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Course Outline

Series and Power Series: Sequences and series; convergence and 

divergence; a test for divergence; comparison tests for positive series; the 

ratio test for positive series; absolute convergence; power series.

Special Functions: Bessels equation and Bessel functions; the Gamma 

function; solution of Bessels equation in terms of Gamma function; 

Modified Bessels equations; Applications of Bessels functions; 

Legendrs equation; Legendre polynomials and their properties.

Partial Differential Equations: Boundary value problem in partial 

differential equations; wave equation; heat equation; Laplace equation; 

Poissons equation; Dirichlet and Nuemann Problems. Solutions to wave 

and heat equations using method of separation of variables.
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Lectures

Lectures will follow closely (but not 100%) the materials in the lecture 

notes (available at http://vlab.ee.nus.edu.sg/~bmchen).

However, certain parts of the lecture notes will not be covered and 

examined and this will be made known during the classes.

Attendance is essential.

ASK any question at any time during the lecture.
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Tutorials

The tutorials will start on Week 4 of the semester (again, tutorial sets can 

be downloaded from http://vlab.ee.nus.edu.sg/~bmchen).

Solutions to Tutorial Sets 1, 3 and 4 will be available from my web site 

one week after they are conducted. Tutorial Set 2 is an interactive one.

Although you should make an effort to attempt each question before the 

tutorial, it is not necessary to finish all the questions.

Some of the questions are straightforward, but quite a few are difficult 

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Reference Textbooks

• P. V. ONeil, Advanced Engineering Mathematics, Any Ed., PWS.

• E. Kreyszig, Advanced Engineering Mathematics, Any Ed., Wiley.
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Sequences and Series

A sequence consists of a set numbers that is arranged in order. For example,
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In general, a sequence has the following form
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For any given sequence, we define an array (or called a series)
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Let us define 

This partial sum forms a new sequence { sn }. If, as n increases and tends to 

infinity the sequence of numbers sn approaches a finite limit L, we say that 

the series

converges. And we write

We say that the infinite series converges to L and that L is the value of the 

series. If the sequence does not approach a limit, the series is divergent

and we do not assign any value to it.
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A Divergence Test

Consider a series

If it converges, then we have

and hence

Thus, if un does not tend to zero as n becomes infinite, the series

is divergent.
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Example 1: Show that the series with 

diverges.

Solution: Check that

Hence, it diverges.

Example 2. Show that the series with odd terms equal to (n+1) / n and even 

terms equal to 1/n diverges.

Solution: For this case, the odd terms (n+1) / n are actually approaching to 

a nonzero value 1. The limit of un cannot be zero and hence it diverges. 
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Comparison Test for Positive Series

A series  un is said to be positive if un  0. The following results 

are called comparison test for positive series:

1. Let  vn be a positive series, which converges. If 0  un  vn

for all n, then the series  un converges.

2. Let  Vn be a positive series, which diverges. If un  Vn for all 

n, then the series  un diverges.
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Ratio Test for Positive Series

For positive series  un with

then 

1. The series converges if T < 1.

2. The series diverges if T > 1.

3. No conclusion can be made if T = 1. Further test is needed.
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Hence, it converges.
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Absolute Convergence

Consider a general series  un

1. If  |un| converges, then  un converges. Actually, we will say 

that the series  un converges absolutely or has an absolute 

convergence.

2. If  |un| diverges, then  un may converge or diverge. If  un

converges, we say that it converges conditionally. 

Note that  |un| is a positive series and its convergence can be test using 

the ratio test. 
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Power Series

Any infinite series of the form

is called a power series, which can be written as a normal series,
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Example: Find the open interval of absolute convergence of the power series
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Bessels Equation

The following second order differential equation,

is called Bessels equation of order v. Note that Bessels equation is a 2nd 

order differential equation. It can be used to model quite a number of 

problems in engineering such as the model of the displacement of a 

suspended chain, the critical length of a vertical rod, and the skin effect 

of a circular wire in AC circuits. The first application will be covered in 

details in the class later on.

In general, it is very difficult to derive a closed-form solutions to differential 

equations. As expected, the solution to the above Bessels equation cannot 

be expressed in terms of some “nice” forms.
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Solution to Bessels Equation (Bessel Function of the First Kind)

The solution to the Bessels equation is normally expressed in terms of a power 

series, which has a special name called Frobenius series. Such a method is 

called Method of Frobenius. We define a power series (a Frobenius series),

where r and cn are free parameters. Without loss of any generality, let c0  0.

Next, we will try to determine these parameters r and cn such that the above 

Frobenius series is a solution of the Bessels equation, i.e., it will satisfy the 

Bessels equation,
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Now, assume that the Frobenius series y(x) is indeed a solution to the 

Bessels equation. We compute

Then, the Bessels equation gives
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Thus,
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Since let c0 0

Let us first choose r = v  0. Then, we have
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Similarly,
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Thus, we obtain a solution to the Bessels equation of order v,
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We need two linearly independent solutions to the Bessels equation in 

order to characterized all its solutions as Bessels equation is a 2nd order 

differential equation. We need to find another solution. 

But, we will first introduce a Gamma function such that the above solution 

to the Bessels equation y1(x) can be re-written in a neater way.
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Gamma Function

For x > 0, we define a so-called Gamma function

If x > 0, then (x+1) = x (x).

For any positive integer n,
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If v  0, but v is not necessarily an integer,
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This is known as the factorial property of the Gamma function.
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Note that

This property holds for all x > 0. We will use the above property to define 

Gamma function for x < 0. 
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)1(  xFirst we note that                 is well defined for all            . Thus, we can use1x
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Solution of Bessels Equation in terms of Gamma Function

Recall that the first solution we have obtained for the Bessels equation, i.e.,
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Jv(x) is called a Bessel Function of the 1st kind of order v. This power series 

converges for all positive x (prove it yourself).
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Exercise Problem: Verify that
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1!12
10                             

1!2
1

2
1'































































n := n – 1

      xJxJxJ vvv 112
1'  
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Second Solution to the Bessels Equation

We will now consider the problem of finding a second, linearly independent 

solution of Bessels equation. Recall that 

  022  vrrF
which has two roots r1= v and r2 = – v. 

Case 1 (Easy Case): v is not an integer.

Theorem: If v is not an integer, then two linearly independent solutions of 

Bessels equation of order v are 

   
 












0

2

2

1!2
1

n
vn

vnn

v vnn
xxJ    

 







 



0

2

2

1!2
1

n
vn

vnn

v vnn
xxJ&

All other solutions can be expressed as linear combinations of these two, i.e.,

     xJxJxy vv  21 
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Case 2 (Complicated Case): v is a nonnegative integer

If v is a nonnegative integer, say v = k. In this case, Jv(x) and J–v(x) are 

solutions of Bessels equation of order v, but they are NOT linearly 

independent. This fact can be verified from the following arguments: First 

note that

   
 








 



0

2

2

1!2
1

n
kn

knn

k knn
xxJ

Observing the values of Gamma function at 0, –1, – 2, ..., they go to infinity. 

Thus we have

    0
1

1or    1 



kn

kn

for n – k + 1 = 0, – 1, – 2, …, or n = k – 1, k – 2, k – 3, …, 0
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   
 








 



kn

kn

knn

k knn
xxJ

1!2
1

2

2

     

     
   
   

   
       

 

   
     xJ

mkm
x

mkm
x

mkm
x

mkm
x

kkmkm
xxJ

k
k

m
km

kmm
k

m
km

kmm
k

m
km

kmm
k

m
km

kmkm

m
kkm

kkmkm

k

1
!12

11           

!!2
11

1!2
11           

1!2
11           

1!2
1

0
2

2

0
2

2

0
2

2

0
2

2

0
2

2





































































Changing the index n to m + k, we obtain 

Thus, Jk(x) and J–k(x) are linearly dependent.

(m + 1) =  m!
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Summary of results obtained so far:

We deal with Bessels equation in this topic,

We have shown that it has a solution,

If v is not an integer, we have Jv(x) and J–v(x) being linearly independent. 

Hence, all its solution can be expressed as,

  0,0''' 222  vyvxxyyx

   
 












0

2

2

1!2
1

n
vn

vnn

v vnn
xxJ

     xJxJxy vv  21 

If v is an integer, Jv(x) and J–v(x) are linearly dependent and we need to 

search for a new solution …….
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A 2nd Solution to Bessels Equation for Case v = k = 0

Let us try a solution of the following format (why? Only God knows.)

      n

n
n xcxxyxy 






1

*
12 ln      

 







0
22

2

01 !2
1

n
n

nn

n
xxJxywhere

        1

1

*
002

1ln'' 



 n

n
n xncxJ

x
xxJxy

           





1

2*
02002 11'2ln''''

n

n
n xcnnxJ

x
xJ

x
xxJxy

If y2(x) is a solution to the Bessels equation of order 0, it must satisfy its 

differential equation….
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Substituting the above equations into Bessels equation of order 0, i.e.,

  0'''0''' 222  xyyxyyxxyyx

         

     

    





























1

1*
0

1

1*
00

1

1*
000

ln      

1ln'      

11'2ln''0

n

n
n

n

n
n

n

n
n

xcxxJx

xncxJ
x

xxJ

xcnnxJ
x

xJxxJx

        xJxxJxJxx 000 '''ln0 

1*

1

2 



 n

n
n

xcn

  0'2
1

1*

1

1*2
0  












n

n
n

n

n
n xcxcnxJ
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   
 












1

12

12

0 !1!2
1'

n
n

nn

nn
xxJ

Note that

 
 

 
 

 
    04

!1!2
1

04
!1!2

1

0
!1!2

1

3

1*
2

*2*
2

*
1

1
22

12

3

1*
2

3

1*2*
2

*
1

1
22

12

1

1*

1

1*2

1
22

12












































































n

n
nn

n
n

nn

n

n
n

n

n
n

n
n

nn

n

n
n

n

n
n

n
n

nn

xccnxcc
nn
x

xcxcnxcc
nn
x

xcxcn
nn
x

n := m – 2

This has only odd power terms. 0*
1 c This has even power terms 

when n = 3, 5, 7, … Their 
associated coefficients = 0.

   
 








0
22

2

0 !2
1

n
n

nn

n
xxJ
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









,,,nc
n

c

,,,nccn

nn

nn

753        ,1

753        ,0

*
22

*

*
2

*2







0*
49
1*

0*
25
1*

0*
9
1*

57

35

13

cc

cc

cc

 2 ,1 ,0for         0* 12 mc m
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We will now determine the remaining coefficients. First we replace n by 2j in 

the second summation and n = j in the first summation in the following eq.

 
    04

!1!2
1

3

1*
2

*2*
2

*
1

1
22

12




 














n

n
nn

n
n

nn

xccnxcc
nn
x

 
   

   
  0**4

!1!2
11*4

0**4*4
!1!2

1

12

2
222

2
222

1 2

12
222

2
222

12














































 

j

j
jjj

j

j j

j
jjj

jj

xccj
jj

xc

xccjxc
jj

x

 
  22222

1

22 *
4
1

!1!2
1*and,

4
1* 







 jj

j

j c
jjjj

cc

= 0 when n = 3
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



 







2
11

42
1

422
1

222
1* 2222244c





 









3
1

2
11

642
1

4234
2
11

2632
1* 222222266c

 
 

 
 

 j
jjj

c j

jj

j 22

1

222

1

2 !2
11

3
1

2
11

242
1*

 
















 
j

j 1
3
1

2
11 
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A second solution of Bessels equation of order zero may be written as

       
 

  0,
!2

1ln
1

2
22

1

02 








xxn

n
xxJxy

n

n
n

n


Because of the logarithm term, this second solution is linearly independent 

from the first solution, J0(x).

       xJxyxY 020 2ln)(2
 


where  is called Eulers constant and is given by

     


015335772156649.0lnlim nn
n



Instead of using y2(x) for a second solution, it is customary to use a particular 

linear combination of J0(x) and y2(x), denoted Y0(x) and defined by
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Since Y0(x) is a linear combination of the solutions of Bessels equation of 

order 0, i.e., J0(x) and y2(x), it is also a solution. Furthermore, Y0(x) is linearly 

independent from J0(x) . Thus, the general solution of Bessels equation of 

order 0 is given by

     xYxJxy 0201  

In view of the series derived above for y2(x),

       
 

      

   
 

 















 
















 
















n

n n

n

n

n
n

n

xn
n

xxJ

xJxn
n

xxJxY

2

1 22

1

0

0
1

2
22

1

00

!2
1

2
ln2         

2ln
!2

1ln2







Y0(x) is a Bessels function of the 2nd kind of order zero. With the above 

choice of constants, Y0(x) is also called Neumanns function of order 0.
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A 2nd Solution of Bessels Equation of Order v (positive integer).

If v is a positive integer, say v = k, then a similar procedure as in the k = 0

case, but more involved calculation leads us to the following 2nd solution 

of Bessels equation of order v = k,

            
  



















 




















 0

2
12

11

0

2
12 !!2

1
!2
!1

2
ln2

n

kn
kn

nk

n

kn
knkk x

knn
knnx

n
nkxxJxY 



Yk(x) and Jk(x) are linearly independent for x > 0, and the general solution of 

Bessels equation of order k is given by

     xYxJxy kk 21  

Although Jk(x) is simple Jv(x) for the case v = k, our derivation of Yk(x) does 

not suggest how Yv(x) might be defined if v is not a nonnegative integer. 
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However, it is possible to define Yv(x), if v is not an integer, by letting

 
 

      xJvxJ
v

xY vvv  


cos
sin

1

This is a linear combination of Jv(x) and J–v(x), two solutions of Bessels 

equation of order v, and hence is also a solution of Bessels equation of order v.

It can be shown (very complicated!) that one can obtain Yk(x), for k being a non-

negative integer, from the above definition by taking the limit, 

   xYxY v
kv

k


 lim

Yv(x) is called Neumanns Bessel function of order v. It is linearly independent 

from Jv(x) and hence the general solution of Bessels equation of order v

(regardless it is an integer or not) can be written as

     xYxJxy vv 21  
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Extra: Linear Dependence and Linear Independence

Given two functions f (x) and g(x), they are said to be linearly independent if

and only if

holds with a = 0 and b = 0. Otherwise, they are said to be dependent, i.e.,

there exist either nonzero a and/or nonzero b such that

Assume that a is nonzero. We can then rewrite the above equation as

f (x) and g(x) are related by a constant and hence they are dependent to one

another.

defined  allfor 0)()( xxgbxfa 

defined.  allfor 0)()( xxgbxfa 

  )()()( xgxga
bxf  
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Now, given Jv(x) and J-v(x) are linearly independent, show that Jv(x) and Yv(x) with

are also linearly independent.

Proof. Rewrite Yv(x)  as

and let

Hence, Jv(x) and Yv(x) are linearly independent.

 
 

      xJvxJ
v

xY vvv  


cos
sin

1

               0,cos
sin

1
  


xJxJxJvxJ

v
xY vvvvv

  0)()()(0)()(   xJxJbxJaxYbxJa vvvvv 

0)()()(   xJbxJba vv 

0,00,0)(  abbba 
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Bessel functions of the 2nd kind
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Key observation: All these function start from negative i
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Modified Bessel Functions

Sometimes, modified Bessel functions are encountered in modeling physical 

phenomena. First, we can show that

is the general solution of the following differential equation

     kxYkxJxy 0201  

01 2  yky
x

y

Proof. We prove this for y(x) = J0(kx) only. The rest can similarly be shown.

    0)()()()()()()()(

)()(1)(1

000

2

000

0
2

00
22





zzJzJzJz
z

kkxJkxkxJkxJkx
x
k

kxJkkxJk
x

kxJkyky
x

y
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Now, let k = i, where i = , which implies k2 = i2 = –1. Then

is the general solution of

which is called a modified Bessels equation of order 0, and J0(ix) is a 

modified Bessel function of the first kind of order 0. Usually, we denote

1

     ixYixJxy 0201  

01
 yy

x
y

   ixJxI 00 

Since i2 = 1, substitution of ix for x in the series for J0 yields:

It is a real function of x.

   6
222

4
22

2
20 642

1
42
1

2
11 xxxxI

   
 








0
22

2

0 !2
1

n
n

nn

n
xxJ
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Usually Y0(ix) is not used. Instead we use the function

K0(x) is called a modified Bessel function of the second kind of order zero.

            2
000 4

1ln2ln xxxIxIxK 

We now write the general solution of the differential equation 

as 

Homework: Show that the general solution of the differential equation

is given by 

01
 yy

x
y

     xKxIxy 0201  

01 2  yby
x

y

     bxKbxIxy 0201  
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Observation: K0 starts from infinity

The modified Bessel functions of order 0
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Exercise Problem: (Problem 21, ONeil, page 262) Show that 

Proof.

    xxIxIx 00 

   

   

   

      ixJxixJixIx

ixJixxIx

ixJixI

ixJxI

000

00

00

00

       










Note that y = J0(ix) is the sln of the 

modified Bessels equation of order 0

and

xyyyx 

   
 ixJy
ixJiyixJy

0

00





Hence

   ixJxixJiixxJ 000 )( 

    xxIxIx 00 
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Applications of Bessel Functions (Oscillations of a Suspended Chain)

Displacement of a Suspended Chain

Suppose we have a heavy flexible chain. The chain is fixed at the upper 

end and free at the bottom.

We want to describe the oscillations caused by a small displacement in a 

horizontal direction from the stable equilibrium position.

x            y
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Assume that each particle of the chain oscillates in a horizontal straight line.

Let m be the mass of the chain per unit length, L be the length of the chain, 

and y(x,t) be the horizontal displacement at time t of the particle of chain 

whose distance from the point of suspension is x.

Consider an element of chain of length x. The forces acting on the ends of 

this element are T and T+T, the horizontal component in Newtons 2nd Law 

of Motion (force equals to the rate of change of momentum with respect to 

time) is:

y
y(x,t)

x
L

y

x
T
T+T

  x
x
yT

xt
yxm 


















 2

2

 maF

x
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

















x
yT

xt
ym 2

2

  acts  ebelow wher chain  theof weight  theis  where TxLmgT 

  




































































2

2

2

2

2

2

2

2

2

2

x
yxLg

x
ygm

x
ymg

x
ymgx

x
ymgL

x
yx

x
mg

x
ymgL

x
ymgx

x
ymgL

xt
ym

  2

2

2

2

x
yxLg

x
yg

t
y












This is a partial differential equation. However, we can reduce it to a problem 

involving only an ordinary differential equation. 
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Let z = L  x and u(z, t) = y (L  z, t). Then

2

2

2

2

2

2

2

2

x
y

z
x

x
y

xx
y

zz
u

zz
u

z
u

x
z

z
u

x
u

x
y

t
u

t
y













































































2

2

2

2

z
ugz

z
ug

t
u












  2

2

2

2

x
yxLg

x
yg

t
y












This is still a partial differential equation, which can be solved using p.d.e. 

method. Since we anticipate the oscillations to be periodic in t, we will 

attempt a solution of the form        tzftzu cos,

             tzfgztzfgtzf coscoscos2
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Dividing the above equation by                       , we get a differential equation  tgz cos

      01 2

 zf
gz

zf
z

zf 

It is shown in the lecture notes that                       and                      are the 

solutions of 
 c

n
a bxJx  c

n
a bxYx

012
2

222
2222 







 







 

  y
x

cnaxcby
x

ay c

0        0

g
2             

2
1             122

0            112

222

2
22









ncna

b
g

cb

cc

aa



We let

Thus, the general solution is in terms 

of Bessel functions of order zero:

  


















g
zY

g
zJzf  22 0201
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Lxz
g
zY 







or0  as,20 

We must therefore choose 2 = 0 in order to have a bounded solution, as 

expected from the physical setting of the problem. This leaves us with

  









g
zJzf  201

Thus,

and hence

        







 t

g
zJtzftzu cos2cos, 01

    






 
 t

g
xLJtxy cos2, 01
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The frequencies of the normal oscillations of the chain are determined by 

using this general form of the solution for y(x,t) together with condition that 

the upper end of the chain is fixed and therefore does not move. For all t, we 

must have

      

02

02coscos2,0

0

0101































g
LJ

g
LJtt

g
LJty





This gives values of  which are frequencies of the oscillations. To find these 

admissible values of , we must consult a table of zeros of J0. From a table of 

values of zeros of Bessel functions, we find that the first five positive solutions 

of J0() = 0 are approximately  = 2.405, 5.520, 8.645, 11.792, 14.931.
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Using the these zeros, we obtain

L
g

g
L

L
g

g
L

L
g

g
L

L
g

g
L

L
g

g
L

466.7                    931.142

896.5                    792.112

327.4                      645.82

760.2                    520.52

203.1                    405.22

55

44

33

22

11





















All these are admissible values of , and they represent frequencies of the 

normal modes of oscillation. The period Tj associated with j is 

j
jT


2


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Legendres Equation and Legendre Polynomials

The following 2nd order linear differential equation 

    0121 2  yyxyx 

where  is a constant, is called Legendres Equation. It occurs in a variety of 

problems involving quantum mechanics, astronomy and analysis of heat 

conduction, and is often seen in settings in which it is natural to use spherical 

coordinates. We can also re-write Legendres equation as 

  0
1

1
1

2
22 





















 y

x
y

x
xy 

The coefficient functions are analytic at every point except x = 1 and x = 1. In 

particular, both functions have series expansions in (1, 1).
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Thus, in general, we are only interested in finding solutions to Legendres 

equation in the interval (1, 1). Since Legendres equation is a 2nd order 

differential equation, we will have to find two linearly independent solutions in 

order to characterize all its solutions. As in the Bessels equation case, we 

will try to find the solutions of Legendres equation in terms of power series.  

Since 0 is a solution, we let

  




















2

2

1

1

0

1

0

)1()()(
n

n
n

n

n
n

n

n
n

n

n
n xannxyxnaxnaxyxaxy

    0121 2 



yyxyx 

      01211
0122

2  


















n

n
n

n

n
n

n

n
n

n

n
n xaxnaxannxann 

shift up power by 2
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       012112
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
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For the even-indexed coefficients, we have

 
02 21

1 



a

       

      
06

024

!6
42135

!4
213 

43
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



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








          
  02 !2

222132121 a
n

nnna n
n







Similarly, for the odd-indexed coefficients, we have

          
  112 !12

123122221 a
n

nnna n
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
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We can obtain two linearly independent solutions of Legendres equation by 

making choice for a0 and a1.

If we choose a0 = 0 and a1 = 1, we get another solution:

           
 

       
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

Exercise Problem: Show that these solutions converge absolutely in (1, 1).

           
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

If we choose a0 = 1 and a1 = 0, we get one solution:

Any solution to the Legendres equation can be expressed as a linear 

combination of the above two solutions.
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Recall that the first solution,

             









 642

1 720
42135

24
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2
11)( xxxxy 

When  = 0, we have
1)(1 xy

When  = 2, we have   22
1 31

2
2121)( xxxy 




When  = 4, we have

  4242
1 3

35101
24

)24(4)14)(34(
2

4141)( xxxxxy 







Note that all the above solutions are polynomials, this process can be carried 

on for any even integer .
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Similarly, one can obtain polynomial solutions for odd integer  from 

       




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6
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2 xxxxy 

1)(2  xxy

  



3
3
5

6
1323)( 33

2 


 xxxxxy

In fact, whenever  is a nonnegative integer, the power series for either y1(x)

(if  is even) or y2(x) (if  is odd) reduces to a finite series, and we obtain a 

polynomial solution of Legendres equation. Such polynomial solutions are 

useful in many applications, including methods for approximating solutions of 

equations f (x) = 0.
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In many applications, it is helpful to standardize specific polynomial solutions 

so that their values can be tabulated. The convention is to multiply y1(x) or

y2(x) for each term by a constant which makes the value of the polynomial 

equal to 1 at x = 1.

The resulting polynomials are called Legendre polynomials and are denoted 

by Pn(x), i.e., Pn(x) is the solution of Legendres equation with  = n. Here are 

the first six Legendre polynomials:

   

       

       xxxxPxxxP

xxxPxxP

xxPxP

157063
8
1          ,33035

8
1

35
2
1                       ,13

2
1

                                      ,1

35
5

24
4

3
3

2
2

10







Although these polynomials are defined for all x, they are solutions of 

Legendres equation only for –1 < x < 1 and for appropriate .
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Properties of Legendre Polynomials

Theorem 0. If m and n are distinct nonnegative integers,     0
1

1




dxxPxP nm

Proof: Note that Pn and Pm are solutions of Legendres differential equations 

with  = n and  = m, respectively. Hence, we have

   
    mmm

nnn

PmmPxPx

PnnPxPx

1210

1210
2

2





   
    nmnmnm

mnmnmn

PPmmPPxPPx

PPnnPPxPPx

1210

1210
2

2





n

m

P
P




subtract these two equations –

          01121 2  nmnmmnnmmn PPmmnnPPPPxPPPPx

nmmnmnmn PPPPPPPP 

           nmnmmnnmmn PPnnmmPPPPxPPPP
dx
dx 1121 2 
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           nmnmmnnmmn PPnnmmPPPPxPPPP
dx
dx 1121 2 

         nmmmn PPnnmmPPPPx
dx
d 111 2 

         dxxPxPnnmmdxPPPPx
dx
d

nmmmn )()(111
1

1

1

1

2 




     0)()(11
1

1

 


dxxPxPnnmm nm

       011
1

1

2
1

1

2 



 PPPPxdxPPPPx

dx
d

mmnmmn

nmdxxPxP nm 


  since,0)()(
1

1
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Generating Function for Legendre Polynomials

The generating function for Legendre Polynomials is 

    2
1221, 

 rxrrxP

To see why this is called a generating function, recall the binomial expansion

    322
1

2
5

2
3

2
1

!3
1

2
3

2
1

!2
1

2
111 zzzz

Let                   , we have22 rxrz 

        
32222 2

16
52

8
32

2
11, rxrrxrrxrrxP

Re-write it as a power series of r, 

  





 






  3322

2
5

2
3

2
3

2
11, rxxrxxrrxP

P0 P2 P3P1
……







0

)(
n

n
n rxP
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Theorem 1. (Recurrence Relation of Legendre Polynomial) For each positive 

integer n and for all ,11  x

          0121 11   xnPxxPnxPn nnn

Proof: Differentiating the generating function

    21221, 
 rxrrxP

w.r.t. r, we obtain

      )(212221
2
1 232232 rxrxrrxrxr

r
P



 

      ),()(2121 2122 rxPrxrxrxr
r
Prxr 





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Noting that from the property of the generating function, i.e.,

   





0

,
n

n
n rxPrxP

we have

   









 



1

1

0

1

n

n
n

n

n
n rxnPrxnP

r
P

Substitute this into the equation we derived, i.e.,

  ),()(21 2 rxPrx
r
Prxr 





          






















 
0 0

1

1

1

11

1 02
n n

n
n

n
n

n

n
n

n

n
n

n

n
n rxPrxxPrxnPrxxnPrxnP

          





















 

0 1
1

2
1

10
1 0)1()2()1(

n n

n
n

n
n

n

n
n

n

n
n

n

n
n rxPrxxPrxPnrxPxnrxPn

   








 
01

12 0)()21(
n

n
n

n

n
n rxPrxrxnPrxr
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               

           0121

1211

2
11

01201











n

n
nnn rxnPxxPnxPn

rxPxxPxPxxPxP

   
          01211

0

012

01




xPxxPxP
xxPxP

and, for n = 2, 3, 4,   

          0121 11   xnPxxPnxPn nnn

           

               n

n
nnnnn rxPxxPxPnxxnPxPn

rxPrxxPxxPrxxPrxPxP





 



2
111

010121

121

220
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Theorem 2. The coefficient of xn in Pn(x) is given by  
!

12531
n

n 

Proof: Let cn be the coefficient of xn in Pn(x), and consider the recurrence 

relation
          0121 11   xnPxxPnxPn nnn

The coefficient of xn+1 in (n+1)Pn+1(x) is equal to (n+1)cn+1.

The coefficient of xn+1 in – (2n+1) x Pn(x) is equal to – (2n+1) cn. 

There is no other xn+1 term in the recurrence relation. 

Thus coefficient of xn+1 is:     nnnn c
n
nccncn

1
120121 11 


 

     
     021 121

1523212
1
321212 c

nnn
nnnc

n
n

n
nc

n
nc nnn 










 

 
!

1253111)( 00 n
nccxP n






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Theorem 3. For each positive integer n,

      01   xPxPxxnP nnn

Proof. Differentiating the generating function                                           w.r.t. x, 

we obtain
    2

1221, 
 rxrrxP

       ),(2121212
2
1 2122232 rxrPrxrr

x
Prxrrxrr

x
P







 

Weve proved in Theorem 1 that

  ),()(21 2 rxPrx
r
Prxr 





 
x
P

rxrPrxr


 ),(21 2

 
r
P

rxPrxrxr




 ),()(21 2

r
P

rxPrx

x
P

rxrP









),()(),(

  0







x
Prx

r
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Prepared by Ben M. Chen



80

      0
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1
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
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
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n
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         0
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n
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




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  1
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
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Theorem 4. For each positive integer n,

      011   xPxxPxnP nnn

Proof: We had in the previous proof the following equalities

     
x
Prx

r
Pr

x
PrxrrxrP
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
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

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
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Orthogonal Polynomials

We have shown that if m and n are distinct nonnegative integers, then 

In view of this, we can say that the Legendre polynomials are orthogonal to 

each other on the interval [–1, 1]. We also say that the Legendre 

polynomials form a set of orthogonal polynomials on the interval on [–1, 1].

The orthogonal property can be used to write many functions as series of 

Legendre polynomials. This will be important in solving certain boundary 

value problems in partial differential equations.

    0
1

1




dxxPxP mn
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Let q(x) be a polynomial of degree m. We will see how to choose numbers 

0, 1, 2,   ,m such that on [–1, 1]

           xPxPxPxPxPxq mmjj

m

k
kk  



1100
0

Multiplying the above equation by Pj (x), with 0  j  m, we obtain

       xPxPxPxPxPxPxqxP mjmjjjjj )()()()( 00   

Integrating both sides of the above equation from –1 to 1, we have

     
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
1

1

1

1

2
1

1
00

1

1

)()()()( dxxPxPdxxPdxxPxPdxxqxP mjmjjjj  
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
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     

      xxxxPxPx

xxPxPx
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 

Example: Express q(x) = 1 – 4 x2 + 2 x3 in terms of P0(x) to P3(x),

Any Polynomial can be written as a Finite Series of Legendre Polynomials.
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Theorem 5. Let m and n be nonnegative integers, with m < n. Let q(x) be any 

polynomial of degree m. Then

    0
1

1




dxxPxq n

That is, the integral, from –1 to 1, of a Legendre polynomial multiplied by 

any polynomial of lower degree, is zero.

Proof: We have shown that for any polynomial q(x) of degree m, there exist 

scalar 0, 1,    m such that 

       xPxPxPxq mm  1100

               



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1

1
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1

1
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1

1

 dxxPxPdxxPxPdxxPxPdxxPxq nmmnnn 
0 0 0

= 0
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Theorem 6. For any nonnegative integer n,

  
12

21

1

2




 n
dxxPn

Proof: Let cn be coefficient of x n in Pn(x) and also let the coefficient of xn–1

in Pn–1(x) be cn–1. Define

       

?????
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2111
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1

1

1
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xxxxcxxc

xxcx
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cxxcxxP

c
cxPxq

Thus, q(x) has degree n – 1 or lower.

     xqxxP
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cxP n
n

n
n  


1

1
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              
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0

Now use the recurrence relation,
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Recall from Theorem 2 that
 
!

1231
n
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Finally, we can write any polynomial of degree m as a finite series of 

Legendre polynomials, 

    11for              
0




xxPxq
m

k
kk

   

  
   








 


1

1
1

1
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2
12 dxxPxqk

dxxP

dxxPxq

k

k

k

k

and for k = 0, 1, 2,   , m,

Proof. It is a combination of Theorem 6 and the formula derived earlier, i.e.,

 

 
mj

dxxP

dxxqxP

j

j

j ,1,0,
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1
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1 








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Boundary Value Problems in Partial Differential Equations

A partial differential equation is an equation containing one or more partial 

derivatives, e.g.,

2

2

x
u

t
u








We seek a solution u(x, t) which depends on the independent variables x and t.

A solution of a partial differential equation is a function which satisfies the 

equation. For example,

    textxu 42cos, 

is a solution of the above mentioned differential equation since

  tex
t
u 42cos4 

   tex

x
u 4
2

2

2cos4 

=

Prepared by Ben M. Chen



92

Order of a Partial Differential Equation

A partial differential equation (p.d.e.) is said to be of order n if it contains 

an n-th order partial derivative but none of higher order. For example, the 

following so-called Laplace equation

02

2

2

2

2

2
2 













z
u

y
u

x
uu

is of order 2. The p.d.e. has an order of 5,

t
u

t
u

x
u












5

5

2

2

Linear Case

The general linear first order p.d.e. in three variables (with u as a function of 

the independent variables x and y) is

        0,,,, 





 yxguyxf

y
uyxb

x
uyxa
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The general second order linear p.d.e. in three variables has the form

       

      0,,,                               

,,,, 2

22

2

2























yxguyxf
y
uyxe

x
uyxd

y
uyxc

yx
uyxb

x
uyxa

Most of the equations we encounter will be in one of these two forms. In both 

cases, the equation is said to be homogeneous if g(x, y) = 0 for all (x, y) under 

consideration and non-homogeneous if g(x, y)  0 for some (x, y).

We will focus particularly on equations governing vibration (wave equation) 

and heat conduction (heat equation) phenomena.

Main Tools: Fourier series, integrals, transforms and Laplace transform.
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The Wave Equation

Suppose we have a flexible elastic string stretched between two pegs. We 

want to describe the ensuing motion if the string is lifted and then released 

to vibrate in a vertical plane.

Place the x-axis along the length of the string at the rest. At any time t and 

horizontal coordinate x, let y(x, t) be the vertical displacement of the string.

0 L x-axis

y
y(x,t)

We want to determine equations which will enable us to solve for y(x, t), thus 

obtaining a description of the shape of the string at any time.

x
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We will begin by modeling a simplified case. Neglect damping forces such 

as air resistance and the weight of the string and assume that the tension 

T(x, t) in the string always acts tangentially to the string. Assume that the 

string can only move is the vertical direction, i.e., the horizontal tension is 

constant. Also assume that the mass  per unit length is a constant.

Applying Newtons 2nd Law of motion to the segment of the string between x

and x + x, we have 

Net force due to tension = Segment mass

 Acceleration of the center of mass of the segment

For small x, consideration of the vertical component of the equation gives 

us approximately:  

maF 
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0 L x-axis

y
T(x+x, t)

x+x

 +


T(x, t)

x

        xxxtx
t
yxtxTxxT 





2
1,,sin,sin 2

2



       tx
t
y

x
txTxxT ,sin,sin

2

2







 

As a convenience, we write                                 i.e., the vertical component 

of the tension. Hence we have
    sin,, txTtxv 

     tx
t
y

x
txvtxxv ,,,

2

2







  2

2

t
y

x
v






 0x
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Write h(x, t) = T(x, t)cos, i.e., the horizontal component of the tension at (x, t),

then 

     
x
ytxhtxhtxv



 ,tan,, 

Substituting this into the equation we have just obtained, we have

2

2

t
y

x
yh

x 












 

Recall that the horizontal component of the tension of the segment is constant. 

Hence, h is independent of x and

2

2

2

2

2

2

t
y

x
yh

x
yh

x
yh

x



























ha 2
2

2
2

2

2

x
ya

t
y






 1-D Wave

Equation
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The motion of the string will be influenced by both the initial position and the 

initial velocity of the string. Therefore we must specify initial conditions:

   xfxy 0,    xgx
t
y



 0,

Next, we consider the boundary conditions. Since the ends of the string are 

fixed, we have     0.  t,0,,0  tLyty

Lx 0

To be more clear, we can put all of them together, i.e.,

2

2
2

2

2

x
ya

t
y








    0,,0  tLyty

   xfxy 0,

   xgx
t
y



 0,

Lx 0

0t

Lx 0

Lx 0

0t
The boundary value problem of 

1-D Wave Equation with initial 

and boundary conditions.

Its solution as expected from the 

associated physical system must 

be unique.
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The Heat Equation

This is to study temperature distribution in a straight, thin bar under simple 

circumstances. Suppose we have a straight, thin bar of constant density 

and constant cross-sectional area A placed along the x-axis from 0 to L.

Assume that the sides of the bar are insulated and so not allow heat loss 

and that the temperature on the cross-section of the bar perpendicular to the 

x-axis at x is a function u(x, t) of x and t, independent of y.

Let the specific heat of the bar be c, and let the thermal conductivity be k, 

both constant. Now consider a typical segment of the bar between x =  and 

x = .

0
L

x

y

 

u(x, t)
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By the definition of specific heat, the rate at which heat energy accumulates 

in this segment of the bar is:

 




 dx
t
uAc

By Newtons law of cooling, heat energy flows within this segment from the 

warmer to the cooler end at a rate equal to k times the negative of the 

temperature gradient. Therefore, the net rate at which heat energy enters 

the segment of bar between  and  at time t is:

   t
x
ukAt

x
ukA ,, 








In the absence of heat production within the segment, the rate at which heat 

energy accumulates within the segment must balance the rate at which heat 

energy enters the segment. Hence,

   t
x
ukAt

x
ukAdx

t
uAc ,, 



 











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     








 



 dx
x
ukAt

x
ukAt

x
ukA 2

2

,,

Note that

02

2





















 dx
x
ukA

t
uAc 02

2









x
ukA

t
uAc

This is the so-called heat equation, which is more customary written as:

2

2
2

x
ua

t
u








where a2 = k/(c) is called the thermal diffusive of the bar. To determine u

uniquely, we need boundary conditions (information at the ends of the bar) 

and initial conditions (temperature throughout the bar at time zero). The 

p.d.e. together with these pieces of information, constitutes a boundary 

value problem for the temperature function u.
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   
    )0(                       0,

)0(               ,,0

)00(                         2

2
2

L  x    xfxu
 t TtLutu

 L,  t   x    
x
ua

t
u












Problem 1. Both ends of the bar are kept in a constant temperature.

   

    )0(                       0,

)0(               0,,0

)00(                         2

2
2

L  x    xfxu

 t tL
t
ut

t
u

 L,  t   x    
x
ua

t
u



















Problem 2. No heat flows across the ends of the bar.

Reading assignment: Laplaces Equation; Poissons Equation; Dirichlet and 

Neumann Problems; Laplaces Equation in Cylindrical & Spherical Coordinates
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Fourier Series Solution of Wave Equation

Recall the wave equation of an initially displaced vibrating string with zero initial 

velocity,

This boundary value problem models the vibration of an elastic string of length 

L, fastened at the ends, picked up at time zero to assume the shape of the 

graph of y(x,0) = f (x) and released from rest.

Wave equation

Boundary conditions

Initial displacement

Initial velocity

2

2
2

2

2

x
ya

t
y








    0,,0  tLyty

   xfxy 0,

  00, 

 x

t
y

Lx 0

0t

Lx 0

Lx 0

0t
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The Fourier method or method of separation of variables is to find a solution of 

the form
)()(),( tTxXtxy 

with appropriate X(x) and T(t) that solves the above boundary value problem.

)()(),()( 2

2

2

2

tTxX
x
ytTxX

t
y 







2

2
2

2

2

x
ya

t
y








Ta
T

X
XTXaTX 2

2 





We have “separated” x and t; the left hand side is a function of x alone, and the 

right hand side is a function of t. Since x and t are independent, we can fix the 

right hand side by choosing t = t0, and the left hand side must be equal to

 
  )(0, inx  allfor constant a  is  which, 

0
2

0 L
tTa

tT 
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Ta
T

tTa
tT

X
X

2
0

2
0 constant) separation(a   

)(
)( 









0"&0" 2  TaT  XX 

These are two ordinary differential equations for X and T.

Next, look at the boundary conditions for y(x, t) and relate them to X and T. 

From the condition that the both ends of the string is fixed, we have

0)()0(),0(  tTXty

0)()(),(  tTLXtLy

0)0( X
0)( LX

as we cannot has T(t) = 0 if the string is to move. Similarly,

  00, 

 x

t
y 0)0(')( TxX 0)0(' T
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At this point, we have two problems for X and T, namely

0"&0" 2  TaT  XX 

0)()0(  LXX 0)0( T

A value for  for which the above problem, either the one associated with X or

T, has a nontrivial solution (not identically zero) is called eigenvalue of this 

problem. The associated nontrivial solution for X or for T is called eigenfunction.

We will consider different cases on . We assume that  is real, as we expect 

from the physics of the problem.

Case 1:  = 0

Then X= 0, so X(x) = c x + d for some constants c and d. Then the condition 

X(0) = 0 implies d = 0 and X(L) = c L= 0 implies c = 0.

0)( xX 0)()(),(  tTxXtxy if f (x)  0.
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Case 2:  < 0

For this case, we write  =  k2 with k > 0. The equation for X is the given by 

0" 2  XkX kxkx decexX )(

0)0(  dcX dc 

  )sinh(2)( kxceecxX kxkx  

0)sinh(2)(  kLcLX 0 cd

because sinh(x) > 0 if x > 0. Thus, 

solution.admissible an not is whichtTxXtxy 0)()(),( 
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Case 3:  >0

We can write  = k2 with k > 0. Then 

0" 2  XkX )sin()cos()( kxdkxcxX 

0)0(  cX )sin()( kxdxX 

0)sin()(  kLdLX

We cannot choose d = 0 as it will give a trivial solution again. Instead, we have 

to let

0)sin( kL  ,,,n   nkL 321, 2

22
2

L
nk  

Corresponding to each positive integer n, we therefore have a solution for X:

  





 x

L
ndxX nn
sin
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Now look at the problem for T:

2

22
2

L
nk     00;0

222

 T   T
L

anT 

  












 t

L
ant

L
antT  sincos

  00cossin0
0



















L

ant
L

an
L

ant
L

an
L

anT
t

  ,2,1,cos 





 nt

L
antT nn


We now have, for each positive integer n, a function

      




























 t

L
anx

L
nAt

L
anx

L
ndtTxXtxy nnnnnn

 cossincossin,

which satisfies wave equation and boundary conditions, but not initial position.
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In order to satisfy the initial displacement y(x,0) = f (x), we attempt an infinite 

superposition of the yns and write

    























11

cossin,,
n

n
n

n t
L

anx
L

nAtxytxy 

  











1

sin)(0,
n

n x
L

nAxfxy 

Note that this equation is the Fourier sine expansion of f (x) on [0, L]. We 

should choose the Ans as the Fourier coefficients in this expansion, i.e.,

  







L

n dxx
L

nxf
L

A
0

sin2 

    





























  





t
L

anx
L

nd
L

nf
L

txy
n

L  cossinsin2,
1 0
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Example: Suppose that initially the string is picked up L/2 units at its center 

point and then release from the rest.

0 LL/2

L/2  








LxL             xL

Lx                 x
xf

2/
2/0

    



























  

2/

0 /0

sinsin2sin2 L L

xL

L

n dxx
L

nxLdxx
L

nx
L

dxx
L

nxf
L

A 

 







































 

L

L

L

dx
L

xn
n
L

L
L

L
xn

n
xLL dx

L
xn

n
LLxn

n
Lx

L 2/

2/

0

cos
2

coscos
0
2

2
cos2 




































































2
sin

2
cos

20
2sin

2
cos

2

2222

L
L

L
xn

n
Ln

n
LL

L
xn

n
Ln

n
L

L
2 






























































2
sin4

2
sin

2
sin2

22

22 








n
n

Ln
n
Ln

n
L

L
=  An
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  





















 



 L
atn

L
xnn

n
Ltxy

n




cossin
2

sin14,
1

22

 













 12 if              1
even is  if                      0

2
sin 1 k- n  

nn
k


Note that

 
  1

22122 1
12

4,0 
 


 n

nn n
LAA


   
 

   




 





 




 






t
L

anx
L

n
n

Ltxy
n

n 


12cos12sin
12

14,
1

2

1

2

The number  = n22/L2 are eigenvalues, and the functions sin(nx/L), or non-

zero multiple thereof, are eigenfunctions. The eigenvalues carry information 

about the frequencies of the individual sine waves which are superimposed 

to form the final solution.
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Simulation Results: L =  and a = 1

× ×

× ××

×
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Wave Equation with Zero Initial Displacement but Nonzero Velocity

Now let us consider the case in which the string is released from its horizontal 

stretched position (zero initial displacement) but with a nonzero initial velocity. 

The boundary value modeling this phenomenon is

2

2
2

2

2

x
ya

t
y








    0,,0  tLyty

  00, xy

   xgx
t
y



 0,

0t

Lx 0

Lx 0

Lx 0
0t

Wave equation

Boundary conditions

Initial displacement

Initial velocity

Up to a point the analysis is the same as in the preceding problem. The only 

difference between this problem and the previous one is that one would 

have to choose An now to meet the initial velocity instead of initial position.
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)()(),( tTxXtxy 

As in the previous case, we set

to get

0"&0" 2  TaT  XX 
0)()0(  LXX 0)0(0)0()(  TTxX

The problem for X is the same as that encountered previously, so the eigen-

values are

2

22

L
n  

For n = 1, 2, 3,    and corresponding eigenfunctions are

  







L
nππdxX nn sin

Now, however, we come to the difference between this problem and the 

preceding one, i.e., the solution for T.
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Since we know the values of , the problem for T can be re-written as 

  00                      ,02

222

 TT
L

anT 

The general solution of this differential equation for T is

  














L
atn

L
atntT nnn

 sincos

  







L
atntTT nnn
 sin)(000 

For each positive integer n, we now have

  






























L
atn

L
xnD

L
atn

L
xndtxy nnnn

 sinsinsinsin,

Each of these functions satisfies the wave equation, the boundary conditions, 

and yn(x, 0) = 0, it in general does not satisfy the initial velocity condition.
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To satisfy the initial velocity condition, write a superposition

  



















1

sinsin,
n

n L
atn

L
xnDtxy 

Note that this is a Fourier sine expansion of g(x) on [0, L]. By choosing

   d
L

ng
L

D
L

an L

n 





  sin2

0

    



































1
0

sinsinsin12,
n

L

L
atn

L
xnd

L
ng

na
txy 


























1

cossin
n

n L
atn

L
xnD

L
an

t
y 

   xgx
t
y



 0,   












1

sin
n

n L
xnD

L
anxg 

  


d
L

ng
an

D
L

n 





  sin2

0
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Example: We consider the same wave equation as in the preceding one but 

with zero initial displacement and a initial velocity

 








                   
 

4L 
40

      
0 Lx

Lxx
xg

  
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
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sin sinsin
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
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
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L
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
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
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

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
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
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1
232

2

sinsin
4

cos
4
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4
sin12,

n L
atn

L
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n
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Prepared by Ben M. Chen



119

The Wave Equation with Initial Displacement and Velocity

 

     
   

    L)x (xgx
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Example: Consider the wave equation with usual boundary and with initial 

displacement,

 










LxL 
Lx
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xf
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and initial velocity

 
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



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
LxL 

Lxx
xg

4
40

      
0

Then it follows from the previous examples, the solution to the above 

problem is given by
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Simulation Results: L =  and a = 1
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Fourier Series Solution of the Heat Equation

The Ends of the Bar Kept at Zero Temperature: We want to determine the 

temperature distribution u(x,t) in a thin homogeneous bar of length L, given 

the initial temperature distribution throughout the bar at time t = 0, if the ends 

are maintained at zero temperature for all time.

The boundary value problem is 

 

     
    )0(                    0,

0           0,,0

00                      2

2
2

Lxxfxu
t tLutu

L,  tx
x
ua

t
u










 Heat Equation

Boundary Conditions

Initial Temperature

The procedure that we are going to use to solve the above problem is precisely 

the same as the one in solving the wave equation. All the dirty works were done 

already. The rest is pretty simple. 
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We will apply the separation of variables method and seek a solution

)()(),( tTxXtxu 

2

2
2

x
ua

t
u








)()()()( 2 tTxXatTxX 
)(
)(

)(
)( 2

xX
xXa

tT
tT 




Since x and t are independent variables, both sides of this equation must be 

equal to the same constant.


X
X

Ta
T "'
2 0    and      0" 2  TaT'XX 

0)0(0)()0(0),0(  XtTXtu

0)(0)()(0),(  LXtTLXtLu

Unlike the wave equation, this equation for T is of first order, with no boundary 

condition.

0&0)()0(,0 2  TaTLXXXX 
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The boundary value problem for X, however, is identical with that encountered 

with the wave equation, so we have eigenvalues and eigenfunctions

2

22

L
nλ n


    
L

xndxX nn 






sin&

With the values we have for , the differential equation for T is

0' 2

222

 T
L
naT 

Each un(x,t) satisfies the heat equation and both boundary conditions, but in 

general, none of them will satisfy the initial condition, i.e.,

    )0(             0, Lx xfxu 

2222 /)( Ltan
nn etT  

2222 /sin)()(),( Ltan
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L
xnAtTxXtxu  






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Thus, we should attempt an infinite superposition



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
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n
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n e

L
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This is the Fourier series expansion of f on [0, L]. Hence, choose the Ans as 

the Fourier coefficients:
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