National University of Singapore

Department of Electrical and Computer Engineering

EE3304 Digital Control Systems

Home Assignment III

(Semester II, 2002-2003)

Name: Zhang Xiaoqiang

Matric No.: U00-5668A-11

Email: eng00176@nus.edu.sg

Lecturer: A/P. Ben M. Chen

The plant for this assignment can be expressed in s domain as the following

Fig.1: System in continuous time domain

This can be translated into z domain by using state space approach

Fig. 2: System in discrete time domain

The design specifications for this assignment are given as

$$\begin{cases} M_p \% < 5\% \\ t_s < 2ms \end{cases}$$

(where the input is a step reference of 1 micrometer)

Generally speaking, to design a controller by using estimator, the procedure is quite systematic. In sum, six steps are required.

1. Step One

Determine the desired closed-loop pole locations from the given specifications.

The settling time is less than 2 milliseconds, and the maximum overshoot is less

than 5%. Read from the relationship diagram of Mp% vs. ?, we get

$$z = 0.7$$

Hence,

$$t_s \cong \frac{4.6}{\mathbf{z}\mathbf{w}_n}$$
$$\Rightarrow \mathbf{w}_n \cong \frac{4.6}{\mathbf{z}t_s} = \frac{4.6}{0.7 \times 1.5 \times 10^{-3}} = 4381$$

So the poles in *s* domain are located at

$$P_{S(1,2)} = -3066.7 \pm j2399.5$$

The corresponding poles in the z domain are

$$P_{Z(1,2)} = 0.7148 \pm j0.1749$$

2. Step Two

Find the state feedback gain F such that the eigenvalues of A-BF coincides with the desired pole locations obtained in the first step

Discretize the plant $G(s) = \frac{6 \times 10^7}{s^2}$ by zero-order-hold, and we can get

$$G(z) = \frac{0.3z + 0.3}{z^2 - 2z + 1}$$

Convert this transfer function into state space representation,

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases}$$

where,

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$C = \begin{bmatrix} 0.3 & 0.3 \end{bmatrix}$$
$$D = \begin{bmatrix} 0 \end{bmatrix}$$

Define the desired poles in z domain as a column vector

$$PDesired = \begin{bmatrix} 0.7148 + j0.1749 \\ 0.7148 - j0.1749 \end{bmatrix}$$

In MatLab, there is one function called *acker()*, which is short for Pole Placement Gain Selection Using Ackermann's Formula, can calculate the feedback gain matrix **K** such that the single input system x(k+1) = Ax(k) + Bu(k) with a feedback law of u(k) = -Kx(k) has closed loop poles at the values specified in vector **P**. This is same as P = eig(A - B * K).

Hence,

$$F = ac \ker(A, B, PDesired)$$

This gives,

$$F = [0.5704 - 0.4585]$$

3. Step Three

Find the constant gain J such that $[(C - DF)(I - A + BF)^{-1}B + D]J = 1$

This can be translated into an equation as

$$J = inv((C - D * F) * inv(eye(2) - A + B * F) * B + D)$$

Hence,

$$J = 0.1865$$

4. Step Four

Find the estimator gain *K* such that the eigenvalues of *A*-*KC* are in pre-specified locations (or place all at 0 otherwise to yield a deadbeat estimator). Use the same method as what we have done in step two. Define the pre-specified eigenvalues as a column vector,

$$PEstimator = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

So,

$$K = ac \ker(A', B', PEstimator)'$$

This gives,

$$K = \begin{bmatrix} 4.1667\\ 2.5000 \end{bmatrix}$$

5. Step Five

Compute the parameters of the controller: $\hat{A} = A - KC - BF + KDF$,

$$\hat{B} = \begin{bmatrix} (B - KD)J & K \end{bmatrix}, \quad \hat{C} = -F, \quad \hat{D} = \begin{bmatrix} J & 0 \end{bmatrix}.$$

These can be easily calculated by using MatLab, we can get

$$\hat{A} = \begin{bmatrix} 0.1796 & -1.7915 \\ 0.2500 & -0.7500 \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} 0.1865 & 4.1667 \\ 0 & 2.5000 \end{bmatrix}$$
$$\hat{C} = \begin{bmatrix} -0.5704 & 0.4585 \end{bmatrix}, \quad \hat{D} = \begin{bmatrix} 0.1865 & 0 \end{bmatrix}$$

6. Step Six

Construct the controller in state space form,

$$\begin{cases} \hat{x}(k+1) = \hat{A}\hat{x}(k) + \hat{B} \begin{bmatrix} r(k) \\ y(k) \end{bmatrix} \\ \hat{y}(k) = \hat{C}\hat{x}(k) + \hat{D} \begin{bmatrix} r(k) \\ y(k) \end{bmatrix} \end{cases}$$

Verification in discrete -time domain and continuous -time domain

Fig. 3: Step response in discrete-time domain Fig. 4: Step response in continuous-time domain

From the above simulation with MatLab,

$$\begin{cases} M_p \% \cong 4\% < 5\% \\ t_s = 1.7ms < 2ms \end{cases}$$

Hence, the controller can meet the design specification.

	Advantages	Disadvantages
PID Controller	• Simple	• Slow
	• Cheap	• PID controller is not used for
	• The PID controller provides	highly noisy control
	quick acting corrective	variables like flow control,
	control of most process	because the derivative
	variables. Adding integral	response will amplify the
	control to a proportional	random fluctuations in the
	controller will eliminate the	system.
	steady state error, but will	
	increase overshoot and	
	settling time. But by adding	
	derivative control, the	
	overshoot and settling time	
	can be reduced.	
PID compensator	The same as PID controller	• The same as PID controller
	(They are the same.)	• Require more computation
SS approach	Sys tematic	• More expensive to construct
	• Accurate	• Required powerful PC and
		well designed software
		package to do the heavy
		computation

Comparisons among the three linear controller design methods

Appendix : M-File

```
%Home assignment 3 for EE3304
clear all;
close all;
%Define the plant in continuous time domain
CNum = [6E7];
CDen = [1 \ 0 \ 0];
%Define system variables
STime = 1.5E-3;
SpFreq = 1E4;
DRatio = 0.7;
NFreq = 4.6/(DRatio*STime);
CTfPolel = -DRatio*NFreq + NFreq*(1-DRatio)^(1/2)*i;
CTfPole2 = -DRatio*NFreq - NFreq*(1-DRatio)^(1/2)*i;
DTfPolel = exp((l/SpFreq)*CTfPolel);
DTfPole2 = exp((1/SpFreq)*CTfPole2);
%Define the Plane in State Space
C_G = tf(CNum, CDen);
D_G = c2d(C_G, 1/SpFreq, 'zoh' );
[DNum, DDen] = tfdata(D_G, 'v');
[A, B, C, D] = tf2ss(DNum, DDen);
SS_G = ss(A, B, C, D);
Conpute feedback gain (F) and constant gain (J)
PDesired = [DTfPolel; DTfPole2];
F = acker(A, B, PDesired );
J = inv((C-D*F)*inv(eye(2)-A+B*F)*B+D);
%Compute estimator gain (K)
PEstimator = [0; 0];
K = acker(A', C', PEstimator)';
%Computer State Sapce controller parameters
SS_A = A - K*C-B*F;
SS_B = [(B-K*D)*JK];
SS C = -F;
SS_D = [J, 0];
%Construst SS controller
SS_Cont = ss(SS_A, SS_B, SS_C, SS_D);
```