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Electrical Engineering Circuits

EE2008 module is to introduce basic electrical circuit components & 

analyses. Emphasis is on the fundamental methodologies and 

mathematical tools for solving and analysing some basic electrical 

circuits. 

Roughly, the first part of this course focuses on the approaches in the 

time domain (ordinary differential equations, state-space equations), 

while the second half deals more with the frequency-domain methods 

(Laplace transformations, etc.). 

Copyrighted by Ben M. Chen



4

Textbook

A. B. Carlson, Circuits, PWS Publishing Company, New York, 1999.

Copyrighted by Ben M. Chen

C. C. Ko & B. M. Chen, Basic Circuit Analysis, Prentice Hall Asia, 

Singapore, 2nd Edition, 1998.

C. K. Alexander & M. N. O. Sadiku, Electric Circuits, McGraw Hill, 

New York, 2000.

References



5

Attendance is essential.

Ask any question at any time during the lecture.

Lectures

Copyrighted by Ben M. Chen



6

Tutorials

The tutorials will start on Week 4 of the semester. 

You should make an effort to attempt each question before the tutorial.

Some of the questions are straightforward, but quite a few are difficult 

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Outline of the Course
1. Circuit Elements

Capacitors. Inductors. V-I Relationships. Energy Storage.

2. Transient Analysis

First-order Transients. Switched DC Transients. Switched AC 

Transients. Second-order Natural Response (Overdamped, 

Underdamped and Critically Damped Responses). Second-Order 

Transients. 
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3. State Variable Analysis

Review of Laplace and Inverse Laplace Transforms. State Variables. 

State and Output Equations. Transform Solutions to State Equations. 

Zero-Input Response. Complete Response.
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Mid-term Test, Homework and Examination

There will be a mid-term test and two homework assignments for the 

first part. The mid-term test will be held in a tutorial session. The 

exact date will be made known in due course. The test and 

homework assignments will be marked counted as 30% (10% for 

homework assignments and 20% for the test) of your final grade for 

Part 1, i.e., your final grade for Part 1 will be computed as follows:

Your Part 1 Grade = 30% of Your Test and HW Marks (max. = 50)

+ 70% of Your Exam Marks for Part 1 (max.=50)
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0. Preliminary Materials
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0.1 Operations of Complex Numbers

Coordinates:  Cartesian Coordinate and Polar Coordinate
⎟
⎠
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Euler’s Formula: )sin()cos( θθθ je j +=

Additions: It is easy to do additions (subtractions) in Cartesian coordinate.
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Multiplication's: It is easy to do multiplication's (divisions) in Polar coordinate.
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0.2  Symbols of Voltage and Current Sources

The circuit symbols of voltage and current sources (either DC or AC) used in 

this part of the course are:

Basically, the arrow and the value in the voltage source signifies that the top 

terminal has a potential of  v (could be either positive or negative) with 

respect to the bottom terminal regardless of what has been connected to it. 

Similarly, the arrow and the value of the current source signifies that there is 

a current i (could be either positive or negative) flowing upwards. 

v i
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Remark: The following symbols for the voltage source are identical:

1.5 V 1.5 V− 1.5 V

+

−

1.5 V
+

−

Note that on its own, the arrow does not correspond to the positive 

terminal. Instead, the positive terminal depends on both the arrow and 

the sign of the voltage which may be negative.
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0.3 Phasor

A sinusoidal voltage/current is represented using complex number format:

The advantage of this can be seen if, say, we have to add 2 sinusoidal 

voltages given by:

]Re[)cos()sin()cos( ωω ωωω jj eje =⇒+=Euler’s Formula:
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Note that the complex time factor            appears in all the expressions.  

If we represent         and         by the complex numbers or phasors:

tje ω2
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⎠
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By using phasors, a time-varying ac voltage

( ) ( ) )]2)(Re[(cos2 tjj eretrtv ωθθω =+=

becomes a simple complex time-invariant number/voltage θrV = rejθ =

( )tvVVr  of value r.m.s. of modulusmagnitude/ ===

[ ] VV ofphase== Argθ
Graphically, on a phasor diagram:

V

Imag

Real0
θ

r

Complex Plane

Using phasors, all time-varying ac quantities 

become complex dc quantities and all dc circuit 

analysis techniques can be employed for ac 

circuit with virtually no modification.
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1. Circuit Elements
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1.1  Capacitor

A capacitor consists of parallel metal plates for storing electric charges.

+++++

+++++

+++
+++++++ −−−−−

−−−−−−
−−−−
−−−
−−−d

Conducting plate
with area A

Insulator
with a dielectric

constant  
(permittivity)

ε

The capacitance of the capacitor is given by or  Farad  F
d
AC ε=

Area of metal plates required
to produce a 1F capacitor in

the free space if d = 0.1 mm is

2
12 (km)3.11

F/m108.85
m0001.0F1

=
×
×

== −ε
CdA

Copyrighted by Ben M. Chen



18

The circuit symbol for an ideal 

capacitor is:

Cv (t)

i (t)

Provided that the voltage and current 

arrows are in opposite directions, the 

voltage-current relationship is:

( ) ( )
dt

tdvCti =

For dc circuits:

( ) ( ) ( ) 00 =⇒=⇒= ti
dt

tdvtv constant

and the capacitor is equivalent to 

an open circuit:

Cv (t) = constant

i (t) = 0 i (t) = 0

This is why we don’t consider the 

capacitor in DC circuits.
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Consider the change in voltage, 

current and power supplied to the 

capacitor as indicated below:

0 t

v( t)

1

vf

0 t

i ( t)

1

vfC

0 t

v ( t)

1

i ( t)p( t) =

vfC 2
Area = Energy stored =

vfC 2

2

= Instantaneous power supplied

In general, the total energy stored in 

the electric field established by the 

charges on the capacitor plates at 

time is
( ) ( )

2

2 tCvte =

Proof.
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Now consider the operation of a capacitor in an ac circuit:

)cos(2)( vv trtv θω +=
)
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)sin(2)()(

πθωω

θωω

++=

+−==
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CjI
V

ω
1

= V

I

Cωj
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With phasor representation, the capacitor behaves as if it is a resistor 

with a "complex resistance" or an impedance of

Cj
ZC ω

1
= [ ] [ ] 0ReReRe

2

=
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⎥
⎦
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⎢
⎢
⎣

⎡
=== ∗∗
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I
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In phasor format:

Ce= rv
θ vjV

=I rvCω
π
2e θ vj e

j
= rvCω e θ vjj = Cωj V

An ideal capacitor is a non-dissipative but energy-storing device.
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Example: Consider the following ac circuit:

30
319

230 V
50 Hz

µF
Ω

In phasor notation (taking the source to 

have a reference phase of 0):

30

1
10-6j 2π(50)

= 10j−
(319)

30

230
j10

=10j−

230

30−
7.3 e j 0.32

230e j 0 = 230

Since the phase of I relative to V that of  is

[ ] [ ] [ ] 090Arg1ArgArgArgArg ==⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦
⎤

⎢⎣
⎡=− Cj

ZV
IVI

C
ω

the ac current i(t) of the capacitor leads the voltage v(t) by 90°.  
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Total circuit impedance ( )Ω−= 1030 jZ

Total circuit reactance [ ] [ ] Ω−=−== 101030ImIm jZX

Total circuit resistance [ ] [ ] Ω=−== 301030ReRe jZR

Current (rms) A3.7=I

Current (peak) A1023.72 ==I

Source V-I phase relationship rad32.0by leadsI

Power factor of entire circuit ( ) leading95.032.0cos =

Power supplied by source ( ) ( )[ ] ( )( ) ( ) kW6.132.0cos3.72303.7230Re 32.0 ==∗ je

Power consumed by resistor ( ) ( ) ( ) kW6.1303.73.7303.7Re 232.032.0 ==⎥⎦
⎤

⎢⎣
⎡ ×

∗ jj ee
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Impedance, Resistance, Reactance, 

Admittance, Conductance, and Susceptance
Relations?

jXRZ +=Impedance:

Admittance: ( )( )

jBG
XR

Xj
XR

R
XR
jXR

jXRjXR
jXR

jXRZ
Y

+=
+
−

+
+

=
+
−

=

−+
−

=
+

==

222222

11

Conductance Susceptance
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1.2 Inductor

An inductor consists of a coil of wires 

for establishing a magnetic field. The 

circuit symbol for an ideal inductor is:

Lv (t)

i (t)

Provided that the voltage and current 

arrows are in opposite directions, the 

voltage-current relationship is:

( ) ( )
dt

tdiLtv =

For dc circuits:

( ) ( ) ( ) 00 =⇒=⇒= tv
dt

tditi constant

and the inductor is equivalent to a 

short circuit:

L= 0v (t)

i = constant(t)

= 0v (t)

That is why there is nothing 

interesting about the inductor in DC 

circuits.
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Consider the change in voltage, 

current and power supplied to the 

inductor as indicated below:

0 t

v( t)

1

i f

0 t

i ( t)

1

i fL

0 t

v ( t)

1

i ( t)p( t) =

i fL 2
Area = Energy stored =

i fL 2

2

=  Instantaneous power consumed

In general, the total energy stored 

in the magnetic field established 

by the current i(t) in the inductor 

at time t is given by
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Now consider the operation of an inductor in an ac circuit:

Lv (t)

i (t) )cos(2)( ii trti θω +=

)
2

cos(2

)sin(2)()(

πθωω

θωω

++=

+−==

ii

ii

tLr

tLr
dt

tdiLtv

In phasor:

Lv (t)

i (t) ij
ierI θ=

ILjeLrjeeLrV ii j
i

jj
i )(2/ ωωω θπθ ===

Lj
I
VZL ω==V

I

Lωj

ZL is the impedance of the inductor. The ave. power absorbed by the inductor:

[ ] [ ] [ ] [ ] 0ReReReRe 2 ===== ∗∗∗ ILjILIjIZIVIp Lav ωω
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Since the phase of I relative to that of V is

[ ] [ ] 0901Arg1ArgArgArgArg −=⎥⎦

⎤
⎢⎣

⎡=⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=−

LjZV
IVI

L ω

the ac current i(t) lags the voltage v(t) by 90º.

As an example, consider the following series ac circuit:

319
230 V
50 Hz

µF
Ω

31.9 mH

3

We can use the phasor representation to convert this ac circuit to a ‘DC’ 

circuit with complex voltage and resistance.
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230
j10

=
3 −

77

10-3j 2π(50) =
10j−

230 (31.9)

3

10j

10j−
230

3

10j

10j+

773

10j230 770j

770j−
230

10j−

Total circuit
impedance Ω=+−= 310103 jjZ
Total circuit reactance [ ] [ ] Ω=== 03ImIm ZX
Total circuit resistance [ ] [ ] Ω=== 33ReRe ZR
Current (rms) A77=I
Current (peak) A1082772 ==I
Source voltage-current
phase relationship ( )phase in0
Power factor of entire
circuit ( ) 10cos =

Power supplied by
source ( ) ( )[ ] kW1823077Re =∗

Power consumed by
resistor ( ) ( )[ ] kW1877377Re =×∗

Summary of the circuit:
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2. Transient Response
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2.0  Linear Differential Equations

General solution:

n th order linear
differential equation

( ) ( ) ( ) ( )tutxa
dt

txda
dt

txd
n

n

nn

n

=+++ −

−

− 01

1

1 L

General solution ( ) ( ) ( )txtxtx trss +=

Steady state response
with no arbitrary constant

( )
( )tu

txss

 as form same the have to solution
assuming from obtained integral particular=

Transient response with
n  arbitrary constants

( )
( ) ( ) ( ) 001

1

1 =+++

=

−

−

− txa
dt

txda
dt

txd

tx

trn
tr

n

nn
tr

n
tr

L          

equation shomogeneou of solution general
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General solution of homogeneous equation:

n th order linear
homogeneous equation

( ) ( ) ( ) 001

1

1 =+++ −

−

− txa
dt

txda
dt

txd
trn

tr
n

nn
tr

n

L

Roots of polynomial
from homogeneous
equation

 
( ) ( ) 0

1
11

1 ,,

azazzzzz

zz
n

n
n

n

n

+++=−− −
− LL

L

 by given
 :Roots

General solution
(distinct roots)

( ) tz
n

tz
tr

nekektx ++= L1
1

General solution
(non-distinct roots)

( ) ( ) ( ) tttt
tr ekeketkketktkktx 41

7
31

6
22

54
132

321 ++++++=
if roots are 13 13 13 22 22 31 41, , , , , ,
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Particular integral:

( )txss Any specific solution (with no arbitrary constant)
of

( ) ( ) ( ) ( )tutxa
dt

txda
dt

txd
n

n

nn

n

=+++ −

−

− 01

1

1 L

Method to determine
( )txss

Trial and error approach: assume ( )txss  to have
the same form as ( )tu  and substitute into
differential equation

Example to find ( )txss  for
( ) ( ) tetx

dt
tdx 32 =+

Try a solution of he t3

     ( ) ( ) 2.0232 3333 =⇒=+⇒=+ heheheetx
dt

tdx tttt

( ) t
ss etx 32.0=

Standard trial solutions ( ) ( )

( )
( ) ( ) ( ) ( )ththtbta

ethhte
htt
hee

txtu

tt

tt
ss

ωωωω

αα

αα

sincossincos 21

21

++
+

 for solution trial
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2.1  What is Transient Analysis?

DC and AC circuit analyses using the frequency domain approach are often 

called steady state analysis, as signals are assumed to exist at all time.

In order for the results obtained from these analyses to be valid, it is 

necessary for the circuit to have been working for a considerable period of 

time. This will ensure that all the transients caused by, say, the switching 

on of the sources have died out, the circuit is working in the steady state, 

and all the voltages and currents are as if they exist from all time.

However, when the circuit is first switched on, the circuit will not be in the 

steady state and it will be necessary to go back to first principle to 

determine the behavior of the system. This process is then called the 

transient analysis.

Copyrighted by Ben M. Chen



34

2.2  RL Circuit and Governing Differential Equation

Consider determining i(t) in the following series RL circuit:

3 V 7 H

Ω5t = 0

v(t)

i (t)

where the switch is open for t < 0 and is closed for t ≥ 0.

Since i(t) and v(t) will not be equal to constants or sinusoids for all time, 

these cannot be represented as constants or phasors.  Instead, the 

basic general voltage-current relationships for the resistor and inductor 

have to be used:
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3 7

5t = 0
i (t)

v(t) = 7 d i(t)
d t

i (t)5

3 7

5

t < 0

i (t) = 0

v(t) = 7 d i(t)
d t

i (t)5

3 7

5
i (t) = 0

v(t) = 7 d i(t)
d t = 0

i (t)5 = 03

voltage cross
over the switch

KVL

For t < 0
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3 7

5
i (t)

v(t) = 7 d i(t)
d t

i (t)5

t 0≥

0

Applying KVL:

( ) ( ) 0,357 ≥=+ tti
dt

tdi

and i(t) can be found from determining the 

general solution to this first order linear 

differential equation (d.e.) which governs 

the behavior of the circuit for t ≥ 0.

Mathematically, the above d.e. is often 

written as

( ) ( ) ( ) 0,57 ≥=+ ttuti
dt

tdi

where the r.h.s. is ( ) 0,3 ≥= ttu
and corresponds to the dc source or 

excitation in this example.
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2.3  Steady State Response

Since the r.h.s. of the governing d.e.

( ) ( ) ( ) 0,357 ≥==+ ttuti
dt

tdi

Let us try a steady state solution of

( ) 0, ≥= tktiss

which has the same form as u(t), as a 
possible solution.

( ) ( )

( ) ( )

5
3

3507

357

=⇒

=+⇒

=+

k

k

ti
dt

tdi
ss

ss

( ) 0,
5
3

≥= ttiss

( ) ( ) 0,3
5
35

5
3757 ≥=⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+ t

dt
dti

dt
tdi

ss
ss

and is a solution of the governing d.e.

In mathematics,  the above solution is 

called the particular integral or solution 

and is found from letting the answer to 

have the same form as u(t). The word 

"particular" is used as the solution is only 

one possible function that satisfy the d.e.
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In circuit analysis, the derivation of iss(t) by letting the answer to have 

the same form as u(t) can be shown to give the steady state response

of the circuit as t → ∞.

3 7

5

v(t) = 7 d i(t)
d t

t → ∞

i (t) = k

v(t) = 7 d i(t)
d t = 03 7

5
i (t) = k

i (t)5 = k5

Using KVL, the steady state 

response is

( ) ∞→=⇒

=⇒

=++=

tti

k

kk

,
5
3

5
3

50503

This is the same as iss(t).
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2.4  Transient Response

To determine i(t) for all t, it is necessary to find the complete solution of 

the governing d.e.
( ) ( ) ( ) 0,357 ≥==+ ttuti

dt
tdi

From mathematics, the complete solution can be obtained from summing 

a particular solution, say, iss(t), with itr(t): ( ) ( ) ( ) 0, ≥+= ttititi trss

where itr(t) is the general solution of the homogeneous equation

( ) ( ) 0,057 ≥=+ tti
dt

tdi

( ) ( )
( )

5757

57

01 +=+=

+

zzz

ti
dt

tdi
z

dt
tditr

tr

tr  by replaced 

7
5

1 −=z

( ) 0,7
5

11
1 ≥==

−
tekekti

ttz
tr

where k1 is a constant (unknown now).

( ) ∞→→=
−

tekti
t

tr ,07
5

1

Thus, it is called transient response.

Copyrighted by Ben M. Chen



40

2.5  Complete Response

To see that summing iss(t) and itr(t) gives the general solution of the governing d.e.

( ) ( ) 0,357 ≥=+ tti
dt

tdi

note that

( ) 0,
5
3

≥= ttiss 0,3
5
35

5
37 ≥=⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ t

dt
dsatisfies

( ) 0,7
5

1 ≥=
−

tekti
t

tr satisfies 0,057 7
5

1
7
5

1 ≥=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
tekek

dt
d tt

( ) ( ) 0,
5
3 7

5

1 ≥+=+
−

tektiti
t

trss 3
5
35

5
37 7

5

1
7
5

1 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−− tt
ekek

dt
dsatisfies

( ) ( ) ( ) 0,
5
3 7

5

1 ≥+=+=
−

tektititi
t

trss is the general solution of the d.e.
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i )( tss

t < 0 t 0≥

5
3

0

Switch
close

t = 0

0

t = 5
7 (Time constant)

0
Complete response

i )( ttri )( tss +

5
3

+ 5
3

k1

e
k1

e−
5
7 t t 0≥,k1)( t =i tr

k1

Transient Response

Steady State 
Response

Complete Response

k1 is to be 
determined later
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Note that the time it takes for the transient or zero-input 

response itr(t) to decay to 1/e of its initial value is

Time taken for itr(t) to decay to 1/e of initial value

and is called the time constant of the response or system.

We can take the transient response to have died out after a 

few time constants.

5
7

=
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2.6  Current Continuity for 

Inductor

To determine the constant k1 in 

the transient response of the RL 

circuit, the concept of current 

continuity for an inductor has 

to be used.

Consider the following example:

i )( tL

0 1 2 4 t

1

2

= 7
d

d t
i )( tLv )( tL

t

7

7−

To ∞

t

7

i )( tL v )( tL =Instantaneous power supplied

To ∞

14−

Lv (t)

i (t)

= 7
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Due to the step change or discontinuity in iL(t) at t = 2,  

and the power supplied to the inductor at t = 2 will go to 

infinity. Since it is impossible for any system to deliver an 

infinite amount of power at any time, it is impossible for

iL(t) to change in the manner shown.

In general, the current through an inductor must be a 
continuous function of time and cannot change in a 

step manner.
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3 V 7 H

Ω5t = 0

v(t)

i )( t

Now back to our RL Circuit:

0

5
3

+ 5
3

Switch
close

+ 5
3

e−
5
7 t t 0≥,

i )( t =

= 5
3 +

t < 0,i )( t = 0

k1

i )( ttri )( tss +

k1

Using current continuity for an 

inductor at t = 0:

( )
5
30

5
30 11 −=⇒=+== kkti

( )
⎪⎩

⎪
⎨
⎧

≥−

<
= −

0,
5
3

5
3

0,0

7
5

te

t
ti t

0

5
3

Switch
close

i )( t =

= 5
3 −

t < 0,i )( t = 0

5
3

i )( ttri )( tss +

e−
5
7 t t 0≥,
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2.7  RC Circuit

Consider finding v(t) in the following 

RC circuit:

3 V
7 F

Ω5

v(t)
2 V

Ω500

t = 0

i (t)

where the switch is in the 

position shown for t < 0 and is 

in the other position for t ≥ 0.

3
7

5

v(t)
2

500

d v(t)
d t= 7i (t)

t < 0

Taking the switch to be in this 

position starting from t = −∞, the 

voltages and currents will have 

settled down to constant values 

for practically all t < 0. 

( ) ( ) ( ) 0,077 <=== t
dt

d
dt

tdvti constant
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3
7

5

2

500

dv (t)
d t= 7i (t)

t < 0

v(t)

= 0

3
7

5

2

500

i (t)

=500 i (t) 0

v(t) =− 2

= 0

t 0≥

3
7

5

2

500

d v (t)
d t= 7i (t)

v(t)

5i (t) d
d t= 35
v(t)

Applying KVL:

( ) ( ) ( ) 0,335 ≥==+ ttutv
dt

tdv

( ) ( ) ( ) 0, ≥+= ttvtvtv trss

which has a solution
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(1) Steady State Response

( ) 0,3 ≥= ttu

( ) ( )

330

335

=⇒=+⇒

=+

kk

tv
dt

tdv
ss

ss

( ) 0, ≥= tktvss

( ) 0,3 ≥= ttvss

(2) Transient Response
( ) ( ) 0,035 ≥=+ ttv

dt
tdv

tr
tr

( ) ( )
( )

13535

35

01 +=+=

+

zzz

tv
dt

tdv
z

dt
tdvtr

tr

tr  by replaced 

35
1

1 −=z

( ) 0,35
11

1 ≥==
−

tekektv
t

tz
tr

( ) ( ) ( ) ⎪⎩

⎪
⎨
⎧

≥+

<−
=

⎩
⎨
⎧

≥+
<−

= −
0,3

0,2

0,
0,2

35
1 tek

t

ttvtv
t

tv t

trss
Complete Response
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2.8  Voltage Continuity for Capacitor

To determine k1 in the transient response of the RC circuit, the concept 

of voltage continuity for a capacitor has to be used.

Similar to current continuity for an inductor, the voltage v(t) across a 

capacitor C must be continuous and cannot change in a step manner.

Thus, for the RC circuit we consider, the complete solution was derived as:

( ) ( ) ( ) ⎪⎩

⎪
⎨
⎧

≥+

<−
=

⎩
⎨
⎧

≥+
<−

= −
0,3

0,2

0,
0,2

35
1 tek

t

ttvtv
t

tv t

trss

At t = 0,

( ) 5230 11 −=⇒−=+= kkv ( )
⎪⎩

⎪
⎨
⎧

≥−

<−
= −

0,53

0,2

35 te

t
tv t
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2.9  Transient with Sinusoidal Source

Consider the RL circuit with the dc source changed to a sinusoidal one:

7

5t = 0
i (t)

3 2cos )+ 0.1( tω

For t < 0 when the switch is open:

7

5

t < 0

i (t) = 0

7 d i(t)
d t = 03 2cos )+ 0.1( tω
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For t ≥ 0 when the switch is closed:

7

5
i (t)

7 d i(t)
d t

i (t)5t 0≥

3 2cos )+ 0.1( tω

The governing d.e. is

( ) ( ) ( ) 0,57 ≥=+ ttuti
dt

tid

( ) ( ) ( )[ ] ( )( )[ ] 0,23Re23Re1.0cos23 1.01.0 ≥==+= + teeettu tjjtj ωωω

with

Looking for general solution

( ) ( ) ( ) 0, ≥+= ttititi trss
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Since u(t) is sinusoidal in nature, a trial solution for the steady state

response or particular integral iss(t) may be

( ) ( ) ( ) ( )[ ] 0,2Recos2 ≥=+= teretrti tjj
ss

ωθθω

( ) ( ) ( )( )[ ] ( )( )[ ]tjj
tjj

ss
ss ere

dt
eredti

dt
tdi ωθ

ωθ
2Re52Re757 +=+

( )( )( )[ ] ( )( )[ ]tjjtjj ereejre ωθωθ ω 2Re52Re7 +=

( )( )( )[ ]tjj ejre ωθ ω 257Re +=

( )( )[ ] )(23Re 1.0 tuee tjj == ω

( ) 1.0357 jj erej =+ θωThis is Method One:
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Method Two:

7

5
i (t)

v(t) = 7 d i(t)
d t

i (t)5t 0≥

3 2cos )+ 0.1( tω

3 j 0.1e

I

ωj 7

5

5

ωj 7I

=I r e θj

=+ωj 7 5( )I +ωj 7 5( )r e θj = 3 j 0.1e
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( ) 1.0357 jj erej =+ θω

(1) Steady State Response

75
3 1.0

ω
θ

j
ere

j
j

+
=⇒

222

1.0

75
3

75
3

ωω +
=

+
=

j
e

r
j

[ ] [ ]

⎟
⎠
⎞

⎜
⎝
⎛−=

+−=

−

5
7tan1.0

75ArgArg

1

1.0

ω
ωθ je j

(2) Transient Response

( ) ( ) 0,057 ≥=+ tti
dt

tdi
tr

tr

itr(t) will have the same form as the dc 

source case:

( ) 0,7
5

1 ≥=
−

tekti
t

tr

( ) ( ) 0,
5

7tan1.0cos
4925
23cos2 1

2
≥⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−+

+
=+= − tttrtiss

ωω
ω

θω

Complete Response
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Complete Response

( ) ( ) ( ) 0, ≥+= ttititi trss

0,
5

7tan1.0cos
4925
23 7

5

1
1

2
≥+⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−+

+
=

−− tekt
tωω

ω

To determine k1, the continuity of i(t), the current through the inductor, can be used.

( ) 0,0 <= tti ( ) ( ) ( ) 1
1

2 5
7tan1.0cos

4925
23000 kiii trss +⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−

+
=+= − ω

ω

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−

+
−= −

5
7tan1.0cos

4925
23 1

21
ω

ω
k

⎪
⎩

⎪
⎨

⎧

≥
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−−⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−+

+

<

= −−− 0,
5

7tan1.0cos
5

7tan1.0cos
4925
23

0,0
)( 7

5
11

2
tet

t
ti tωωω

ω
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2.10  Second Order RLC Circuit

Consider determining v(t) in the following series RLC circuit:

11 V
7 F v(t)

i (t)

2 V

Ω500

t = 0

3 5 HΩ

t = 0

Both switches are in the position shown for t < 0 & are in the other positions for t ≥ 0.

11
7 v(t)

2

5003 5

dv (t)
d t7

i (t) = 0
For t < 0

Copyrighted by Ben M. Chen



57

Taking the switches to be in the positions shown starting from t = − ∞, the 

voltages and currents will have settled down to constant values for 

practically all t < 0 and the important voltages and currents are given by:

dv (t)
d t7 = 0

v(t) = 2
11

7
2

5003 5

0

Mathematically:

( ) 0,2 <= ttv & ( ) 0,0 <= tti
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dv (t)
d t7

11
7 v(t)

2

5003 5

d v (t)
d t35 2

2dv (t)
d t21For t ≥ 0

2

2 )()()(
dt

tvdLC
dt

tdvC
dt
dL

dt
diLtvL =⎟

⎠
⎞

⎜
⎝
⎛==

Applying KVL:
( ) ( ) ( ) ( ) 0,112135 2

2
≥==++ ttutv

dt
tdv

dt
tvd

Due to the presence of 2 energy storage elements, the governing d.e. is a 

second order one and the general solution is

( ) ( ) ( ) 0, ≥+= ttvtvtv trss
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(1) Steady State Response

( ) 0,11 ≥= ttu ( ) 0, ≥= tktvss

( ) ( ) ( ) 11002135 2

2
=++=++ ktv

dt
tdv

dt
tvd

ss
ssss ( ) 0,11 ≥= ttvss

(2) Transient Response

( ) ( ) ( )
( )

1213521352135 2012
2

2

++=++=++ zzzzztv
dt

tdv
dt

tvd

z
dt

tdv
tr

trtr

tr by  replaced 

( ) ( ) ( ) 0,02135 2

2

≥=++ ttv
dt

tdv
dt

tvd
tr

trtr

( ) 0,052.0
2

548.0
121

21 ≥+=+= −− tekekekektv tttztz
tr

( )( )
( ) ( ) 052.0,548.0

352
1721

352
13542121

,
2

21 −−=
±−

=
−±−

=zz
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Complete Solution (Response)

( ) ( ) ( ) ⎩
⎨
⎧

≥++
<

=
⎩
⎨
⎧

≥+
<

= −− 0,11
0,2

0,
0,2

052.0
2

548.0
1 tekek

t
ttvtv
t

tv tt
trss

To be determined

To determine k1 and k2, voltage continuity for the capacitor and current 

continuity for the inductor have to be used.

The voltage across the capacitor at t = 0:

9211)0( 2121 −=+⇒=++= kkkkv

⎩
⎨
⎧

≥−−
<

== −− 0),052.0548.0(7
0,0)(7)( 052.0

2
548.0

1 tekek
t

dt
tdvti tt

The current passing through the inductor at t = 0:

0052.0548.00052.0548.0)0( 2121 =+⇒=−−= kkkki

94.01 =k

94.92 −=k
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General RLC Circuit:

7

5003 5

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t21 )( tvtr

R L

C

dt
tdvCti tr )()( =

RC LC

By KVL: ( ) ( ) ( ) 0,02

2
≥=++ ttv

dt
tdvRC

dt
tvdLC tr

trtr

for t ≥ 0

( ) ( ) ( )
( )

0112
2

2
=++=++ RCzLCztv

dt
tdvRC

dt
tvdLC

z
dt

tdv
tr

trtr

tr  by replaced 

LC
LCRCRCzz

2
4)(,

2

21
−±−

=
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Recall that for RLC circuit, the Q factor is defined as

RC
LC

LCR
L

LCR
L

R
LfQ ====

π
ππ

2
122 0

L
QRR

LC
RC
LCRCRC

LC
LCRCRCzz

2
41

2
)(

41

2
4)(,

222

21
−±−

=
−±−

=
−±−

=

Thus,

=

two real roots if 1− 4Q2 > 0 or Q2 < 1/4 or Q < 1/2

two identical roots if 1− 4Q2 = 0 or Q = 1/2

two complex conjugate roots if 1− 4Q2 < 0 or Q > 1/2
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2.11  Overdamped Response

Reconsider the previous RLC example, i.e.,

7
2

5003 5

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t21 )( tvtr

( ) ( ) ( ) 0,02135 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

2
12817.0

21
35

<===
RC
LCQ

( )( )
( ) ( ) 06.0,54.0

352
1721

352
13542121,

2

21 −−=
±−

=
−±−

=zz
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( ) 0,06.0
2

54.0
121

21 ≥+=+= −− tekekekektv tttztz
tr

k1

− t t 0≥,ek2
0.06

0 t

k2

− t t 0≥,ek1
0.54

0 t

0 t

k1 k2+
)( t =vtr

− tek1
0.06 − t t 0≥,ek2

0.54+

Due to its exponentially decaying 

nature, the response itr(t) and the RLC 

circuit are said to be overdamped.

Typically, when an external input is 

suddenly applied to an overdamped

system, the system will take a long time 

to move in an exponentially decaying 

manner to the steady state position.

The response is slow and sluggish, and 

the Q factor is small. 
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2.12  Underdamped Response

7
2

5000.03 5

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t0.21 )( tvtr

2
128

703.0
5

>==Q ( ) ( ) ( ) 0,021.035 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

( )( )
( ) ( ) 17.0003.0

352
96.13921.0

352
135421.021.0,

2

21 jzz ±−=
−±−

=
−±−

=

2)0( =trv
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( ) tztz
tr ekektv 21

21 += ( ) ( ) tjtj ekek 17.0003.0
2

17.0003.0
1

−−+− +=

( ) ( ) tjtj
tr ejkejkti 17.0003.0

2
17.0003.0

1 )17.0003.0(7)17.0003.0(7)( −−+− −−++−=

( ) 20 21 =+= kkvtr
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0)(19.1042.0
)(19.1)(021.0

)17.0003.0(7)17.0003.0(7)0(

21

2121

21

=−+−=
−++−=

−−++−=

kkj
kkjkk

jkjkitr

0353.021 jkk −=−
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( ) tztz
tr ekektv 21

21 += ( ) ( ) tjtj ekek 17.0003.0
2

17.0003.0
1

−−+− +=

( )tjtjt ekeke 17.0
2

17.0
1

003.0 −− +=

( ) ( )[ ] ( ) ( )[ ]{ }tjtktjtke t 17.0sin17.0cos17.0sin17.0cos 21
003.0 −++= −

( ) ( ) ( ) ( )[ ]tkkjtkke t 17.0sin17.0cos 2121
003.0 −++= −

( ) ( )[ ] 0,17.0sin0353.017.0cos2003.0 ≥+= − ttte t

( ) 0,117.0cos2 003.0 ≥−= − tte t o

( ) ( )⎥⎦
⎤

⎢⎣

⎡
+

+
+

+= − tte t 17.0sin
0353.02

0353.017.0cos
0353.02

20353.02
2222

22003.0

( ) ( )[ ] 0,17.0sin1sin17.0cos1cos2 003.0 ≥+= − ttte t oo
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t0

− t t 0≥,e 0.003

Frequency = 0.17

)( t =vtr t 0≥,− te 0.003 cos(0.17t )

2
2

2 _ 1o

When an external input is applied to an 

underdamped system, the system will 

oscillate. The oscillation will decay expon-

entially but it may take some time for the 

system to reach its steady state position.

Underdamped systems have large Q 

factors and are used in systems such as 

tune circuit.  However, they will be not be 

suitable in situations such as car 

suspensions or instruments with moving 

pointers.

It will take too long for the pointer to 

oscillate and settle down to its final position 

if the damping system for the pointer is 

highly underdamped in nature.

Since this is an exponentially decaying 

sinusoid, the response vtr(t) and the RLC 

circuit are said to be underdamped.
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2.13  Critically Damped Response

7
2

5005

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t

)( tvtr

20
7

140

d
d t

)( tvtr7

2
1

7720
5

==Q

( ) ( ) ( ) 0,014035 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

35
1, 21 −=zz

( ) ( ) ( ) 2)0( 1
35

2121
1 ==⇒+=+=

−
kvetkketkktv tr

t
tz

tr

( ) ( )
35
20

35357
0

2

0

3521
2

0

35
21 =⇒=⎟

⎠
⎞

⎜
⎝
⎛ −−=+=

=

−

=

−
ketkkketkk

dt
di

t

t

t

t
tr
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Example: The switch in the circuit shown in the following circuit is closed at 

time t = 0. Obtain the current i2(t) for t > 0.

      A           10 Ω     B       C 
      
          t ≥ 0             i2 
        5 Ω 

                 100 V       0.01 H                    5 Ω 
         
       i1 
       
     F            E                          D 

After the switch is closed, the current passing through the source or the 10Ω

resistor is i1 + i2. Applying the KVL to the loops, ABEFA and ABCDEFA, 

respectively, we obtain
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( )

( ) 100510

10001.0510

221

1
121

=++

=+++

iii

dt
diiii

( ) 15/10100 12 ii −=

3333833 1
1 =+ idt

di

( ) A0.4833/33331 ==∞i 0.4)( 833
1 += − teti α

( ) 001 =i 0.4−=α ( )teti 833
1 10.4)( −−=

teti 833
2 67.20.4)( −+=
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3. Review of Laplace Transforms
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3.1 Introduction

Let us first examine the following time-domain functions:

A cosine function with a frequency f = 0.2 Hz. 

Note that it has a period T = 5 seconds.

( ) ( ) ( )ttttx πππ 6.1cos8.0sin4.0cos)( +=

What are frequencies of this function?

Laplace transform is a tool to convert time-domain functions into a frequency-

domain ones in which information about frequencies of the function can be 

captured. It is often much easier to solve problems in frequency-domain with 

the help of Laplace transform.
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3.2 Laplace Transform

Given a time-domain function f (t), its Laplace transform is defined as follows: 

{ } ∫
∞

−==
0

)()()( dtetftfLsF st

Example 1: Find the Laplace transform of a constant function f (t) = 1.

sss
e

s
e

s
e

s
dtedtetfsF ststst 11101111)()( 0

000

=⎟
⎠
⎞

⎜
⎝
⎛ ⋅−−⋅−=⎟

⎠
⎞
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Example 2: Find the Laplace transform of an exponential function f (t) = e – a t.

( ) ( )

as
e

as
dtedteedtetfsF tastasstatst

+
=

+
−====

∞
+−

∞
+−

∞
−−

∞
− ∫∫∫

11)()(
0000

Prepared by Ben M. Chen



76

3.3 Inverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to 

convert it back to its original time-domain function f (t).
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Here are some very useful Laplace and inverse Laplace transform pairs:
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Some useful properties of Laplace transform:

{ } { } { } )()()()()()( 221122112211 sFasFatfLatfLatfatfaL +=+=+

1. Superposition:

2. Differentiation:
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4. State Variable Analysis
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4.0 Matrix Algebra

Addition (2 × 2):

Multiplication (2 × 2):

Determinant (2 × 2):

Inverse (2 × 2):

Linear Equation (2 × 2):
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4.1 Introduction to State Variables

State variable technique is to convert circuit analysis problems into some first 

order ordinary differential equations (in a matrix form), which many advanced 

matrix theories and computational tools can be applied to. Thus, circuit 

analysis using the state variable technique can be done in a very systematic 

fashion and many well-developed commercial software tools such as MATLAB 

can be readily utilized. Solutions to transient response, steady state response 

and complete response can be solved uniformly regardless the order of the 

circuits.

There are two important equations associated with such a technique, the state 

equation and the output equation, which completely characterized the 

properties of any linear circuits. To be specific, let us consider the following 

RLC circuit:
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0.5
1

0.5
1vs

Step 1: For every capacitor, assign a 

voltage to it, and every inductor, 

assign a current. These are the state 

variables of the circuit. Generally, the 

total number of state variables are 

the number of capacitors & inductors.

ic

vLiL

vc

Step 3: Compute the currents and voltages for 

the rest of circuit in terms of state variables. 

For this example, these are the currents and 

voltages for the 0.5Ω and 1Ω resistors.

iL

⎟
⎠
⎞

⎜
⎝
⎛ +=+

dt
dviii c

LcL 5.0)(5.0

Step 4: Apply KCL and/or KVL to obtain 

state equations: Using KVL to the left 

loop, we obtain,

Using KVL to the right loop, we have 

s
c

Lc v
dt
dviv =⎟

⎠
⎞

⎜
⎝
⎛ ++ 5.0

05.0 =−+=−+ c
L

LcLL v
dt
diivvi
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Step 2: For the capacitor, compute its current as

For the inductor, compute its voltage as

( ) ( ) ( )
dt
dv

dt
tdv

dt
tdvCti ccc

c =⋅== 1

( ) ( ) ( )
dt
di

dt
tdi

dt
tdiLtv LLL

L 5.05.0 =⋅==
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Step 5: Rewrite the state equations obtained in Step 4 in the following format:

sLc
c

s
c

Lcs
c

Lc viv
dt

dvv
dt

dvivv
dt

dviv 22225.0 +−−=⇒=++⇒=⎟
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⎜
⎝
⎛ ++

Step 7: (Output Equation) Lastly, express the variables of interest as a linear combinations of 

state variables. For example, if you want to study the voltages of the capacitor and the 1 Ω

resistor, we have an output equation:
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Lc
L

c
L

L iv
dt
div

dt
dii 2205.0 −=⇒=−+

Step 6: (State Equation) Rewrite these equation in a compact matrix form,

This is the so-called matrix state equation of the circuit. vc and iL are called the state variables, 

and vs is called the input (the source that provide energy to the circuit).
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The advantages of using state variable or state space representation of the 

circuit is as follows:

1. No matter how complicated the circuit is, the final expression for the 

circuit is always in the form,

Only the dimensions of the matrices and vectors in the above equations 

are different.

2. As such, the solutions to these state space equations can be unified into 

a single framework. Actually, it is nothing more than solving a first order 

linear differential equation (in a matrix form). Many commercial software 

tools such as MATLAB and MATHEMATICA can be utilized to solve 

these equations without additional efforts.

DuCxy +=,BuAxx +=&
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4.2 Transform Solution of State Equations

The state equation and output equation of the circuit are:

Let the initial value of the state variable be x(0) = x0 and let us take Laplace

transform on these equations. We have

DuCxy +=,BuAxxx
+== &

dt
d

{ } )()()( 0 ssssL
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Let us get back to our example (assuming that the initial conditions: 

vc(0) = 1 and iL(0) = 1). We have
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Solutions to the circuit can be obtained by taking inverse Laplace transform 

of the above expression of Y(s).
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4.3 Zero-Input Response

Zero-input response is the response of the system without an external input, 

i.e., u = 0. Thus, it is merely the response due to initial condition of the state 

variables. Recall that

If the input is zero,                                    and the output response of the circuit 

is simply given by

The problem of finding for the transient response becomes solving the inverse 

Laplace transform problems. The Laplace and inverse Laplace transform 

tables given in the previous topic can thus be used to find the solutions.
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Again, let us get back to our example. We have obtained,
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The zero-input response can then be computed as,
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4.4 Complete Response

Complete response is the response of the circuit due to both initial condition 

and external input. It can be computed by taking an inverse Laplace transform 

of the following term,

i.e.,

For our example, assume that the voltage source is DC with a constant voltage 

of 2V, i.e, 
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The complete response of the circuit is thus given by
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11 V
7 F v(t)

i (t)

2 V

Ω500

t = 0

3 5 HΩ

t = 0

4.5 More Example: Consider the RLC circuit in Section 2.10, i.e.,
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The above answer is exactly the same as that in Section 2.10. Actually, as 

stated earlier, the power of state space representation of the circuit is it 

unifies all related problems under a single framework.
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4.6 Transfer Function

The state equation and output equation of the circuit or system are:

Assume the initial condition x(0) = x0 =0, then we have 

H(s) in general is a rational function of s and is called the transfer function of 

the circuit of system, which completely characterized the properties of the 

circuit with a zero initial condition.  The roots of the denominator of H(s) are 

called the poles of the system while the roots of the numerator of H(s) are 

called the zeros of the system.

)(])([)()(])([)( 1
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+== &

dt
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Example: We consider again the example in Section 4.5 in which we have

The transfer function of the above system

The system has no zero but have two poles respectively at – 0.548 & – 0.052.
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4.7 System Stability

Example 1: Consider a circuit with a transfer function,
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From the Laplace transform table, we obtain
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This system is said to be unstable because the 

output response y(t) goes to infinity as time t is 

getting larger and large. This happens because 

the denominator of H(s) has one positive root at    

s = 1.
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Example 2: Consider a closed-loop system with,
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This system is said to be stable because 

the output response y(t) goes to 0 as time 

t is getting larger and large. This happens 

because the denominator of H(s) has no 

positive roots.
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We consider a general system,

The system is stable if the denominator, i.e., D(s), has no positive roots. It is 

unstable if it has positive roots. In particular,
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