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Electrical Engineering Circuits

EE2008 module is to introduce basic electrical circuit components &
analyses. Emphasis is on the fundamental methodologies and

mathematical tools for solving and analysing some basic electrical

circuits.

Roughly, the first part of this course focuses on the approaches in the
time domain (ordinary differential equations, state-space equations),
while the second half deals more with the frequency-domain methods

(Laplace transformations, etc.).
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Textbook

A. B. Carlson, Circuits, PWS Publishing Company, New York, 1999.

References

C. C. Ko & B. M. Chen, Basic Circuit Analysis, Prentice Hall Asia,
Singapore, 2nd Edition, 1998.

C. K. Alexander & M. N. O. Sadiku, Electric Circuits, McGraw Hill,
New York, 2000.
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Lectures

Attendance Is essential.

Ask any question at any time during the lecture.
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Tutorials

The tutorials will start on Week 4 of the semester.
You should make an effort to attempt each question before the tutorial.

Some of the questions are straightforward, but quite a few are difficult

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Outline of the Course

1. Circuit Elements

Capacitors. Inductors. V-l Relationships. Energy Storage.

2. Transient Analysis
First-order Transients. Switched DC Transients. Switched AC

Transients. Second-order Natural Response (Overdamped,

Underdamped and Critically Damped Responses). Second-Order

Transients.

3. State Variable Analysis
Review of Laplace and Inverse Laplace Transforms. State Variables.

State and Output Equations. Transform Solutions to State Equations.

Zero-Input Response. Complete Response.
.
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Mid-term Test, Homework and Examination

There will be a mid-term test and two homework assignments for the
first part. The mid-term test will be held in a tutorial session. The
exact date will be made known in due course. The test and
homework assignments will be marked counted as 30% (10% for
homework assignments and 20% for the test) of your final grade for

Part 1, i.e., your final grade for Part 1 will be computed as follows:

Your Part 1 Grade = 30% of Your Test and HW Marks (max. = 50)

+ 70% of Your Exam Marks for Part 1 (max.=50)

8

Copyrighted by Ben M. Chen



0. Preliminary Materials
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0.1 Operations of Complex Numbers

Coordinates: Cartesian Coordinate and Polar Coordinate

| — (5
12 4 j5 =13 e®% = 127 + 52 ¢ 2
_— 7 <
real part imaginary part magnitude argument
Euler's Formula: | € = cos(d) + j sin(0)

Additions: It is easy to do additions (subtractions) in Cartesian coordinate.

@+ jb) + (v + jw)=(@+vVv)+ j(b+w

Multiplication's: It is easy to do multiplication's (divisions) in Polar coordinate.

i0
rel? . uet = (ruel@ | | = Leio)
ue'” u

10

Copyrighted by Ben M. Chen



0.2 Symbols of Voltage and Current Sources

The circuit symbols of voltage and current sources (either DC or AC) used In

this part of the course are:

1O 10

Basically, the arrow and the value in the voltage source signifies that the top

terminal has a potential of v (could be either positive or negative) with
respect to the bottom terminal regardless of what has been connected to it.
Similarly, the arrow and the value of the current source signifies that there is

a current i (could be either positive or negative) flowing upwards.
11
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WO w0 w0

Note that on its own, the arrow does not correspond to the positive
terminal. Instead, the positive terminal depends on both the arrow and

the sign of the voltage which may be negative.
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0.3 Phasor Euler's Formula: €'“ =cos(w)+ jsin(w) = cos(w)=Re[e'”]

A sinusoidal voltage/current is represented using complex number format:

v(t) = /2r cos(at+0) = v/2r Rele @0 | = Re|(re ? |v2e 1Y)

The advantage of this can be seen if, say, we have to add 2 sinusoidal

voltages given by:

v, (t)=3v2 cos(a)t + Zj V2(t) =572 cos(a)t - Z)

v (t)=32 cos(a)t+7gj HSe 6j(f elwt)] v, (t)=5~2 cos(w»Zj_Re[[Sejjj(ﬁej”t)}

e
vl(t)+v2(t)_ReH3ejg+5e Z](fe‘wt)} Re[(6.47e‘j°'32)(x/§ej“’t)] = 6.47+/2 cos(wt-0.32)
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Note that the complex time factor ./2¢!“t appears in all the expressions.

If we represent v;(t) and v»(t) by the complex numbers or phasors:

T

V)= 3¢ 6 representing v, (t)=3v2 cos(a)t + %)

V,=5e 4 representing v, (t)="5v2 cos(a)t - Zj

then the phasor representation for vy (t) + Vv, (t) will be

T

V, +V, =3'6 + B¢ 4 =6.47¢7 193 representing v (t)+ v, (t)=6.47+/2 cos(at — 0.32)
3’6 450 4 = B(COS(%J + ] sin(%)] + 5(003(— %} + ] sin(— %D =6.14— j2.03=6.47¢ /0%

Eulers Formula: e = cos(w) + jsin(w)
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By using phasors, a time-varying ac voltage
v(t) = v/2r cos(wt+0) = Re[(re'?)(~/2e™)]
becomes a simple complex time-invariant number/voltage \/ =reld = r@

r =|V|=magnitude/modulus of V =r.m.s. value of v(t)
0 = Arg|V | = phase of V

Graphically, on a phasor diagram:

Imag
0\ V Using phasors, all time-varying ac quantities
" become complex dc quantities and all dc circuit
analysis techniques can be employed for ac
4 - circuit with virtually no modification.
0 Re/al

Complex Plane
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1. Circuit Elements
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1.1 Capacitor

A capacitor consists of parallel metal plates for storing electric charges.

Conducting plate
/ with area A
_+_

Insulator
with a dielectric
constant g
(permittivity)

The capacitance of the capacitor is givenby Cc = ¢ EA F or Farad

Area of metal plates required
to produce a 1F capacitor in
the free space ifd =0.1 mm is

.
&

_ Ik x 0.0_Ol(z)lm _ 113 (km)?
8.85 x 107 F/m 17
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The circuit symbol for an ideal

capacitor is:
|

i(t)Y
v(t)T: C

Provided that the voltage and current
arrows are in opposite directions, the
voltage-current relationship is:

dv(t)

i(t):C?

For dc circuits:

v(t) = constant = d:;it) =0 = i(t)=0

and the capacitor is equivalent to

an open circuit:
I I
Vi()=0 /i (t)=0

Prd

v(t) = constantT — C

This is why we don’t consider the

capacitor in DC circuits.

18
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Consider the change in voltage,
current and power supplied to the

capacitor as indicated below:
v(t)
N

—~V

(1)
A

Cv;

~V

P(t) = v(t)i(t) =Instantaneous power consumed

N
2

Cv,

Area = Energy stored =

—~\

Cv, ?
2

In general, the total energy storeduln
the electric field established by the

charges on the capacitor plates at

e(t)=

time is CVZ('[)

2

Proof.
e(t) = jp(x)dx_ jv(x)l(x)dx

_j v(x)C—=d V(X)
=C Iv(x)dV(X) = EVZ(X)‘tw

-l -vi(-)
_Cv*(1)

, If v(—)=0.
19
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Now consider the operation of a capacitor in an ac circuit:

tim=c d‘;(tt) = —aCr,\/2sin(at +6,)

v(t) =r,~/2cos(at+6,) T

T = wCr,+/2 cos(wt + 6, +%)
I
In phasor format: |
' i X
_T_I = oCr,el%e’? = jaCr,el = joCV Y I
V 1 I
e it

With phasor representation, the capacitor behaves as if it is a resistor

with a "complex resistance" or an impedance of

_ _ _reliiz 1o re
Ze=ie = 0., = Re[I'V |=Re]l IZC]—ReIZ,}

Jo C

0

An ideal capacitor is a non-dissipative but energy-storing device.
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Since the phase of | relative to V that of is

Arg[l FArg|V EArg {\l/}z Arg{%}zArg ljo

C90°

the ac current i(t) of the capacitor leads the voltage v(t) by 90°.

Example: Consider the following ac circuit:

1

< =110
j2r(50) (319)10°

|
319 M|: 230e'% = 230 TC)
é 30Q

210

éBO

~j10

230

30-j10

=7.3¢/%%

In phasor notation (taking the source to

have a reference phase of 0): 230T C)

éSO

21
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Total circuit impedance

Z =(30-j10)Q

Total circuit reactance

X =Im[Z]=Im[30-j10]=-10Q

Total circuit resistance

R =Re[Z]=Re[30-j10]=30Q

Current (rms) ‘ | ‘ =7.3A
Current (peak) \/E‘ | ‘ = 7.3\/52 10A
Source V-I phase relationship | | leadsby 0.32rad

Power factor of entire circuit

c0s(0.32) = 0.95 leading

Power supplied by source

Re|(230)"(7.3¢1%2)| = (230)(7.3)c05(0.32) = 1.6 KW

Power consumed by resistor

Re (7.3ej°'32)*(30><7.3e"°'32)} = (7.3730=1.6 KW

22
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Impedance, Resistance, Reactance, :
\ Relations?

Admittance, Conduktance, and $Asceptance

\
Impedance: Z =R+ JX
. 1 1 R— X
Admittance: Y =—= — = : _
Z R+jX (R+jX)R=-jX)
— JX R . =X

TRZixX?Z R+ X2 'RT+ X7

_G+j|3\

Conductance Susceptance
23
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1.2 Inductor

An inductor consists of a coil of wires
for establishing a magnetic field. The

circuit symbol for an ideal inductor is:

|
i (1)

v(t)T L

|
Provided that the voltage and current

arrows are in opposite directions, the

voltage-current relationship is:

u(t) = I_di(t)

dt

For dc circuits:

di(t) 0

i(t)=constant = —-~
dt

and the inductor is equivalent to a

short circuit;

| I
, 1(t) = constant

v(t):OTB L

”

That is why there is nothing
Interesting about the inductor in DC

circuits.
24
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Consider the change in voltage,
current and power supplied to the

Inductor as indicated below:
i(t)
\

~V

0 1
v(t)
N
Li,
0 1 t

P(t) = v(t)i(t) =Instantaneous power consumed
N

Li, 2o
f Area = Energy stored =

~V

Li,2
2

In general, the total energy storeduw
in the magnetic field established
by the current i(t) in the inductor

at time tis given by
Li“(t)

2

e(t)=

e(t) = jp(x)dx— jv(x)l(x)dx

= | |(X)L¥dx

=L ji(X)di(X) =§i2(x)‘tw
:%ﬁﬂo—iﬁ—wﬂ
_ Liz(t), if i(—o0)=0.

2 25
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Now consider the operation of an inductor in an ac circulit:

|
i () I(t) = r~2cos(mt + )

V(I)T L v(t) = LCIId(P = —oLr~/2sin(at +6,)

= wLr 2 cos(at + 6 +7)
| | 2

In phasor:

I I
(0§ | =reld I

v(t)T L jo L I\ v p ZL:\IL: jol
V =olre!%e)’? = joLre!® = (jol)I

I I
Z, is the impedance of the inductor. The ave. power absorbed by the inductor:

0o = Re[1'V ERe[1°Z, 1]= Re[joLl "1 |= Re |joL| 1 F|=0
26
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Since the phase of I relative to that of V is

Jol

Arg[l]- ArgV |= Arg[ﬂ = Arg{zij = Arg{i} =-90°

the ac current i(t) lags the voltage v(t) by 90°.

As an example, consider the following series ac circuit:

[
319 uF 30

230V
50 Hz TC) 31.9 mH

We can use the phasor representation to convert this ac circuit to a ‘DC’

circuit with complex voltage and resistance.
27
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¢

B j2n(50)(31.9)10° = j10

Summary of the circuit:

Total circuit
impedance

Z=3-j10+j10=30

¢

¢

_i10 3
230 _

I I 3—j10+j10

Y

~j10

3 i
73
%

| | AN

| | 77

~j10 3

Total circuit reactance

X=Im[Z]=1m[3]=0Q

Total circuit resistance

R=Re[Z]|=R¢[3]=30Q

Current (rms)

1 |=77A

Current (peak)

V2| 1]=77/2=108A

Source voltage-current .

phase relationship 0 (In phase)
Power factor of entire

circuit COS(O)Z].

Power supplied by
source

Re|(77)"(230)|=18kw

Power consumed by
resistor

Re|(77) (3% 77)|=18kwW

28
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2. Transient Response
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2.0 Linear Differential Equations

General solution:

nth order linear d“x(t) d“‘lx(t)

differential equation g +ta, 4 T +a,x(t)=u(t)

General solution X(t)=x, (thx, (t)

Steady state response X, (t)J=particular integral obtained from assuming
with no arbitrary constant solution to have the same form as u(t)

Transient response with x,, (t}=general solution of homogeneous equation
N arbitrary constants qr n-1
X (1 d" - x (t
dtt:l( )+an—1 dtn_trl( )+ 8y Xy (t)ZO

30
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General solution of homogeneous equation:

nth order linear d"x (t) d"1x (t)
homogeneous equation —dttn ta, dtn—tl -+ %, (t)=0
Roots of polynomial Roots :z,,--,z,
from homogeneous - n n-1

. ivenby(z-z,)--- (z—z z"+a, _,z2" "+ -+a
equation g Y( 1) ( n): n-1 0
General solution X, (t)=k,e™ 4 - +k e
(distinct roots)
General solution X, ()=, Tkt Jet (Kt o2t +hge®t ke
(non-distinct roots) if roots are 13,13,13, 22, 22, 31, 41

31
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Particular integral:

X (t)

Any specific solution (with no arbitrary constant)
of

a'x(t), X, o)

dt” "t gttt

Method to determine

X (t)

Trial and error approach: assume x_(t) to have

the same form as u(t) and substitute into
differential equation

Example to find x(t) for

—d)(;&t)+2 x(t )=

Try a solution of he®

d’é—?) + 2x(t) = e*=3he*+2he*=e* =h=0.2

x,(t)=0.2e*

Standard trial solutions

u(t) trial solution for x_(t)
e he”

t ht
te” (h,+h,t)e

a cos(w t)+b sin(w t) h, cos(@ t)+h, sin(w t)

32
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2.1 What is Transient Analysis?

DC and AC circuit analyses using the frequency domain approach are often

called steady state analysis, as signals are assumed to exist at all time.

In order for the results obtained from these analyses to be valid, it is
necessary for the circuit to have been working for a considerable period of
time. This will ensure that all the transients caused by, say, the switching
on of the sources have died out, the circuit is working in the steady state,

and all the voltages and currents are as if they exist from all time.

However, when the circuit is first switched on, the circuit will not be in the
steady state and it will be necessary to go back to first principle to
determine the behavior of the system. This process is then called the

transient analysis.
33
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2.2 RL Circuit and Governing Differential Equation

Consider determining i(t) in the following series RL circuit:

)§—_/\/\ i (1)
t=0 50

3vTC> 7H Tv(t)

where the switch is open for t <0 and is closed for t > O.

Since i(t) and v(t) will not be equal to constants or sinusoids for all time,
these cannot be represented as constants or phasors. Instead, the

basic general voltage-current relationships for the resistor and inductor
have to be used:

34
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51(t)

o (1) =0

3T<> 7 Tv(t)_Ydo:g[t)

e i(t) =0
voltage cross
over the switch T di(0
3 () @ 7 v =752 =0

35
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i (1)

7 Tvm_7 ﬁ”

Applying KVL:

di(t
—£)+5K) 3, t>0

dt
and i(t) can be found from determining the
general solution to this first order linear
differential equation (d.e.) which governs

the behavior of the circuit for t > 0.

Mathematically, the above d.e. is often

1. si)-u(e), 0

where the r.h.s. is U(t)=3, t>0

and corresponds to the dc source or

excitation in this example.
36
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2.3 Steady State Response

Since the r.h.s. of the governing d.e.
7d:j—(:)+5i(t):u(t):3, £>0

Let us try a steady state solution of
i (t)=k, t>0

which has the same form as u(t), as a
possible solution.

dig(t) ..
7 ast()+5uss(t)=3

= 7(0)+5(k)=3

:>k=§
5

7 d'ss (t)+5iss (t):7i(§j + 5(§) =3, =0
dt 5 5

and is a solution of the governing d.e.

In mathematics, the above solution is
called the particular integral or solution
and is found from letting the answer to
have the same form as u(t). The word
"particular” is used as the solution is only
one possible function that satisfy the d.e.

37
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In circuit analysis, the derivation of i(t) by letting the answer to have <"
the same form as u(t) can be shown to give the steady state response

of the circuit as t —» .
Using KVL, the steady state

t >
A response Is
(D) = K
5 = 3=0+5k +0 =5k
1O 3l ST
3
= k==
~ 5
: 3
5i(t) = 5k = |(t)=§, =
AN i(t) = k This is the same as i(t).

5

3T<> 7 Tv(t)_ do:gt) 0

38
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2.4 Transient Response

To determine i(t) for all t, it is necessary to find the complete solution of

the governing d.e.

d('j_(ths.() u(t)=3, t20

From mathematics, the complete solution can be obtained from summing
a particular solution, say, ix(t), with i,(t): i(t)=ig(t)+i,(t), t=0

where i.(t) is the general solution of the homogeneous equation

5
di(t) .. : S
7 dig,{(t)+5itr (t) where k, is a constant (unknown now).

&

replacedby z _ _

diy (t)
dt

=77 +52°=72+5
Thus, it is called transient response.
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2.5 Complete Response

To see that summing i (t) and i (t) gives the general solution of the governing d.e.

7d'—(t)+5i(t)=3, t>0
dt
note that

iss(t)zg, t>0 satisfies 7%@)+5{—)=3, t>0

E . E s
iy (t) = ke 7' t»0 satisfies YS[kle 7t}+5(kle 7tj:0, £>0
t
o 5 5
() +ig()=>+ke 7, t20 satisfies 79| 3k |15 Shke 7 |23
5 dt| 5 5
—»

3)
>t
i(t)=i(t)+ itr(t)=§+k1e 7, t>0] isthe general solution of the d.e.
40
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0 . ¢ Steady State
t<0 t>0 Response

N\
\

Switch
close

<= Transient Response

determined later

iss(t) + itr(t)

4= Complete Response

0. 41
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Note that the time it takes for the transient or zero-input

response I.(t) to decay to 1/e of its initial value is
v

Time taken for i.(t) to decay to 1/e of initial value = g
and is called the time constant of the response or system.

We can take the transient response to have died out after a

few time constants.

42
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2.6 Current Continuity for

Inductor

To determine the constant K; in

the transient response of the RL
circuit, the concept of current
continuity for an inductor has

to be used.

Consider the following example:

i (1)

v(t)T L

[
\l

-~ Y

di (t
VL(t) - 7 st( )
A
7

~ V

i (t) v (t) =Instantaneous power supplied

N\

-~ Y

43
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Due to the step change or discontinuity in i (t) att = 2,
and the power supplied to the inductor att = 2 will go to
Infinity. Since it is impossible for any system to deliver an
Infinite amount of power at any time, it is impossible for

I, (t) to change in the manner shown.

In general, the current through an inductor must be a
continuous function of time and cannot change in a

step manner.

44
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Now back to our RL Circuit:

160)

7H TV(t)

—W
t= 5Q

0

1O

5
3 r G T
5
O _
i(t)=0,t<0| Switch 1(t) = i (1) + i, (1)
close - %Jr kle‘%t, t>0

Using current continuity for an

inductor att = 0:

. 3 3
|(t:O):g+k1:O — k]_:—g
0, t<0
i(t) = o
— I(t)—<g_§e 7t’ 50

i(t)=0,t<0 ‘ 1(1) = 15(1) + 1,(1)
Switch 5
close = %_%e_7t, t>0

45

Copyrighted by Ben M. Chen



t<0

2.7 RC Circuit 5 500
AN A/
Consider finding v(t) in the following i (1) = 7d(\j/_§t)
RC circuit: 3 TC) C)l 2
f= 0 v(t)T__ 7
A/ A/
5Q 500

3V TC) C)l oy Taking the switch to be in this
TF—— T v(t)

position starting from t = —oo, the

voltages and currents will have

settled down to constant values

where the switch is in the for practically all t < 0.

position shown fort <0 and is

i(t)=7 dv(t) _ _d (constant)

In the other position for t > 0. Y
dt dt

=0, t<0

46
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t >0
t<0
oo _dv(t)
fn o N '
=0
BTCD V(t)T__7 CDLZ BTCD \/i(t)—7d\éit) C)J/z
v(t)T:: 7
~
/\S/L |5OL/\;):O| Applying KVL:
we0 35V L )= u(t)=3 t=0
1O - Qly o
M6) :—2|T—— 7
which has a solution
V(t) = Vs (t) + Vi (t)’ tZB




(1) Steady State Response
u(t)=3, t>0

v
v, (t)=k, t=0
v
dVSS(t —
3558 5 v, (1)=3
= 0+k=3=k=3

v

(2) Transient Response

35m’a—ft(t) W ()=0, t=0

L dvgt(t) replaced by z
=35z +2° =35z +1
1

— L =——
1 35

t

= v, (t)=ke* =ke ¥, t>0

t<0
) 4= Complete Response
1>

- 48

Copyrighted by Ben M. Chen



2.8 Voltage Continuity for Capacitor

To determine k, in the transient response of the RC circuit, the concept

of voltage continuity for a capacitor has to be used.

Similar to current continuity for an inductor, the voltage v(t) across a

capacitor C must be continuous and cannot change in a step manner.

Thus, for the RC circuit we consider, the complete solution was derived as:

—2 t<0 —2, t<0
vﬁ)z{ ’ = ot
Vss(t)+vtr (t)’ t20 3+ke 3% t>0
Att=0, )
-2, t<O
v(0)=3+k =—2 = k=—5 = V(t)=+ ot
3-5e *, t>0

49
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2.9 Transient with Sinusoidal Source

Consider the RL circuit with the dc source changed to a sinusoidal one:

v (1)

=0 5

3\f2005(a)t+0.1) TC) 7

For t < 0 when the switch is open:

t<0

—e 1(t) =0

Sﬁcos(a)HO.l)TC) 7 T 7% =0

Copyrighted by Ben M. Chen
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For t > 0 when the switch is closed:

[f>0 5i (t)
<

A 7 i®

5

3\f2003(a)t+0.1)T<> 7 BT7dd'_Et)

The governing d.e. is

q i(t) Looking for general solution
+5i(t)=u(t), t>0 >

" i(t) = i (1) + i, (1), t20

with

u(t) = 3v2 cos(wt+0.1) = Re[3v/2e 1 0V | = Re|(3e 14|28t )|, t=0
o1

Copyrighted by Ben M. Chen



Since u(t) is sinusoidal in nature, a trial solution for the steady state

response or particular integral i, (t) may be

i, (t) = rv2 cos(wt + 0) = Rel(re? ) (V2e 1Y), t=0

—» 7M+5iss(t)= d Re[( ew)(fejwt)h5Re[(re“9)(fe‘”t)]

dt dt
=7Re|(re/? ) jo)v2e1*! )|+ 5Re|(re 1 fv2e 1)
= Re :(rejoaﬁ + 5)(\Eej‘“t )]
ez
This is Method One: = | (jo7+5)rel?=3¢1%1

52
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Method Two: t=0 51(t)

%
M i (1)
5
3./2cos (wt+0.1) TC 7 Tv(t) _ 7 ddigt)

3ej0'1T< j o7 /I\ j 071

(jo7+5)1 = (jw7 +5)rei? =3¢191 53
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(1) Steady State Response (2) Transient Response

- |6 j0.1 '
(ja)7+5)rej = 3e 7 dItC;t(t) n 5itr (t) =0, t>0
o 3el0l
= rel” =— o
5+ joT I.(t) will have the same form as the dc
. source case:
‘3eJ01‘ 3
= I = . = ] —§t
5+jo?| 52472 i, (t)=ke 7, t>0
0 = Arg[ejo'l: ~Arg[5+jo7] ﬁ
af f
=0.1-tan™ ?wj Complete Response

| W

i (t)= rfcos(a)t+6’ 32 cos[a)t+0 1- tani(noﬂ o t>0
/25 + 490)° 5

54
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Complete Response
i(t) = iss (t) + itr (t)’ t>0

3)

—t

= 32 cos[a)t+0.1—tan1(7wﬂ+kle T, t>20
\/25+490° 5

To determine k,, the continuity of i(t), the current through the inductor, can be used.

i(t)=0, t<0 =» i(0)=i,(0)+i,(0)= \/2534:/3%)2 cos[o.l—tanlt%oﬂ + kg

= Kk =- 32 cos[o.l—tan‘l(@ﬂ —>
| 25+490)° 5

0, t<0

oy 34
I(t) = 32 cos[a)t +0.1- tan1(7—wﬂ — cos{o.l—tanlv—wﬂe T4 120
\/25+490° 5 >

5
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2.10 Second Or

der RLC Circuit

Consider determining v(t) in the following series RLC circuit:

t=0

Nle

Jv\ig)m

t=0

30 5H

N

YFZZTV(U

500 Q2

]

Both switches are in the position shown for t < 0 & are in the other positions for t > 0.

Fort<O

i(t)=0

e AN I,
; 5

1|

)

7

dv (t)
dt

7 =

JW

500

o

C

DIk

56
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Taking the switches to be in the positions shown starting from t = — oo, the
voltages and currents will have settled down to constant values for

practically all t < 0 and the important voltages and currents are given by:

0
—

e AN ﬂsﬂ . AN
3

500

7dv(t):0

ife Lty OF

Mathematically:

v(it)=2, t<0 & i(t)=0, t<0

S7
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W |
&/‘_'2_, Nati:

2 of Singapo
dv(t)j _Lc d vgt)
dt dt

30412 v t:L_Ld(C
dt dt? &= Vv (1) ™ ”

Fort>0 21

MN—IN— — W

AV |,

<O £t Ol

Applying KVL: 2
V() L 1 MO | )= u) =11, 20

35
dt? dt

Due to the presence of 2 energy storage elements, the governing d.e. is a
second order one and the general solution is
V(t)= v (t)+ v, (t), t>0

58
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(1) Steady State Response
u(t)=11, t>0 =» v (t)=k, t=0 =»

2
35%536)+21dvé—5t(t)+vss(t):0+0+k:11 — | v (t)=11, t>0

(2) Transient Response

2
av, (v Vtr(t)+21d"tf(t)+vtr(t)=o, t>0 =P

35—t
dt dt

2
35dv—”2(t) + 21dvt—r(t) +v, (t) = 357%+217'+2° = 357421241
dt dt dv, (t)

— > replacedby z
dt p y

214,212~ 4(35)1) -21+17

=P 17,2,= = = —0.548, - 0.052
fur 2 2(35) 2(35)

v, (t)=ke*'+ ke =ke 1 ke t>0 | €= 50
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Complete Solution (Response) To be determined

V(t):{Z, t<0 :{2, t<0

v (t)+v, (t), t=0  |11+ke ™™ +k,e®™, t>0

i(,[):7dv(t): 0, t<0
. dt 7(-0.548k,e "> —0.052 k,e*®"), t>0

To determine k, and k,, voltage continuity for the capacitor and current

continuity for the inductor have to be used.

The voltage across the capacitor at t = 0:

v(0)=11+k; +k, =2 = Kk +k,=-9 |
k, =0.94
The current passing through the inductor at t = O: >

k, =—-9.94

1(0) =-0.548k, —0.052k, =0 = 0.548k, +0.052k, =0 -~

60
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General RLC Circuit: 'RCdV_tr(t_) I,_C_d “Vir ()

L dt L dt?

é %
fort>0 AN o
R L i(t)=C#

|0 Lt

By KVL.: LCc L T\t

2
LC dv, (1) +rc e (t) +V,, (1)

. = LCz°+RCz'+1=0
dt dt dv, (t)

—1 2 replacedby z
at P y

~RC ++/(RC)°-4L
= z,7,= - \/Z(L(S) : _61



=l N US
—~ (2
National University
of Singapore

Recall that for RLC circuit, the Q factor is defined as

2L 224 1 L _4LC
R="R TR 27/LC RJLC RC
Thus,
—RCJ_rRC\/l—4 LC
. _—RC +/(RC)*~4LC _ (RC)* _—R+Ry1-4Q7
b 2LC 2LC 2L

~ tworeal roots if 1-4Q2>00rQ?<1/4orQ<1/2

< two complex conjugate roots if 1-4Q2<0or Q > 1/2

-~ two identical roots if 1-4Q2=00r Q = 1/2

62
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2.11 Overdamped Response

Reconsider the previous RLC example, i.e.,
t>0

dvy (1) d v (1)
Zl—dt 35—OI £2

500

[ O Ltem Ol

d2v, (t) ., dv,(t) _JLC 35
35- 21 Ve ()=0, 120 —» Q=" “="70 =02817< 1)

—_ — 214 /21°- 4(35)(1) _ - 2117 054 006
s 2(35) 2(35) ’ 63
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Vi (1) = ke + ke = ke ™ + ke t>0

—0.541
k,e

120

‘=9

t

kl+ k2

-~V

Due to its exponentially decaying
nature, the response i,(t) and the RLC

circuit are said to be overdamped.

Typically, when an external input is
suddenly applied to an overdamped
system, the system will take a long time
to move in an exponentially decaying

manner to the steady state position.

The response is slow and sluggish, and

the Q factor is small.
64
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2.12 Underdamped Response

t>0 Vtr (O) 2
d vy (1) d Vtr(t)
T R Te
E %
AN A’ \ R AN
0.03 5

1O T/ Ol

J5 dv, (t) dv,, (t)
— — 28 35 ri\-/ . 021—u t)=0, t>0
Q 0.03./7 g % dt? dt Ve (1)

~0.21+/0.212-4(35)(1) —0.21++/~139.96
2(35) - 2(35)

2y, 2, = =—-0.003 £ j0.17
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Vy, (t) _ klezlt n k2922t= kle(—0.003+ jO.17)t n kze(—0.003— jO.17)t
— v, (0)=k+k,=2
iy (1) = 7Ky (~0.003+ j0.17)e"00%+ 10Nt 4 7k, (~0.003~ j0.17)g! 0%~ 017t
i (0) = 7K, (~0.003+ j0.17) + 7k, (~0.003— j0.17)

= -0.021(k, +k,)+ jL.19(k, —k,)
= -0.042+ j1.19(k, —k,) =0

—3%  k —k,=-j0.0353
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Vi, (t) = ket + ke e kle(—o.003+ j0A7)t kze(—o.oos— j0.17)t Bmm
_ 0003t (klejo.m N kze—jo.m)
= e "k [cos(0.17t) + jsin(0.17t)] + k,[cos(0.17t) — jsin(0.17t)]}

=% (k, +k,)c0s(0.17t) + j(k,—k,)sin(0.17t)]

= e 2%%2¢05(0.17t) + 0.0353sin(0.17t)], t>0

= @ 0003 /22 4 0.03532{ 2 cos(0.17t) + 0.0353 sin(O.l?t)}

J22 +0.03532 J22 +0.03532

= 2670%%|cos1° c0s(0.17t) + sin1°sin(0.17t)|, >0

— 2 V003t cos(O.l?t —1°), t>0
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—0.003t
2€ ,

t=0

Frequency = 0.17

|
|
|
|
| P
-
| -
.
| -
-
| -
| .
|
[
7/
! /
I

Vtr(t) =2e€

—0.003t

cos(0.17t-1),t>0

Since this is an exponentially decaying

sinusoid, the response v, (t) and the RLC

circuit are said to be underdamped.

t

When an external input is applied to anﬁw
underdamped system, the system will
oscillate. The oscillation will decay expon-
entially but it may take some time for the

system to reach its steady state position.

Underdamped systems have large Q
factors and are used in systems such as
tune circuit. However, they will be not be
suitable in situations such as car
suspensions or instruments with moving

pointers.

It will take too long for the pointer to
oscillate and settle down to its final position
if the damping system for the pointer is

highly underdamped in nature. 68
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2.13 Critically Damped Response

t>0
2
md;t{(t) 35dd\{[t£(t)
51 < <
0" 20747 2 MN—IN—— A
@ 500
\/7 thr(t)
1T—— VY
10 "1y, Of
7 ::/I\Vtr(t)
2 1
354 (;’tt;(t) AW . )=0, t=0 42 =~

i,(0) d 7
trg):dt (k, + kyt)e ¥
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Example: The switch in the circuit shown in the following circuit is closec
time t = 0. Obtain the current i,(t) for t > 0.

A 10Q B C
—— WV |
% 50

t>0

]DOVT O ) 001 50

vll

F E D

After the switch is closed, the current passing through the source or the 10Q2
resistor is i, + 1,. Applying the KVL to the loops, ABEFA and ABCDEFA,
respectively, we obtain
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di,
dt
10(i, +i,)+5i, =100 = i, =(100—-10i,)/15

}

d—tl +833i, = 3333

10(i, +1i, )+5i, + 0.01—X =100

—»  i(0)=3333/833=4.0A —» i(t)=ae ™ +4.0

il(O)Z 0 =—>» a=-40 —» i, (1) = 4.0(1_ e—833t)

}

i (t)=4.0+2.67e%
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3. Review of Laplace Transforms

73



3.1 Introduction

Let us first examine the following time-domain functions:

I T ! e
\ o\ | | /
\ | \ | [
\ | o/
\ | | / \\\ : : /
05—~ e e R e
1 | | 1/ | \l | | 1/
\ | / \ | I/
I\ | | )i
© 1\ | | /i
S I | | [
=] 1\ I I I
= [0 e ———————————————————-—-——--- _
(=] ! ! |
] | |
= I I
| |
. | |
T
: ‘\\ : / | | \ : / |
| \! |
! \ /
! N\ /i
| |
-1 I I \ / I I I AN / I I
0 1 2 3 4 5 6 7 8 9 10

Time in Seconds

A cosine function with a frequency f = 0.2 Hz.

Note that it has a period T = 5 seconds.

Magnitude

-0.5

-1.5

2

15

0.5} -|

-1

N
1F+

OF-+-

-2

L L L L L L L L L
1 2 3 4 5 6 7 8 9 10
Time in Seconds

X(t) = cos(0.4t)+sin(0.8t )cos(1.62t)

What are frequencies of this function?

Laplace transform is a tool to convert time-domain functions into a frequency-

domain ones in which information about frequencies of the function can be

captured. It is often much easier to solve problems in frequency-domain with

the help of Laplace transform.
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3.2 Laplace Transform

Given a time-domain function f (1), its Laplace transform is defined as follows:

0

F(s)=L{f®}=f(t)e

—dt

Example 1: Find the Laplace transform of a constant function f (t) = 1.

o0

|

F(s) =

0

f(t)edt = j

0

0

e—Stdt - _ 1 e—St
S

0

eoj:

Lo
S

|

1

__ijzl
S S

Example 2: Find the Laplace transform of an exponential function f (t) = e -2t

o0

F(s)=|

0

f(t)e™dt = Ie‘ate‘“dt = _[ e (sralgt =
0 0

1

————e¢

S+a

—(s+a)t

0
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3.3 Inverse Laplace Transform

=l N U S
G0
Mational University
of Singapore

Given a frequency-domain function F(s), the inverse Laplace transform is to

convert it back to its original time-domain function f (t).

Here are some very useful Laplace and inverse Laplace transform pairs:

f(t) <
1 <
t —
e o
te™ <

F(s)

w |-

(1)

sinat

cosat

e *sinbt

e ¥ cosht

N

N

F(s)

a
s +a°

S
s? +a°

b

s+a) +b?
(s+a)

S+a

s+a) +b?
(s+a)
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Some useful properties of Laplace transform:

1. Superposition:
L{al fl(t) + a'2 f2 (t)} = alL{fl(t)}+ aZL{fZ (t)} — alFl(S) + a‘2 FZ(S)

2. Differentiation:

{df ()

, } L{f ()= sL{f ()} £ (0) = sF (s)~ T, (0)

{d d: (t)} L{F @)= s2L{f (©}-sf (0)- '(0) = s?F (5) —sf (0) - 1(0)

|

3. Integration:

f(:)dé} L{f(t)}= —F(s)

O ey —+
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4.0 Matrix Algebra

Addition (2 x 2):

1
o QO
o T

+1 2_a+1 b+2
3 4| |c+3 d+4

e . |a bjll| |1la+3b a bl[1 2] [1a+3b 2a+4b
Multiplication (2 x 2): L d}M_LHBd] L d}{s 4}:{1(”30' 2c+4d}

Determinant (2 x 2): A 3‘:ad—bc
FENI N
Inverse (2 x 2): E STZ _Z ba - ;Z—bi
c d
B d —bJ1] [1d-2b
Linear Equation (2 x 2): E ﬂ@jzm Kj{: (ﬂ H{Cadic}u{;;ﬁa}
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4.1 Introduction to State Variables

State variable technigue is to convert circuit analysis problems into some first
order ordinary differential equations (in a matrix form), which many advanced
matrix theories and computational tools can be applied to. Thus, circuit
analysis using the state variable technique can be done in a very systematic
fashion and many well-developed commercial software tools such as MATLAB
can be readily utilized. Solutions to transient response, steady state response
and complete response can be solved uniformly regardless the order of the

circuits.

There are two important equations associated with such a technique, the state
equation and the output equation, which completely characterized the
properties of any linear circuits. To be specific, let us consider the following

RLC circuit:
80
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0.5(1,_ +1;) 05( dvj | o
a Vi Step 1: For every capacitor, assign a

VA L am -
i

05 "t N
Vs T O L1V 1 T I'L assign a current. These are the state

voltage to it, and every inductor,

variables of the circuit. Generally, the
Step 2: For the capacitor, compute its current as total number of state variables are

L (t)=c 2 dv,(t) _q.dv, (t) dv, the number of capacitors & inductors.

dt dt  dt

Step 4: Apply KCL and/or KVL to obtain

For the inductor, compute its voltage as state equations; Using KVL to the left

v (t)=L di(t) _o5. % di, t) _o5dl loop, we obtain,
dt dt dt
v.+0.5 1 +de =V
Step 3: Compute the currents and voltages for c 7t gt ) f
the rest of circuit in terms of state variables. Using KVL to the right loop, we have
For this example, these are the currents and : di,
I, +Vv, -V, =1, +05E_V =0

voltages for the 0.5€2 and 1€2 resistors. 81
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Step 5: Rewrite the state equations obtained in Step 4 in the following format:

VC+0.5[iL+dVCj=VS = 2vC+iL+dVC =2v, = . = -2V, — I+ 2v,
dt dt dt

: di di :

i, +05—+t-v,. =0 = —E=2v_-2i

L dt C dt C L

Step 6: (State Equation) Rewrite these equation in a compact matrix form,

Vv -2 -1V, 2 _
e S+ v, = x=Ax+Bu
I 2 =2]1 0
This is the so-called matrix state equation of the circuit. v, and i, are called the state variables,

and v, is called the input (the source that provide energy to the circuit).

Step 7: (Output Equation) Lastly, express the variables of interest as a linear combinations of

state variables. For example, if you want to study the voltages of the capacitor and the 1 Q

resistor, we have an output equation:

) Ge)le )l = vmoeemn

82
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The advantages of using state variable or state space representation of t

=N US

Y3/ Mational University
f Singapore

"n'|g

circuit is as follows:

1.

No matter how complicated the circuit is, the final expression for the

circuit is always in the form,

Only the dimensions of the matrices and vectors in the above equations

are different.

As such, the solutions to these state space equations can be unified into
a single framework. Actually, it is nothing more than solving a first order
linear differential equation (in a matrix form). Many commercial software
tools such as MATLAB and MATHEMATICA can be utilized to solve

these equations without additional efforts. 83

Copyrighted by Ben M. Chen



4.2 Transform Solution of State Equations

The state equation and output equation of the circuit are:

z—r:X:AXJFBU, y = Cx + Du

Let the initial value of the state variable be x(0) = x, and let us take Laplace

transform on these equations. We have

L{‘;—:}zL{AHBu} = sX(s)—x, = AX(s)+ BU (s)

= (sI-A)X(s)=BU(s)+x, = X(s)=(sl-A)"'BU(s)+(sl-A)"'x,

L{iy}=L{Cx+Du} = Y(s)=CX(s)+DU(s)
__________________________ = __9(__8_!__—___A2___53_!__(3)__%__9(__8l —A) "%, + DU (s)

= Y(s)—i[C(sI A)” B+D]U(s):+IC(sI A) X,
____________________ f e :_“““““f““““—":

due to external force or input. due to initial condition.

84
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Let us get back to our example (assuming that the initial conditions:
v.(0) =1andi (0) =1). We have

ST H R N N N
SRAUEE FE S e B e

S+ 2 1

= det (sI—A):det{
-2 S+2

}=(5+2)2+2=32+4s+6

{s+2 _1} [ s+2 -1 ]
2 S+ 2 2 2
= (sl-A)*'= T4l | s"+4s+6 ST +4s+6

s?+4s5+6 2 S+ 2
| s2+4s+6 s® +4s5+6 |

S+ 2 -1 S+ 2

-1

1 0 2 2 2 2
— C(sI—A)lz{ } S°+4s+6 S°+4s+6 s?+4s+6 S’+4s+6

2 S+ 2 2

S+ 2

| s2+4s+6 s® +4s+6] [s*+4s+6 S® +4s5+6 |
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[ s +2 -1 ] [ 2(s+ 2)
. C(sI-A)'B+D = s?+4s+6 s?+4s+6 (12| |0 |s?+45+6
2 S+ 2 0 0 4
| S +45+6 S +4S+6_ | S° + 4S5+ 6]
[ s+2 -1 ] [ s+1
~  C(sl-A)lx, = s?+4s+6 s’ +4s+6 (|1 _|s?+4s5+6
° 2 S + 2 1 s+ 4
| S +4s+6 S®°+4s+6 | S? + 45+ 6
_VC(S) -1 -1
= Y(9)= | (s) =[C(sl-A) " B+D]JU(s)+C(sl —A) X,
S
| " L
2(s+2) | [ s+1
2 2
_|S"+4s+6 U(s) + S°+4s+6
4 s+4
| S°+45+6_ | S° +45+6_

Solutions to the circuit can be obtained by taking inverse Laplace transform

of the above expression of Y(s).
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4.3 Zero-Input Response

Zero-input response is the response of the system without an external input,
l.e., u=0. Thus, it is merely the response due to initial condition of the state

variables. Recall that
Y(s)=[C(sl-A)*'B+D]JU(s)+C(sl-A)"*x,

If the input is zero, Y (s) = C(sl — A) *x, and the output response of the circuit

IS simply given by

The problem of finding for the transient response becomes solving the inverse
Laplace transform problems. The Laplace and inverse Laplace transform

tables given in the previous topic can thus be used to find the solutions.
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Again, let us get back to our example. We have obtained,

[ 2(s+2) | s+1
V S 2 2
Y (s) = . (S) _ | s?+4s5+6 U(s)+| S +4s+6
1, (s) 4 S+ 4
| $° + 45+ 6 | | $° + 4S5 + 6 |

The zero-input response can then be computed as,

T s+1 1 Ll{ s+1 }
y(t) = LMY (s)}= {W(t)} = Ll{{vc(s)}} _ | st Has+6 || _ 52+ 45+ 6

I (1) 1, (s) S+ 4 Ll{ S+ 4 }
Ls?+4s+6]) | S°+4s+6] |

B - 1 _
Lt S+2 _ \/5\/E ! - . _
_ (s+2)2+(\/§)2 (s+2)2+(\/§)2 _ GZt(COSﬁt—ﬁsinﬁtJ
L_lr S+ 2 S22 L e‘”(cos\/EtJr\/Esin ﬁt) |

3 + [

22+ (V2f st (2f )
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4.4 Complete Response

Complete response is the response of the circuit due to both initial condition
and external input. It can be computed by taking an inverse Laplace transform

of the following term,

Y(s)=[C(sl - A)™B+D]JU(s)+C(sl - A)x,

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

___________________________________________________________________________________________________________________________

For our example, assume that the voltage source is DC with a constant voltage

of 2V, I.e, 2
u=v,=2 = U(s)=L{uj== =
S
[ 2(s+2) |  os+1 | [ 2(s+2) 2] [ s+1 ]
V (s 2 2 2 e 2
Y (s) = ()| _|s*+4s+6 U(s)+| S +45+6 | _|s"+45+6 s | |s®+45+6
I, (s) 4 S+ 4 4 2 S+ 4
| s2+45+6 | s +4s+6] | s?’+4s5s+6 s | [ s*+4s5+6 |
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2(s+ 2) .3_ s+1
2 2
y(t)={v°(t)}=L1{Y(s)}= L] S +as+6 sl ) st Has+6 L

i (1) 4 2 s+ 4

—

| S’ +4s+6 S | S +4s+6 ]

_:(SH) : 1
4 = -2t T e
Ll Tt || e[ vE- Jpan Vi
4 4
—5(8+4) .3 e 2 (cos /2t + ~/2 sin +/2t)
| S?+4s+6 s |
_ . ‘4]
—3(s+1) 3
L™t T 2 5 L2
s?+4s+ S
e“(cos V2t ~ L sin ﬁtj
= s o | V2
E 5 8+4) L 1)3 e‘“(cos V2t + /2 sin \/ft)
+ —~
s +4s+6 S

4 1
-5e (cos ﬁt—ﬁsm \/ft)+ eZt(COS 2t—%sin ﬁtj
+

4
3
4 ) 4
_ Ee‘“(cos V2t + /2 sin ﬁt)+ 3 e‘“(cos V2t + /2 sin \/ft)
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The complete response of the circuit is thus given by

41, 1.
Vc(t):| i E—ge (COS \/Et—ﬁswl ﬁtj

y(t){i 0|
- %—%e‘“(cos V2t + /2 sin \/Et)

1.4
| |
l l
| N - |
135 - 7/5,,,,,,,}4&‘,, ,,,,,,,,,,,,,,,,,,,,,,,,,,, _
| |
V ————————————————————————————————— ’/ |
C : /
1.377777777777‘[ 7777777777777777777777777777777777777777777777777 —
/o
/
R 1< A TN A .. —
@
c /
o /
8 /
g /
R A B e e i R T —
© / | i i .
% / P R B N S E I
£ L
o)
O 115F--—)-——-——-—4-)f———— - ——F mm e m e —— e —— - —— - — - - — = —
‘e’s | | | | |
e I [ A —
/ | | | | |
/ | | | | |
1.05FfF---F/- "4 ---— -~~~ [t T I it —
/ | | | | |
/ |
/ |
l
1 | | | | |
0 0.5 1 1.5 2 2.5 3
Time in Seconds
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4.5 More Example: Consider the RLC circuit in Section 2.10, i.e.,

vL=Lﬂ=5ﬂ
3 dtdt
W
\NN—> QQ v(0)] [2
30 i(0)| |0

(e

7F::Tv(t)

By KVL:

V+Vv, +3i =5%+3i+v=vS = |

- [ 4

H*/ —
A B

Tdt 5

_cdv_,W ,_av_1
dt dt dt 7
., di 1 3. 1
= = —Zv-Ji+2v,
5
v
v=[1 O]|:_:|+OVS
i
C D 93
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Y(s)=[C(sl-=A)'B+DJU(s)+C(sl -A)*x,

ol T, 4T

LR PRI M AIH
2 Mo, L2,
s+/s+/5{/} 5+/S+/5{}
_ 55 i 2(“%)

s +/S+/5 32+%s+%5

=[1 o]
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V(t)=L_1{Y(S)}: Ll{ /5 11 S-I—/ }
S+/S+/5 3+/5+/5

4 0.0285 i 2(s+0.6)
(s+0.548)(s+0.052) s (s+0.548)(s+0.052)

B Ll{ 1.15 B 12 .15 +11 0.2 }
s+0.548 s+ 0.052 s s+ 0.548 s+0 052
B Ll{ 1.15 B 12 .15 +11 0.21 }
s+0.548 s+ 0.052 s s+0.548 s+0 052
_1{ 0.94 9.94 11}
=L — +
s+0.548 s+ 0.052 S

=0.94e7%°®' _ 9. 947052t 1 11, t>0

The above answer is exactly the same as that in Section 2.10. Actually, as
stated earlier, the power of state space representation of the circuit is it

unifies all related problems under a single framework. %
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4.6 Transfer Function

The state equation and output equation of the circuit or system are:

3—1(=X=AX—|—BU, y =Cx +Du

Assume the initial condition x(0) = x, =0, then we have

Y(s)=[C(sl —A)'B+DJU(s)+C(sl —A)'x, = [C\(sl ~A)'B +jD]U(s)

v
H(s)

H(s) in general is a rational function of s and is called the transfer function of
the circuit of system, which completely characterized the properties of the
circuit with a zero initial condition. The roots of the denominator of H(s) are
called the poles of the system while the roots of the numerator of H(s) are

called the zeros of the system.
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Example: We consider again the example in Section 4.5 in which we ha\“ e

5 I ol

The transfer function of the above system

Y(s)[C(sIA)lB+D]U(s){[1 O]H; ﬂ[ol/ z}n {%}o}.u(s)
5 5

SR 7 AT
O][y S+%} {%]U(S):[l °] % +/S+/J/} U(s)

_______________________________________

= | H(s)= 35

The system has no zero but have two poles respectively at — 0.548 & — 0.052.
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RANUS
4.7 System Stability o o AT
S+a
Example 1: Consider a circuit with a transfer function, |
¥ 0.5
vt [ 1 Y (s) O-oe 541
THs)= s? -1 ' &
We have 056t o Li
S_
1 1 0.5 0.5
Y(s)=H(s)U(S)=—5—= — _
s -1 (s+1)(s-1) G-} s+1

From the Laplace transform table, we obtain  y(t) = 0-5“— e)

12000

10000

8000

y(t)

6000

4000

2000

]

0

0 2 4 6 8
Time (seconds)

10

This system is said to be unstable because the
output response y(t) goes to infinity as time tis
getting larger and large. This happens because
the denominator of H(s) has one positive root at
s=1.
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Example 2: Consider a closed-loop system with,

U(s)=1 1 Y (S)
> H(s) =

A 4

s +3s5+2

We have
1 1 1 1

Y(s):H(s)U(S)Zsz+3S+2: (s +1)(s +2) T 541 542

-2t

From the Laplace transform table, we obtain y(t)=e"'—e

0.25
0.2 / \ This system is said to be stable because
/ \ the output response y(t) goes to O as time
y®]°* / tis getting larger and large. This happens
01 \ because the denominator of H(s) has no
0.05 positive roots.
0 [
0 2 4 6 8 10

Time (seconds) 99
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We consider a general system,

U (s) Y (s)

v

\ 4

The system is stable if the denominator, i.e., D(s), has no positive roots. It is

unstable if it has positive roots. In particular,

Ilm:n IS

L :1 Unstable

Re(s)

Stable
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