C=f o} D =

G(z)=C(zI-A)'B+D
You can verify this using MATLAB. But, show that the above identity is true in general.
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5.7. Example

Now, convert the following discrete transfer function into a state space representation,

Gy 052°+05 _05(z"-142+045)+072+0275 _  072+0.275
22_14Z+045 22_1'4Z+O'45 ' 22 _1.4Z+O,45

Again, use the formulain 5.4, i.e.,

..................................................................................................

{xl(k+l)}_{ 0 1 } xl(k)}{ b, }u( :
X (k+1)] [-a, —a || % (k)] |by—ab, E'{'k'(k'l"ij";"Ak"('k')"iéij'(k'jg
y(k) = x, (k) = [1 O:|:X1(k)} .......... y(k):Cx(k)+Du(k)
X, (k) .
................................................................................................... W|th
_ _ _ { ° 1} {0'7}, C=[1 0] D=05
Exercise: Verify that using MATLAB -045 14 1.255

that the eigenvalues of A are exactly

the poles of G(z) or the roots of the denominator of G(z). Prove that it is true in general.
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5.8. Digital control system design with state feedback

Once we obtain a state space model for the discrete system, the control system design in the
state space setting is straightforward and systematic. We know by now any system can be

represented as

x(k +1) = Ax(k) + B u(k) ()
y(k) = C x(k) + Du(k)

Assume that the state variable, i.e., x(k), is measurable. We can design a state feedback

controller that meets design specifications. The controller has the following structure:

____________________________________________________________________________________________________________________________________

x(k +1) = Ax(k) + B[ Fx(k) + Jr (k)]= (A = BF )x(k) + BJr (k)

3*
| y(k) =C x(k) + D[~ Fx(k) + Jr(k)]= (C - DF)x(k) + DJr (k) (3%)
N 5 88
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5.9. State feedback design via pole placement

The closed-loop system ( 3* ) under the the state feedback control again can be written as

.....................................................

which has a new transfer function

H(z)=C(z1-A)'B+D = (C-DF)(zl-A+BF)'BJ +DJ
- [(C-DF)zI-A+BF)*B+D]J

The design procedure is very straightforward:

« Find an F is to such that the eigenvalues of A — BF are in the locations, which
would yield desired overshoot, settling time, etc. (how? Pole placement...)
«  Find J such that the static gain or DC gain from r to y equal to unity.
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5.10. Design example

Re-consider the example in 4.12. The motor modelled with a sampling period T = 0.1s has a

transfer function:

0.5z+0.5

S =08 z-09)

We are now to design a digital control system with a state feedback control law such that the
resulting system output tracks a step reference with a settling time less than 1s with an

overshoot less 5% and zero steady state error.

It was done in 5.6 that the state space description of the above system is given by
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0.4 0.6 * 0.8 1.0

162° 10T

w, =

)
10 -08 206 ~0.4 202 “0.0 0.2 0.4 0.6 0. 1.0 4.6 4.6 T

z = plane loci of roots of constant { and w, I0) ~ — — 6 6 —_

e T, 07x1 T 48T
| =0.5613+ j0.2861 91
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z+0.5f, -1+0.51,
045+1.2f z-14+1.2f,

det(zl - A) = det[

} =22+ (0.5f,+1.2f,~1.4)z + (0.45+0.5f, —0.2251,)

; ............................................. : f — —0.0749 E : 05f +12f _14__104
' ' . 1045+05¢%,-0.225f, =0.338

In real life, the function p lace in MATLAB can do all the tedious calculations for us...
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......................................................................................................................................

HQ)=C(-A)'B+D=[(C-DF)(I-A+BF)'B+D]J

0.9625 —0.83441770.5
1 o] J=33557J=1 = J=0.298
0.3601 -0.0025 | |1.2

We finally note that all computations in the above design can be easily done using MATLAB...

Let us now verify our design use MATLAB SIMULINK.

System output y

1
I | ‘ ; ) yinFECr{n+Du{n)
#n+1=Axin+Buin)
0.8 Step Gain Closed-loop plant
0.6
................................................................
0.4

0.2

1 1 1 1 1 1 1 1 1
0 02 04 06 038 1 1.2 14 16 18 2
Time (seconds)
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5.11. State estimator

Note that in the state feedback design, we have assume the state variable x of the plant being
available for feedback (see 5.8). Unfortunately, this is usually not the case in most practical
situations. In real life, usually, we can only access to the system output, i.e., v, instead. In order
to implement the beauty of the state feedback control, we will have no choice but to estimate
the state variables using only the system output and hope the implementation using such an
estimation works, which turns out indeed the case. As such, implementing a state feedback

control through a state estimator becomes the standard approach in modern control nowadays.

The first question one would ask is: Can we estimate the state variables using only system
output? The answer is yes, fortunately, for most of systems and thus we will take it as doable for
all situations considered in our class. The second question comes naturally: How can we
estimate the state? The answer is again pretty simple — copy or duplicate of the original

dynamical equation. 94
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5.12. Estimator design

Let's be a copy cat for a while. Consider a system described by a state space representation:

x(k +1) = Ax(k)+Bu(k), x,=x(0), y(k)=Cx(k)+Du(k) ($)

Of course, if the state x is unknown, usually, the initial condition X, is unknown too. In order to

estimate the state x (using a computer), it is very natural to follow its dynamics. Thus, let us try

X(k +1) = AR(K)+Bu(k), %X, =%(0) (2%)

Will this work? Let us see whether the estimated state will follow the true state. Define the

estimation error as the difference between the true state and the estimated state, i.e.,

e(k) = x(K) - X(k) =
e(k +1) = x(k +1) = X(k +1) = Ax(K) + Bu(k) = AX(k) - B u(k) = Ae(k)

Will this error e(k) go to zero as k progresses?
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5.13. Example

Recall the motor example (see 5.6), I.e.,

________________________________________________________________________________________________________________________________________________________

.........................................................................................................................

____________________________________________________________________________________________________________________________________________________________________

Computer simulation show on the next page clearly show for this example, the estimation

error goes to zero as k is getting larger and larger. It works !
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5.14. Another example

Let us consider another 2" order example, which is slightly modified from the previous one

.....................................................................................................................................................

— >A<(k+l)=A>A<(k)+B“(k):[ . 1}2(”{0. }U(k)’ )A(O:(Oj

......................................................................................................................

0o aeor_| O L)1) -1 o aem_| © L] -1 )_(-09
o) = e(){0.45 1.4}(1}‘(0.95)’ ¢(2) = e(){0.45 1.4}(0.95]‘(1.78}”'

Computer simulation show on the next page clearly show for this example, the estimation

error goes to infinity as k is getting larger and larger. It does not work !
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5.15. What is going wrong?

The problem is pretty straightforward. The system in 5.13 is stable while the one in 5.14 is

unstable. These can be seen by computing their poles or the eigenvalues of matrix A.

A S e i
1{—0.45 1.4}}_0'5’ Y }“{0.45 1.4}}_0'2695’. — 1 Unstable

To fix the problem, we will have to make use of information we can get from the system, i.e.,

the system output y. We modify the estimator dynamical equation in ( 2% ) as follows:

.................................................................................................................................................

Exercise: Show that the error dynamical equation for the system ( $) in 5.12.

with the above estimator is given by

e(k +1) = (A —KC)e(k), where e(k) = x(k) — X(k)

" We can then choose an appropriate estimator gain K to make A — KC stable.

................................................................................................................................................
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5.16. Deadbeat estimator

In principle, we can choose the estimator gain K such that the eigenvalues of A — KC can
be placed anywhere we like so long as they are stable. If we place eigenvalues of A — KC
all in the origin, then the resulting estimator is called an deadbeat estimator, which is capable
of rendering the error to zero in n steps, where n is the order of the given system. We now

proceed to design a deadbeat for the motor in 5.13, i.e.,

.....................................................................................................................................................................

1 0.5 1
x(k +1) = Ax(k) + Bu(k) = {_0_45 1.4}x(k) + le}u(k) X, = [_J, y(k)=Cx(k)=[1 0]x(k)
Let k ________________________________________________________________________________________________
K :{d Note that K is a column vector with n elements.
, e e B L s e S e e

E Z+Kk -1
i K  det(zl — A+ KC) = det !
—» A-KC = 0 Ll |k L o] = ( ) {k2+0.45 z—1.4}
~045 14| |k, ;

. kl 1 :| .....................................................................................
|—k,-0.45 1.4 = 72 = deadbeat estimator 101

Prepared by Ben M. Chen



| -1.4 1.0} 1 —2.40
=> e(l):(A—KC)e(O):{_ll96 1.4[ j:[ j

; S |
S0 e deatbeal

Exercise: The MATLAB function F = place (A, B, poles), where poles is a

vector containing the desired poles, is meant for finding state feedback gain F.

Show that the same function can be adopted to find the estimator gain K, where
K=place(A”,C”,poles)”’

Then, design a deadbeat estimator for the unstable system given in 5.14 and

- verify your result by computing the estimation error up to 3 steps. éloz
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5.18. Control system design with state feedback and estimator

Instead of implementing the control law with a state (not available) feedback, we can realize it
by replacing the true state with the estimated state thru an estimator, which only requires the
Information of the system output. Such a control system is practically feasible and has
become the standard approach in modern control theory using state space approach. To

summarize, we recall

____________________________________________________________________________________________________________________________________

Rk +1) = AX(K)+Bu(k)+ K[y(k) = (k)]
= AX(k)+Bu(k)+Ky(k) - K[CX(k) - Du(k)]
= (A - KC)X(k) + (B = KD)u(k) + Ky(k)
= (A - KC)X(k) + (B — KD)[-FX(k) + J r (k)] + Ky (k)
= (A - KC —BF + KDF)X(k) + (B —KD)J r(k) + Ky (k)
= (A - KC —-BF + KDF)X(k)+[K (B-KD)J ]( Z((lk())j

e 103
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5.19. Block diagram of the state space control system

. Inputs to

ir .......................................................................................................... i E the I
NG CE L O RO () e
C D
Y e i g T
' —> X(k +1) = AX( )+B(Y(k)j u(k)‘ x(k +1) = Ax(k) +Bu(k) y(k)‘
; u(k)=é>?(k)+[3(r(k)J i y(k) = Cx(k) +Du(k) ]
g y(k)
e o
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5.20. Summary of control system design procedure using estimator =
Step 1: Determine the desired closed-loop pole locations from the given design specs.

Step 2: Find the state feedback gain F (row vector) such that the eigenvalues of A — BF

coincides with the desired pole locations obtained in Step 1.
Step 3: Find the constant gain J such that [(C - DF)(1- A +BF)™'B +D]J =1.

Step 4. Find the estimator gain K (column vector) such that the eigenvalues of A — KC are

In pre-specified locations (or place all at O otherwise to yield a deadbeat estimator).
Step 5: Compute A=A -KC -BF +KDF, B=[(B-KD)J K] C=-F, D=[J 0]

Step 6: The digital controller in state space form:

Remark: All computations in Steps 2 to 6 can be done in MATLAB. 105
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5.21. Design example

Re-consider the example in 5.10. The motor modelled with a sampling period T = 0.1s has a

state space representation (see 5.10):

:_{_k'('k';'ij---_--‘Ag'(-k‘)-;-gg-(;;-)ﬂ. " A{O 1} | B{o.s} c-it ol D_O

We are now to design a digital control system with a deadbeat estimator feedback control law
such that the resulting system output tracks a step reference with a settling time less than 1s

with an overshoot less 5% and zero steady state error.

Steps 1 to 3 were done in 5.10, which gave F=[-0.0749 0.3312], J=0.298 :

..........................................................................
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Steps 5 & 6: Compute the controller in the state space form:

R e e e R R P R -

~ —-1.3625 0.8344
A=A -KC -BF + KDF =
—-1.8701 1.0026

10.1490 1.40}

- >“<(k+1)=A>“<(k)+é(r(k)J
B=[(B-KD)J K]= y(k)
: 10.3576  1.51 )

A ~(r(k
k)=Cx(k)+D
o~ Ci00-0 0]

C =[0.0749 -0.3312]

D=[J 0]=[0.2980 0]

Let us verify our design again using MATLAB SIMULINK...

/ﬁ J

y(n)=Cx(n)+Du(n) y(n)=Cx(n)+Du(n) i 1]
Step A:I_’ x(n+1)=Ax(n)+Bu(n) > x(n+1)=Ax(n)+Bu(n) >

Controller Plant ¥

L V
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1.2

©
o

©
N

System output y

0.2 | | : : :

08

02

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (seconds)

1.6

1.8

Our design is perfect. This once again shows the beauty of the state space approach.
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Homework assignment 3 (hand in your solution to my office next week):

Reconsider the hard disk drive servo system in the Homework Assignments 1 and 2, i.e.,

where y is the displacement of the read/ write head in micrometer and u is actuator input
voltage in volts. The sampling period is chosen to be T = 1/10000 = 0.0001 seconds. It is

required to design an appropriate compensator such that the resulting closed-loop system

has an overshoot less than 5% and a settling time less than 2 milliseconds due to a step

reference of 1 micrometer.

Design a digital control system using the state space approach with a deadbeat estimator. Show all your design

procedures together with simulation results. Again, make use of MaTLAB and SiMULINK whenever is possible.

By now, you have designed the same system using four different approaches. Please comment the advantages
and disadvantages of these methods. Which one would you recommend?
~~ THE ~ END ~~
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