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Course Outline

Series and Power Series: Sequences and series; convergence and 

divergence; a test for divergence; comparison tests for positive series; the 

ratio test for positive series; absolute convergence; power series.

Special Functions: Bessels equation and Bessel functions; the Gamma 

function; solution of Bessels equation in terms of Gamma function; 

Modified Bessels equations; Applications of Bessels functions; 

Legendrs equation; Legendre polynomials and their properties.

Partial Differential Equations: Boundary value problem in partial 

differential equations; wave equation; heat equation; Laplace equation; 

Poissons equation; Dirichlet and Nuemann Problems. Solutions to wave 

and heat equations using method of separation of variables.
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Lectures

Lectures will follow closely (but not 100%) the materials in the lecture 

notes (available at http://vlab.ee.nus.edu.sg/~bmchen).

However, certain parts of the lecture notes will not be covered and 

examined and this will be made known during the classes.

Attendance is essential.

ASK any question at any time during the lecture.
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Tutorials

The tutorials will start on Week 4 of the semester (again, tutorial sets can 

be downloaded from http://vlab.ee.nus.edu.sg/~bmchen).

Solutions to Tutorial Sets 1, 3 and 4 will be available from my web site 

one week after they are conducted. Tutorial Set 2 is an interactive one.

Although you should make an effort to attempt each question before the 

tutorial, it is not necessary to finish all the questions.

Some of the questions are straightforward, but quite a few are difficult 

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Reference Textbooks

• P. V. ONeil, Advanced Engineering Mathematics, Any Ed., PWS.

• E. Kreyszig, Advanced Engineering Mathematics, Any Ed., Wiley.
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Sequences and Series

A sequence consists of a set numbers that is arranged in order. For example,
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In general, a sequence has the following form
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For any given sequence, we define an array (or called a series)
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Let us define 

This partial sum forms a new sequence { sn }. If, as n increases and tends to 

infinity the sequence of numbers sn approaches a finite limit L, we say that 

the series

converges. And we write

We say that the infinite series converges to L and that L is the value of the 

series. If the sequence does not approach a limit, the series is divergent

and we do not assign any value to it.
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A Divergence Test

Consider a series

If it converges, then we have

and hence

Thus, if un does not tend to zero as n becomes infinite, the series

is divergent.
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Example 1: Show that the series with 

diverges.

Solution: Check that

Hence, it diverges.

Example 2. Show that the series with odd terms equal to (n+1) / n and even 

terms equal to 1/n diverges.

Solution: For this case, the odd terms (n+1) / n are actually approaching to 

a nonzero value 1. The limit of un cannot be zero and hence it diverges. 
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Comparison Test for Positive Series

A series  un is said to be positive if un  0. The following results 

are called comparison test for positive series:

1. Let  vn be a positive series, which converges. If 0  un  vn

for all n, then the series  un converges.

2. Let  Vn be a positive series, which diverges. If un  Vn for all 

n, then the series  un diverges.
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Ratio Test for Positive Series

For positive series  un with

then 

1. The series converges if T < 1.

2. The series diverges if T > 1.

3. No conclusion can be made if T = 1. Further test is needed.
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Hence, it converges.
Prepared by Ben M. Chen



12

Absolute Convergence

Consider a general series  un

1. If  |un| converges, then  un converges. Actually, we will say 

that the series  un converges absolutely or has an absolute 

convergence.

2. If  |un| diverges, then  un may converge or diverge. If  un

converges, we say that it converges conditionally. 

Note that  |un| is a positive series and its convergence can be test using 

the ratio test. 
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Power Series

Any infinite series of the form

is called a power series, which can be written as a normal series,
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Theorem (see lecture notes for proof): Consider the above power series. If

then the power series converges absolutely for any x such that                  
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Example: Find the open interval of absolute convergence of the power series
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Bessels Equation

The following second order differential equation,

is called Bessels equation of order v. Note that Bessels equation is a 2nd 

order differential equation. It can be used to model quite a number of 

problems in engineering such as the model of the displacement of a 

suspended chain, the critical length of a vertical rod, and the skin effect 

of a circular wire in AC circuits. The first application will be covered in 

details in the class later on.

In general, it is very difficult to derive a closed-form solutions to differential 

equations. As expected, the solution to the above Bessels equation cannot 

be expressed in terms of some “nice” forms.

  0222  yvxyxyx
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Solution to Bessels Equation (Bessel Function of the First Kind)

The solution to the Bessels equation is normally expressed in terms of a power 

series, which has a special name called Frobenius series. Such a method is 

called Method of Frobenius. We define a power series (a Frobenius series),

where r and cn are free parameters. Without loss of any generality, let c0  0.

Next, we will try to determine these parameters r and cn such that the above 

Frobenius series is a solution of the Bessels equation, i.e., it will satisfy the 

Bessels equation,
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Now, assume that the Frobenius series y(x) is indeed a solution to the 

Bessels equation. We compute

Then, the Bessels equation gives
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Thus,
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Since let c0 0

Let us first choose r = v  0. Then, we have
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Similarly,
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Thus, we obtain a solution to the Bessels equation of order v,
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We need two linearly independent solutions to the Bessels equation in 

order to characterized all its solutions as Bessels equation is a 2nd order 

differential equation. We need to find another solution. 

But, we will first introduce a Gamma function such that the above solution 

to the Bessels equation y1(x) can be re-written in a neater way.
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Gamma Function

For x > 0, we define a so-called Gamma function

If x > 0, then (x+1) = x (x).

For any positive integer n,
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If v  0, but v is not necessarily an integer,
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This is known as the factorial property of the Gamma function.
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Note that

This property holds for all x > 0. We will use the above property to define 

Gamma function for x < 0. 
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We can continue on this process forever to define (x) on every (– n–1, – n).
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Solution of Bessels Equation in terms of Gamma Function

Recall that the first solution we have obtained for the Bessels equation, i.e.,
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Jv(x) is called a Bessel Function of the 1st kind of order v. This power series 

converges for all positive x (prove it yourself).
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Exercise Problem: Verify that

      xJxJxJ vvv 112
1

 

Solution:

   
 

   
 

   
 

  
 
























































0
2

12

0
12

12

1

0
2

12

0
2

2

1!2
12

!2
1x

 
1!2

1)2('

1!2
1

n
vn

vnn

n
vn

vnn

v

n
vn

vnn

v

n
vn

vnn

v

vnn
xvn

vnn
xJ

vnn
xvnxJ

vnn
xxJ

(n+v+1) = (n+v) (n+v)

   xJxJ vv 12
1



Prepared by Ben M. Chen



28

     
 
 
   

 
 

 
 

 xJ

vnn
x

vnn
x

vnn
x

vnn
xnxJxJ

v

n
vn

vnn

n
vn

vnn

n
vn

vnn

n
vn

vnn

vv

1

0
12

12

0
22

121

1
2

12

0
2

12

1

2
1                             

2!2
1

2
1                             

2!2
1                             

1!12
10                             

1!2
1

2
1'































































n := n – 1

      xJxJxJ vvv 112
1'  

Prepared by Ben M. Chen



29

Second Solution to the Bessels Equation

We will now consider the problem of finding a second, linearly independent 

solution of Bessels equation. Recall that 

  022  vrrF
which has two roots r1= v and r2 = – v. 

Case 1 (Easy Case): v is not an integer.

Theorem: If v is not an integer, then two linearly independent solutions of 

Bessels equation of order v are 
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All other solutions can be expressed as linear combinations of these two, i.e.,

     xJxJxy vv  21 
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Case 2 (Complicated Case): v is a nonnegative integer

If v is a nonnegative integer, say v = k. In this case, Jv(x) and J–v(x) are 

solutions of Bessels equation of order v, but they are NOT linearly 

independent. This fact can be verified from the following arguments: First 

note that
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Changing the index n to m + k, we obtain 

Thus, Jk(x) and J–k(x) are linearly dependent.

(m + 1) =  m!
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Summary of results obtained so far:

We deal with Bessels equation in this topic,

We have shown that it has a solution,

If v is not an integer, we have Jv(x) and J–v(x) being linearly independent. 

Hence, all its solution can be expressed as,
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     xJxJxy vv  21 

If v is an integer, Jv(x) and J–v(x) are linearly dependent and we need to 

search for a new solution …….
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A 2nd Solution to Bessels Equation for Case v = k = 0

Let us try a solution of the following format (why? Only God knows.)
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If y2(x) is a solution to the Bessels equation of order 0, it must satisfy its 

differential equation….
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Substituting the above equations into Bessels equation of order 0, i.e.,

  0'''0''' 222  xyyxyyxxyyx
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We will now determine the remaining coefficients. First we replace n by 2j in 

the second summation and n = j in the first summation in the following eq.
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A second solution of Bessels equation of order zero may be written as
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Because of the logarithm term, this second solution is linearly independent 

from the first solution, J0(x).

       xJxyxY 020 2ln)(2
 


where  is called Eulers constant and is given by
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Instead of using y2(x) for a second solution, it is customary to use a particular 

linear combination of J0(x) and y2(x), denoted Y0(x) and defined by
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Since Y0(x) is a linear combination of the solutions of Bessels equation of 

order 0, i.e., J0(x) and y2(x), it is also a solution. Furthermore, Y0(x) is linearly 

independent from J0(x) . Thus, the general solution of Bessels equation of 

order 0 is given by
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In view of the series derived above for y2(x),
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Y0(x) is a Bessels function of the 2nd kind of order zero. With the above 

choice of constants, Y0(x) is also called Neumanns function of order 0.
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A 2nd Solution of Bessels Equation of Order v (positive integer).

If v is a positive integer, say v = k, then a similar procedure as in the k = 0

case, but more involved calculation leads us to the following 2nd solution 

of Bessels equation of order v = k,
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Yk(x) and Jk(x) are linearly independent for x > 0, and the general solution of 

Bessels equation of order k is given by

     xYxJxy kk 21  

Although Jk(x) is simple Jv(x) for the case v = k, our derivation of Yk(x) does 

not suggest how Yv(x) might be defined if v is not a nonnegative integer. 
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However, it is possible to define Yv(x), if v is not an integer, by letting
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This is a linear combination of Jv(x) and J–v(x), two solutions of Bessels 

equation of order v, and hence is also a solution of Bessels equation of order v.

It can be shown (very complicated!) that one can obtain Yk(x), for k being a non-

negative integer, from the above definition by taking the limit, 
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k


 lim

Yv(x) is called Neumanns Bessel function of order v. It is linearly independent 

from Jv(x) and hence the general solution of Bessels equation of order v

(regardless it is an integer or not) can be written as

     xYxJxy vv 21  
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Extra: Linear Dependence and Linear Independence

Given two functions f (x) and g(x), they are said to be linearly independent if

and only if

holds with a = 0 and b = 0. Otherwise, they are said to be dependent, i.e.,

there exist either nonzero a and/or nonzero b such that

Assume that a is nonzero. We can then rewrite the above equation as

f (x) and g(x) are related by a constant and hence they are dependent to one

another.

defined  allfor 0)()( xxgbxfa 

defined.  allfor 0)()( xxgbxfa 

  )()()( xgxga
bxf  
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Now, given Jv(x) and J-v(x) are linearly independent, show that Jv(x) and Yv(x) with

are also linearly independent.

Proof. Rewrite Yv(x)  as

and let

Hence, Jv(x) and Yv(x) are linearly independent.

 
 

      xJvxJ
v

xY vvv  


cos
sin

1

               0,cos
sin

1
  


xJxJxJvxJ

v
xY vvvvv

  0)()()(0)()(   xJxJbxJaxYbxJa vvvvv 

0)()()(   xJbxJba vv 

0,00,0)(  abbba 
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Bessel functions of the 2nd kind
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Modified Bessel Functions

Sometimes, modified Bessel functions are encountered in modeling physical 

phenomena. First, we can show that

is the general solution of the following differential equation

     kxYkxJxy 0201  

01 2  yky
x

y

Proof. We prove this for y(x) = J0(kx) only. The rest can similarly be shown.

    0)()()()()()()()(
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Now, let k = i, where i = , which implies k2 = i2 = –1. Then

is the general solution of

which is called a modified Bessels equation of order 0, and J0(ix) is a 

modified Bessel function of the first kind of order 0. Usually, we denote

1

     ixYixJxy 0201  

01
 yy

x
y

   ixJxI 00 

Since i2 = 1, substitution of ix for x in the series for J0 yields:

It is a real function of x.

   6
222

4
22

2
20 642
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42
1

2
11 xxxxI
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Usually Y0(ix) is not used. Instead we use the function

K0(x) is called a modified Bessel function of the second kind of order zero.

            2
000 4

1ln2ln xxxIxIxK 

We now write the general solution of the differential equation 

as 

Homework: Show that the general solution of the differential equation

is given by 

01
 yy

x
y

     xKxIxy 0201  

01 2  yby
x

y

     bxKbxIxy 0201  
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Exercise Problem: (Problem 21, ONeil, page 262) Show that 

Proof.

    xxIxIx 00 

   

   

   

      ixJxixJixIx

ixJixxIx

ixJixI

ixJxI

000

00

00

00

       










Note that y = J0(ix) is the sln of the 

modified Bessels equation of order 0

and

xyyyx 

   
 ixJy
ixJiyixJy

0

00





Hence

   ixJxixJiixxJ 000 )( 

    xxIxIx 00 
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Applications of Bessel Functions (Oscillations of a Suspended Chain)

Displacement of a Suspended Chain

Suppose we have a heavy flexible chain. The chain is fixed at the upper 

end and free at the bottom.

We want to describe the oscillations caused by a small displacement in a 

horizontal direction from the stable equilibrium position.

x            y

Prepared by Ben M. Chen



54

Assume that each particle of the chain oscillates in a horizontal straight line.

Let m be the mass of the chain per unit length, L be the length of the chain, 

and y(x,t) be the horizontal displacement at time t of the particle of chain 

whose distance from the point of suspension is x.

Consider an element of chain of length x. The forces acting on the ends of 

this element are T and T+T, the horizontal component in Newtons 2nd Law 

of Motion (force equals to the rate of change of momentum with respect to 

time) is:

y
y(x,t)

x
L

y

x
T
T+T

  x
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This is a partial differential equation. However, we can reduce it to a problem 

involving only an ordinary differential equation. 
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Let z = L  x and u(z, t) = y (L  z, t). Then
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This is still a partial differential equation, which can be solved using p.d.e. 

method. Since we anticipate the oscillations to be periodic in t, we will 

attempt a solution of the form        tzftzu cos,

             tzfgztzfgtzf coscoscos2
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Dividing the above equation by                       , we get a differential equation  tgz cos

      01 2

 zf
gz

zf
z

zf 

It is shown in the lecture notes that                       and                      are the 

solutions of 
 c

n
a bxJx  c

n
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We let

Thus, the general solution is in terms 

of Bessel functions of order zero:

  


















g
zY

g
zJzf  22 0201

Prepared by Ben M. Chen



58

0 1 2 3 4 5 6 7 8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Key observation: All these function start from negative inf

Y0 Y0.5

Y1
Y2

x-axis

y-
ax

is

Bessel functions of the 2nd kind

Prepared by Ben M. Chen



59

Lxz
g
zY 







or0  as,20 

We must therefore choose 2 = 0 in order to have a bounded solution, as 

expected from the physical setting of the problem. This leaves us with

  









g
zJzf  201

Thus,

and hence
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zJtzftzu cos2cos, 01
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The frequencies of the normal oscillations of the chain are determined by 

using this general form of the solution for y(x,t) together with condition that 

the upper end of the chain is fixed and therefore does not move. For all t, we 

must have

      

02

02coscos2,0

0

0101































g
LJ

g
LJtt

g
LJty





This gives values of  which are frequencies of the oscillations. To find these 

admissible values of , we must consult a table of zeros of J0. From a table of 

values of zeros of Bessel functions, we find that the first five positive solutions 

of J0() = 0 are approximately  = 2.405, 5.520, 8.645, 11.792, 14.931.
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Using the these zeros, we obtain

L
g

g
L

L
g

g
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L
g

g
L

L
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g
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L
g

g
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466.7                    931.142

896.5                    792.112

327.4                      645.82

760.2                    520.52

203.1                    405.22

55

44

33

22

11





















All these are admissible values of , and they represent frequencies of the 

normal modes of oscillation. The period Tj associated with j is 

j
jT


2
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Legendres Equation and Legendre Polynomials

The following 2nd order linear differential equation 

    0121 2  yyxyx 

where  is a constant, is called Legendres Equation. It occurs in a variety of 

problems involving quantum mechanics, astronomy and analysis of heat 

conduction, and is often seen in settings in which it is natural to use spherical 

coordinates. We can also re-write Legendres equation as 

  0
1

1
1

2
22 





















 y

x
y

x
xy 

The coefficient functions are analytic at every point except x = 1 and x = 1. In 

particular, both functions have series expansions in (1, 1).
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Thus, in general, we are only interested in finding solutions to Legendres 

equation in the interval (1, 1). Since Legendres equation is a 2nd order 

differential equation, we will have to find two linearly independent solutions in 

order to characterize all its solutions. As in the Bessels equation case, we 

will try to find the solutions of Legendres equation in terms of power series.  

Since 0 is a solution, we let
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shift up power by 2
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For the even-indexed coefficients, we have
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Similarly, for the odd-indexed coefficients, we have
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We can obtain two linearly independent solutions of Legendres equation by 

making choice for a0 and a1.

If we choose a0 = 0 and a1 = 1, we get another solution:
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Exercise Problem: Show that these solutions converge absolutely in (1, 1).
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If we choose a0 = 1 and a1 = 0, we get one solution:

Any solution to the Legendres equation can be expressed as a linear 

combination of the above two solutions.
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Recall that the first solution,

             









 642

1 720
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2
11)( xxxxy 

When  = 0, we have
1)(1 xy

When  = 2, we have   22
1 31

2
2121)( xxxy 




When  = 4, we have

  4242
1 3

35101
24

)24(4)14)(34(
2

4141)( xxxxxy 







Note that all the above solutions are polynomials, this process can be carried 

on for any even integer .
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Similarly, one can obtain polynomial solutions for odd integer  from 
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6
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 xxxxxy

In fact, whenever  is a nonnegative integer, the power series for either y1(x)

(if  is even) or y2(x) (if  is odd) reduces to a finite series, and we obtain a 

polynomial solution of Legendres equation. Such polynomial solutions are 

useful in many applications, including methods for approximating solutions of 

equations f (x) = 0.
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In many applications, it is helpful to standardize specific polynomial solutions 

so that their values can be tabulated. The convention is to multiply y1(x) or

y2(x) for each term by a constant which makes the value of the polynomial 

equal to 1 at x = 1.

The resulting polynomials are called Legendre polynomials and are denoted 

by Pn(x), i.e., Pn(x) is the solution of Legendres equation with  = n. Here are 

the first six Legendre polynomials:

   

       

       xxxxPxxxP
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xxPxP
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24
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10







Although these polynomials are defined for all x, they are solutions of 

Legendres equation only for –1 < x < 1 and for appropriate .
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Properties of Legendre Polynomials

Theorem 0. If m and n are distinct nonnegative integers,     0
1

1




dxxPxP nm

Proof: Note that Pn and Pm are solutions of Legendres differential equations 

with  = n and  = m, respectively. Hence, we have
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subtract these two equations –

          01121 2  nmnmmnnmmn PPmmnnPPPPxPPPPx

nmmnmnmn PPPPPPPP 

           nmnmmnnmmn PPnnmmPPPPxPPPP
dx
dx 1121 2 
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Generating Function for Legendre Polynomials

The generating function for Legendre Polynomials is 

    2
1221, 

 rxrrxP

To see why this is called a generating function, recall the binomial expansion
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Theorem 1. (Recurrence Relation of Legendre Polynomial) For each positive 

integer n and for all ,11  x

          0121 11   xnPxxPnxPn nnn

Proof: Differentiating the generating function

    21221, 
 rxrrxP

w.r.t. r, we obtain
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Noting that from the property of the generating function, i.e.,
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Theorem 2. The coefficient of xn in Pn(x) is given by  
!

12531
n

n 

Proof: Let cn be the coefficient of xn in Pn(x), and consider the recurrence 

relation
          0121 11   xnPxxPnxPn nnn

The coefficient of xn+1 in (n+1)Pn+1(x) is equal to (n+1)cn+1.

The coefficient of xn+1 in – (2n+1) x Pn(x) is equal to – (2n+1) cn. 

There is no other xn+1 term in the recurrence relation. 

Thus coefficient of xn+1 is:     nnnn c
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Theorem 3. For each positive integer n,

      01   xPxPxxnP nnn

Proof. Differentiating the generating function                                           w.r.t. x, 

we obtain
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Theorem 4. For each positive integer n,
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Proof: We had in the previous proof the following equalities
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Orthogonal Polynomials

We have shown that if m and n are distinct nonnegative integers, then 

In view of this, we can say that the Legendre polynomials are orthogonal to 

each other on the interval [–1, 1]. We also say that the Legendre 

polynomials form a set of orthogonal polynomials on the interval on [–1, 1].

The orthogonal property can be used to write many functions as series of 

Legendre polynomials. This will be important in solving certain boundary 

value problems in partial differential equations.
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Let q(x) be a polynomial of degree m. We will see how to choose numbers 

0, 1, 2,   ,m such that on [–1, 1]
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Multiplying the above equation by Pj (x), with 0  j  m, we obtain
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Integrating both sides of the above equation from –1 to 1, we have
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Example: Express q(x) = 1 – 4 x2 + 2 x3 in terms of P0(x) to P3(x),

Any Polynomial can be written as a Finite Series of Legendre Polynomials.
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Theorem 5. Let m and n be nonnegative integers, with m < n. Let q(x) be any 

polynomial of degree m. Then

    0
1

1




dxxPxq n

That is, the integral, from –1 to 1, of a Legendre polynomial multiplied by 

any polynomial of lower degree, is zero.

Proof: We have shown that for any polynomial q(x) of degree m, there exist 

scalar 0, 1,    m such that 
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0 0 0

= 0
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Theorem 6. For any nonnegative integer n,
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dxxPn

Proof: Let cn be coefficient of x n in Pn(x) and also let the coefficient of xn–1

in Pn–1(x) be cn–1. Define
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Thus, q(x) has degree n – 1 or lower.
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Now use the recurrence relation,

          0121 11   xnPxxPnxPn nnn

      21111 12
)(

12
1)( xP

n
nxPxP

n
nxPxxP nnnnn  







0

     xP
n
nxP

n
nxxP nnn 11 1212

1
 







         

  



























1

1

2
1

1

1

1

2
1

1

1

1
11

1

1

1

2

12
0                     

1212
1

dxxP
n
n

c
c

dxxP
n
n

c
cdxxPxP

n
n

c
cdxxP

n
n

n

n
n

n
nn

n

n
n

Prepared by Ben M. Chen



89

Recall from Theorem 2 that
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Finally, we can write any polynomial of degree m as a finite series of 

Legendre polynomials, 

    11for              
0




xxPxq
m

k
kk

   

  
   








 


1

1
1

1

2

1

1

2
12 dxxPxqk

dxxP

dxxPxq

k

k

k

k

and for k = 0, 1, 2,   , m,

Proof. It is a combination of Theorem 6 and the formula derived earlier, i.e.,
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Boundary Value Problems in Partial Differential Equations

A partial differential equation is an equation containing one or more partial 

derivatives, e.g.,

2

2

x
u

t
u








We seek a solution u(x, t) which depends on the independent variables x and t.

A solution of a partial differential equation is a function which satisfies the 

equation. For example,

    textxu 42cos, 

is a solution of the above mentioned differential equation since

  tex
t
u 42cos4 

   tex

x
u 4
2

2

2cos4 

=

Prepared by Ben M. Chen



92

Order of a Partial Differential Equation

A partial differential equation (p.d.e.) is said to be of order n if it contains 

an n-th order partial derivative but none of higher order. For example, the 

following so-called Laplace equation

02

2

2

2

2

2
2 













z
u

y
u

x
uu

is of order 2. The p.d.e. has an order of 5,

t
u

t
u

x
u












5

5

2

2

Linear Case

The general linear first order p.d.e. in three variables (with u as a function of 

the independent variables x and y) is

        0,,,, 





 yxguyxf

y
uyxb

x
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The general second order linear p.d.e. in three variables has the form

       

      0,,,                               

,,,, 2

22

2

2























yxguyxf
y
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x
uyxd

y
uyxc

yx
uyxb

x
uyxa

Most of the equations we encounter will be in one of these two forms. In both 

cases, the equation is said to be homogeneous if g(x, y) = 0 for all (x, y) under 

consideration and non-homogeneous if g(x, y)  0 for some (x, y).

We will focus particularly on equations governing vibration (wave equation) 

and heat conduction (heat equation) phenomena.

Main Tools: Fourier series, integrals, transforms and Laplace transform.

Prepared by Ben M. Chen



94

The Wave Equation

Suppose we have a flexible elastic string stretched between two pegs. We 

want to describe the ensuing motion if the string is lifted and then released 

to vibrate in a vertical plane.

Place the x-axis along the length of the string at the rest. At any time t and 

horizontal coordinate x, let y(x, t) be the vertical displacement of the string.

0 L x-axis

y
y(x,t)

We want to determine equations which will enable us to solve for y(x, t), thus 

obtaining a description of the shape of the string at any time.

x
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We will begin by modeling a simplified case. Neglect damping forces such 

as air resistance and the weight of the string and assume that the tension 

T(x, t) in the string always acts tangentially to the string. Assume that the 

string can only move is the vertical direction, i.e., the horizontal tension is 

constant. Also assume that the mass  per unit length is a constant.

Applying Newtons 2nd Law of motion to the segment of the string between x

and x + x, we have 

Net force due to tension = Segment mass

 Acceleration of the center of mass of the segment

For small x, consideration of the vertical component of the equation gives 

us approximately:  

maF 
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0 L x-axis

y
T(x+x, t)

x+x

 +


T(x, t)

x

        xxxtx
t
yxtxTxxT 
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As a convenience, we write                                 i.e., the vertical component 

of the tension. Hence we have
    sin,, txTtxv 

     tx
t
y

x
txvtxxv ,,,
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 0x
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Write h(x, t) = T(x, t)cos, i.e., the horizontal component of the tension at (x, t),

then 

     
x
ytxhtxhtxv



 ,tan,, 

Substituting this into the equation we have just obtained, we have
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Recall that the horizontal component of the tension of the segment is constant. 

Hence, h is independent of x and
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 1-D Wave

Equation
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The motion of the string will be influenced by both the initial position and the 

initial velocity of the string. Therefore we must specify initial conditions:

   xfxy 0,    xgx
t
y



 0,

Next, we consider the boundary conditions. Since the ends of the string are 

fixed, we have     0.  t,0,,0  tLyty

Lx 0

To be more clear, we can put all of them together, i.e.,

2

2
2

2

2

x
ya

t
y








    0,,0  tLyty

   xfxy 0,

   xgx
t
y



 0,

Lx 0

0t

Lx 0

Lx 0

0t
The boundary value problem of 

1-D Wave Equation with initial 

and boundary conditions.

Its solution as expected from the 

associated physical system must 

be unique.
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The Heat Equation

This is to study temperature distribution in a straight, thin bar under simple 

circumstances. Suppose we have a straight, thin bar of constant density 

and constant cross-sectional area A placed along the x-axis from 0 to L.

Assume that the sides of the bar are insulated and so not allow heat loss 

and that the temperature on the cross-section of the bar perpendicular to the 

x-axis at x is a function u(x, t) of x and t, independent of y.

Let the specific heat of the bar be c, and let the thermal conductivity be k, 

both constant. Now consider a typical segment of the bar between x =  and 

x = .

0
L

x

y

 

u(x, t)
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By the definition of specific heat, the rate at which heat energy accumulates 

in this segment of the bar is:

 




 dx
t
uAc

By Newtons law of cooling, heat energy flows within this segment from the 

warmer to the cooler end at a rate equal to k times the negative of the 

temperature gradient. Therefore, the net rate at which heat energy enters 

the segment of bar between  and  at time t is:

   t
x
ukAt

x
ukA ,, 








In the absence of heat production within the segment, the rate at which heat 

energy accumulates within the segment must balance the rate at which heat 

energy enters the segment. Hence,

   t
x
ukAt

x
ukAdx

t
uAc ,, 
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Note that
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x
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This is the so-called heat equation, which is more customary written as:

2

2
2

x
ua

t
u








where a2 = k/(c) is called the thermal diffusive of the bar. To determine u

uniquely, we need boundary conditions (information at the ends of the bar) 

and initial conditions (temperature throughout the bar at time zero). The 

p.d.e. together with these pieces of information, constitutes a boundary 

value problem for the temperature function u.
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    )0(                       0,

)0(               ,,0

)00(                         2

2
2

L  x    xfxu
 t TtLutu

 L,  t   x    
x
ua

t
u












Problem 1. Both ends of the bar are kept in a constant temperature.
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L  x    xfxu

 t tL
t
ut

t
u

 L,  t   x    
x
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u



















Problem 2. No heat flows across the ends of the bar.

Reading assignment: Laplaces Equation; Poissons Equation; Dirichlet and 

Neumann Problems; Laplaces Equation in Cylindrical & Spherical Coordinates
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Fourier Series Solution of Wave Equation

Recall the wave equation of an initially displaced vibrating string with zero initial 

velocity,

This boundary value problem models the vibration of an elastic string of length 

L, fastened at the ends, picked up at time zero to assume the shape of the 

graph of y(x,0) = f (x) and released from rest.

Wave equation

Boundary conditions

Initial displacement

Initial velocity

2

2
2

2

2

x
ya

t
y
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   xfxy 0,

  00, 

 x

t
y

Lx 0

0t

Lx 0

Lx 0

0t
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The Fourier method or method of separation of variables is to find a solution of 

the form
)()(),( tTxXtxy 

with appropriate X(x) and T(t) that solves the above boundary value problem.

)()(),()( 2

2

2

2

tTxX
x
ytTxX

t
y 
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2
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ya
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y








Ta
T

X
XTXaTX 2

2 





We have “separated” x and t; the left hand side is a function of x alone, and the 

right hand side is a function of t. Since x and t are independent, we can fix the 

right hand side by choosing t = t0, and the left hand side must be equal to

 
  )(0, inx  allfor constant a  is  which, 

0
2

0 L
tTa

tT 
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Ta
T

tTa
tT

X
X

2
0

2
0 constant) separation(a   

)(
)( 









0"&0" 2  TaT  XX 

These are two ordinary differential equations for X and T.

Next, look at the boundary conditions for y(x, t) and relate them to X and T. 

From the condition that the both ends of the string is fixed, we have

0)()0(),0(  tTXty

0)()(),(  tTLXtLy

0)0( X
0)( LX

as we cannot has T(t) = 0 if the string is to move. Similarly,

  00, 

 x

t
y 0)0(')( TxX 0)0(' T

Prepared by Ben M. Chen



106

At this point, we have two problems for X and T, namely

0"&0" 2  TaT  XX 

0)()0(  LXX 0)0( T

A value for  for which the above problem, either the one associated with X or

T, has a nontrivial solution (not identically zero) is called eigenvalue of this 

problem. The associated nontrivial solution for X or for T is called eigenfunction.

We will consider different cases on . We assume that  is real, as we expect 

from the physics of the problem.

Case 1:  = 0

Then X= 0, so X(x) = c x + d for some constants c and d. Then the condition 

X(0) = 0 implies d = 0 and X(L) = c L= 0 implies c = 0.

0)( xX 0)()(),(  tTxXtxy if f (x)  0.
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Case 2:  < 0

For this case, we write  =  k2 with k > 0. The equation for X is the given by 

0" 2  XkX kxkx decexX )(

0)0(  dcX dc 

  )sinh(2)( kxceecxX kxkx  

0)sinh(2)(  kLcLX 0 cd

because sinh(x) > 0 if x > 0. Thus, 

solution.admissible an not is whichtTxXtxy 0)()(),( 
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Case 3:  >0

We can write  = k2 with k > 0. Then 

0" 2  XkX )sin()cos()( kxdkxcxX 

0)0(  cX )sin()( kxdxX 

0)sin()(  kLdLX

We cannot choose d = 0 as it will give a trivial solution again. Instead, we have 

to let

0)sin( kL  ,,,n   nkL 321, 2

22
2

L
nk  

Corresponding to each positive integer n, we therefore have a solution for X:
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L
ndxX nn
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Now look at the problem for T:
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We now have, for each positive integer n, a function
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which satisfies wave equation and boundary conditions, but not initial position.
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In order to satisfy the initial displacement y(x,0) = f (x), we attempt an infinite 

superposition of the yns and write
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n t
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n x
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Note that this equation is the Fourier sine expansion of f (x) on [0, L]. We 

should choose the Ans as the Fourier coefficients in this expansion, i.e.,
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Example: Suppose that initially the string is picked up L/2 units at its center 

point and then release from the rest.
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The number  = n22/L2 are eigenvalues, and the functions sin(nx/L), or non-

zero multiple thereof, are eigenfunctions. The eigenvalues carry information 

about the frequencies of the individual sine waves which are superimposed 

to form the final solution.
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Simulation Results: L =  and a = 1
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Wave Equation with Zero Initial Displacement but Nonzero Velocity

Now let us consider the case in which the string is released from its horizontal 

stretched position (zero initial displacement) but with a nonzero initial velocity. 

The boundary value modeling this phenomenon is

2
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2
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x
ya

t
y
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 0,

0t

Lx 0

Lx 0
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0t

Wave equation

Boundary conditions

Initial displacement

Initial velocity

Up to a point the analysis is the same as in the preceding problem. The only 

difference between this problem and the previous one is that one would 

have to choose An now to meet the initial velocity instead of initial position.
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)()(),( tTxXtxy 

As in the previous case, we set

to get

0"&0" 2  TaT  XX 
0)()0(  LXX 0)0(0)0()(  TTxX

The problem for X is the same as that encountered previously, so the eigen-

values are

2

22

L
n  

For n = 1, 2, 3,    and corresponding eigenfunctions are

  







L
nππdxX nn sin

Now, however, we come to the difference between this problem and the 

preceding one, i.e., the solution for T.
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Since we know the values of , the problem for T can be re-written as 

  00                      ,02

222

 TT
L

anT 

The general solution of this differential equation for T is
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For each positive integer n, we now have
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Each of these functions satisfies the wave equation, the boundary conditions, 

and yn(x, 0) = 0, it in general does not satisfy the initial velocity condition.
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To satisfy the initial velocity condition, write a superposition
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Note that this is a Fourier sine expansion of g(x) on [0, L]. By choosing

   d
L

ng
L

D
L

an L

n 





  sin2

0

    



































1
0

sinsinsin12,
n

L

L
atn

L
xnd

L
ng

na
txy 


























1

cossin
n

n L
atn

L
xnD

L
an

t
y 

   xgx
t
y



 0,   












1

sin
n

n L
xnD

L
anxg 

  


d
L

ng
an

D
L

n 





  sin2

0

Prepared by Ben M. Chen



118

Example: We consider the same wave equation as in the preceding one but 

with zero initial displacement and a initial velocity
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The Wave Equation with Initial Displacement and Velocity
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Example: Consider the wave equation with usual boundary and with initial 

displacement,
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Then it follows from the previous examples, the solution to the above 

problem is given by
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Simulation Results: L =  and a = 1
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Fourier Series Solution of the Heat Equation

The Ends of the Bar Kept at Zero Temperature: We want to determine the 

temperature distribution u(x,t) in a thin homogeneous bar of length L, given 

the initial temperature distribution throughout the bar at time t = 0, if the ends 

are maintained at zero temperature for all time.

The boundary value problem is 
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 Heat Equation

Boundary Conditions

Initial Temperature

The procedure that we are going to use to solve the above problem is precisely 

the same as the one in solving the wave equation. All the dirty works were done 

already. The rest is pretty simple. 
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We will apply the separation of variables method and seek a solution
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Since x and t are independent variables, both sides of this equation must be 

equal to the same constant.
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Unlike the wave equation, this equation for T is of first order, with no boundary 

condition.

0&0)()0(,0 2  TaTLXXXX 
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The boundary value problem for X, however, is identical with that encountered 

with the wave equation, so we have eigenvalues and eigenfunctions
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With the values we have for , the differential equation for T is

0' 2

222
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L
naT 

Each un(x,t) satisfies the heat equation and both boundary conditions, but in 

general, none of them will satisfy the initial condition, i.e.,
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Thus, we should attempt an infinite superposition
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This is the Fourier series expansion of f on [0, L]. Hence, choose the Ans as 

the Fourier coefficients:
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