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Course Outline:

Power Series: Sequences and Series; Convergence and Divergence; A Test for Divergence;
Comparison Tests for Positive Series; The Ratio Test for Positive Series; Absolute Convergence;

Power Series.

Special Functions: Bessel’'s Equation and Bessel's Functions; The Gamma Function; So-
lution of Bessel's Equation in Terms of the Gamma Function; Modified Bessel’s Equations;

Applications of Bessel’s Functions; Legendre’'s Equation and Legendre Polynomials.

Partial Differential Equations: Boundary Value Problems in Partial Differential Equa-
tions; Wave Equation; Heat Equation; Laplace’s Equation; Poisson’s Equation; Dirichlet and

Neumann Problems.
Textbooks:

1. P. V. O’Neil, Advanced Engineering Mathematics, PWS-Kent Publishing Company,
4th Edition, 1995.

2. E. Kreyszig, Advanced Engineering Mathematics, John Wiley, 7th Edition, 1995.
Lecture Notes and Tutorial Sets:

PDF files of the lecture notes & tutorial sets of this part can be downloaded from my home

page at http://www.ee.nus.edu.sg/“bmchen. Tutorial starts on the fourth week!
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1. Sequences and Series

If a set of numbers is so arranged that there is a first, a second, a third, and so on, it constitutes
a sequence. We indicate a sequence by the general term in braces, {f(n)}. As examples of

sequences we have

{Un} UL Uyt Upy tt (11)
()
i

{1}31,%,...,l,.... (1.3)

n

With any sequence {u,} we can associate an array
Up=urFusFuzt Uyt (1.4)

called a series. If all but a finite number of terms, say, those with n > N, are equal to zero,
then the array takes the form

N
ZuiZU1+U2+U3+"‘+UN. (15)
i=1

This has a sum in the ordinary sense. And this sum is called the value of the finite series.
1.1. Convergence and Divergence
The n-th partial sum of the infinite series

Zun:u1+u2+u3+---+un+---, (1.6)

Sn, is defined as the sum of its first n terms. That is
n
sn:Zui:u1+u2+u3+---+un. (1.7)
i=1
The partial sum form a new sequence {s,}. If, as n increases and tends to infinity the sequence

of numbers s, approaches a finite limit L, the series

Zun:U1+U2+U3+"'+Un+"'7 (18)
converges. And we write
lim s, = L. (1.9)
n—oo

We say that the infinite series converges to L and that L is the value, or sum, of the series.
If the sequence does not approach a limit, then the series is divergent and we do not assign

any value to it.
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1.2. A Test for Divergence
Suppose that the series
Zun:u1+u2+u3+---+un+---, (1.10)
converges. Then, since (n — 1) — oo when n — oo, we have
lims,=L and lim s, ;= L. (1.11)
n—0o0 n—o0
But s, = s,—1 + u,, or u, = S, — S,—1. Hence, as n — oo,
nlggl(j Uy, = T}Lrglo(sn — Sp1) = nlg& Sy — nlggl(j Sp1=L—L=0. (1.12)

Hence, as n — 00, u, — 0 in any convergent series. Thus, we have established the following
result:

If u,, does not tend to zero as n becomes infinite, the series
Up=urtusFuzt Uyt (1.13)
is divergent.

Example 1. Show that the series with

Uy = , (1.14)
2n+1

that is, the series

L2y 3y (1.15)

3 5 7 2n +1 ’ '
diverges.
SOLUTION. Here ) .

lim u,, = lim - #0. (1.16)

Hence, it diverges.
Example 2. Show that the series with odd terms "T“ and even terms 1/n, namely, the series
4 1
24ttt ——— o, (1.17)
m m

diverges.

SOLUTION. Here, for large n, there are (odd) terms, 1 + 1/n, near 1, and also (even) terms,
1/n, near 0. Thus, no limit is approached by u,; the terms near 1 show that we cannot have
u, — 0.
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1.3. Comparison Tests for Positive Series

A positive series is one with each u,, > 0. We have the following results:

1. Let Y v, be a positive series known to converge. If 0 < u, < v, for all n, then the

series Y u, converges.

2. Let >V, be a positive series known to diverge. If u,, > V,, for all n, then the series

> u, diverges.

1.4. The Ratio Test for Positive Series

For a positive series Y u,,, let us define the test ratio

f, = nl (1.18)

Unp

Suppose that, as n — oo, t, — 1. Then the ratio test asserts the following:

For a positive series Y u,,, with

lim 2oL = 7, (1.19)

n— 00 un

the series converges if T' < 1. And the series diverges if T' > 1. For the value T'= 1, no

conclusion can be drawn.

Example 1. Test the series with

(n—1)!
for convergence. (note that u; = 1, since 0! = 1.)
SOLUTION. The test ratio is
Up i1 n! nnt
t, = 1.21
Up, (n+1) (n —1)! (1.21)
Since n! = n(n — 1)!, we have
n \" 1 1 1
th=——) =77 > -~ ——=<1. 1.22
<n+1> (1+1/n)» e 2.7 (1.22)

Hence, the series converges.

1.5. Absolute Convergence

Consider a series with general term u,,, which may be positive, zero, or negative. Then, with

> u,, we associate the positive series Y |u,|, obtained by taking absolute values. If this latter

series converges, the first series is said to converge absolutely. We have the following result:
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If' Y |uy,| converges, then 3 u, converges.

Since the series of absolute values is a positive series, its convergence can be tested by the
comparison or ratio test.

If the series of absolute values diverges, the original series may still converge, and in this

case it is said to converge conditionally.

1.6. Power Series

Any infinite series of the form
Ao+ Al(r —a) + Ay(x —a)’ + -+ Ay(z —a)" + - -- (1.23)
is called a power series. If we call the first term uy, we may write it

i)un(x) where u,(x) = A, (z — a)". (1.24)

Let us suppose that the absolute value of the ratio of successive coefficients,

A
JHEO‘ =L #0. (1.25)
Then, the power series
> un(z)  where u,(z) = Ay (z — a)”, (1.26)
n=0
converges absolutely for any x such that
- a] < ~ (1.27)
r—al < —. .
L

PROOF. This makes the limit of the ratio of the numerical values of successive terms in the

series -
> un(z)  where u,(z) = Ay (z — a)”, (1.28)
n=>0

lim

An _ n+1
n%oo‘ @@ (1.29)

Ap(x —a)n

Hence, the positive series with general term |A,(z — a)"| converges by the ratio test, and the

series converges absolutely.
We can also show that the series

3 up(x)  where u,(z) = A, (z —a)” (1.30)

n=0
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diverges for any x; such that

1
|z1 —a| > T

Example. Find the open interval of absolute convergence of the power series
2 3 n

+x +x+ +x+
x _ —_— ) —_— TR
2 3 n

SOLUTION. Here

— |z|.

a:”“/(rH—l)‘: n|z| _ |z |
z"/n n+1 1+ (1/n)

Thus, the interval of absolute convergence is |z| < 1, or —1 < z < 1.

1.7. Operations with Power Series

For any two convergent series

Z u, = U and Z vy =V,
n=0 n=0

the series may be added term by term and

o0

> (up+v,) =U+V.

n=0

It is not necessarily true that the product series, with general term w,,, where

Wy, = UVUp + U1VUp—1 + UgVUp_2 + * ** + Uy,

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

converges, or if it does converge that its sum is UV. But this is always true if both series

converge absolutely.

OO0
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2. Bessel’s Equation and Bessel Functions of the 1st Kind

The differential equation

2y 4z + (2% — v*)y =0 (2.1)

is called Bessel's equation of order v with v > 0. The following is the so-called Frobenius

Solution (or Method of Frobenius) to the above Bessel's equation: Define a Frobenius Series

y(z) = écnx”” (2.2)

where ¢,, and r are unknown constants to be determined. We have

y'(z) = i) cn(n 4 r)z" ! (2.3)
y"(z) = i) cn(n+r)(n+r—1)z"t 2 (2.4)

Substituting Equations (2.2), (2.3) and (2.4) into the Bessel's Equation in (2.1), we have

o0 o0
depn+r)(n+r—1)2""+ > cp(n+ )™
n=0 n=0
o0 o0
+ 3 ™ = vz =0
n=0 n=0
U
o0 o0 o0
Y oea(n+1)2 2"+ cp 0™ = ™ =0
n=0 n=2 n=0
U

cor’z” + e (r + 1)%0" ™ — cv?a” — e

o0
+ > [cn(n + 1)+ cepo— cnvﬂ 2" =0

n=2
Y
o0
(r* = v*)cor” + [(r +1)* — v]era™ + [cn(n +7) 4+ g — cnvﬂ 2" =0
n=2

Let the coefficient of each power of x be zero. Also, assume that ¢y # 0, we find from the

above derivation that the coefficient of 2" is:
F(r)y=r>—v*=0

This equation has two solutions, » = v and r = —v.
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Case 1: First, let us take the solution r = wv. Substituting this solution into the
coefficient of 27!, we get
2u+1)e; =0

Since v > 0, this equation implies that

01:0

From the coefficient of 21", we obtain the recurrence relation:
n(n+ 2v)e, + ¢p—e =0

forn=2,3,4,---
!
L 2,3,4
) = ——0C, _ n =
n ’I’L(’I’L+2U)n2, ) Iy Ty

Since ¢; = 0, the recurrence relation above gives
3 = 07 Cs = 07
In general ¢, = 0 with n being odd positive integers.

For even number of n = 2m, we have

1

= (e 20)

1
~22m(m + v)c2m72
1 -1
22m(m+v)22(m—1)(m+v —1)

Com—4

24m(m —1)(m —;v)(m—l—v —1)

(=1)™co
22m - Im(m —1)---1]-[(m+ov)(m+v—1)--- (v +1)]

This gives us one solution of Bessel's equation of order v, i.e.,
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(_1)mx2m+v

m+v)(m+v—1)---(v+1)

yi(z) = co -
mz::o 22mml(

(_1)nx2n+v

n+v)(n+v—1)---(v+1)

yi1(z) = co -
T;) 22npl(

We will re-written the above solution in terms of the Gamma function. But, first of all let us

introduce this Gamma function and examine its properties.
The Gamma Function
For x > 0, define a so-called Gamma Function
[(z) = /Ooo " e tdt
If x >0, then T'(z +1) =2 I'(x). O
Proof:

D(x+1)= [ tedt

Q.E.D.
For any positive integer n,

I'n+1)=nTmn)=n(n—-1)T(n-1)
=nn—1)n-1)---(n—n+1) (1)

=n! (1)
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Observing that
I'(1) = / e 'dt = —e’t‘ooz 1
0 0

Hence
F(n+1)=n!

If v > 0, but v is not necessarily an integer, a similar property holds:

'n+v+1)=(n+v)T(n+v)

=mn+v)n+v—-1)T(n+v—-1)

=n+v)n+v—-1)---(n+v—n+1)T(v+1)

=n+v)n+v—-1)---(v+1)T(v+1)

which implies
(mn+ov)(n+v—1)---(v+1)= %

This is known as the factorial property of the Gamma function.

Although the improper integral defining I'(z) converges only if x > 0, it is possible to define
['(z) if x is negative (but not an integer). We can write
1
[(z)=—-T(x+1)
x
This holds for all x > 0. Now, if —1 <z <0, then 0 < 2+ 1 < 1 and I'(x + 1) is properly

defined. We can therefore define I'(z) for —1 <z < 0, e.g.,

()= grgen)-ar()

1
2

Having defined I'(x) on (—1,0), suppose now that —2 < = < —1, then —1 <z +1 <0, we

can again follow the same procedure to define I'(x) for —2 <z < —1, e.g.,
3 1 3 2 1 4 1
rNN—-—-)=—rn{—=+4+1)=—=T'{—=)=+=T1=
( ) 3 <2+> 3 (2) 3 <2>
Clearly, we can continue on this process forever by moving to the left over the real line and
defining T'(z) on every interval (k — 1,k) once it has been defined on the interval (k,k + 1)

for any negative integer k.



EE2462 Lecture Notes, Part 1, Prepared by Ben M. Chen 11

20

15

10

_20 | | | | | |
-4 -3 -2 -1 0 1 2 3 4
The Gamma Function

The Gamma Function Over Interval (—4,4).
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Solution of Bessel’s Equation in Terms of the Gamma Function

Recall that the first solution we have obtained for the Bessel’s equation, i.e.,

- (_1)nx2n+v
z) —007;2271.”!.(n+v)(n+v—1)---(v+1)

Z (=1)"T(v + 1)z
= ¢o
220 .pl-T(n+v+1)

The second expression is true because

F'n+v+1)
—1).-.. DN - "7 T
m+v)n+v—1)---(v+1) T+ 1)
If we choose .
O 2T+ 1)
we obtain
00 (_l)nx2n+v

yi(x) = Jo(z) = 3

2l T(n4v+1)

12

J,(x) is called a Bessel Function of the 1st kind of order v. This series converges for all =

(show it).

Exercise Problems: Show that

2. vJy(z) = g[J (z) + Jos1(2)]
3 d t’J,(t t’J, t
. E[ v( )] v 1()

Solutions to the Exercise Problems

1) To verify
1#) = 5la (o) = o ()]

Note that
00 (_1)nl.2n+v

22ntopl T'(n + v + 1)
U

OO0
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Jvfl(l') = Z

— 22ntv=In! '(n 4+ v) =2 22ntop! T(n+v+1)

oo

n=0

(_1)n 2n+v—1 00 2(n+v)(_1)n1’.2n+v71

Jy(z) = > (2n +v)

T

(_1)nl.2n+v—1

22ntop! T'(n+v+1)
U

n=0

13

The second equality holds because I'(n + v + 1) = (n + v)I'(n + v). Therefore, we have

That is

2) To verify

First note that

and

Then we have

Ty(x) = 571 (@)

vJy(z) —

=0 + Z 22n+v
n=1

o0

n(_l)nl‘2n+vfl

=2

n=0

o0

22ntopl T'(n + v + 1)

(_1)nx2n+v—1

(_ 1)n+1x2n+v+1

- Z 22ntv+2pl T'(n + v + 2)

n=0
1
2

1

00 (_1)nx2n+v+1

m—!T(n+v+1)

2 22ntvtinl I'(n + v + 2)

n=0

= _§Jv+1(x)

Jo ()

v, ()

Jy(x) =

;Jv_l(x)

1

= 5l om1 () = Joa (2)

:5[

o0

Jy—1(2) + Jyy1(2)]

(_1)nl.2n+v

2.5

n=0

Zntopl T(n 4+ v + 1)

00 (_l)nx2n+v

T
§Jv,1(x) =2 22ntop! T'(n +v)

n

o0

-3

n=0

o0

=2

n=0

=0

v = (n + )](~1)a2
22ntop! T'(n + v + 1)

(=n)(=1)" e

22ntop! T'(n+v+1)

Q.E.D.



EE2462 Lecture Notes, Part 1, Prepared by Ben M. Chen

( l)n 1 2n+’u

=0+ Z 220+ (n — 1) T(n+v+1)

00 (_1)nx2n+2+v

- nz::o 22n+2+opl T'(n 4+ v + 2)

( l)n 2n+ov+1
2 Z 22ntvtipl T'(n 4+ v + 2)

s
= §Jv+1(x)
That is,
X
vlo(2) = 5ot (2) + Sy (2))]
3) To verify
d v v
E[t J,()] =t"T, 1(t)
We let
y =t"Jy(t)
00 (_l)nt2n+v

=V
nz:% 22ntop! T'(n+v+1)

00 (_l)nt2n+2v
B 7;) 22t T'(n4+v+1)

Then we have

dy i (2n + 2v)(—1)r¢2n 2ot
dt 4= 22! T(n+v+1)

00 (_1)nt2n+2v71

- 71,2::0 22ntv=1n! ['(n 4 v)

o0 (_l)nth—l—v—l

=tV
nz::() 22ntv=Ip! T'(n 4 v)

= tUJU_l (t)

14

Q.E.D.
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Again, we have used the factorial property of the Gamma function in the above derivation.
That is
F'n+v+1)=(n+v)(n+wv)

Q.E.D.

We have considered the case in which v is any nonnegative number. We will now consider the

problem of finding a second, linearly independent solution of Bessel's equation. Recall that
F(r)y=r>—v*=0

has two roots r; = v and ry = —v.

Case 1: v is not an integer.

Theorem: If v is not an integer, then two linearly independent solutions of Bessel's equation

of order v are J, and .J_,, where

00 (_1)nx2n+v
Jy(r) =
() nzzjo 22ntopl T'(n + v + 1)

Thus, the general solution of Bessel's equation of order v, where v is not an integer, is
y(x) = a1 J,(z) + o J ()

where o1 and ay are real scalars.

Case 2: v is an integer.

If v is an integer, say v = k, then J,(x) and J_,(z) are solutions of Bessel's equation of
order v, but they are NOT linearly independent. This fact can be verified from the following

arguments: First note that

00 (_1)711271,7'0

J ,(x) =
(z) nzz:o 22n=vp! T'(n — v+ 1)
Observing the values of Gamma function at 0, —1,—-2,------ , they go to infinity. Thus we
have .
['(n— 1) — —— =0
(n—v+1) =00 or NCEY

asv—kforn=20,1,2,---,k — 1. Hence

00 (_l)annfk

Tn(x) = nzz:k 22n=kp! T'(n — k 4+ 1)
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In this, let the variable of summation be changed from n to m by the substitution n = m + k.
Then

) (_1)m+kx2(m+k)*k
J =
k() mEZIO 22(m+l~c)—k(m +ENT(m+k—Fk+1)
_io: (_1)m(_1)kx2m+k
_m:() 22m+k (m + k) T'(m + 1)
o —1)ma <= (et
(=1) mz::[) 22m+k (1 + k) T(m + 1) (-1) mz::o 22mtk(m + k)!m)!
0o _1)mx2m+k

Thus, we need to search for another linearly independent solution of Bessel's equation. The is

the subject of the next topic.

3. Bessel Function of the 2nd Kind

For the Bessel’s equation of order v:
22y + xy + (2> — vy =0
in which v > 0, the general solution is

y(x) = arJy(r) + asJ_y ()

if v is not an integer. Now, in the case in which v is a nonnegative integer, say v = k, for some
nonnegative k, we have one solution Jy(x) of Bessel's equation but have not yet derived a

second, linearly independent solution. In what follows, we will try to find this second solution.
A Second Solution of Bessel’s Equation for the Case v =k =0

Let us try a solution of the following format
y2(z) = yi(z) In(z) + > ¢fa”

where

Then we have



EE2462 Lecture Notes, Part 1, Prepared by Ben M. Chen 17

!
yo(z) = Jo(z) In(z) + %Jo(x) + i ncia"
U
2 1
) = 500 0) + 2050) — o) + 3 )

Substituting the above equations into Bessel's equation of order 0, i.e.,
TYy + Yy + Y2 =0
we have

1
0:xJ6'(x)ln(x)+2J6(x)—;Jg Z (n—1)cia"!
+ Jy(x) In(x) + = Jo —i—ch* nol

+ IL'J() —|— Z C>‘< ntl
I3
0 =1In(x) [z (z) + Jy(x) + xJo(x)]

expression inside [-] = 0 because Jy(r) is a solution

oo

+Zn(n_1)* n— 1_|_ch* n—1

n=2 n=1

+ Zc* "+ 200 (2)
U
2.Jy(x )+01+Zn2 st ™t =0

n=2 n=1

Noting that
00 (_l)nl,2n71

Jolw) = Z 22n=1Ipl(n — 1)!

n=1

we have
T 2% pn—1  mdl
22%72”!(”_1) —l—cl—l—Zn + Y et =0

n=1 n=2 n=1

00 (_l)n 2n—1 00
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U
00 (_1)71,1.271,71 ) )
4 cra™” =
;2%_2”!(”_1) +01+ 02x+n2:3n +ch 295
U
00 (_1)nl.2n—1 .
4 " =0
712::1 Yo (1) +c + 02x+n2:3n o+ ol
U
;=0

Also, note that the only even powers of = appearing on the left hand side of the equation occur

in the last series, when n is odd.
The coefficient of these powers of © must be zero and hence must satisfy

n2c ¢t =0, n=2305T-

U

1

Cp = ——5Cn9, N=2357T-"-+
ie.,

k 1 k

g =50 = 0

% 1 *

k 1 *

07 o —4—{)65 - 0 ------

Thus, in general,

Comyr =0 form =0,1,2,-+----

We will now determine the even-indexed coefficients. First, we replace n by 25 in the second
summation (note that n?c’ —c¢: , = 0 for n = 3. Thus, the second summation can start from
n = 4, which implies that j can start from 2), and n = j in the first summation, i.e.,

0 (—1)ig¥i!

o

o
+Adsw 4+ Y [45%¢s; + ¢5; o)z =0

U

l)j 9k . -
402 :U + Z 22] 2 1)' + 4]202]' + 02].*2 x2] 1 — 0
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Equating the coefficients of each power of = to zero, we have

1
cy= -
27y
® (_1)j+1 1 *
TG At
With j = 2,
1 1 1 1
* = — = 1 —
“ 7 9i929 T 92924 T 9242 [ + 2}
With j = 3,
\ L. 1+ 1 {1+1+1}
C, = — — —
67 26326.2 | 4.329242 224262 273

In general, we find that

; (=17 R I
Cop) — ——— — — PN —
22242 (25)2 2 3 j

where - .
NV=14+ -4+ =4 4=
YU =14g+gtt ;
A second solution of Bessel's equation of order zero may be written as
= (= on
yo(z) = Jo(z) In(x) + Z 55 (1] sY(n)w
n=1 (n)
for x > 0.

Because of the logarithm term, this second solution is linearly independent from the first

solution, Jy(x).

Instead of y,(z) for a second solution, it is customary to use a particular linear combination of
Jo(z) and yo(x), denoted Yy(z) and defined by

2 () + [y~ ()] do()}

Y = —
o() -
in which v is called Euler's constant and given by,

v = lim [1h(n) — In(n)] = 0.577215664901533 - - -

n—o0

Since Yp(z) is a sum of constants times solutions of Bessel's equation of order 0, it is also a
solution. Furthermore, Yy(x) is linearly independent from Jy(z). Thus, the general solution of

Bessel's equation of order 0 is given by

y(z) = arJo(x) + aaYo(w)
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In terms of the series derived above for y(x),
l)n—i—l

¥ila) = 2 L) nta) + 3w+ b - m@)a)|

_ 2 ( 1)n+1

& {J0($) [ln(2) —|—fy] + Z 22 ()2 w(n)ﬂn}

™

Yy(z) is a Bessel's function of the second kmd of order zero: with this choice of constants,

Yy () is also called Neumann’s Function of Order Zero.
A Second Solution of Bessel’s Equation of Order v if v is a Positive Integer.

If v is a positive integer, say v = k, then a similar procedure as in the £ = 0 case, but more
involved calculation leads us to the following second solution of Bessel's equation of order
v =K,
2 T Mk -n—1)! ,
e = 2 o i (5) 1] - X G

T n=0

. Z —1)" 1 p(n) + (n + k)]xZn-I—k} , (0)=0

D2 tk+inl(n + k)]
Yi(z) and Jg(x) are Iinearly mdependent for x > 0, and the general solution of Bessel’s

equation of order £ is given by
y(!L‘) = &1Jk($) + OtQYk(!L')

Although Ji(z) is simple .J,(z) for the case v = k, our derivation of Y;(x) does not suggest
how Y,,(z) might be defined if v is not a nonnegative integer. However, it is possible to define
Y, (z), if v is not an integer, by letting

1

sin(vT)

Yo(z) = [Jo(2) cos(vm) — J_y(2)]

This is a linear combination of .J,(z) and J_,(z), two solutions of Bessel's equation of order

v, and hence is also a solution of Bessel's equation of order v.

It can be shown (very complicated!) that one can obtain Y} (z), for k a nonnegative integer,
from the above definition by taking the limit,
Yi(x) = lim Y, ()
v—k
Y,(z) is called Neumann’s Bessel's function of order v. It is linearly independent from J,(z)

and hence the general solution of Bessel's equation of order v can be written as
y(x) = ardy(z) + azYy(x)

which holds regardless v is an integer or not.
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4. Modified Bessel Functions

Sometimes modified Bessel functions are encountered in modeling physical phenomena. First,
note that
y(x) = arJy(kr) + axYy(kx)

is the general solution of the differential equation
" 1 / 2
Yy +-y +ky=0
x
Let k = 7, where i = /—1, which implies k? = i> = —1. Then
y(x) = a1 Jy(iz) + axYy(ix)

is the general solution of
1
y'+-y —y=0
x
This differential equation is called a modified Bessel's equation of order zero, and Jy(ix) is a

modified Bessel function of the first kind of order zero. Usually we denote

Iy(x) = Jo(ix)

Since i2 = —1, substitution of iz for = in the series for .J; yields:
L Ly 1 6
[o(ZU) =1+ ?ZU + 22421‘ + 2242621' 4o
Usually Yy (iz) is not used. Instead we use the function
1
Ko(z) = [In(2) — ]|Ih(x) — Ip(x) In(z) + Zﬁ T

Ky(x) is called a modified Bessel function of the second kind of order zero. The quantity ~ is

as usual the Euler’s constant.
We now write the general solution of the differential equation
1
y'+-y —y=0
x

y(x) = arlp(x) + aaKo(x)

Homework:
Show that the general solution of the differential equation

1
y//+_y1_b2y:0
X
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The Modified Bessel Functions.
is given by

y(x) = a1 ly(bzr) + o Ko(bx)

Problem 21: (O'Neil, page 262)
Show that
[zI5(2)] = zlo(z)

Proof:

U
() = it (i)
U
2I(z) = izJ)(iz)
U
[z1(2)]" = iy (iz) — 2 Jg (iz)

But y = Jy(ix) is the solution of the modified Bessel equation
1
y'+-y —y=0
T

or
xy" +y' =y (4.1)
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Also, note that
y = Jo(iz) = ' = iJy(iz) = y" = —J (ix)
Substituting into (4.1) above, we have

—xJy (iz) +iJy(ix) = xJp(ix)

That is
[21y(2)] = wlo(7)

Q.E.D.
Problem 10: (O'Neil page 262)

Show that y; (x) = z%J,,(bx°) and ya(x) = x*Y,,(bz°) are solutions of

2 — 1 2 2.2
y//_(ax >y,+<b2621‘2c_2+a 2nc>y:0

T

for any constants a, b and ¢, and any nonnegative integer n.

Proof:
y1 = x%J, (bx°)
U
Y, = 2°J! (bx)bex™" + ax® ' J, (bx¢) = bex® 1T (ba¢) + ax® ' T, (ba€)
U

Yl = bex T I (b2 )bexr™ + be(a + ¢ — 1)zt 2T (bat)
+az® 1! (br®)bex™" + a(a — 1)z 2, (bx°)
= b?ca" 22" (ba%) + be(2a + ¢ — 1)z 2T (ba)

+a(a —1)2" 27, (bx°)
Substituting into the given differential equation, we get

bc? 222 ] 4 be(2a + ¢ — D)2t 2T 4+ ala — 1) 2,
— (2a — Dbex®t2J) — a(2a — 1)2*7%J, + a*x* 2 J,

+ bQCQIa+2C_2Jn o n202$a_2Jn
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= DRt | hPgtem2 Jl | [22g0te2 g p22pa2 g
= ch“_Q{beQCJ,'; + bzt J! + (B*r* — nQ)Jn}
The factor inside {---} is equivalent to the left-hand side of the differential equation
2y + 2y + (22 -nPy =0
when we substitute z = bz and y = J,,(z). Thus,
{beQCJT'L' + bz J), + (bPx* — n2)Jn}: 0

That is: y,(x) = 2*J,(bz) is the solution of the given differential equation. For the other
solution, y» (), follow the same procedure above and try to do it yourself.
Q.E.D.

5. Applications of Bessel Functions

Displacement of a Suspended Chain

Suppose we have a heavy flexible chain. The chain is fixed at the upper end and free at the
bottom.

We want to describe the oscillations caused by a small displacement in a vertical plane from
the stable equilibrium position.

We will assume that each particle of the chain oscillates in a horizontal straight line.

Let m be the mass of the chain per unit length, L be the length of the chain, and y(x,t) be
the horizontal displacement at time ¢ of the particle of chain whose distance from the point of

suspension is .
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Consider an element of chain of length Ax. If the forces acting on the ends of this element are
T and T + AT, the horizontal component in Newton’s Second Law of Motion (force equals to

the rate of change of momentum with respect to time) is:

0%y 0 dy

(For those who are interested in the derivation of the above equation, please
read Section 11.2 & 12.8 of the Reference Book by Wylie)

U
Py 0 dy
ZJ_ 2 (7=
oz T o ( ax>
The weight of the chain below x where T acts, is:
T =mg(L —x)

Substituting into the above differential equation, we get

0%y Oy 0%y
e = g, TG

This is a partial differential equation. However, we can reduced the problem of solving it to a
problem involving only an ordinary differential equation. Let 2 = L—x and u(z,t) = y(L—2z,t).

Then
%y _ du
o2 o2
@ B au% ou

dr  0z0x 0z
0%u 0 [0y 9 (Oy\ 0x 0%y
@Z‘&(aﬁ;):—a—x(a)&:@
!
0*u ou 0%u
oz 99 T2
This is still a partial differential equation, which can be solved using p.d.e. method. Since we

anticipate the oscillations to be periodic in #, we will attempt a solution of the form
u(z,t) = f(z) cos(wt — 0)
Substituting into the partial differential equation, we get

—w?f(2) cos(wt — &) = gf'(2) cos(wt — &) + gzf"(2) cos(wt — )
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Dividing this equation by gz cos(wt — d), we get

1)+ 1) + L) = 0
z gz N
Fortunately, we have shown that that
2T, (bx¢) and  x°Y,(bz°)

are solutions of the differential equation

2 — 1 2 2.2
y”_<ax )y'+<b202x202+a ;C>y:0

T
Now, let

20—1=-1 = a=0
1
2-2=-1 = c=3

|3
pe =L
g V9

I3
a>—n’?=0 — n=0

Thus, the general solution is in terms of Bessel functions of order zero:

f(2) = anh (mﬁ )+ <2w\/§ )

Now, from we know (see figure on page 22) that

(o)

as z — 0T (thatis, as z — L, i.e., at the bottom end of the chain). We must therefore

choose as = 0 in order to have a bounded solution, as we expect from the physical setting of

f(2) = anh (gw\@

u(z,t) = £(2) cos(wt — ) = a1 (mﬁ) cos(wt — 0)

the problem. This leave us with

Thus,

Hence,

y(z,t) = a1y <2w Lox > cos(wt — 0)
g
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The frequencies of the normal oscillations of the chain are determined by using this general
form of the solution for y(x,t) together with condition that the upper end of the chain is fixed

and therefore does not move. For all ¢, we must have
y(0,t) =0

Assume that ay # 0. This requires that we have to choose w such that

L
J() (2(4)\/i> =0
g
This gives values of w which can be frequencies of the oscillations.

To find these admissible values of w, we must consult a table of zeros of .J;. From a table of
values of zeros of Bessel functions, we find that the first five positive solutions of Jy(ar) = 0
are approximately 2.405, 5.520, 8.654, 11.792, 14.931. (These values can also be found
using commercially available software package such as MATLAB. Check out
function bessel in MATLAB). Using the these zeros, we obtain

=240 = w; = 1.203\/%

2(.()1

=95.520 = wy = 2.760

9
2(4)2 Z

2(.()3

NENERNE

=8.645 = w3 = 4.327\/%

Qo[ 2 =11.792 = w, = 5.896,/ 2
g L
L
Qs [ = =14.931 = wy = 7.466,/
g L

SSRE

All these are admissible values of w, and they represent approximate frequencies of the normal

modes of oscillation.
The approximate period 7} associated with w; is

_27r

Ti=—
j

Special Remarks:
There are two features in the solution of this type of problems:

1. Change of variables was used to write solutions in terms of Bessel functions.
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= X =

(L,0)

2. Much of information about the motion of the system was obtained from zeros of a Bessel

function.

The Critical Length of a Vertical Rod

Suppose we have a thin elastic rod of uniform density. This rod is clamped in a vertical position
Intuitively, if the rod is “too long” and the upper end is displaced slightly, the rod will remain

in the displaced position after being released.

On the other hand, if the rod is “short enough”, it will return to the vertical position after

being released.

We would like to know where the transition occurs between being too long and short enough.
That is, we want the minimum length at which the rod remains bent after being released.
This length is called the Critical Length of the rod and of course will depend on the material
of the rod.

To derive a mathematical model from which we can solve for this critical length, let L be the
length of the rod and a be the radius of its cross-sectional circular. Let w be the weight per
unit length and £ be the Young's modulus for the rod. Note that £ depends on the material
of the rod. We should expect that this will influence the critical length. Finally, the moment
of inertia about a diameter is I = wa*/4.

Now, assume that the rod is in equilibrium and is displaced slightly from the vertical. The
origin is as shown, and the x-axis is vertical, with downward as positive. Let P(z,y) be a point
on the rod, and let Q(&,n) be a point slight above P.

The moment about P of the weight of an element wAx at () is given by

wAzly(&) — y(v)]
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Assume from the theory of elasticity the fact that the moment of the elastic forces about P is

d%y
El—
dx?
Since the part of the rod above P is in equilibrium, we have
d*y z
BITS = | wly() - y()lds
Differentiate this equation with respect to x to get
d? z d
EITS = wly(@) = y(a)) = | wy/(w)d€ = —wo !
This yields a third order differential equation
d’y dy
El— —= =
s +wxdx 0
or
Py w dy
dz3  FEI dx
Let u = —= to obtain a second order differential equation:
x
d*u L
— 4+ —ru=
dz?  FEI

Recall your tutorial problem (also Problem 1 on page 253 of O'neil): Use the fact that .J, is a
solution of Bessel's equation of order v to show that z®.J,(bz¢) is a solution of the differential

equation
2

2a — 1 2 %
y//_(a >y'+<b202x202+a 2vc>y:0
x x

Compare with the above differential equation:

1

20 —1=0 — UJ:§
U

2 2 2 1

o —vcc=0 = v:§
f

3

2c—-2=1;, = 625
U
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The general solution of the differential equation is given by

dy 1 2 w 3 1 2 w 3
WS T (5 E) Tagrz ]y (5 E)

There is no bending moment at the upper end of the rod. Thus,

@y

dx? =0

=0

This condition requires that we have to choose a; = 0. Otherwise,

2 [w 3/2>}’
{\/5‘]1/3<3 EI"
2 [w\ V22w g3 2 [w I
— = 7 = 7 /2 I el 3/2
{(3 EI) <3\/EJI ) J1/3<3 BT )

5 ~1/3
— <_ ﬂ) {t1/3J1/3(t)}, 2 412 (change from 7 to t)

3V EI ETl
5 —1/3
— <§ %) {tl/?’J%fl(t)} %xm (see problem 3 on page 12)

=uxJ_

Wl

2
<§,/%x3/2> ,/% — —00 as x — 0F

Therefore, we have to choose a solution having the following format

d 2 [w
a2 =V s (5 )

Furthermore, the lower end of the rod is clamped and so does not move; then

dy

=0
dx

z=L

In order to satisfy this condition with ay # 0, we must have
2 [w
J —,/—L?’/?) ~0
V3 (3 EI
The critical length is the smallest positive number L which satisfies the above equation.

We find from the table or using software tools that the smallest positive zero of J_;/3 is

approximately 1.8663. Thus, the critical length L is determined approximately by

2 [w

—\/—LQ/?’ =1.

SV BT 8663
U
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2/3
3 |EI EIN\'/3
L= [1.8663 x o — 1.9863 (—)

w w

Alternating Current in a Circular Wire: the Skin Effect

Consider an alternating current of period 27/w, given by D cos(wt). Let R be the radius of
the wire, p be its specific resistance, i be the permeability, z(r,t) be the current density at
radius r and at time ¢, and H(r,t) be the magnetic intensity at radius r from the centre of

the wire at time ¢.

To derive an equation for the current density x(r,t), we will need two laws of electromagnetic
field theory. Ampere’s Law states that the line integral of the electric force around a closed
path equals to 47 times the integral of electric current through the path. Faraday’s Law
states that the line integral of the electric force around a closed path equals to the negative of

the partial derivative with respect to time of the magnetic induction through the path.

Now consider a circular path of radius r within the wire, centred about the midpoint of the

wire.

By Ampere's Law,
2nrH = 47r/ 2mradr
0

Differentiating with respect to r, we get

%(TH) =drrx (5.1)

Consider a closed rectangular path in the wire, with two sides along the axis of the cylinder

and of length L, and the other sides of length r.

By Faraday's Law,
0 r
pL[z(0,t) — x(r,t)] = ——/ pLHdr
at Jo

Differentiating w.r.t. r, we get
or  OH
Por = or
We want to eliminate H from these equations to obtain an equation for x alone. To do that,

(5.2)

we multiply Equation (5.2) by r and differentiate the resulting equation w.r.t. . We obtain

- (g—x> Sy (%—f) ol (%[rﬂ]) (5.3)
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because Or/0t = 0. Assume that we can reverse the order of the differentiation on the

right-hand side of the above equation, we obtain

2 (%)= (3e)

From Equation (5.1), we have

10 < ax> _ Arpox (5.4)

— r— —_
ror \ Or p Ot
To solve this equation, we will employ a device which is quite standard in mathematical treat-

ments of electricity and magnetism. Let
z(r,t) = x(r,t) + iy(r, t)

and then replace = with z in Equation (5.4) to get
10 ([ 0z 4y 0z
- r— _
ror \ Or p Ot
Now recall Euler's formula. We can write

cos(wt) + i sin(wt) = e™*

Anticipating periodic dependence of the current density on time, we will attempt a solution of
Equation (5.5) of the form,

£rt) = J(r)e™
Substituting this expression for z into Equation (5.5), we get

%% [Tf/(,r)eiwt] A

flr)=0 (5.6)

Now let

Equation (5.6) becomes
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This is a modified Bessel's equation with general solution
f(’l“) = 61[0(]{77") + CQK()(ICT)

In order for f(r) to remain finite as r — 07, we must have co = 0. Thus, f(r) is of the form
c11o(kr), with I the modified Bessel function of first kind of order zero. Then z(r,t) has the
form

2(r,t) = e Iy (kr)e™!

The current density z(r, t) is the real part of the above expression.

We have not yet used the initial assumption that the alternating current in the wire is given by
D cos(wt).

Note that D cos(wt) is the real part of De™!. Since De™! represents the total current, we
have

. R R .
De**t :/ 2mrzdr = 27rcl/ rlo(kr)e™ dr
0 0
wt

Upon dividing by e*“*, we have

R R
D= / 2mrzdr = 2#01/ rIo(kr)dr
0

0

Recall that D is known. Thus, we obtain the constant ¢y, which is given by

D
C1 = 57
oo JEr Iy (kr)dr (5.7)
Note that (see e.g., page 23)
!
[a:[é(x)} = zly(x),
which implies
rIy(kr) = %I{)(lﬁ“)
and hence
R R,
/ rlo(kr)dr = 7= I)(kR) (5.8)
0 k
Substituting this into Equation (5.7), we get
Dk?
0= ——=7—
2rRIj(kR)
and hence D
— T twt
2 = SR ke

The current density z(r, t) is the real part of the expression. Note that both k and k2 are not
real numbers. There is no simple way to separate the above expression into real and imaginary

parts.
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The Skin Effect:
We will now apply this analysis to a mathematically derivation of the skin effect:

It has been observed that, for sufficiently high frequencies, the current flowing through a
circular wire at radius r is small compared with the total current, even for r nearly equal
to R. This means that “most” of the current in a cylindrical wire flows through a thin

layer at the outer surface, i.e., at the “skin” of the wire.

To derive this effect from the model, begin with the solution for z. The total current through

a cylinder of radius r is given by

DFk? r ,
) / 2mr Io(kr)e™'dr
0

"oma(r t)dr = ——0
/0 T = SR

DK .,
— it [T (kr)d
RI(kR)" /0 rlo(kr)dr

By Equation (5.8), with r in place of R we have

/r rlo(kr)dr = I (kr)

0 k270
Thus, the total current through a cylinder of radius 7 is
Dez’wtx L Ié(k?“)
RI\(kR)
Y Y

total current ratio of the current in cylinder
in the wire of radius r to the total current
We want to know this ratio behaves for large &, which is proportional to y/w. It can be shown
that for large z, Iy(x) can be approximated by
Ae”
NG

I()({I,') ~

for some constant A. Hence, for large z,
Ae” 1 Ae” 1 Ae”
I(z) ~ Aer (=2 ) =22 (1= ) =
o(w) ~ T+ Aet(—5e NASEET AN

Thus, if w is large, which implies that £ is large in magnitude, we have

r INkr) e VR T k(R—r)
— R~ = e

RIJkR) ~ RyreR ~ VR

Givenany r < R, e k(f-7)

can be made as small in magnitude as we like by choosing appropriate
(large) w (or k). Thus, for large k, the ratio of the current in the cylinder of radius r to the

total current — 0, and this is the so-called skin effect.
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In fact, we can choose r as close as we like to R, and this conclusion continues to hold, for

sufficiently large frequencies.

OO0



EE2462 Lecture Notes, Part 1, Prepared by Ben M. Chen 37

6. Legendre’s Equation and Legendre Polynomials
The differential equation

(1—2?)y" — 22y + a(a+ 1)y =0
in which « is a constant, is called Legendre’s Equation.

It occurs in a variety of problems involving quantum mechanics, astronomy and analysis
of heat conduction, and is often seen in settings in which it is natural to use spherical

coordinates.

Write Legendre’s equation as

21 ala+1)
n_ / aer 1 _
Y {l—xQ}y+{ 1 —a? }y 0

The coefficient functions are analytic at every point except x = 1 and v = —1. In

particular, both functions have Maclaurin series expansions in (—1,1).

Since zero is an ordinary point of Legendre's equation, there are two linearly independent
solutions which are analytic in (—1,1) and which can be found by the power series method.
Let

o0
= Z anx”
n=0

Substituting into Legendre’'s Equation, we have

Zn(n—l)an -2 Z n(n — 1)ayz" —Z2nanx +Z (a+ 1az™ =0
n=2 n=2

The first summation can be written as

o0

> (n+2)(n+ 1)ay 02"
n=0
U
> (n+2)(n+1)apioa" — Z n(n —1)a,z" — Z 2na,z" + Z (a+1)apz" =0
n=0 n=2

Combining summations from n = 2 onwards and writing terms for n = 0 and n = 1 separately,

we have

[2a2 + a(a+ l)ao] + [6a3 —2a; + a(a+ l)al]x

+ i {(n+ 2)(n+1)ap42 — [n2 +n—ala+ 1)]an}xn =0

n=2



EE2462 Lecture Notes, Part 1, Prepared by Ben M. Chen 38

The coefficient of each power of = on the left-hand side of the equation must be zero, i.e.,

1
200 +afa+1)ag =0 = ay = —%ao (6.1)
-1 2
6az — 201 + a(a+1)a; =0 = a3 = — (@ )6(a + )a1 (6.2)

and forn =2,3,4,---
(n+2)(n+ 1ape — 0* +n—ala+1)]a, =0

The last equation is the recurrence relation. Re-write

2 +n—ala+1)]=n>-a’+n—a

=(n—-a)(n+a)+(n—a)

=n—a)(n+a+1)

Thus,
(a=n)(n+a+1)

Qn
(n+2)(n+1)
for n = 2,3,4,---. In view of (6.1) and (6.2), we see that in fact the recurrence relation is
also valid for n = 0,1. That is

Qpy2 = —

(a—n)(n+a+1)
(n+2)(n+1)

(pyio = — an, forn=20,1,2,3,---

The above recurrence relation expresses a,. 2 as a multiple of a,,. Thus, ay is a multiple of ay;
a4 is a multiple of ay (hence of ay); and so on, with every even-indexed coefficient a multiple

of agy. Similarly, every odd-indexed coefficient is a multiple of a;.

For the even-indexed coefficients, we have

(a+ 1o
ag = ———a
2 1.5
a+3)(a—2
SCES (TR

_ (a+3)(a+a(a— 2)@
A1 0

(@+5)(a+3)(a+1)a(a—2)(a—4)
6!

g = — ao
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In general, we have

(a+2n—1)(a+2n—-3) - (a+1)a(a—2) - (a—2n+2)
(2n)!

Aoy = (-1)” ao

and

(a+2n)(a+2n—-2)-- (a+2)(a—1)(a—3) - (a—2n+1)
(2n +1)!

A2n+1 = (—1)n a1

We can obtain two linearly independent solutions of Legendre’s equation by making choice for

ag and a;.

If we choose ay = 1 and a; = 0, we get one solution:

yl(l') _ 1"‘2(—1)” (O[+2TL—1) e (04—|—1()271§'04—2) e (a_2n+2)x2n
_q_ (a+ 1)04:62 N (a+3)(a+a(a— 2)x4
2 24
(a5 @+3)(a+lala—2)(a—4)
720
By letting ag = 0 and a; = 1, we obtain a second solution:
(o) = 24 S L1y @20 (0 2) (0D (0=3) (@ 2nt D)

(2n+1)!

n=1

. (04—1-2)(04—1)393Jr (a+4)(a+2)(a—1)(04—3)x5_“.

6 120

These power series converge for all z € (—1,1).

Note that for some «, one or the other of these series solutions is a polynomial. For example,
if « = 2, then a4, = 0; and hence ag = ag = --+- = 0. Thus, y; is just a second degree

polynomial, i.e.,

yi(z) =1 — 32°
If « =3, then a5 = 0; so a; = ag = --+ = 0; and hence y, is a third degree polynomial, i.e.,
5
yo(z) = — §x3

In fact, whenever « is a nonnegative integer, the power series for either y; () (if a is even) or

yo() (if v is odd) reduces to a finite series, and we obtain a polynomial solution of Legendre's
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equation. Such polynomial solutions are useful in many applications, including methods for

approximating solutions of equations f(z) = 0.

In such applications, it is helpful to standardize specific polynomial solutions so that their values
can be tabulated. The convention is to multiply ¥, or y, for each term by a constant which

makes the value of the polynomial 1 at z = 1.

The resulting polynomials are called Legendre polynomials and are denoted by P,(x), i.e.,

P,(x) is the solution of Legendre's equation with v = n.
The first few Legendre polynomials are

Py(z) =1, Pi(z) =z

Pyfa) = (3% - 1), P(@) = 252" 30

1 1
Py(z) = g(359;4 — 3022 +3), Ps(z) = g(63gc5 — 702 + 157)

Although these polynomials are defined for all z, they are solutions of Legendre's equation only

for —1 < x < 1 and for appropriate .

It can be shown that o must be chosen as a nonnegative integer in order to obtain non-
trivial solutions of Legendre’s equation which are bounded on [—1,1]. This is particularly
important in models of phenomena in physics and engineering, where boundedness of the

solution is a natural expectation.

Theorem 6.1. If m and n are distinct nonnegative integer, then
1
/ P,(x)P,(x)dz =0
-1

Proof: P, and P,, are solutions of Legendre’'s differential equations with & = n and a = m,

respectively. Hence, we have
(1—a2*)P) —22P, +n(n+1)P, =0

(1 —2*)P) — 2P, +m(m+1)P, =0
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The Legendre Polynomials Over Interval (—1,1).

Multiplying the 1st equation by P, and the 2nd equation by P,, we obtain

(1 —2*)P!P,, — 22P. P, +n(n+1)P, P, =0

— (1 —2*)P!P, — 2xP! P, +m(m +1)PpP, =0

=1 —a2*)(P'P,— P'P,) —22(P.P,, — P, P,)

+ [n(n+1) —m(m+1)]|P,P, =0

The above equation can ne written as

(1— x2)%[p,;pm PP — 2[P Py — P Pa] = [(m(m + 1) — n(n + 1) PP,
!
% {(1 = a?)[P Py = PP} = [m(m+1) = n(n+ 1)]PP,

Integrating

mm-+1)~n(n+ 1] [ Pu(e)Ba)de = {1~ )PP~ PuB)| =0

-1
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Since m # n, we have

/1 P,(x)P,(x)dz =0

-1
Q.E.D.
Exercise Problems: (Problem 2 O’Neil pg 237): Show that

[n/2] (—1)’“(271 _ 2]{7)!1‘"_%
Pa@) =2 2nk!(n — k)!(n — 2k)!

k=0

in which [n/2] = largest integer < n/2. Use this formula to compute Py(z) through Ps(z).

(Problem 3 O’Neil pg 237): Rodrigue's formula states that

1 a
—onpldgn

Fy(x) (% = 1)"]

forn =1,2,3,---. Prove this formula, assuming the formula for P,(z) from Problem 2. Use
Rodrigue’s formula to compute Py(z) through Ps(x).

7. Properties of the Legendre Polynomials
Generating Function for Legendre Polynomials
The generating function for Legendre Polynomials is
P(x,r) = (1 — 2zr + r?)71/2
To see why this is called a generating function function, recalled the binomial expansion
1 113 1135

1) 1/2 142 119 2, L1993

(1-2) T¥ T a122% 322"
If we let 2 = 2zr — r?, we have

1 2y , 9 22, O 2\3
P(x,r):1+§(2xr—7" )+§(2xr—r ) +1—6(2xr—r )+

Rewrite this series in ascending powers of r to give

13 3 5
P(z,r)=1+uzr + <—§+§x2> r? + (——x+—x3> P4

= Py(z) + Pi(z)r + Py(2)r? + P3(z)r® + - -

Thus, the coefficient of 7" in the series for P(x,r) is exactly P,(x), i.e.,

P(z,r) = i) P, (x)r"
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Theorem 7.1. (Recurrence Relation for Legendre Polynomial). For each positive
integer n,
(n+1)Pyi1(x) — (2n+ )P, (z) + nP, 1(x) =0

for all -1 <z <1.
Proof: Differentiating the generating function
P(z,r)=(1—-2zr+ 7"2)_1/2

w.r.t. r, we obtain

oP 1
5 = —5(1 — 27 + 1232 (—22 + 2r)
= (1 —2xr +73) 3 (x —7)
Y
oP
(1—2xr + T2)8— = (1 —2zr + %)%z — 1)
r
Y
oP
(1 —2zr + 7"2)8— —(x —=r)P(z,r)=0
r
Note that from the property of the generating function, i.e.,
P(z,r) =Y Py(x)r"
n=0
We have 9p -

— =Y nPy(x)r" ' = nP(x)r"!

87“ n=0 n=1
Y

(L=2zr +7%) Y nP,(2)r" ' = (x = 1) Y Py(z)r" =0
n=1 n=0
Y
S nPy(x)r" ™t =3 2enPy(2)r" + > nPy(x)r" T = Y aP,(x)r"
n=1 n=1 n=1 n=0
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i(n +1)Poia(x i —2zn)P,(x)r" + i(n —1)P, 1(z)r"

— i zP,(z)r" + i P, 1(x)r" =0

n=1

U
0= Pi(z) + 2Py (z)r — 2zP(x)r — xPy(x) — 2Py (x)r + Py(x)r

+ i {(n+1)Pys1(x)—22nP,(x) + (n—1)Py_1(z) —xP,(x)+ Py ()} "

n=2

U

[a (z) — xPO(x)] + [(1 + 1)Py(x) — (24 1)2P(z) + Pg(x)} .

+§:{(n +1)Pyii(z) — (2n+ 1)zP,(x) + nPn_l(x)}r” =0

n=2

U
Pi(x) —zPy(z) =0
(14+1)Py(z) — (24 )xzPi(z) + Py(z) =0
and, forn =2,3,4,---
(n+1)Pyyi(x) — 2n+ D)zP,(x) + nPy_1(x) =0

This completes the proof of the recurrence relation. Q.E.D.

Theorem 7.2. The coefficient of " in P,(x) is

1-3-5-+-(2n — 1)
n!

Proof: Let ¢, be the coefficient of 2" in P,(x), and consider the recurrence relation
(n+1)Pyyi(x) — 2n+ D)zP,(x) + nPy—1(x) =0

The coefficient of "' in (n + 1)P, () is equal to (n + 1)c,1. The coefficient of 2!
in —(2n + 1)z P,(z) is equal to —(2n + 1)c,. There is no other z*! term in the recurrence

relation. Thus the coefficient of z"t! is

(n+1Depr — (2n+1)e, =0
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I3
2n—+1
Cntl = Cn
+1 ]
Working backwards, we have
2n—1
Cp = Cn—1
n
2n—12n -3
= Cp—2
n n—1

2n—12n—-32n—5
= c
n n—1 n-—2

n—3

_(2n—=1)2n-3)(2n —5)---(1)
n(n—1)(n—2)---(1)

Co
But ¢ is the coefficient of 20 in Py(z) = 1. = ¢; =1

U

C1-3:5---(2n—1)
- n!

Cn

Q.E.D.
Theorem 7.3. For each positive integer n,
nP,(x) — zP.(x)+ P, _(x) =0
Proof: Given the generating function:
P(x,r) = (1 — 2xr 4+ r?)71/2

Differentiating it w.r.t. x, we obtain

g—P = —%(—27")(1 — 2xr + %) 32
T
Y
(1 —2zr + rQ)g—P = r(1 — 2zr +r2)~1/2
T
!

(1—2xr+ 7“2)(;—5 —rP(z,r)=0
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U

(1—2zr +7%) = {’I“P(.’L‘,T)} ?’9—];:

Recall the earlier result by differentiating P(x,r) w.r.t. r, i.e.,

(7.1)

(1—2xr+ 7"2)88—]: —(x —r)P(z,r)=0 (7.2)

Equations (7.1) and (7.2) implies that

ra—P—(x—r)a—P—O

or or

Note that by the property of the generating function, i.e.,
P(z,r) =Y Py(x)r"

we have ap -
5 = > nP,(z)r" !
r

n=1

> Pl(x)r"

n=0

P _ &
Ox
U
io: nPy,(z)r" — io: P! (x)r" + io: Pl (z)r"t' =0
n=1 n=0 n—=0
U
i nP,(z)r" — i P! (z)r" + i P _(x)r" =0
n=1 n=0 n=1
U
_2Pl(z) + i{npn(x) _aP(2) + P{L_l(x)}r” —0
n=1
Hence (because the fact that Py(z) = 1)
nP,(z) —xP.(x)+ P, () =0
Q.E.D.
Theorem 7.4. For each positive integer n,

nPy_1(x) — P (z) +xP,_(x) =0
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Proof: We had in the previous proof the following equality

rP(z,r)=(1—2zr+ TQ)Z—I;
oOP OP
r5; T (x —r)=— e =0
|3
oP_ 0P
" or e o0x
Note that 3 9p
N — 2_
Tar [rP(z,r)]=7rP+r o
I3
0 oOP oOP OP
TE[’I“P(.’II r]=(1-2xr+r )G—x +r(x—r)— o (1— rx)%
|3
0 OP
TE[TP(x r]—1—-rz)— e =0
Also note that -
= Z P, (x)r
n=0
I3
ax N nz%P
and -
rP(z,r) =3 P,(z)r""!
n=0
I3
a = n+1
r—[rP(z,r)] Z(n—i— 1)P,(x)r
or o
I3
OP
0= ra[rP] —(1—- rx)%

=" (n+1)Py(x)r"™ Z Pl(z)r"+ > aP(z)r"

n=0 n=0
Y
> nP,q(z)r" =Y Pl (x)r" —i—Zx ()" =0
n=1 n=0

47
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o0

Z{nPnl(x) — Pl(z) + xPT'LI(:U)}r" — Py(z) =0

n=1
Y
nP,_1(x) — P (z) + 2P, _(x) =0

Q.E.D.
Orthogonal Polynomials

We have shown that if m and n are distinct nonnegative integers, then

/1 P,(x)P,(x)dz =0

-1

In view of this, we can say that the Legendre polynomials are Orthogonal to each other on
the interval [—1,1]. We also say that the Legendre polynomials form a set of Orthogonal
Polynomials on the interval on [—1,1].

The orthogonal property can be used to write many functions as series of Legendre polyno-
mials. This will be important in solving certain boundary value problems in partial differential
equations.

For now, we will see how to write any polynomial as such a series. Let ¢(x) be a polynomial

of degree m. We will see how to choose numbers «y, a1, as, ---, @, such that
m
q(z) = apPe(z) for -1 <2z <1
k=0

Multiply the above equation by P;(z), where j is any integer from 0 to m inclusive, i.e.,
q(2) Pj(z) = anPo () Pj(x) + ar Py (2) P () + - - - + o P (2) Py ()

Integrating both sides of the above equation from —1 to 1, we have

/11 q(x)Pj(x)dr = o /11 Py(z)Pj(z)dx + oy /11 P, (z)Pj(x)dx

_|_..._|_am/1 P, (x)Pj(z)dx (7.3)

-1

Because of the relation
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/ 11 Py(x) Py () da

on the right hand side of the equation (7.3) is zero, except for that one integral in which & = j.

This leaves us with

/—11 q(z) Pj(x)dr = o /ll[Pj(x)]de

T forj=0,1,2,---m

These numbers can be computed because we know each P;(x) and we are given ¢(x). Using

these numbers, we can write ¢(x) as a series of Legendre polynomials.

For example,

2 1
2 = §P2(SC) + ng(:U)
2 3
1‘3 = gpg(fli) + gPl(III)
s s 2 1 2 3
1 6 8 4

Any Polynomial can be Written as a Finite Series of Legendre Polynomials.

Theorem 7.5. Let m and n be nonnegative integers, with m < n. Let q(x) be any
polynomial of degree m. Then

/1 q(z)Py(z)dz =0

-1

That is, the integral, from —1 to 1, of a Legendre polynomial multiplied by any polynomial

of lower degree, is zero.

Proof: We have shown that for any polynomial ¢(z) of degree m, there exist scalar g, a,
-+ -, oy such that
q(z) = agPo(z) + oy Pr(x) + - - - + @ P ()
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Then

1

/ L (@) Pa(x)d = ag / 11 Poa)Pa(adz + o [ Pi(a) ()

1 _

Foe o /1 Pon () P () dat

-1

and each of the integrals on the right hand side is zero by the property that

for j=0,1,2,---,m < n. Q.E.D.

Theorem 7.6.

[RC R —

-1 2n+1
forn=20,1,2,---

Proof: Let ¢, be coefficient of " in P,(x) and also let the coefficient of 2"~ in P, () be

Cn—1. Define
Cn

q(z) = Py(x) — zP,_1(x)

Cn—1
Cn

The z™ term in P,(x) is cancelled by the 2" term in — xP,_1(x). Thus, q(z) has degree

Cp—1
n — 1 or lower.

We therefore have

Pu(z) = -2

— xPy_1 () + q(x)

in which ¢(z) has degree less than or equal to n — 1.

U

Cn

oPy 1(2)+ q(x>] P (@)Pu(a) + g(@) ()

Integrating this equation from —1 to 1, we have

Cn—1

/ 1P, ()2 = / Py (1) Po(x)d + / llq(x)Pn(x)dx

-1 Cp—1 /-1

1
I / 2Py () Po(z)dz + 0

Cp—1 /-1

Now use the recurrence relation,

(n+1)Pyyi(x) — 2n+ D)zP,(x) + nPy—1(x) =0
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\(}
1
2Po(3) = 5= Pat(@) + 5" P (0)
\(}

/1 (P, (2)2dz = - /1 "l b ()P (a)da

-1 Ch1J-12n+1

C 1 n
n P, 1(x)]*d
+ Cn—1 /_1 2n + 1[ (z)]de

04+ - /1 1 [P, 1(7)]*dx

Cpn—1 12n+1
Y
[ 1PuePdr = [ (P @)
~1 ¥ x_cn_12n+1 ot

Recall from Theorem 7.2 that
1-3----(2n—1)

Cp =
n!
Then
1-3--+-(2n—3)
Cn—1
(n—1)!
U
Cn  2n—1
Cpn—1 N n
U

1 2n—1 n 1 2n—1 1
Yo = Py (2)]Pde = | 1P
[1[Pn(x)] du n 2n-+1 [1[ l(ﬁ)] i 2n+1 71[ 1(@] v
We can work backwards,

[ (P@Par= 2 [ 1P @)Pas

C@n-1)@n-3) [ )
T @2nt(2n-1) /1[P"‘2(x)] e

(2n —1)(2n — 3)(2n — 5) /1 Py ()P

2n+1)2n—1)(2n—3) J-1

(2n—1)2n—-3)(2n—5)---3-1 !
Cn+1)2n—-1)(2n—-3)---5-3 /4

[Py()]*dx

51
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— [ 1R

Q.E.D.

Finally, we can write any polynomial of degree m as a finite series of Legendre

polynomials,

q(z) = apPy(z) for —1<z<1
k=0

with )
- /_1 q(z) Py(x)dx okl
. — 1 = 5

/ [Py (2))*dx

-1

1 q(z) Py(x)dx
&

for k=0,1,2,---m.

OO0
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8. Boundary Value Problems in Partial Differential Equations

A partial differential equation is an equation containing one or more partial derivatives, e.g.,

ou_
ot 0x?

We seek a solution u(x,t) which depends on the independent variables z and ¢.
A solution of a partial differential equation is a function which satisfies the equation.

For example,

u(z,t) = cos(2x)e

is a solution of the above mentioned differential equation since

0

8_:: = —4cos(2x)e
92
a—;; = —4cos(2x)e

Occasionally, a partial differential equation may be solved by inspection. For example, consider

ou__,ou
oxr 0Oy

There may be many solutions of this equation, but we can guess one by reasoning as follows:

ou ou : . .
If — and — were both constants, we could find a solution easily. Try

ox dy

u(z,y) = Ax + By
with A and B constants. Then
ou B ou

—=A d — =20
ox an dy

Substituting them into the partial differential equation, we find that the proposed u(z,y) is a

solution for the given differential equation if and only if
A=-4B
Therefore, any function defined by
u(z,y) = B(—4z +y)

with B being a constant, is a solution of the partial differential equation.
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Order of a Partial Differential Equation

A partial differential equation (p.d.e.) is said to be of order n if it contains an nth order partial

derivative but none of higher order. For example, the following so-called Laplace equation

Pu  Pu  Pu

2, _
vu_8x2+8y2 072

0

is of order 2. The p.d.e.
Pu_Fu_on
ox2  otb ot
is of order 5.

Linear Case

The general linear first order p.d.e. in two variables (with u as a function of the independent

variables x and y) is

ou ou
a(z, y)a + b(z, y)a—y + f(z,y)u+ g(z,y) =0

The general second order linear p.d.e. in two variables has the form

0%u 0%u 0%u ou
+ b(l‘, y)— + C(l‘, y)—g + d(l‘, y)_

alz,y) ox? 00y oy ox

ou
+ e(a, y)a—y + flz,y)u+g(z,y) =0
Most of the equations we encounter will be in one of these two forms.

In both cases, the equation is said to be homogeneous if g(z,y) = 0 for all (x,y) under

consideration and nonhomogeneous if g(x,y) # 0 for some (z,y).

We will devote most of our time to equations governing vibration and heat conduction phe-

nomena.

Main Tools:

Fourier series, integrals, transforms and Laplace transform.
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|
/\
l X-axis

9. The Wave Equation

Suppose we have a flexible elastic string stretched between two pegs. We want to describe the

ensuing motion if the string is lifted and then released to vibrate in a vertical plane.

Place the x-axis along the length of the string at the rest. At any time ¢ and horizontal

coordinate x, let y(x,t) be the vertical displacement of the string.

We want to determine equations which will enable us to solve for y(z,t), thus obtaining a

description of the shape of the string at any time.

We will begin by modelling a simplified case. Neglect damping forces such as air resistance
and the weight of the string and assume that the tension T'(x,t) in the string always acts
tangentially to the string. Assume that the string can only move in the vertical direction, i.e.,
the horizontal component of the tension is a constant. Also assume that the mass p per unit

length is a constant.

Applying Newton’s 2nd law of motion to the segment of the string between x and x + Ax, we

have

Net force due to tension = Segment mass

x Acceleration of the centre of mass of the segment

For small Ax, consideration of the vertical component of the equation gives us approximately:

2
T(z + Az, t)sin(0 + AG) — T(x, t) sin 6§ = pr%(T, )

where T is the centre of the segment in z-axis.
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T(x+Ax,1)

N X-aXiS

T(z + Az, t)sin(0 + AQ) — T'(z,t)sinf 0%y
Az TR

As a convenience, we write
v(x,t) =T (x,t)sind

i.e., the vertical component of the tension. Hence we have

v(z + Az, t) —v(z,t) 0y, _
N = Pw(%t)

Let Az — 0, then T — z, and we obtain

ov 0%y
=y 9.1
or ~ "or (6-1)
Write h(x,t) = T(x,t) cosé, i.e., the horizontal component of the tension at (z,¢), then
v(x,t) = h(x,t)tanf = h(x t)@
Y - Y - Y ax
Substitute this for v in Equation (9.1):
O 1,0u) _ 0
o |0z |~ Por

To compute the partial derivative on the left, recall that the horizontal component of the

tension of the segment is constant; i.e.,
h(zx + Az, t) — h(z,t) =0

Therefore h is independent of x; hence

o [, oyl 9%
or [ha—] = o

Finally, we have
0%y B 0%y

02~ Por
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h . :
Let a®> = —, we obtain a so-called 1-D wave equation,
p

0%y _ ,0%
— = q"—
ot? 0x?
The motion of the string will be influenced by both the initial position and the initial velocity

of the string. Therefore we must specify initial conditions:

y(z,0) = f(x) initial position

9y
ot
with f(x) and g(x) given functions defined on [0, L]. The initial conditions must hold for

0<z<L.

(x,0) = g(x) initial velocity

Next, we consider the boundary conditions. Since the ends of the string are fixed, we have
y(0,t) =y(L,t) =0 t>0

The wave equation, together with initial and boundary conditions is an example of a boundary

value problem.

To be more clear, we can put all of them together, i.e.,

0? 0?
3—£Za2a—z (0<$<L,t>0)
T

y(0.5) = y(L,) =0 (t>0)
y(@,0)= f(r) (0<z<I)

%(x,O) =g(x) (0<z<I)

We expect on physical grounds that this problem will have a unique solution.

We can also include in the model additional forces acting on the string. For example, if an
external force of magnitude F' units per unit length acts parallel to the 3 axis, the wave equation

must be adjusted by addition of a term F/p, i.e.,

?y  L,0%y 1
— =a"— +—-F O<z<L, t>0
o2~ " ox? + p v ’

Note that if F'is the weight of the string, then set F' = —g in the above p.d.e..
In two dimensions, we might have a membrane covering region R in the plane and fixed on

a frame forming the boundary R. The membrane is set in motion, with vibrations occuring

vertical to the plane of the membrane.
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If z(x,y,t) is the vertical coordinate at time ¢ of the particle at point (x,y) in the membrane,

the p.d.e. for z is:
P _ o, 0
o ox? = 0y?
for (x,y) in R. This is the 2-D wave equation.

To determine z uniquely, we must first include conditions, which specify the initial positions

and velocity of the membrane.

z(z,y,0) = f(z,y) for (z,y) €R
0z

5@ y,0)=9g(wy)  for(r,y) € R

Finally, the condition that the membrane is fixed to the frame means that points on the border
of the membrane do not move, i.e.,
z(z,y,t) =0

for all ¢ > 0 and (z,y) on the boundary of R.

10. The Heat Equation

This is to study temperature distribution in a straight, thin bar under simple circumstances.
Suppose we have a straight, thin bar of constant density p and constant cross-sectional area

A placed along the z-axis from 0 to L.

Assume that the sides of the bar are insulated and so not allow heat loss and that the temper-
ature on the cross-section of the bar perpendicular to the z-axis at z is a function u(z,t) of

and ¢, independent of y.

Let the specific heat of the bar be ¢, and let the thermal conductivity be &, both constant.
Now consider a typical segment of the bar between x = v and © = (.

By the definition of specific heat, the rate at which heat energy accumulates in this segment

of the bar is: 5 5
U
A—d
LCpatx

By Newton’s law of cooling, heat energy flows within this segment from the warmer to the

cooler end at a rate equal to k& times the negative of the temperature gradient.

Therefore, the net rate at which heat energy enters the segment of bar between a and 3 at

time t is:
ou
o0x

ou
kA%(ﬂ,t) — kA—(a,t)
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O\ \ \

In the absence of heat production within the segment, the rate at which heat energy accumulates

within the segment must balance the rate at which heat energy enters the segment. Hence,

8u

8
/ cpAaudx = kA (ﬁ t) — 830

= ()

Note that the right hand side of the above equation can be written as:

o
([3 t) = kAZZ (0, 1) _kA/ @dx

Therefore the whole equation can be written in the following form:

s ou 0°u
/a [CPAE — I{?Ap] de =0

This must hold for every o and S with 0 < a < § < L. If

ou 0%u

A— — kA—

P ot o2

were nonzero for any ¢t > 0 and some x, € [0, L], we could choose an interval [«, ] about
in which 9 P
U
cpA— — kA—
ot o2

is strictly positive or strictly negative, and we would then have

s ou 0°u
/a [cpAa——kAa 2] dx # 0

This is a contradiction.

Thus, we conclude that ,
ou 0“u
A— —kA— =0
Pt D2

for all z € [0, L] and ¢ > 0.
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This is the heat equation, which is more customary written as:

o _ i
3t_a8x2

where a? = k/(cp) is called the thermal diffusivity of the bar.

To determine u uniquely, we need boundary conditions (information at the ends of the bar)
and initial conditions (temperature throughout the bar at time zero). The p.d.e., together with
these pieces of information, constitutes a boundary value problem for the temperature function

u.

Example 1:

ou , 0%
i S I
: a = 0<zx<L, t>0)

u(0,t) =u(L,t) =T (t>0)
uw(z,0)= f(z) (0<z<L)

This boundary value problem models the temperature distribution in a bar of length L, whose
ends are kept at constant temperature 7', and the initial temperature in the cross-section at x

is a given function f(z).

Example 2:

A perfectly insulated bar, in which we replace the boundary conditions
uw(0,t) =u(L,t)=T

of the first example with the conditions

ou ou
—(0,t) = —(L,t) =0 (¢t
0.=24Ln=0 (>0)

i.e., there is no heat flows across the ends of the bar.

Example 3:

Free radiation (convection): The bar loses heat by radiation from the ends into the surrounding
medium, which is assumed to be maintained at a constant temperature 7,. In this case, the

boundary conditions are

ou
%(07 t) = A[u(oa t) - Ta]

ou
o (Lot) = —Afu(L,1) - T.]
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for t > 0 with A being a positive constant. Note that if the bar is hotter than the surrounding

. . . ou .
medium, the heat flow (change in temperature per unit length, or —) must be positive at the

ox
left end of the bar and negative at the right end.

We can also have a combination of these different types of conditions occurring in a boundary
value problem. For example, suppose we have a bar with its left end maintained at a constant
temperature 77 and its right end radiating into a medium of temperature 75, with an initial
temperature distribution given by f(x). The boundary value problem modelling the above

temperature distribution is:

2

%:cﬂ% 0O<x <L, t>0)
w(0,0) =T, (t>0)

9

a—;‘(L,t) = —Alu(L,t) = Ty] (t>0)

u(z,0) = f(r) (O<xz<L)
In two dimensions, the heat equation is:

ou  ,[0%u
=g | 4+
ot ox? = 0y?

In three dimensions,

ou 5 [0%u N 0*u N 0*u
—=q

ot ox?  Oy?> 022

Corresponding boundary and initial conditions must be specified to determine unique solutions

of these partial differential equations.

11. Laplace’s Equation; Poisson’s Equation; Dirichlet Problem
and Neumann Problem

Laplace’s Equation

Laplace’s equation in 2-D:
0%u N Pu
ox?  Oy?

Laplace’s equation in 3-D:
Pu  Pu  Pu
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Laplace’s equation is also called the steady-state heat equation, i.e., it is the heat equation

when

ou
ot
It has important applications in heat conduction, fluid flow, study of electrical field poten-

0

tials.

It is often written as
Vu=0

A function satisfying V2u = 0 is called a harmonic function.
Dirichlet Problem

The Dirichlet problem is to find a function which is harmonic in a given set M and takes on
predetermined values on the boundary of M. For example, in 3-D, we could have the boundary
value problem
Vu=0 in M
u(z,y,2) = f(x,y,z)  for (z,y,2) on &,

where ¥ is a piecewise-smooth surface bounding M and f is a given function.
A typical Dirichlet problem in the 2-D plane would be:
V=0 inD

u(z,y) = g(x,y) for (z,y) on C

where C'is a piecewise-smooth curve bounding the set D in the plane.
Neumann Problem

A Nuemann problem in 3-D consists of finding a function u such that V?u = 0 for (z,y, 2) in
a region M, subject to the condition that the normal derivative of u takes on prescribed values

on the boundary of the region, i.e.,

Vu=0 inM
ou

8—77:f($,y,2) for (l‘,y,Z) on X

where 3 is the surface bounding M and a_u denotes the directional derivative in the direction
n

of the normal to X.
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Poisson’s Equation (Applicable to Potential for Electrical Fields)
The following equation is called Poisson’s equation,
Viu=f

with f being a given function. When f is identically zero, Poisson’s equation becomes Laplace’s

equation.
Laplace’s Equation in Cylindrical and Spherical Coordinates
Cylindrical coordinates (r, 6, z)

r=rcosf, y=rsinf, z=2=z2

where
r=1/z?+ y?

0 = tan ! <%> if x #0

Here the value of # is determined by the signs of x and y. For example, if z and y are both
negative, (x,y) is in the 3rd quadrant, so we must have 7 < # < 37/2, even though the ratio

y/x is positive.

Now suppose that u is a function of (z,y,2) and that u and its first and second partial

derivatives are continuous throughout some set M of 3-D space.

Since z, y and z are functions of , # and z, we may think of u also as a function of r, # an
dz.

By the chain rule,

Ou _oudr  oud , o
or Ordx 000r 0z0x

_Ouw  ouf oy )L

S Or a2 00\ 22+ 2
xou y Oou

2722 _J 7= 11.1
ror  r2d06 (1L.1)

By a similar calculation,

ou _ L rou (11.2)
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To calculate second derivatives, differentiate equation (11.1) with respect to x:

@_%3<z>_%£<g>+zi Ou) _y 9 (ou
or2  Or Oz \r 00 0x \r? rOxr \ Or r2 0z \ 00

Applying the chain rule again, we obtain

Pu_pou myou 20 2y Pu o
or2 3 or rt 00  r2 Or? r3 orod  r* 9o?

If we differentiate equation (11.2) with respect to y, we get
Pu_aton_dmyou 0%y o P
oy2  r3or o+ 00 r2or2 3 0rof  rt96?
|3
82u+ 1('9u+ 1 ('92u+82u
or2  ror  r290% 022
I3

Laplace’s equation in cylindrical coordinates is

Vu =

62u+16u+ 1 82u+82u_0
oz ror  r2op* 022
For Laplace’s equation in polar coordinates, simply omit the z-dependency:

u  10u 1 0%u

e gy
oz T rar T2 o

Spherical Coordinates
Spherical coordinates are related to rectangular coordinates by

x = pcos(f)sin(p), y = psin(f)sin(p), z = pcos(p)

where p is the magnitude of the vector P = (z,y, 2), and 6 and ¢ are respectively the angles

from x-axis and z-axis to P. The Laplacian in spherical coordinates is then given by

o*u  20u 1 0*u 1 9*u  cot(p) du
=S t—F5t+t5—= <55+t 3555 -
op*  pOp  p?sin(p) 002 p? O¢? p? Oy

Vu

The Laplace’s equation in spherical coordinates is V2u = 0.
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12. Fourier Series Solution of the Wave Equation

Recall the wave equation of an initially displaced vibrating string with zero initial velocity,
Py _ 0%

— = —

ot? Ox?

y(0,8) =y(L,t) =0 (> 0)

0<z<L, t>0)

y(x,0) = flz); (0<z <L)

oy B
E(x,O)—O (0<z <L)

This boundary value problem models the vibration of an elastic string of length L, fastened at
the ends, picked up at time zero to assume the shape of the graph of y = f(z) and released

from rest.

The Fourier method or method of separation of variables is to find a solution of the form
y(x,t) = X (2)T(t) (12.1)

with appropriate X (x) and T'(t) that solves the above mentioned boundary value problem.

At time t, y(z,t) is the vertical displacement of the particle of string having coordinate z. We

attempt a solution of (12.1). Substitute it into the p.d.e. to get

XT"=a’X"T
U
XII B TII
X T

We have “separated” x and ¢; the left hand side is a function of x alone, and the right hand
side is a function of ¢. Since x and ¢ are independent, we can fix the right hand side by choosing

t = ty, and the left hand side must be equal to

T”(to) )
W(to) for all x in (O,L)

" "

Thus — must be constant. But the
X a?T

must be equal to the same constant.

Denote this constant —A (it is also called separation constant), then

XII TII

X @27
\[3

-A
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X"+AX =0
T" + Xa’T =0

These are two ordinary differential equations for X and 7.

Next, look at the boundary conditions for y(z,t¢) and relate them to X and 7. From the
condition that the left end of the string is fixed, we have

y(0,1) = X(0)T(#) = 0

for t > 0. Since T'(t) cannot be zero for all ¢ > 0 (if the string is to move), X(0) = 0.
Similarly,
y(L,t) = X(L)T(t) =0

for t > 0 implies that X (L) = 0.

Next, initial condition

requires that

for 0 < o < L. Therefore T'(0) = 0.
At this point, we have two problems for X and 7', namely

X"+AX =0

and
T" +Xa’T =0

T'(0) = 0

A value for \ for which the above problem, either the problem associated with X or T,
has a nontrivial solution (nonzero at some points) is called eigenvalue of this problem. For

such a A\, any nontrivial solution for X or for T is called eigenfunction.

We will consider different cases on A. We assume that ) is real, as we expect from the physics

of the problem.

Case 1: A =0
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Then X" =0, so X () = cx + d for some constants ¢ and d. Then the condition X (0) =0
implies d = 0 and X (L) = ¢L = 0 implies ¢ = 0.

U

The solution X (z) = 0 for 0 < 2 < L, and we will have y(x,t) = 0 as the solution. This is
the case if f(z) = 0 for 0 < x < L because then the string was not displaced initially and
simply remain stationary. If, however, f(x) # 0 for some x, X () cannot be identically zero,

and we must discard this case.

Case 2: A < 0.

For this case, we write A\ = —k? with £ > 0. The equation for X is the given by
X" —kX =0

with general solution
X (z) = ce® + de™**

Since X(0) =0=c¢+d = d= —cand

Then
X(L) =2¢sinh(kL) =0
Since k and L are both positive, sinh(kL) > 0, and we conclude that ¢ = 0 and hence

d=—c=0.

As in Case 1, we obtain X (z) =0 for 0 <z < L. This case does not yield a solution unless

again the string was not moved initially.
Case 3: A >0
We can write A = k? with k£ > 0. Then
X"+kX =0
has a general solution
X(z) = ccos(kx) + dsin(kx)

Since X(0) = ¢ =0, = X(z) = dsin(kz). We also require that X (L) = dsin(kL) = 0. In
order to choose d # 0, we must have sin(kL) = 0. This holds if kL is positive integer multiple
of m, i.e.,

kL =nm, n=1,2,3,---
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(Recall that k£ and L are positive). Then

2.2
T
A=k = 72
forn=1,2,3,---. Corresponding to each positive integer n, we therefore have a solution for
X:
X, (x) = dy sin <%x>
2,2
Now look at the problem for T: With A = T2 we have
n’n%a?

TII +

T =05 T'(0)=0

The general solution for 7" is given by
T(t) = acos <$t> + [sin <$t>
Since
T'(0) = fB(nma/L) =0 = (=0

For each positive integer n, we have a solution for 7

nmra
T,(t) = o, i
(t) = « cos< 7 >

We now have, for each positive integer n, a function

nma

Yn(z,t) = X, ()T, (t) = A, sin <n_£rx> cos (Tt>
in which A, = d,a,, is a constant yet to be determined.

Each of these functions satisfies the wave equation

Py 0%

together with the boundary conditions

y(0,t) =y(L,t) =0
for t > 0. The y,’s also satisfy one initial condition

dy B
E(x,O)—O (0<z <L)

We must choose n and A, to satisfy the remaining condition,

y(z,0) = f(x)
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Depending on f(x), this may be possible. For example, if
f(z) = 8sin(bnz/L)

we can choose n =5 and A,, = 8. The solution of the boundary value problem for this initial

displacement function f is
y(x,t) = 8sin(5rx/L) cos(brat/L)

However, if f(z) is NOT a constant multiple of a sine function, we cannot choose any one

integer n and constant A, so that y(z,0) = f(z).

In this event, we attempt an infinite superposition of the y,’s and write
y(z,t) = yu(z,t) =) A, sin (n—ﬂx> cos <wt>
n=1 n=1 L L
The condition y(z,0) = f(z) requires that
f(z) =) A,sin <%x>
n=1

Note that this equation is the Fourier sine expansion of f(x) on [0, L]. We should choose the

A,’s as the Fourier coefficients in this expansion, i.e.,

2 rL . /nr
A, = Z/o f(z)sin <T$> dx
With this choice of the constants, we have the formal solution
=23 | [ r€sin (7e) el sin () cos (M%)
y(x, _Ln:1 ; in 7 in Lx 7

The integral in [---- - | is part of the Fourier coefficients, and £ is used as the dummy variable
of integration to avoid confusion with x.

Example

Suppose that initially the string is picked up L/2 units at its centre point and then release from
the rest.

The initial position function is

x 0<z<L/2

L—z L/2<z<L
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Then we have

A, = %/OL f(z)sin <n—;x> dx

Lx

2
L| nrm

L2

() (A ()
L 2nm 2 nmw n L

y(z,

Since

we have

L2 s ()
L

o[ rL/2 L
=7 _/0 x sin <n_£rx> dr + L/Q(L — z)sin (%x) dx]

L2 1, rL/2 nmx
+— cos (—) dx
0 nmw.Jo L

_L(L-2) cos (mra:)

nmw L

L L (L nmT
- cos (T) dx

L2 nm /L2

2 L/2

0

N L2 (mr) <L>2 , <n7rx> L
—COS| — || — | — sin { ——
2nm 2 nmw L L2

, (mr) N ( L )2 , <n7r> 4L | <n7r>
mi| — — mi| — = my\|{ —
) TG MR T e

|3
0 41, = 1 i (mr) i (mr:v) o8 <n7rat>
= — —sin | — ) sin | —
2 i n? 2 L L
0 if n is even
. /nm
(%)
(—1)’~ch1 ifn=2k-1
Agn — 0
4L
A2n—1 = (_1)n+1

(2n — 1)2n2

70
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forn=1,2,3,------ and hence the solution can also be re-written as
AL X (=)™ [(2n—r (2n — 1)ma
T, _7r2nz:12n—1 sin i x| cos Tt
The number A\ = n?r?/L? are eigenvalues, and the functions sin(nwz/L), or nonzero

multiple thereof, are eigenfunctions.

The eigenvalues carry information about the frequencies of the individual sine waves which

are superimposed to form the final solution.
The Wave Equation with Zero Initial Displacement

Now let us consider the case in which the string is released from its horizontal stretched position
(zero initial displacement) but with a nonzero initial velocity. The boundary value modelling
this phenomenon is
0%y _ 50%
y(0,8) =y(L,t) =0 (> 0)

y(x,00=0 (0<z<L)

0
a—?i(x,O) =g(x) (0<uz<L)
Up to a point the analysis is the same as in the preceding problem. Set y(z,t) = X (z)T(t) to
get
X"+XX =0
X(0)=X(L)=0
and

T" + Xa’T =0

The problem for X is the same as that encountered previously, so the eigenvalues are

2.2
P
12

forn=1,2,3,--- and corresponding eigenfunctions are

X, (x) = sin (nLL:U>

Now, however, we come to the difference between this problem and the preceding one. Here
y(z,0) = X (2)T(0), so T'(0) = 0. Since we know the values of A, the problem for 7" can be

re-written as
n’m2a?

L2

T + T=0, T(0)=0
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The general solution of this differential equation for 7" is

mat

T, (t) = ¢, cos (%) + d,, sin <

mmt>

Since T'(0) = 0 = ¢y,

i
T, (t) = d, sin ("T )

For each positive integer n, we now have

t
Yn(z,t) = dp sin <n_2x> sin (m;a >

Each of these functions satisfies the wave equation, the boundary conditions, and ¥, (x,0) = 0.
To satisfy the initial velocity condition, write a superposition
o nmwx nmwat
xr,t) = d,, sin (—) sin < )
y(w,t) T; 0 7 7
U

o0 t
0 () s ()

n=1

So we must choose the coefficients to satisfy

%(x,O) =g(x) = i Tdn sin <?>

n=1

Note that this is a Fourier sin expansion of g(x) on [0, L]. By choosing

9 L
"= 3 [ atersm (") de

dy = — [ g(&)sin ("—“) ¢

nma Jo

or

we obtain the solution

o= 23 o (75 e () o ()

Example

We consider the same wave equation as in the preceding one but with zero initial displacement

and a initial velocity
x 0<z<L/4
g(x) =
0 L/4<x<L
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Compute

(ﬁggmm<%§>%zzjﬂmm<%?>&

The solution for the above problem is then given by

(2.1) 2% = {1 . (m) 1C%<nﬁﬂs,<mm>g (mmﬁ
T = — —SIn { — —_ — — m\| — 1n
Y\T m2q n2m 4 4n 4 L L

n=1

The Wave Equation with Initial Displacement and Velocity

Consider the boundary value problem
0%y _ ,0%

o =" o
y(0,6) = y(LH) =0 (t>0)

y(x,0)=f(z) (O<z<L)

0<z<L, t>0)

%(x,O) =g(x) (0<z<lL)

This models a vibrating string in which we have possibly nonzero initial displacement and

velocity function.
Instead of solving this problem directly, we can solve two problem separately, namely,

Problem 1: Zero velocity problem
Py _ 20
ot? Ox?

y(0,8) = y(L,) =0 (t>0)
y(,0)= f(@) (O<z<L)
9y

E(x,O)zO (0<z <L)

0%y

= a’ O<az<L, t>0)

Problem 2: Zero displacement problem
Py 0%

o~ o2
y(0,) =y(L,t) =0 (t>0)

y(x,00=0 (0<z<L)

O0<z<L, t>0)

%(x,O) =g(x) (O0<z<lIL)

We have the following theorem.
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Theorem 12.1. Let y; be the solution of Problem 1 and y, be the solution of Problem
2. Then y = y; + yo is the solution of the entire problem with initial displacement and

velocity.

We will not give any proof for this theorem. Instead we will illustrate this in the following

example.

Example: Consider the wave equation with usual boundary and with

x 0<z<L/2
flz) =
L—z L/2<xz<L
and initial velocity
T 0<z<L/4
g9(x) =

0 L/A<z<L

Then it follows from the above theorem and the previous examples, the solution to the above
problem is given by
4L X1 nmw nmx
z,t) = = Z— in< >sm<T>cos

(mrat)
n— 1 L

n 2172 i { 1 . (mr) 1 (mr)] . (mra:) . (mrat)
—_— sin{— ) — —cos|—)|sin | ——)sin
m2a ~— |n?nm 4 4dn 4 L L

n=1

13. Fourier Series Solution of the Heat Equation

In what follows, we will apply the separation of variables method to the typical boundary

value problems associated with the heat equation.
End of the Bar Kept at Zero Temperature

We want to determine the temperature distribution u(z, t) in a thin homogeneous bar of length
L, given the initial temperature distribution throughout the bar at time £ = 0, if the ends are

maintained at zero temperature for all time.

The boundary value problem is

ou 0%
=a"— L, t
primkaw 0<z<L, t>0)

u(0,t) =u(L,t)=0  (t>0)
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u(z,0) = f(x) (0<z <L)

We will apply the separation of variables method and seek a solution
u(z,t) = X(x)T(t)

Substitute this into the heat equation

XT' = a*X"T
U
Tl XII
2T X
Since z and ¢ are independent variables, both sides of this equation must be equal to the same
constant.
For some A,
TI XII
= — = —)\
a?T X

Then we have
X"+AX =0 and T +Xa?*T =0

Note that the condition that u(0,¢) = 0 implies that X (0)7'(¢) = 0 for ¢ > 0, and hence that
X (0) = 0, assuming that T'(t) is not identically zero.

Similarly, u(L,t) = 0 implies that X (L)T'(t) = 0 and hence X (L) = 0.
U

X"+AX =0 and T +X’T=0 X(0)=X(L)=0

Unlike the wave equation, this equation for 7" is of first order, with no boundary condition.

The boundary value problem for X, however, is identical with that encountered with the wave

equation, so we have eigenvalues

and the corresponding eigenfunctions

nnx

X, (x) = d,sin <T>

forn =1,2,3,--- The constant d,, will be determined later. With the values we have for A,

the differential equation for 7' is

a’n’m?

LZ

T + T=0
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with general solution

Tn(t) — anefn 27202t/ L?

forn=1,2,3,---
Now let
un(z,t) = X, (2)T,(t) = A, sin <n7£x> g T A, = dyay,
Each w,(z,t) satisfies the heat equation and both boundary conditions:
u(0,t) =u(L,t) =0
There remains to satisfy the initial condition
u(z,0) = f(z) (0<z<L)

If we can choose some positive integer n and a constant A, such that u,(z,0) = f(z), we

will have the solution.
For example, if f(z) = 4sin(37x/L), we can choose n = 3 and A,, = 4 to obtain the solution
. 3rx —9n2a2t/L2
u(z,t) = ug(z,t) = 4sin - )¢

Usually, we cannot choose any n and A,, such that u,(z,0) = f(z), and we should attempt

an infinite superposition

u(z,t) = up(v,1) Z A, sin (nzx) n*ma’t/L?
n=1

n=1

The condition u(z,0) = f(x) requires that
nmwx
0) Ausin ()
u(x, Z sin 7
This is the Fourier series expansion of f on [0, L]. Hence, choose the A,'s as the Fourier

o2 [ o (1= [ (")

U

[/ sm (%) dfl sin <n_7lr/x> 6*n27r2a2t/L2

coefficients:

200
Tt =72

n=1

Example
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Suppose that the bar has length L = 7 and the initial temperature function is f(x) = 2 for
0<zx <.

Compute

/ 2sin(né)dé = —— cos(nf) %[Cos(mr) —1] = %[1 — (=1)"]

0

The proposed solution is

2 X2 2 :
w(z,t) = =3 21— (—1)" sin(na)e
™ nel n
8 © 2.2
_° 2 -1 (2n—1)%a?t
= HZ:I 5 sm n —1)z]e”

It can be shown that this solution is also unique, as might be expected from the physical

setting of the problem.

For solutions to the heat equations with (1) Temperature in a Bar with Insulated Ends
and (2) Temperature Distribution in a Bar with Radiating End, please read through pages
786 to 792 of O’Neil’s text.
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