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Course Outline

Series and Power Series: Sequences and series; convergence and
divergence; a test for divergence; comparison tests for positive series; the

ratio test for positive series; absolute convergence; power series.

Special Functions: Bessel's equation and Bessel functions; the Gamma
function; solution of Bessel's equation in terms of Gamma function;
Modified Bessel's equations; Applications of Bessel’s functions;

Legendr’s equation; Legendre polynomials and their properties.

Partial Differential Equations: Boundary value problem in partial
differential equations; wave equation; heat equation; Laplace equation;
Poisson’s equation; Dirichlet and Nuemann Problems. Solutions to wave

and heat equations using method of separation of variables.
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Lectures

Lectures will follow closely (but not 100%) the materials in the lecture

notes (available at http://vlab.ee.nus.edu.sg/~bmchen).

However, certain parts of the lecture notes will not be covered and

examined and this will be made known during the classes.

Attendance is essential.

ASK any question at any time during the lecture.
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Tutorials
The tutorials will start on Week 4 of the semester (again, tutorial sets can
be downloaded from http://vlab.ee.nus.edu.sg/~bmchen).

Solutions to Tutorial Sets 1, 3 and 4 will be available from my web site

one week after they are conducted. Tutorial Set 2 is an interactive one.

Although you should make an effort to attempt each question before the

tutorial, it is not necessary to finish all the questions.

Some of the questions are straightforward, but quite a few are difficult

and meant to serve as a platform for the introduction of new concepts.
ASK your tutor any question related to the tutorials and the course.
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Reference Textbooks

* P. V. O'Neil, Advanced Engineering Mathematics, Any Ed., PWS.

* E. Kreyszig, Advanced Engineering Mathematics, Any Ed., Wiley.
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Sequences and Series

A sequence consists of a set numbers that is arranged in order. For example,

{n} 1, 2, ---, n,
{1} rr 1
2" 27 47 7
{1} : 19 17 ...9 19
n 2 n
In general, a sequence has the following form
{”n} Uy Uy, e, U,

For any given sequence, we define an array (or called a series)

Su, =u, +uy +otu, +o

6
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Let us define
n
S, = Zlul- =u;+u, +--+u,
l:

This partial sum forms a new sequence { s, }. If, as n increases and tends to

infinity the sequence of numbers s, approaches a finite limit L, we say that

the series

SU; =uUp+uy +o U, oo

converges. And we write

00)
lims, =>u, =L,
n—>0 i=1

We say that the infinite series converges to L and that L is the value of the
series. If the sequence does not approach a limit, the series is divergent

and we do not assign any value to it.
7
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n
S, =Y U, =ty +tu, U, =5, +u,

n
i=1

A Divergence Test
Consider a series

U =Up F Uy U,
If it converges, then we have

lims, =L and Ilims, ;=L.
n—0 n—0

and hence

limu, = lim(s, -5, )=lims, —lims, ,=L-L=0
n—>00 1—>0 n—0 n—>0

Thus, if 1, does not tend to zero as n becomes infinite, the series

Su; =ty +uy et u, +oe

IS divergent.
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Example 1: Show that the series with

n : :
y = : l.e.,the series Y u,,
2n+1
diverges.
Solution: Check that
. . n |
limu, = lim =—#0
n—>o0 n—ool2n+1 2

Hence, it diverges.

Example 2. Show that the series with odd terms equal to (n+1) / n and even

terms equal to 1/x diverges.

Solution: For this case, the odd terms (n+1) / n are actually approaching to

a nonzero value 1. The limit of 1, cannot be zero and hence it diverges.

9
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Comparison Test for Positive Series

A series X u, Is said to be positive if u,> 0. The following results

are called comparison test for positive series:

1. Let X v, be a positive series, which converges. If 0 <u, <v,

for all n, then the series X u, converges.

2. Let X~ V be a positive series, which diverges. If u, > V, for all

n, then the series X u, diverges.
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Ratio Test for Positive Series

For positive series 2 u, with

Cu
lim ~otl =T

o0
n— un

then

1. The series converges if T< 1.
2. The series diverges if 7> 1.

3. No conclusion can be made if 7= 1. Further test is needed.

Example: Test the series with (n _P' for convergence.
n

u, n! n"! . n" 1 1
lim = = lim = lim —<1

1m
H—>0 Z/tn Nn—>00 (n + 1) (n 1)' n—>0 (n + 1) n—>0 (1 + l/n) 8

Hence, it converges. 11
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Absolute Convergence

Consider a general series 2 u,,

1. If X |u | converges, then X u, converges. Actually, we will say

that the series 2 1, converges absolutely or has an absolute

convergence.

2. If X |u,| diverges, then X u, may converge or diverge. If £ u,

converges, we say that it converges conditionally.

Note that X |u | is a positive series and its convergence can be test using

the ratio test.
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Power Series
Any infinite series of the form
A+ A (x—a)+ Ay (x—a)* +-+ A (x—a)" +--

is called a power series, which can be written as a normal series,

iun (x) where u,(x)=A4,(x—a)"
n=0

Theorem (see lecture notes for proof): Consider the above power series. If

A

n+l

lim =L#0

n—o| A4

n

then the power series converges absolutely for any x such that  — 4 < 1

and the power series diverges for any x such that | — ;> I :

L 13
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Example: Find the open interval of absolute convergence of the power series

2
2 X x"

X+ —+ —Fet—F-.-
2 n

Solution: Using the theorem for power series, we have

n

n+1

A .
“ntll = lim
n—o0

A =1 and a=0 = Ilim =1=L

n n—>00

Hence, the power series converges absolutely for all

X<l or —-l<x<l
and diverges for all

\x\>1
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Bessel's Equation

The following second order differential equation,

xzy”+xy'+(x2 — v’ )y =0
is called Bessel's equation of order v. Note that Bessel's equation is a 2nd
order differential equation. It can be used to model quite a number of
problems in engineering such as the model of the displacement of a
suspended chain, the critical length of a vertical rod, and the skin effect
of a circular wire in AC circuits. The first application will be covered in

details in the class later on.

In general, it is very difficult to derive a closed-form solutions to differential
equations. As expected, the solution to the above Bessel’'s equation cannot

be expressed in terms of some “nice” forms.
15
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Solution to Bessel's Equation (Bessel Function of the First Kind)

The solution to the Bessel's equation is normally expressed in terms of a power
series, which has a special name called Frobenius series. Such a method is

called Method of Frobenius. We define a power series (a Frobenius series),
- n+r
y(x)= 2c,x
n=0
where r and ¢, are free parameters. Without loss of any generality, let ¢, # 0.

Next, we will try to determine these parameters 7 and ¢, such that the above

Frobenius series is a solution of the Bessel’s equation, i.e., it will satisfy the
Bessel's equation,
xzy”+xy'+(x2 — v’ )y =0

16
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Now, assume that the Frobenius series y(x) is indeed a solution to the

Bessel's equation. We compute
- n+r—1
= >c,(n+r)x
n=0

Then, the Bessel's equation gives
0= )c2)/”+)cy'+()c2 —vz)y

= icn (n+r)(n+r-1)x""
n=0

o0
+ Y (n+r)x""
n=0 /

- 2 n+r n+r+2
-2 cvx T+ Zc X

g

n=0

Let

m=n+2
= ()

n=ao

n
n=0

- n+r+2
Y, x =

o0
"= e (n+r)n+r—1)x""?
n=0
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Thus,
O:)czy”+xy'+(x2 —vz)y

o0
Zc (n+r)(n+r—-Dx"" + Zc (n+r)x""" — Zc VX" 4 ch Sx"T
n=0 n=0 n=0 n=2

| /

o0
=Yc (n+r)x"" = e vx" + ch Sx"T
= = n=2

— Z[ (n+r) —cv +c,_ 2]x’”’"+co(’” -V )x +C1[(’”+1 Y ]x””

B \ //

All these coefficients must be equal to zero!

co(r*=v)=0 ¢[(r+1Y =v*1=0 c,(n+r)’—cv> +c, ,=0

18
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Since let ¢, # 0
2 2
co(r"=v’)=0 = r=v and r=-v
Let us first choose »=v > 0. Then, we have
aq[(r+17 =v1=0 = ¢[(v+1) = ]1=Qv+1)e, =0 = ¢ =0

2 2 1
c(n+r)y —cvi+c, ,=0 = ¢, =- C, ,y N =23

n(n+2v)
v

1 1

Cy = — c; =0, Cy=-— Cy =
S 3(3+42v) > 5(542v) °

b

sz+1:O, m:O,l,z,"°

19
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Similarly,

| —1
Cr = — Ch = C
2 20242v) Y 2% (1+v)
1 1 1 1
Cqy = — Cy = ‘ Co = 4 e
4(4 +2v) 4(4+2v) 2(2+2v) 27-2-2+v)(1+v)
1 —1

Ce =— Cy = ¢ Co
6(6+2v) 2°-3-2-3+v)2+v)(1+v)

1 1
—~ Copn =— c
2mQ2m+2v) "7 Pm(m+v) "
1

24m(m —1)-(m+v)(m—-1+v) “2m-—4

2m

=— (=1)"< , m=1,2,--
2"m(m—=1)---1-(m+v)(m—-1+v)---(v+1) 20
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Thus, we obtain a solution to the Bessel’'s equation of order v,

o - (_ l)m 2m+v
(0= Com§o22mm! -(m+v)(m —1+v)°“(v+1)x

v

) . (_l)nx2n+v
nx)= CO,Z'()Zz”n! (n+v)(n—-1+v)---(v+1)

We need two linearly independent solutions to the Bessel’s equation in
order to characterized all its solutions as Bessel's equation is a 2nd order

differential equation. We need to find another solution.

But, we will first introduce a Gamma function such that the above solution

to the Bessel’s equation y,(x) can be re-written in a neater way.

21
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Gamma Function

For x>0, we define a so-called Gamma function T"(x) = jtx_le_tdt

If x>0, then I'(x+1)=x I'(x).

T(x+1)= J' te'dt = — J' t'de”™
0 /
T4 j xt* e dt
0 0

— e’

=x|te’'dt = xI'(x)

O Cm—y 8

For any positive integer n,

I'(n+l)=nl'(n)=n(n-DI'(n—-1)=n(n-1)--

=n![e'dt = n!(— e

0

=lim

{—>0

=lim

{—0

tOO
=nl-1=n!
0

x-(x—k+1)t"

t

x-(x—k+1) 0

tk—xet

1-T(1)
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If v> 0, but v is not necessarily an integer,

[n+v+D)=nm+v)I(n+v)=m+v)(n+v-DHI'(n+v-1)
=(n+v)(n+v-1)---(v+1)-I'(v+1)

v

(n+v)(n+v—1)...(v+1):F(n+v+1)

['(v+1)

This is known as the factorial property of the Gamma function.

Note that

I'x+)=xI'(x) = I'(x)= 1l"(x +1)
X
This property holds for all x > 0. We will use the above property to define
Gamma function for x < 0.

23
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First we note that ['(x + 1) is well defined for all x > —1. Thus, we can use
1
['(x)=—TI(x+1)
X

to define I'(x) for —1<x<0,i.e,

'(-0.9) = _(1)9r(—o.9 +1) = —Ol9r(0.1), r'(-0.3) = _(1)3r(o.7)

Next, note that I'(x +1) is well defined forall —2 <« y <« —1 . We use
['(x)= 1F(x +1)
X

to define I'(x) for -2 <x<—1,i.e,

r(-1.8) = _1181“(—1.8 +1)= —llgr(—o.S), r(-1.2)= _;2r(—o.2)

We can continue on this process forever to define I'(x) on every (— n—1, — n).
24
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The Gamma function

20

15

f I

|

-15

-20
-4 -3 -2 -1 0 1 2

The Gamma Function 25
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Solution of Bessel's Equation in terms of Gamma Function

Recall that the first solution we have obtained for the Bessel’s equation, i.e.,
(_ l)n x2n+v
22" n+v)n+v—1)---(v+1)

o (1) T(v+ >

nwW=a

=c - factorial propert
g 22n-n!-F(n+v+1 t PIOPEY
omfmr e e Y
Let us choose {(n+v)(n+v—1)---(v+l)= (1?(_::;_) )
1 |._._._._._._._._._._._._.;.) ___________ ( ___1_)’1_‘X_:2_n;v_ _____________ _
C, = —> _ _
’ 2VF(V + 1) nlx)=7,(x) ;22”” nl-T(n+v+1)

J,(x) is called a Bessel Function of the 1st kind of order v. This power series

converges for all positive x (prove it yourself). 26
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Exercise Problem: Verify that

Solution: C(ntv+1) = (n+v) T(n+v)

0 )n 2n+v

Z 2n+v
U
J'V ()C) . Z (27/1 + V)(— l)n x2n+v—1

nT(n+v+1)

27
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o0 ( l)n 2n+v-1
Z(; 22" ! F(n +v+1)
l)n x2n+v—1
- +222”+" (n=1)'T(n+v+1)

o0 )n+1x2n+v+1
- Z:(; 22" 2T (n +v +2)

- __Z ( 1)71 x2n+v+1
22 T+ v +2)

7 () =2, ()=, ()] )




Second Solution to the Bessel’'s Equation

We will now consider the problem of finding a second, linearly independent

solution of Bessel's equation. Recall that

F(r)=r"=v"=0

which has two roots r,=v and r,=—v.

Case 1 (Easy Case): v is not an integer.

Theorem: If v is not an integer, then two linearly independent solutions of
Bessel’s equation of order v are

J (x) . i (_ l)n x2n+v & J (x) . i (_ l)n x2n—v
' S ) F(n + v+ 1) - — 22”“’;1!1“(71 — v+ 1)
All other solutions can be expressed as linear combinations of these two, i.e.,

y(x)=aJ,(x)+ ), (x)

29
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Case 2 (Complicated Case): v is a nonnegative integer

If v is a nonnegative integer, say v =k. In this case, J (x) and J (x) are
solutions of Bessel's equation of order v, but they are NOT linearly
independent. This fact can be verified from the following arguments: First

note that
)ﬂ 2n—k

;22” T (n—k+1)

n

Observing the values of Gamma function at 0, -1, — 2, ..., they go to infinity.

Thus we have

I(n—k+1)— o or 1 —0

T(n—k+1)

forn-k+1=0,-1,-2,...,orn=k-1,k-2,k-3,...,0 0
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The Gamma function

20

15

10

|| \\

-20 ]
-4 -3 -2 -1 0 1 2
The Gamma Function

31

Prepared by Ben M. Chen



o0 )71 2n—k

Z22"’ FnlT(n—k+1)

n=k

Changing the index n to m + k, we obtain

o0 ( 1)M+kx2(m+k)—k
n; 2 (o + N T+ ke — ke +1)
b o ['(m+1)= m!
_ Z (= 1)
22’"”‘ (m+k) T(m+1)

(_ l)m x2m+k (L 1)k i (_ l)m x2m+k
22"k (m+ k) T(m 1) L2 (4 ) m!

>
D e LA

22" (m+k +1) m!

Thus, J (x) and J ,(x) are linearly dependent. 32
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Summary of results obtained so far:

We deal with Bessel's equation in this topic,

xzy"+)cy'-|—(x2 —y’ )y =0, v=0

We have shown that it has a solution,

0 (_ 1)” x2n+v

7(0)=3

T (n+ v + 1)

If v is not an integer, we have J (x) and J (x) being linearly independent.

Hence, all its solution can be expressed as,

y(x)=aJ,(x)+a,(x)

If vis an integer, J (x) and J (x) are linearly dependent and we need to

search for a new solution ....... 1
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A 2nd Solution to Bessel's Equation for Casev=k=0

Let us try a solution of the following format (why? Only God knows.)

o0 n2n

Y, (x)z )2 (x)ln(x)+ ZC: x"  where 1 i

2n
n=1 n=0 2

= ', (x)=J",(x)n(x) )+ ch* "

l
s (5) =7 (i) ()= 5 () ol 1) 5

If y,(x) is a solution to the Bessel’'s equation of order 0O, it must satisfy its

differential equation....
34
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Substituting the above equations into Bessel's equation of order 0, i.e.,

xzy"-l-xy'+(x2 ~0’ )y =xy'"'+y'+xy =0

+J', (x)In(x)4

+x J,(x)In(x)

0={xJ", (x)In(x)}2J", (x)—%(x)+

n=l
L O(X)-l'inc* X" \




Note that % (_ 1)”x2n

Il
-

= (=) X " . P
Z +c, +4c,x+ Z [nzcn +c,_, 1)(”_1

=222y !(n — 1)! 3 ‘

/

: when n=3,5,7, ... Their
associated coefficients = 0.
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U
) | -
C,=——5C, 0, n=357,---
n
1
¥ =——c* =0
9
—= c* =—Lc* =0
5 25 3
. cC* =—ic* =0
7 49 5

37
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We will now determine the remaining coefficients. First we replace n by 2/ in

the second summation and » =; in the first summation in the following eq.

o0 (_ l)nx2n—1 -
Z 2n-2 +Cl+402x+2[nc ‘|‘C :IX —=(
=272l (n—1)! | "
U =0whenn=3
00 ~1 jx2j—1 o | )
;22§2J)'(] _1)' +4c *2 X+ ;[4]20 *2]' +c *2]-_21)(2] 1_0
U
N -1) . 3
(40*2 _I)X+Z 22~ 2(] ()]._1)! +4]20*2j +C*2J2}(2] '=0
1 -1 j+l1 1
=) c*, = Z’ and ¢ *2J_ _ 221]'(2]' !)(j - 1)! _ 4]'2 c >x<2j_2

38
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~1 1 ~1 1
— c*, = = = 1+—
Yo% 27274 2242{ }

2
1
—P» c* = : + 1+5 = : [1+l+l}
©28326.2  4.32%4%  2%°4%° 2 3
_ =y 11 G
> Tyl 2 22](]'!)2W(J)

39
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A second solution of Bessel's equation of order zero may be written as

()= Jyla)ila)s 2“()) AT

Because of the logarithm term, this second solution is linearly independent
from the first solution, J,(x).

Instead of using y,(x) for a second solution, it is customary to use a particular

linear combination of J,(x) and y,(x), denoted Y,(x) and defined by

1) =2 {30+ -l

where v is called Euler's constant and is given by

y = lim [y (n)-In(n)] = 0.577215664901533 -

Nn—>00 40
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Since Y,(x) is a linear combination of the solutions of Bessel's equation of
order 0, i.e., J,(x) and y,(x), it is also a solution. Furthermore, Y, (x) is linearly

independent from J(x) . Thus, the general solution of Bessel's equation of

order 0 is given by
y(x)= 07y (x)+ o Yy (x)

In view of the series derived above for y,(x),

Yo<x>=2{Jo< Jine)+ & U (e +[7—1n<z>]Jo<x>}

7T n=12%" (n!)’

ol 2l

T n12()

Y,(x) is a Bessel's function of the 2nd kind of order zero. With the above

choice of constants, Y(x) is also called Neumann'’s function of order 0. ,,
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A 2nd Solution of Bessel’'s Equation of Order v (positive integer).

If v is a positive integer, say v =k, then a similar procedure as in the k=0
case, but more involved calculation leads us to the following 2nd solution

of Bessel's equation of order v =&,

Yk(x>:2{Jk(x){ln(xM_kzl (k=n=1)! ok, <—1>"“[w<n>+w<n+k>]x2n+k}

7 2 =0 225 im0 22"+ k)

Y,(x) and J,(x) are linearly independent for x > 0, and the general solution of

Bessel's equation of order k is given by
y(x)= 0 (x)+ 27 (x)

Although J,(x) is simple J (x) for the case v = k, our derivation of Y,(x) does

not suggest how Y (x) might be defined if v is not a nonnegative integer.
42
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However, it is possible to define Y (x), if v is not an integer, by letting

1

hlx)= sin(vr)

|/, (x)eos(vr)=J_, (x)]

This is a linear combination of J (x) and J (x), two solutions of Bessel's

equation of order v, and hence is also a solution of Bessel's equation of order v.

It can be shown (very complicated!) that one can obtain Y,(x), for £ being a non-
negative integer, from the above definition by taking the limit,
Y, (x)=lmY,(x)
v—k
Y (x) is called Neumann's Bessel function of order v. It is linearly independent
from J (x) and hence the general solution of Bessel's equation of order v

(regardless it is an integer or not) can be written as

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

y(x)=aJ, (x)+ Y, (x) e
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Extra: Linear Dependence and Linear Independence

Given two functions f'(x) and g(x), they are said to be linearly independent if

and only if

a-f(x)+b-g(x)=0 forall x defined

holds with a = 0 and 5 = 0. Otherwise, they are said to be dependent, i.e.,

there exist either nonzero a and/or nonzero 5 such that

a-f(x)+b-g(x)=0 for all x defined.

Assume that « is nonzero. We can then rewrite the above equation as

)=} g(x)=a-gx)

f(x) and g(x) are related by a constant and hence they are dependent to one

another.
44
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Now, given J,(x) and J_(x) are linearly independent, show that J,(x) and Y, (x) with

]
sin(vrr)

Y, (x)=

v

|/, (x)eos(vr) =/, (x)]

are also linearly independent.

Proof. Rewrite Y, (x) as

1
sin(vz)

Y, (x)= [, (x)cos(va) - (x)]=aJ,(x)+ BT (x), 0

and let
a-J (x)+b-Y (x)=0 = aJ (x)+blaJ (x)+pJ (x)]=0
= (a+ba)J (x)+bBJ (x)=0

= (a+ba)=0, bf=0 =  b=0,a=0

Hence, J,(X) and Y, (x) are linearly independent.
45
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The Bessel functions of 1st kind

y-axis

46
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Bessel functions of the 2nd kind

y-axis

Key observation: All these function start from negative i

47
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Modified Bessel Functions

Sometimes, modified Bessel functions are encountered in modeling physical

phenomena. First, we can show that

y(x)= ayJy (ke) + o Yy (kv
is the general solution of the following differential equation

1
V= +k?y =0
X

Proof. We prove this for y(x) = J,(kx) only. The rest can similarly be shown.

Ik % V' kry = kI (k) + ikJ(’) (kx) + k2T (kx)

2
=[0I e) + T )+ (k) ()] = [23(2) + i 2) + 20 (2)] =0
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Now, let k=i, where i = ./_1, which implies k? =i>=-1. Then

y(x)=ayJolix) + @y o lix)

is the general solution of

" 1 /
y+—y-y=0
X

which is called a modified Bessel's equation of order 0, and J(ix) is a

modified Bessel function of the first kind of order 0. Usually, we denote

Io(x)=Jolix)

Since i? = -1, substitution of ix for x in the series for J, yields:

B | | 1 6
]O(x)—1+2—2x +2242x -|—224262

It is a real function of x. & (1) a
5J0(x)_ ; 22n(n!)2 49
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Usually Y,(ix) is not used. Instead we use the function
1
Ko(x) = [in(2)= 7 J1o (x) = Lo () In(x)+ o -
K,(x) is called a modified Bessel function of the second kind of order zero.

We now write the general solution of the differential equation

" 1 /
y+—y-y=0
X

y(x)= gl (x)+ay K (x)
Homework: Show that the general solution of the differential equation

|
yrr+_yr_b2y:()
X

as

IS given by

y(x)= a1y (bx)+ oy Ky (bx)

50
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The modified Bessel functions of order 0

3.5 Observation: KO starts from infinity

51
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Exercise Problem: (Problem 21, O’Neil, page 262) Show that

!

I3 (x)] = 2 (x)

Proof. Note that y = J,(ix) is the sIn of the
I, (x) =J, (ix) modified Bessel's equation of order 0
U xy"+y'=xy ~
13(x) =i (ix) and —
U y=J,(ix) = y' =iJ}(ix)

-

= "= ~J(ix)
Hence

xJ,(ix) = iJ} (ix)— xJ (ix)

/

[l (x)] = 17 (ix) = xT (i)

!

[l (x)] = 2, (x)

52
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Applications of Bessel Functions (Oscillations of a Suspended Chain)

Displacement of a Suspended Chain

X

t—y
¥

.

Suppose we have a heavy flexible chain. The chain is fixed at the upper

end and free at the bottom.

We want to describe the oscillations caused by a small displacement in a

horizontal direction from the stable equilibrium position. 5
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Assume that each particle of the chain oscillates in a horizontal straight line.
Let m be the mass of the chain per unit length, L be the length of the chain,
and y(x,t) be the horizontal displacement at time t of the particle of chain

whose distance from the point of suspension is x.

Consider an element of chain of length Ax. The forces acting on the ends of
this element are T and T+AT, the horizontal component in Newton’s 2nd Law

of Motion (force equals to the rate of change of momentum with respect to

0’ 0 (.0
F=ma = m(})&) Gtg/ = o~ (Téjéé 54
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o0’y 0 8yj
é — T—
" or 8x( o

where T =mg(L — x)is the weight of the chain below where T acts

v

o0’y 0 oy 8)/) 0y 8( @yj
m = —| mgL— —mgx — | = mgL —mg —| x—
or 8x( e ) e e ox

0’y 0y Oy oy 0"y
= meolL — Mox —mo—=m| —o—+9ollL —x
& Ox? & Ox? g@x g@x g( )8x2

2 2
0F ¢ D g1 -x)22
Ox

ot* Ox

This is a partial differential equation. However, we can reduce it to a problem

involving only an ordinary differential equation. 55
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Letz=L —xandu(z, 1) =y (L —z, t). Then

0’y 0w Oy _Ou_Ou Oz _ Ou
o’ o  ox ox Oz ox Oz

azu_@(auj__g(@j__a(ayjax_azy
6z°  0z\ 0z oz\ox) ox\ox)oz ox’

0%y Oy 0’y 0’u ou 0’u
=——o—+9ollL—x — — =90 —+ 97 ——
ot* & Ox g( )8x2 ot* 5 1674 & Oz”

This is still a partial differential equation, which can be solved using p.d.e.

method. Since we anticipate the oscillations to be periodic in t, we will

attempt a solution of the form (2, ¢) = £(z)cos(wt — )

v

— o’ f(z)cos(wt — 0) = gf'(z)cos(at — )+ gzf"(z) cos(wt — 6)

56
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Dividing the above equation by gz cos(a)t ) ) we get a differential equation

)+ L)+ L p()=0

It is shown in the lecture notes that x“Jn (bxc) and x“Yn (bxc) are the

solutions of

y (2a-1), 2 2 2¢-2 a’—n’c’
y' = Y+ D xTT + . y=0

X X

Thus, the general solution is in terms

of Bessel functions of order zero:

e o
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Bessel functions of the 2nd kind

Key observation: All these function start from negative inf

58
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Y, 260\/z —> —00, as z—>0 or x—>1L
g

We must therefore choose a, = 0 in order to have a bounded solution, as

expected from the physical setting of the problem. This leaves us with

()= a1J0[2a) gj

(o) = f(z)cos(a)t—é’)zalJo(M) B cos(ar—0)

and hence

Thus,

y(x,t)=a,J, [2(0 Lox j cos(at — 6)
g

59
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The frequencies of the normal oscillations of the chain are determined by
using this general form of the solution for y(x,7) together with condition that
the upper end of the chain is fixed and therefore does not move. For all t, we

must have

y(0,7)= a1J0[2a) \/Q cos(at — ) = |a, cos(wt - 0)]]0[2(0 \/Q =0

U

o

This gives values of ® which are frequencies of the oscillations. To find these
admissible values of ®, we must consult a table of zeros of J,. From a table of
values of zeros of Bessel functions, we find that the first five positive solutions

of J,(av) = 0 are approximately o = 2.405, 5.520, 8.645, 11.792, 14.931.
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The Bessel functions of 1st kind

0.5

y-axis

" 8.645
2.405 5.520 :

D

» .
» .
.
D .
« .
~ .
. .
. .
.
.
.
.
.

JO5 \ J1 2
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Using the these zeros, we obtain

20, |~ =2.405 - a)1=1.203%

2w, |5 =5520 = @, =2.760 %

20, |~ =8.645 = o, = 4.327

g
L
g

20, =11.792 = @, =5.896

L
14931 = o= 7.466\/%

All these are admissible values of ®», and they represent frequencies of the

20

w o] o ] 7 (8] o [] T

normal modes of oscillation. The period 7, associated with «, is

72T
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Legendre’s Equation and Legendre Polynomials
The following 2nd order linear differential equation
(1 — xz)y” —2xy' +ala+1)y=0

where o is a constant, is called Legendre’s Equation. It occurs in a variety of
problems involving quantum mechanics, astronomy and analysis of heat
conduction, and is often seen in settings in which it is natural to use spherical

coordinates. We can also re-write Legendre’s equation as

y,,_{l 2x2 }y'+ {a(a +21)}y 0
—X l—x

The coefficient functions are analytic at every point except x =1 and x = -1. In

particular, both functions have series expansions in (-1, 1).

63
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Thus, in general, we are only interested in finding solutions to Legendre's
equation in the interval (-1, 1). Since Legendre’s equation is a 2nd order
differential equation, we will have to find two linearly independent solutions in
order to characterize all its solutions. As in the Bessel’s equation case, we
will try to find the solutions of Legendre’s equation in terms of power series.
Since 0 is a solution, we let

W)=Y aa" =y =Y =Yt = =Y an-Dax"
n=l n=2

n=0 n=0

_|_

(1 —x’ )y” —2xy" + oo + l)y =0

shift up power by 2 w

o0

in(n a, x"? - Zn(n —1)a, x" - iZnanx” + ia(a +1)a,x" =0
n=2 n=2 n=1 n=0
64
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w R

Z (n+2)n+1)a, x" - Zn(n —1)a,x" - i2nanx" + ia(a +1)a,x" =0
n=1 n=0

n=0 n=2

2a, + a(a + l)ao] +[6a, —2a, + ala + l)al:x

+;{(n +2)n+1)a,,, - :nz +n—ala+ 1)]an}x” =0

2a, +ala+1)a, =0 = a, = _a(az+ 1)ao
I (@—1)a+2)
6a3—2a1+a(a+1)a1=02> a, =— 7 a,

(n + 2)(n + l)an+2 — [n2 +n-— a(a + 1)]an =0~

” _ :_(a—n)(n+0(+1)a

(n—-a)n+a+l) _ h (n+2)n+1)
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For the even-indexed coefficients, we have

. :_(a+1)aa
2 12 0
; :_(a+3)(a—2)a :+(a+3)(a+l)a(a—2)a
! 3.4 ’ 41 ’
S (a + 5)(a + 3)(a + l)a(a — 2)(a — 4)a
6 6' 0

s 2m 1Yt 2m—3) (ot Dl —2)- (20 +2)
(_1) (2n)!

Similarly, for the odd-indexed coefficients, we have

a,, =

n

a

o =(C1) (@+2n)a+2n-2)(a+2)a-1)a-3)--(e—2n+1)
e (2n+1)!

a,

66
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We can obtain two linearly independent solutions of Legendre’s equation by

making choice for ¢, and «;,.

If we choose ¢, =1 and a, = 0, we get one solution:

= wla@+2n=1)-(a+ala-2)--(a-2n+2) ,,
yl(x)=1+;(—l) (2n)! X
(a+1)a ) (a+3)(a+1)a(a—2) 4 (a+5)(a+3)(a+1)a(a—2)(a—4) 6

X"+ X - X 4
2 24 720

—1-

If we choose ¢, =0 and «, = 1, we get another solution:

yz(x): x+i(_ l)n (05+2n)---(a+2)(05—1)(05—3)...(a_2n_|_1)x2n+1

p— (2n+1)
o (a+2)(0(—1)x3+ (a+4)(a+2)(a—1)(a—3)x5_m
6 120

Any solution to the Legendre’s equation can be expressed as a linear
combination of the above two solutions.

Exercise Problem: Show that these solutions converge absolutely in (1, 1).
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Recall that the first solution,

oo lata o (aedarala=2) o (a+ska+3Narlala=2a=4) .,
1 2 24 720

When o = 0, we have
yl(x) =1

When o = 2, we have
2+1)2 , ,
x =1-3x

yi(x)=1-
When o = 4, we have

x'=1-10x" +3—35x4

(4+14 o (4+3)(4+DA(4-2)

x)=1-
¥, (x) 5 4

Note that all the above solutions are polynomials, this process can be carried

on for any even integer o.
68

Prepared by Ben M. Chen



Similarly, one can obtain polynomial solutions for odd integer o from

yz(x):x—(a+22(a_1)x3+ (a+4)(05+12§(0a—1)(a—3)x5_m

v

n=x =1

In fact, whenever a is a nonnegative integer, the power series for either y,(x)
(if o is even) or y,(x) (if o is odd) reduces to a finite series, and we obtain a
polynomial solution of Legendre’s equation. Such polynomial solutions are

useful in many applications, including methods for approximating solutions of

equations f(x) = 0. 69
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In many applications, it is helpful to standardize specific polynomial solutions
so that their values can be tabulated. The convention is to multiply y,(x) or
v,(x) for each term by a constant which makes the value of the polynomial

equalto1 atx=1.

The resulting polynomials are called Legendre polynomials and are denoted
by P (x), i.e., P (x) is the solution of Legendre’s equation with « =n. Here are

the first six Legendre polynomials:

Rx)=1, Rlx)=x
P2(x)=%(3x2 —1), P(x)= %(5)63 —3x)

P,(x)= %(35;&‘ ~30x>+3)  P(x)= %(63)& ~70x" +15x)

Although these polynomials are defined for all x, they are solutions of

Legendre’s equation only for -1 <x < 1 and for appropriate o. 70
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Legendre Polynomials

1.5

0.5

A
A
\

-0.5
P5
| PD
_1 P
-1.5
-1 -0.8 -0.6 -04 -0.2 0 0.2 04 0.6

Legendre Polynomials
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Properties of Legendre Polynomials

1

Theorem 0. If m and n are distinct nonnegative integers, J.Pm (x)Pn (x)dx —0
-1

Proof: Note that P, and P, are solutions of Legendre’s differential equations

with ¢ = n and a = m, respectively. Hence, we have

0=(1-x*)P'=2xP/ +n(n+1)P, } <P,

(I—XZ)Pn;'—2xPn; +m(m+1)P, x P ?

0=(1-x*)P"P, —2xP'P, +n(n+1)PP,

n

0=(1—-x*)P'P. —2xP'P, + m(m+1)P,P,

0

subtract these two equations —

- (1—’62)(13!'13% - PyP,)-2x(P,P, - PP, )+[n(n+1)—m(m+1)|P, P, =0

= RR R,
d
[ '

— (1—x2)d— PP —PPl-2x[PP - P'P]=[m(m+1)-n(n+1)P.P
X
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(1-x*)L[PP, - PP ]-2x[PP, — P.P]=[m(m +1)-n(n+ )],P,

dx
v
% [(1 - xz)(E'Pm —~ P,,LP)] =[m(m+1)-n(n+1)|P,P
v
jl % (1= YRR, — By = [m(m +1) - n(n + 1)]_1[Pm(x)Pn(x)dx

[m(m +1)—n(n + 1)”. P (X)P(x)dx=0 ~ ij (x)P,(x)dx =0, since m#n
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Generating Function for Legendre Polynomials

The generating function for Legendre Polynomials is

P(x,r)= (1 —2xr+71° )% = il’n (x)r"

To see why this is called a generating function, recall the binomial expansion

(1-2)2 =1+~ Loy ll3, 11355,

2 2122 31222
Let z =2xr — r* we have

3

P(x,r)z1+%(2xr—r2)+§(2xr—r2)2 +%(2xr—r2) 4.

Re-write it as a power series of r,

NG TASA - S o
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Theorem 1. (Recurrence Relation of Legendre Polynomial) For each positive

integer nand forall —1 <y <1,

(n + I)P

n+l

(x)= 2+ 1)xP, (x)+ nP, ,(x) =0

Proof: Differentiating the generating function

P(x,r)= (1 —2xr+71° )_1/2
w.r.t. 7, we obtain

Z—P = —%(l —2xr+r2)_3/2(— 2x+2r)= (1 —2xr + rz)_3/2(x—r)
r

\
oP

(1 —2xr+ 71 )6_ = (1 —2xr+7r’ )_1/2 (x — r) =(x—r)P(x,r)
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Noting that from the property of the generating function, i.e.,

=ga@%

we have

Z—P = in@l (x) 7" :i nP (x)r""
r n=0 n=1

Substitute this into the equation we derived, i.e.,

(1 —2xr+ 1 )g—]: =(x—r)P(x,r)

= (1-2xr+ rz)i nP (x) " —(x - r)i}; (x)r

in}’n(x)r”_l —innR,l )" +ZnP P i xP.(x)r
n=1 n=I n=0

Z(n+1) n+1 r +Z( 2xn)P r +Z(n 1)Pn1 )r _i

=0

r+ZPn1 =

n=1
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0= )+2P(x )r 2xP(x)r—xP,(x)—xP(x)r+P(x)r

B(x
i n+1 2an() (”_I)Ba—l(x)—xﬂ(x)+ﬂ_l(x)}r”
v
[R(x)=x (x)]+ [(1+1)P() @+ 1B (x)+ B (x)]
2 )= (2n+1)xP,(x)+nP,_ (x) }r" =0

E(x)—xwfz(x%o
(1+1)P,(x) = (2 +1)xP(x)+ B (x)=0

and, forn=2,3.4,---

(n+1)P,.,(x)= (2n+1)xP, (x)+ nP, ,(x) =0

77



1-3-5---(2n—1)

Theorem 2. The coefficient of X" in P (x) is given by
n!

Proof: Let ¢, be the coefficient of x" in P (x), and consider the recurrence

relation
(n + l)P

n+l

()= @n +1)xB,(x)+nP, ,(x)=0
The coefficient of x"*! in (n+1)P ,,(x) is equal to (nt+1)c,,,. 3

The coefficient of x"*! in — (2n+1) x P (x) is equal to — 2n+1) c,. »

There is no other X! term in the recurrence relation. )
Thus coefficient of x”“ IS: (n + 1)Cn+1 — (2n + l)cn =0 = C .= 2n +11 C,
n+
2n—1 2n—12n-3 (2n-1)2n-3)2n-5)---(1)
Cn — Cn—l — Cn—2 — = CO
n n n-1 n(n—1)n-2)---(1)

1-3-5---(2n 1) J
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Theorem 3. For each positive integer 7,

nP, (x)=xP)(x)+ P/, (x)=0

Proof. Differentiating the generating function P(x, r) — (1 _dxr+7? )_% w.r.t. x,

we obtain

G_P 3 32

_l (— 2r)(l —2xr+ rz) (1 2xXr+r )GP r(l —2xr+ 7’ )_1/2 =rP(x,r)

ox 2 ox l
We've proved in Theorem 1 that (1 Dt ) rP(37
oP
(1 2xr+r )ZP =(x—r)P(x,r) P 2
r
rP(xA)/  _(x=r)P(xr)
Il 7@” g op
Ox or
—r)P
(1—2XI/'+7"2):(X I") (%P J @_P_(x F)GP 0
or or 8x79




Note that P(x,r) = ipn(x) 7"
=0

oP < el OP & o\ oP oP
Rl Ny —=>P Z (=)= =
=P - nE_l nP(x)r"" & o & (x)r" & 7 - (x r) - 0

> P (x) ' = Y xBl(x) "+ Y B =0
n=1 n=0 n=0

80
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Theorem 4. For each positive integer 7,
nb, (x) - Pn’(x) +xb, (x) =0

Proof: We had in the previous proof the following equalities

rP(x,r)= (1—2xr+r2)a—P & ra—P - (x_;»)(a_P
Ox or Ox
Next,
0 B , OP -
I/E[I”P(X,V)]—VP(X,F)-H” Py P(x,r) _ an(x) "
n=0
0 OP OP o
VE[I/'P()C,I/')]Z (1—2xr+r2)6—x+r(x—r)8— — Z_P _ anr(x) 1
OP *on=0
= (1 — rx)—
ox P o=
O P = ra_{zpn(x) }
rg[rP(x,r)]— (1- rx)a_P -0 V[ n=0
or Ox
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Orthogonal Polynomials

We have shown that if 7z and n are distinct nonnegative integers, then

IP dx )

In view of this, we can say that the Legendre polynomials are orthogonal to
each other on the interval [-1, 1]. We also say that the Legendre

polynomials form a set of orthogonal polynomials on the interval on [-1, 1].

The orthogonal property can be used to write many functions as series of
Legendre polynomials. This will be important in solving certain boundary

value problems in partial differential equations.

83
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Let g(x) be a polynomial of degree m. We will see how to choose numbers

Oy, O Ly - - -, 0, sUch that on [1, 1]
Zak oB(x)+ o B(x)+-+a,P(x)++a,PB,(x)
Multiplying the above equation by P; (x), with 0 < j < m, we obtain
P,(x)q(x) = aoP,(x)By(x)+ -+ &, P (x) P, (x) + -+, P, ()P, (x)

Integrating both sides of the above equation from -1 to 1, we have

0
jP(x)q dx 0‘0_“% dx+ +a, jPz(x)dx+ +a jP(//()dx

1 1 j P;(x)q(x)dx
= j}’j(x)q(x)dx = ajJ‘sz(x)dx = | o, = , j=0,1,---m
-1 -1 J‘P]z(x)dx

84
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Example: Express g(x) = 1 —4 x* + 2 x? in terms of Py(x) to P;(x),

. =§P2(x)+%l>o(x)=§{l(3x2 _1)}1

5 5 502 5
2 3 2 1 2 3
(0 =1-47" 426 = Bx)-4 2R ()1 A0 [+2 2 R0+ 2 RW)
— R+ SRS A+ Ak)
1 1! 6 0 g ! 0 4! 0 0
jq(x)dx = ——jl%(x)dx+§J;R/{)c)dx—§_[l’2%c)dx+§_[17/(x)dx =3

Any Polynomial can be written as a Finite Series of Legendre Polynomials.
85
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Theorem 5. Let m and n be nonnegative integers, with m < n. Let g(x) be any

polynomial of degree m. Then

jq dx 0

That is, the integral, from -1 to 1, of a Legendre polynomial multiplied by

any polynomial of lower degree, is zero.

Proof: We have shown that for any polynomial ¢(x) of degree m, there exist

scalar o, a4, - - - a,, such that
q(x)=ayF(x)+ @R (x)+ - +a,P,(x)
0 w 0 0
Iq X )dx = aojP /Fv( dx+a1J-P/ X)dx + -+ J.Pf (x )dx

=0 86
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Theorem 6. For any nonnegative integer n,

([P () dx =2

! T 2n+l

Proof: Let ¢, be coefficient of x ” in P (x) and also let the coefficient of x" !
in P, ,(x) be ¢, 4. Define

- q(x)= B (x) - xP (x) = e, 0" + 22" = Txfe, x4 20 )

n
C

n—1
n-1 n—1

+2X" 4+ ?

n—1

=cx"+2x" "+ —c X" =2x" = = 0x
Thus, g(x) has degree n — 1 or lower.

AR MO ON o N

n—1

[Pn(x)]2=Pn(x){ - xPnl(x)+q(x)}= “=xP, ,(x)P, (x)+ g(x)F, (x)

Cn—l 87
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Now use the recurrence relation,

(141, ()= (20 + 1), (x) 0P, (x) =0
WP x) =P () P ()

e 2n+1 " 2n+1""
1 0 1
P ()P dy = o n+1 p /p Iy 4 G n
:“1[ n(x)] X Cn_l :‘-12n+1 n—l(’x n+1(x) X+ C'n_l :[2]’14-1
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Recall from Theorem 2 that

C1-3--(2n-1)
o n!
o, L3 (2n-3) & _2n-]
1 (n—1)! C n

j[ P (x) ]2dx—2n 1J‘[P ]2dx_(2n_1)(2”_3)j[pn_2(x)]2dx

’ 2n+1)2n-1)",
BN N
T o)) T

1 j[ (1) dy = —

2n+1 2n+1 %9




Finally, we can write any polynomial of degree m as a finite series of

Legendre polynomials,

q(x):ZakPk(x) for —1<x<1
andfork=0,1,2,---, m

[ ()P, ()

J[B.(x)F

-1

2k +1
. 2K ki
“l

Proof. It is a combination of Theorem 6 and the formula derived earlier, i.e.,
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Boundary Value Problems in Partial Differential Equations

A partial differential equation is an equation containing one or more partial
derivatives, e.g.,

ou O’u

ot  ox’

We seek a solution u(x, /) which depends on the independent variables x and +.

A solution of a partial differential equation is a function which satisfies the

equation. For example,
u(x,t) = cos(2x)e™*

is a solution of the above mentioned differential equation since

ou 4 — 0’u
5 —4 cos(Zx)e P

= —4cos(2x)e™

91
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Order of a Partial Differential Equation

A partial differential equation (p.d.e.) is said to be of order # if it contains
an n-th order partial derivative but none of higher order. For example, the
following so-called Laplace equation
oO’'u 0Ou Ou
PR
is of order 2. The p.d.e. has an order of 5,

0’u B O’u Ou

o’ o o

Viu =

Linear Case

The general linear first order p.d.e. in three variables (with u as a function of
the independent variables x and y) is

0 0
a(x,y)a—Z‘l‘b(x,y)a—jj"'f(x,)/)u+g(x,y)=O 92
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The general second order linear p.d.e. in three variables has the form

o%u o0°u o0°u ou
a(x,y)y +b(x, ) vy C(x,y)y +d (x,y)a—x

+ e(x,y)g—;l+ Sl yu+glx,y)=0

Most of the equations we encounter will be in one of these two forms. In both
cases, the equation is said to be homogeneous if g(x, y) = 0 for all (x, y) under

consideration and non-homogeneous if g(x, y) = 0 for some (x, y).

We will focus particularly on equations governing vibration (wave equation)
and heat conduction (heat equation) phenomena.
Main Tools: Fourier series, integrals, transforms and Laplace transform.
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The Wave Equation

Suppose we have a flexible elastic string stretched between two pegs. We
want to describe the ensuing motion if the string is lifted and then released

to vibrate in a vertical plane.

Place the x-axis along the length of the string at the rest. At any time t and

horizontal coordinate x, let y(x, 7) be the vertical displacement of the string.
|y

/y(xat)

> X-aXIS

We want to determine equations which will enable us to solve for y(x, 1), thus

obtaining a description of the shape of the string at any time. o4
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We will begin by modeling a simplified case. Neglect damping forces such
as air resistance and the weight of the string and assume that the tension
T(X, t) in the string always acts tangentially to the string. Assume that the
string can only move is the vertical direction, i.e., the horizontal tension is

constant. Also assume that the mass p per unit length is a constant.

Applying Newton’s 24 Law of motion to the segment of the string between x

and x + Ax, we have

Net force due to tension = Segment mass

x Acceleration of the center of mass of the segment
— F =ma

For small Ax, consideration of the vertical component of the equation gives

us approximately: 95
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T(x+Ax, 1)

> X-aXIS
X x+Ax

2

T(x + Ax)sin(@ + AQ) - T(x,t)sin @ = prZT{()?,t), X = x+%Ax

T(x + Ax)sin(@ xe)— T(x,t)sing _ z;% (5.1

As a convenience, we write v(x,t) — T(x,t)sin@ i.e., the vertical component

of the tension. Hence we have

ov 0%y
v(x+Ax,t)—v(x,t)_ 82_y _ — =P
- =P (x,7) o "o
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Write h(x, t) = T(x, t)cosd, i.e., the horizontal component of the tension at (x, 7),

then

V(X,t) = h(x,t)tan 0 = h(x,t)a_y

Ox
Substituting this into the equation we have just obtained, we have

o |, 0y 0%y
R
8x[ 8x} P or

Recall that the horizontal component of the tension of the segment is constant.

Hence, 4 is independent of x and

2
Q{hﬁ_y} _, 0
ox| Ox

U 82y 2 @2)/ 1-D Wave
8t2 @xz quation
0’y %
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The motion of the string will be influenced by both the initial position and the

initial velocity of the string. Therefore we must specify initial conditions:

y(x.0)= £ (x)

Next, we consider the boundary conditions. Since the ends of the string are

fixed, we have (0 ¢)= y(L,7)=0, t>0.

2 (x0)= gl

0<x<L

To be more clear, we can put all of them together, i.e.,

0"y _ 207y
ot’ Ox*
»(0,¢)=y(L,2)
»(x,0)= f(x)

2 (x0)= g(x)

0<x<L ~N

t>0

0 t>0

0<x<L

0<x<L

/

The boundary value problem of
1-D Wave Equation with initial

and boundary conditions.

Its solution as expected from the
associated physical system must

be unique. 08

Prepared by Ben M. Chen



The Heat Equation

This is to study temperature distribution in a straight, thin bar under simple
circumstances. Suppose we have a straight, thin bar of constant density p

and constant cross-sectional area A placed along the x-axis from 0 to L.

Assume that the sides of the bar are insulated and so not allow heat loss
and that the temperature on the cross-section of the bar perpendicular to the

X-axis at x is a function u(x, 7) of x and ¢, independent of y.

Let the specific heat of the bar be ¢, and let the thermal conductivity be k,

both constant. Now consider a typical segment of the bar between x = « and

o Ny u(x, 7

'
N

0 Y v " X
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By the definition of specific heat, the rate at which heat energy accumulates

in this segment of the bar is:

cpA— dx
Y

f ou
By Newton’s law of cooling, heat energy flows within this segment from the
warmer to the cooler end at a rate equal to k times the negative of the
temperature gradient. Therefore, the net rate at which heat energy enters

the segment of bar between « and g at time tis:

kA% (8,6 = ka2 (1)
Ox Ox

In the absence of heat production within the segment, the rate at which heat
energy accumulates within the segment must balance the rate at which heat

energy enters the segment. Hence,

B
jcpAa—”dx = kAa—u(ﬁ,t)—kAa—u(a,t)

ot Ox Ox 100

a
Prepared by Ben M. Chen



Note that
ou

ou
kA— kA— = kA —d
ox ('B ) Ox ( j *
0 O’u
) j cpAa—u—kAa—u dx =0 ) cpA T — kAT =0
ox” ot Ox”
This is the so-called heat equation, which is more customary written as:
ou , O’u
Ot Ox

where o’ = k/(cp) is called the thermal diffusive of the bar. To determine «
uniquely, we need boundary conditions (information at the ends of the bar)
and initial conditions (temperature throughout the bar at time zero). The

p.d.e. together with these pieces of information, constitutes a boundary

value problem for the temperature function u. o1

Prepared by Ben M. Chen



Problem 1. Both ends of the bar are kept in a constant temperature.

2
a—u:aza—z 0 < x <L, t>0)
Ot Ox
u(0,¢)=u(L,t)=T (t > 0)
u(x,O)zf(x) (0 < x <L)
Problem 2. No heat flows across the ends of the bar.
2
G—M:aza—z 0 < x <L, t>0)
Ot Ox
ou ou
—(0,2)=—\L,2)=0 t 0
2(0,0)= 2 11 (t > 0
u(x,0)= f(x) 0 < x <L)

Reading assignment: Laplace’s Equation; Poisson’s Equation; Dirichlet and

Neumann Problems; Laplace’s Equation in Cylindrical & Spherical Coordinates
102
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Fourier Series Solution of Wave Equation

Recall the wave equation of an initially displaced vibrating string with zero initial

velocity, ; :
0"y 2 07y 0<x<L .
Py a P >0 Wave equation
y(O, t) = y(L, t) =0 t >0 Boundary conditions
y(x,O) — f (x) 0<x<[L Initial displacement
oy . .
a(xao) =0 0<x<L Initial velocity

This boundary value problem models the vibration of an elastic string of length
L, fastened at the ends, picked up at time zero to assume the shape of the

graph of y(x,0) = f(x) and released from rest.
103
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The Fourier method or method of separation of variables is to find a solution of

the form

y(x,t) = X (x)T (1)

with appropriate X(x) and 7(¢) that solves the above boundary value problem.

f;y X(0)T"(?), Ziy X"(x)T(t)

7 " "
0y _ # XT"=a?XT = ~ =21
ot’ X aT

We have “separated” x and ¢; the left hand side is a function of x alone, and the

right hand side is a function of ¢. Since x and r are independent, we can fix the
right hand side by choosing ¢ = ¢, and the left hand side must be equal to

r'(t,)

azT(tO)

, which is a constant for all x in (0, L) 104

Prepared by Ben M. Chen



X” T” . T”
T (o) = —/A (aseparation constant) = .
X a T(to) a’T

X"+AX =0 & T"+2a°T =0

These are two ordinary differential equations for X and T.

Next, look at the boundary conditions for y(x, ) and relate them to X and T.

From the condition that the both ends of the string is fixed, we have
»(0,0)=X(0)I'(1)=0 } X(0)=0
y(L,t)=X(L)T(1)=0 X(L)=0

as we cannot has 7(¢) = 0 if the string is to move. Similarly,

D(10)=0 E== X(T'(0)=0 == T'(0)=0

Ot
105
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At this point, we have two problems for X and 7, namely
X"+ X =0 & T"+2a’T =0
X(0)=X(L)=0 T'(0)=0

A value for A for which the above problem, either the one associated with X or
T, has a nontrivial solution (not identically zero) is called eigenvalue of this

problem. The associated nontrivial solution for X or for 7'is called eigenfunction.

We will consider different cases on A. We assume that A is real, as we expect

from the physics of the problem.
Case1: 1=0

Then X"=0, so X(x) =c x +d for some constants ¢ and d. Then the condition

X(0)=0impliesd=0and X(L) = ¢ L= 0 implies c = 0.

> X (x0)=0 e> y(x,1)=XeRQT(t)=01f f(x) # 0. 106
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Case 2: . <0

For this case, we write . = — 42 with k> 0. The equation for X is the given by
X"-k*X =0 X(x)=ce™ +de™
X(0)=c+d =0 c=—d
X (x) = cle” - e) = 2¢sinh(kx)
X(L)=2csinh(kL) =0 d=c=0

because sinh(x) > 0 if x > 0. Thus,

y(x,t) = X(x)T'(t) =0 whichis not an admissible solution.

107
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Case 3: A >0

We can write L = k2 with k> 0. Then
X"+l*X =0 X (x) = ccos(kx) +d sin(kx)

X(0)=c=0 X (x) = d sin(kx)
X(L)=dsin(kL) =0

We cannot choose d = 0 as it will give a trivial solution again. Instead, we have

to let

sin(kL) =0 kL=nx, n=123,-- A=kr=""

LZ

Corresponding to each positive integer n, we therefore have a solution for X:

X (x) =d, sin(nliz xj 108

n
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Now look at the problem for T

2 2_2 2
A=k>="Z "+ 279 =0, 7(0)=0

L L
T(t)= acos(% tj + ﬂsin(% tj

T’(O):—amm sin| 220 4 +,Bn7za cos| 2 ¢
L L L L

_ pnrma

=0 = =0
7 p

=0

T;?(t): a, Cos(nzz.atja n= 1929”°
We now have, for each positive integer », a function
v, (x, t) =X, (x)Tn (t) =d a, sin(nLﬂ xj cos(an tj =A sin(nLﬂ xj cos(an tj

which satisfies wave equation and boundary conditions, but not initial pd%ition.
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In order to satisfy the initial displacement y(x,0) = (x), we attempt an infinite
superposition of the y,'s and write

V(e = v, (x,0)=3 4, sin(n;xjcos(nzm tj

n=I n=l

Note that this equation is the Fourier sine expansion of f(x) on [0, L]. We

should choose the A4,'s as the Fourier coefficients in this expansion, i.e.,

iﬁf(f)sin(”féjd«;}m(’%j cos(”’;%j

110
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Example: Suppose that initially the string is picked up /2 units at its center

point and then release from the rest.

2 | { 0<x<L/2

L/2

4= jf( )sin(%xjdx = i{ [

| 0o

xsin(m{ jdx+ j L—x sm(ﬂxjdx
0 L L
I L/2 B L
_% ——cos(mzxj 2+— J COS( jdx—L(L x)cos(nﬂij —— '[ cos(mzxjdx
L| nrx nrw s, L ni L H N, L
“ }

2| P (mzj (L jz . (mzij I (mzj (L jz . ( )
2| - cos| — |+| — | sin| — |/ 2+ cos| — |—| — | sin

L| 2nrx 2 niw L 0 2nrm 2

L ? . (nm L ’ nz 4L . (nrx

—— | sin| — |+| — | sin = sinf| — | = 4,

nw 2 nx 2 n'r’ 2 111
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pr ) 2 L L
(nrx 0 if n1seven

Note that smn| — |= il .
2 (-1) if n = 2k-1

4,, =0, 4, = (2n ff)z 2 (_ 1)n+1
ALE (1) [@ea-1)x (2n-1)m
y(x,t)— = Z (2n _1)2 sn{ 7 x} cos[ 7 t}

n=1

The number A = n’n?/L? are eigenvalues, and the functions sin(nmx/L), or non-
zero multiple thereof, are eigenfunctions. The eigenvalues carry information
about the frequencies of the individual sine waves which are superimposed

to form the final solution.
112
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Simulation Results: L=nrand a=1

2 0.6 O—

1.5 '
0.4
/ \ -0.2
1
-0.3
/ \ 0.2
0.5

-0.4
0 0 -0.5—
0 0.5 (N 0.5 1X71T 0
t=0 t=1
0 0 0.3 ——

-1.5 -0.8 0—

REALL
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Wave Equation with Zero Initial Displacement but Nonzero Velocity

Now let us consider the case in which the string is released from its horizontal
stretched position (zero initial displacement) but with a nonzero initial velocity.

The boundary value modeling this phenomenon is

0’y _ .0y 0<x<L .
S =a 5 == Wave equation
ot OxX >0
y((), t) = y(L, t) =0 t>( Boundary conditions
y(x,O) =0 0<x<L Initial displacement
a_y(x ()) — g(x) 0<x<L Initial velocity
ot

Up to a point the analysis is the same as in the preceding problem. The only
difference between this problem and the previous one is that one would

have to choose 4, now to meet the initial velocity instead of initial positith.
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As in the previous case, we set

y(x,t) = X (x)T (1)

to get
X"+1X=0 & T"+2a°T =0
X(0)=X(L)=0 X(x)T(0)=0= T(0)=0
The problem for X is the same as that encountered previously, so the eigen-
values are > 2
A= ”Lf

Forn=1,2,3,---and corresponding eigenfunctions are

nmwmw
X, \x)=d, si
(0)=sinf 77|

Now, however, we come to the difference between this problem and the

preceding one, i.e., the solution for 7. 115
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Since we know the values of A4, the problem for T'can be re-written as

2_2 2
nimwa

T" + 7

T =0, 7(0)=0

The general solution of this differential equation for T is

nmat . [ nmat
T \t)=co. cos + [ sin
)=, cof "), sinf 220

7(0)=0 = a,=0 = E(t)z,b’nsin(n;mt)

For each positive integer n, we now have

v, (x.1)=d,p, sin(mjsm(””af j =D, Sin(’mjsin(”mt j

L L L L

Each of these functions satisfies the wave equation, the boundary conditions,

and y, (x, 0) =0, it in general does not satisfy the initial velocity condition.
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To satisfy the initial velocity condition, write a superposition

y(x,1)= iDn sin(nzxj sin(mzatj

n=1

Z@ b Sm(nzzxjcos(nﬂat)

n=I L
ot

a—y(x,o) = glx) glx)=3 " Sin(mj

Note that this is a Fourier sine expansion of g(x) on [0, L]. By choosing

D, = [l sin(””‘fjdcf = D =£Ifg(§)sin("”§)d5

L

[iesin{ 2 e i "2 i 222
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Example: We consider the same wave equation as in the preceding one but

with zero initial displacement and a initial velocity

(x) x 0<x<L/4
x:
& 0 L/4<x<L

I gl& sin( WL@& )df = IOL/4§ sin(nzgjdéf = nf; sin(TJ — 4[’;; COS(’ZZ-)

118
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The Wave Equation with Initial Displacement and Velocity

2 2
%:az% (0<x<L, t>0)
y(0,¢)= y(L,)=0 (t>0)
y(x,0)=f(x (0<x<L)
2 (x.0)=g(x) (0<x<L)
e N
52y:a252y 0<x<L 82y:a282y 0<x<L
or’ ox> >0 ot Ox* >0
y(0,6)=y(L,t)=0  ¢t>0 + ¥(0,¢)= y(L,t)=0 t>0
y(x,0)= f(x) 0<x<L y(x,0)=0 0<x<L
8—y(x,o)zo O<x<L a—y(x,o):g(x) 0<x<L
ot ot 119
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Example: Consider the wave equation with usual boundary and with initial

displacement,

X 0<x<L/2
f(x)_{L—x L)2<x<L

and initial velocity

g(x)=

x 0<x<L/4
0 L/d<x<L

Then it follows from the previous examples, the solution to the above

problem is given by

Al 1 . (nr) . ( nax nmat
xX,t)= sin| — [sin| —— |cos
y( ) 22 2 (2) ( 7 j ( 7 j

v/

[} & 1 . (nrx | ni C(nmx ) . [ nmat
-+ > Z ?Sln — ——ZCOS — Sinf — [|S1n
nTa,g|\nrw 4 4n 4 L -
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Simulation Results: L=nrand a=1

2 0.8 O——

A L
SN

-0.4
0 0 -0.5
0 0.5 1 0 0.5 1 0
t=0 t=1
0 0 03—

-1.5 -1 0
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Fourier Series Solution of the Heat Equation

The Ends of the Bar Kept at Zero Temperature: We want to determine the
temperature distribution «(x,7) in a thin homogeneous bar of length L, given
the initial temperature distribution throughout the bar at time 7 = 0, if the ends

are maintained at zero temperature for all time.

The boundary value problem is

a_u —a’ @ (() <x<L, t> ()) Heat Equation

ot Ox”

u(O, t) _ u(L, t) —0 (t N O) Boundary Conditions
u(x,O) =f (x) (O0<x<L) Initial Temperature

The procedure that we are going to use to solve the above problem is precisely
the same as the one in solving the wave equation. All the dirty works were done

already. The rest is pretty simple. 122

Prepared by Ben M. Chen



We will apply the separation of variables method and seek a solution

u(x,t)=X(x)T(¢)
a_u — Cl2 8_124 X(X)T’(t) — CZZX”(.X)T(f) T’(t) — Cl2 X”(X)
ot ox T(?) X(x)

Since x and ¢ are independent variables, both sides of this equation must be

equal to the same constant.

T' B X" B
al X
u(0,)=0 = XO)T(H)=0 = X(0)=0
u(l,)=0 = XL)T(H)=0 = X(L)=0
X"+1X =0, X(0O)=XL)=0 & T'+4a’T=0

-1 X"+AX =0 and T +1a°T=0

Unlike the wave equation, this equation for T is of first order, with no boundary

condition. 123
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The boundary value problem for X, however, is identical with that encountered

with the wave equation, so we have eigenvalues and eigenfunctions

g =27 & X (x)=d, sin(?j

With the values we have for A, the differential equation for 7'is

2,22 2 2 2.2
T'—I—anﬂ- T -0 Tn(t):ane—nﬂ'at/L

LZ

4,(5,1) = X, (0T, (1) = A, sin] "5 |71

Each u (x,r) satisfies the heat equation and both boundary conditions, but in

general, none of them will satisfy the initial condition, i.e.,

u(x,O) = f(x) (0<x< L) .
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Thus, we should attempt an infinite superposition

u(x,t) = Zu (x,t) = ZA sm(nzxje s

u(x,0)= f(x)= ZA sm(nzxj

This is the Fourier series expansion of f on [0, L]. Hence, choose the 4 's as

the Fourier coefficients:

:—If(x)51n( jdx ——jf(f)SIn(n;T§ jdf

u(x,?) Zgi_ff@)sin(nﬂf jdgﬁ sin(nﬂxje et/

L L
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