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It is show time!It is show time!

This last topic is to be learned in the second part…

Recap: What are we going to learn in this class?.

Is it a good system? (System structural properties)  

How does it behave?(System responses)

⑥

②

③

④

⑤
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Controller

Typical structure of a control system (revisit)…

System to be controlledREFERENCE OUTPUT
+ –

Objective: To make the system OUTPUT and the desired REFERENCE as closeas possible, i.e., to make the ERROR as small as possible.
Key issues: (1) How to describe systems to be controlled? (Done in Part 1)(2) How to design control laws? (To be done in Part 2)
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Examples of classical and advanced control

Optimal control Robust control

Measurement Output
Control Input

More than just control
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Outline for Part 2

 Revisit of classical control design methods for SISO systems.
 Stablization of multivariable systems.
 Linear quadratic regulation (LQR) control and its properties; returned differences; guaranteed gain and phase margins; Kalman filter; linear quadratic Gaussian (LQG) design.
 Introduction to modern control system design; H2 and H∞optimal control; solutions to regular and singular H2 and H∞optimal control problems; solutions to some robust control problems.
 Loop transfer recovery (LTR) design technique.
 Robust and perfect tracking (RPT) control and composite nonlinear feedback (CNF) control techniques (if time permits).
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Concluding Remarks: Nonlinear Control, Implementation Issues

Material Flow of Part 2: Design…Review of Classical Control, PID, Lead and Lag Compensators, etc.
Stabilization of Multivariable Systems

LQR Control
Kalman Filter
LQG Control Robust and Perfect Tracking

H2 and H∞ Control
Introduction to Robust Control

Loop Transfer Recovery (LTR) Design
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Review of Classical Control TechniquesReview of Classical Control Techniques
+

r
( )G s( )K s

y

–
( )C s

The first real PID-type controller developed by Elmer Sperry in 1911. 
The first theoretical analysis of a PID controller was published by 
Nicolas Minorsky in 1922. His observations grew out of efforts to 

design automatic steering systems for the U.S. Navy.

⎯ PID Control History and Advancements by Jim Cahill

Nicolas Minorsky
Russian American Mathematician & Control Engineer

1885–1970 

Elmer A. Sperry, Sr.
American Inventor and Entrepreneur
1860–1930 
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John Ziegler
American Engineer

1909–1997 

Nathaniel Nichols
American Engineer

1914–1997 

CONTROL ENGINEERING
2ND OCTOBER 1990
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Norbert Wiener
American Mathematician and Philosopher

1894–1964 It is the first public usage of the term cybernetics to refer to self-regulating mechanisms. The book laid the theoretical foundation for servomechanisms (whether electrical or mechanical), automatic navigation, analog computing, artificial intelligence, neuroscience, and reliable communications.

– 1948 EDITION

Feedback and Oscillation: This chapter lays down the foundations for the mathematical treatment of negative feedback in automated control systems. The opening passage illustrates the effect of faulty feedback mechanisms by the example of patients with various forms of ataxia. He then discusses railway signaling, the operation of a thermostat, and a steam engine centrifugal governor. The rest of the chapter is mostly taken up with the development of a mathematical formulation of the operation of the principles underlying all of these processes. More complex systems are then discussed such as automated navigation, and the control of nonlinear situations such as steering on an icy road. He concludes with a reference to the homeostatic processes in living organisms.
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1
9
5
4

U.S. Army Colonel in World War II
Hsue-shen Tsien (Qian Xueshen)

Chinese Mathematician and Aerospace Engineer
1911–2009 

(Xuesen Qian)

工
程
控
制
论

钱
学
森

He was influenced by the methods of American engineering education, especially its focus on 
experimentation. This was in contrast to the contemporary approach practiced by many 
Chinese scientists, which emphasized theoretical elements rather than hands-on experience…
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Recall that the main objectives in control system design are: (1) to stabilize the 
given system; and (2) to track certain desired references. As illustrated in Part 1, if 
we consider a SISO system

U (s) Y (s)G (s)

and if we want the output to track a reference r, the simplest solution is to design a 
control law of the following form

Besides the issue on unstable pole-zero cancellations as explained in Part 1, the 
above open-loop control strategy is not robust with respect to uncertainties in 
unmodeled system dynamics and external disturbances. As such, such an open-loop 
control system has never been adopted for practical uses!

U (s) Y (s)G (s)G–1 (s)R (s)
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Recall that the objective of control system design is trying 
to match the output Y(s) to the reference R(s). Thus, it is 
important to find the relationship between them. Recall 
that

)()()(
)(
)()( sUsGsY

sU
sYsG ==

Similarly, we have                            , and                              . 
Thus,

( ) ( ) ( )U s K s E s= ( ) ( ) ( )E s R s Y s= −

[ ]
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .
Y s G s U s G s K s E s

G s K s R s Y s
= =

= −

Instead, we adopt the following feedback control scheme: Similar Idea… Op Amp

Harold S. Black (1898–1983) was an American electrical engineer, who revolutionized the field of applied electronics by discovering the negative feedback amplifier in 1927. To some, his discovery is considered the most important breakthrough of the twentieth century in the field of electronics, as it has a wide area of application. He published a famous paper, Stabilized 
Feedback Amplifiers, in 1934.

+
U (s)R (s)

)(sG)(sK
Y (s)

–

E (s)
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R (s) ( )H s Y (s)

which is the closed-loop transfer function from the reference input R to the 
system output Y.

Classical control techniques are focusing on designing an appropriate controller 
K (s) such that the resulting closed-loop transfer function H (s) is stable and meets 
given design specifications, such as settling time and overshoot in time domain 
and gain and phase margins in frequency domain.
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Classical Control System Design Philosophy…

It is to select an appropriate controller such that when it is applied to the given 
plant, the resulting closed-loop system H (s) meets the time domain specifications 
(such as rise time, settling time and overshoot, etc.).

We observe that the best choice is to have an overall closed-loop system

Unfortunately, having a unity transfer function is practically impossible, we would 
thus try to make             , instead. More specifically, we will try to make H (s) to be 
as close to 1 as possible within the operating frequency range (working bandwidth) 
of the system. 

In almost all classical control system designs, we are trying to match the closed-
loop system to 1 at one particular frequency point, i.e., s = 0. We always carry out 
to design a controller such that the resulting H (0) = 1, a unity DC gain.  

R (s) ( ) 1H s = Y (s)

( ) 1H s ≈
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Typical choices of K(s) in the classical design are as 
follows…

• P (proportional) control: 

• PI (proportional-integral) control, 

• PD (proportional-derivative) control, 

• PID (proportional-integral-derivative) control:

( ) ( ) ( ) ( ) ( )p p pu t r y e t U sk sk Ek= − = ⇔ =

0

( ) ( ) ( ) ( ) ( )
t

i
p i pu kt e t e d U s s

s
k Ek kτ τ  = + ⇔ = + 

 

( )( )( ) ( ) ( ) ( )p d p du k de tt e t U s s E sk k
t

k
d

= + ⇔ = +

0

( )( ) ( ) ( ) ( ) ( )i
p i d p

t

d
de tu t e t e d U sk s E s

d s
kk k k k

t
τ τ  = + + ⇔ = + + 
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Proportional Control:     Action based on signal in the present… 

The proportional action depends only on the error. Generally, increasing the proportional 
gain will increase the speed of the control system response. However, if the proportional 
gain is too large, the process variable will begin to oscillate. If kp is increased further, the 
oscillations will become larger and the system will become unstable.

Integral Control: Action based on signal in the past…

The integral action sums the error term over time. The integral response will continually 
increase over time unless the error is zero, so the effect is to drive the steady-state error 
to zero. A phenomenon called integral windup results when integral action saturates a 
controller without the controller driving the error signal toward zero. 

Derivative Control:   Action based on signal in the ‘future’ …

Increasing kd will cause the control system to react more strongly to changes in the error 
and will increase the speed of the overall control system response. Generally, a small kd

is used, because its response is highly sensitive to noise in the process. If the sensor 
feedback signal is noisy, the derivative action can make the overall system out of control. 

( )pk e t ⇔

0

( )i

t

dk e τ τ ⇔

( )
d

tk de
dt
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Tuning of PID Gains…

The gains of a PID controller can be obtained by trial and error method. Once a designer 
understands the significance of each gain parameter, this method becomes relatively easy. 

P In most of the process control problems, the I and D terms are set to zero first and the 
proportional gain is increased until the output of the loop oscillates. As one increases 
kp, the system becomes faster, but care must be taken not make the system unstable. 

I Once P has been set to obtain a desired fast response, the integral term is increased to 
stop the oscillations. The integral term reduces the steady state error, but increases 
overshoot. The integral term is tweaked to achieve a minimal steady state error. 

D Once the P and I have been set to get the desired fast control system with minimal 
steady state error, the derivative term is increased until the loop is acceptably quick to 
its set point. Increasing derivative term decreases overshoot and yields higher gain 
with stability but would cause the system to be highly sensitive to noise. 

 Designers need to tradeoff one characteristic of a control system for another to better 
meet their requirements. There are many auto-tuning methods available for process 
control in the literature…
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In what follows, we are recall some simplest method in designing a classical 
controller, i.e., to choose a suitable controller with appropriate gains such that 
the resulting closed-loop transfer function H (s) is dominated by a 2nd order 
system. We then compared it with the behaviors of a typical 2nd order prototype 
whose properties are well studied and documented.

2

prototype 2 2( )
2

n

n n

H s
s s

ω
ζω ω

=
+ +

21 ζω −= n

nζωσ =
ζ is called the damping ratio of the system
ωn is called the natural frequency

A 2nd Order Prototype:

The following is a commonly used 
prototype and important benchmark for 
classical control system design:
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The behavior 
of the system 
is fully 
characterized 
by ζ ,  the 
damping ratio, 
and ωn , the 
natural 
frequency.

2

prototype 2 2( )
2

n

n n

H s
s s

ω
ζω ω

=
+ +

Unit step response of
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2

prototype 2 2( )
2

n

n n

H s
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ω
ζω ω
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Further zoom in to the unit step response of the 2nd order prototype…

1% settling time

overshoot

rise time

st
rt t

n
rt ω

8.1≅
n

st ζω
6.4≅

21 ζζπ −−= eM p
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Example: Recall that the linear model of the pendulum system around θ0 = 0 is

[ ]
2

00 1
, 1 01

0
u yg

M LL

θ θθ
θ θθ

         = + =       −          


 

L For simplicity, we assume

The above system can thus be expressed as  

Pendulum
Pendulum

2
11, 1g

L M L
= =

[ ]0 1 0
, 1 0

1 0 1
u y

θ θθ
θ θθ

        = + =        −       


 

It has a transfer function                      . We wish to design a PD controller to 

yield a settling time of 1 sec. and an overshoot less than 10% for a step response.    
2
1( )

1
G s

s
=

+
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The problem can be formulated as follows…

+
R (s)

)(sG)(sK
Y (s)

–

2
1( )

1
G s

s
=

+

design a PD control law

such that the closed-loop system response due to a unit step input has a settling 
time ts = 1 second and overshoot less than 10%.

( ) p dK s k k s= +
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The resulting closed-loop system is given by

2
( ) ( )( )

1 ( ) ( ) 1
d p

d p

k s kG s K sH s
G s K s s k s k

+
= =

+ + + +

Compare this with the standard 2nd order system:

2
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2
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s s

ω
ζω ω

=
+ +

2

2
1

d n
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k
k

ζω
ω

=

= −

The key issue now is to choose parameters kp and kd such that the above 
resulting system has desired properties, such as prescribed settling time and 
overshoot. We should note that the numerator cannot be exactly matched no 
matter what and the resulting DC gain is always equal to kp /(1+ kp ). We can 
add an additional feedforward constant gain to make the DC gain unity.

Cannot do anything 
with this term…
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To achieve an overshoot less than 10%, we obtain              from the figure on the 
right that

0.6ζ >

x

To achieve a settling time of 1 second, 
we use
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Simulation Result:
The resulting 
overshoot is 

about 18% and 
the settling time 
is about 1 sec. 
Also, there is a 

steady state error.
Thus, our design 

goal is only 
partially 
achieved. 

We need to 
resign the 
controller.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (seconds)
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Summary for designing K(s)…

Step 1: Given a plant, G (s), to be controlled and given design specifications (e.g., the 
required on settling time, overshoot, etc.), determine an appropriate 2nd order 
prototype Hprototype(s), which meets the requirements.

Step 2: Choose an appropriate (P/PI/PD/PID) 
controller, K (s), and work out its 
closed-loop transfer function H (s). 

+
r ( )G s( )K s

y
–

Step 3: Determine the required gain 
parameters in K (s) by 
matching H (s) in Step 2 and 
Hprototype(s) in Step 1, either 
exactly or approximately 
(usually we would only be 
able to match them loosely). 

R (s) ( )H s Y (s) prototype ( )H s

Step 4: Simulate the above design to verify the result. Repeat Step 2 and Step 3 until a 
satisfactory result is obtained.
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♠ Ziegler-Nichols tuning method for designing a process controller…

Step 1: In the configuration below, the proportional gain is increased until the closed-loop 
system becomes marginally stable (i.e., the closed-loop system has simple poles on 
the imaginary axis, say jωu , in the complex plane). Such a gain, Ku, is called the 
ultimate gain. The corresponding period of oscillation, Pu = 2π /ωu , is called the 
ultimate period. 

Step 2: Ziegler-Nichols tuning parameters are set as…

PI                             kp = 0.45 Ku,  ki = 0.54 Ku / Pu

PID                         kp = 1.6 Ku,  ki = 3.2 Ku / Pu,   kd = 0.2 Ku Pu

P                              kp = 0.5 Ku

Ku

ωu

0 2 4 6 8 10
0

0.5

1

1.5

2
Step Response

Pu

Pu
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Even though we might be happy with the time-domain performance, the frequency domain properties (such as gain and phase 
margins as well as sensitivity function specifications) are equally important in real-life applications. These frequency-domain specifications guarantee the robustness of the overall closed-loop system in face of uncertainties and disturbances.In order to elaborate the concept of frequency-domain specifications, we need to recall the Bode plot and Nyquist plot of a transfer function that we have learned in the elementary introduction course to feedback control in our undergraduate studies.  

What is next?

In 1945 H. W. Bode presented a system for analyzing the stability of feedback systems by using graphical methods. Until this time, feedback analysis was done by multiplication and division, so calculation of transfer functions was a time consuming and laborious task. Remember, engineers did not have calculators or computers until the 1970s. Bode presented a log technique that transformed the intensely mathematical process of calculating a feedback system’s stability into graphical analysis that was simple and perceptive. Feedback system design was still complicated, but it no longer was an art dominated by a few electrical engineers kept in a small dark room. Any electrical engineer could use Bode’s methods to find the stability of a feedback circuit.                —— Ron Mancini

Hendrik W. Bode
American Engineer

1905–1982 



CUHK MAE ENGG 5403 – PART 2: CONTROL ~ PAGE 29 © BEN M. CHEN

Frequency responses

Consider the following feedback control system,

Frequency response of the open-loop transfer function, i.e., K(s)G(s), are the 
key in examining the robustness properties of the closed-loop system.

For example, suppose a control system has an open-loop transfer function

3 2
5( ) ( )

5 5 1s j
s j

K s G s
s s sω

ω
=

=

=
+ + +

3
1

22 2 3 2

5 5( ) ( ) , ( ) ( ) tan
1 5(1 5 ) ( 5 )

K j G j K j G j ω ωω ω ω ω
ωω ω ω

−  −= ∠ =  −− + −  
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)(sG)(sK
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e

Nyquist 
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Bode plot

2 3
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3 2
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5 5 1
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Nyquist plotNyquist plot maps the open-loop transfer function       
K( jω)G( jω) directly onto a complex plane. For the previous example, its Nyquist plot is as follows… Harry Nyquist

Swedish 
American Engineer

1889–1976 

nyquist

3 2
5( ) ( )

5 5 1
K s G s

s s s
=

+ + +

Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker atSiemens in 1930 and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Lab in 1932, is a graphical technique for determining the stability of a dynamical system. Because it only looks at the Nyquist plot of the open loop systems, it can be applied without explicitly computing the poles and zeros of either the closed-loop or open-loop system. As a result, it can be applied to systems defined by non-rational functions, such as systems with delays. 
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Nyquist stability criterion
Recall the closed-loop transfer function of feedback system…

The closed-loop characteristic polynomial is given by

Clearly, zeros of 1+ K(s)G(s) are the closed-loop system poles.

( ) ( )( )
1 ( ) ( )

K s G sH s
K s G s

=
+

01 ( ) ( ) 0 ( ) 1( 1)K s G s K s s jG − = −+ += =

Let Z be the number of zeros of 1 + K(s) G(s) in the right half 
plane (i.e., the unstable closed-loop poles), P the number of 
unstable poles of the open-loop transfer function K(s) G(s). Then, 
the Nyquist plot of K(s) G(s) shall encircle the point – 1 + j 0
(clockwise) N = Z – P times (or Z = N + P).

Note: The above result can be utilized to determine the stability of the closed-loop 
system. It can also be used to determine how far the system is from instability.
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Procedure for determining Nyquist stability

For the case when the open-loop system is stable (P = 0), Thus, the closed-loop is stable iff the 
Nyquist plot has no encirclement of – 1.  If the open-loop system has two unstable pole (P = 2), then 
the closed-loop is stable iff N = – 2, i.e., the Nyquist plot should encircle – 1 anti-clockwise twice… 

2N = −

Gene F. Franklin
Stanford University 

1927–2012 
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First of all, the key idea of Nyquist stability criterion is to use open-loop transfer function to determine the closed-loop stability. This can be done because under the unity feedback framework
The closed-loop transfer function is given as
It can be seen from the above expression that the closed-loop stability is determined by the characteristic polynomial of     
1+G(s)K(s) = 0, which is equivalent to                                          .It together with the argument principle in complex analysis give Nyquist stability criterion.

Side note…



F

K
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–1PM
1GM

Gain and phase margins
The gain margin and phase margin can be found 
from the Nyquist plot by zooming in the region 
in the neighbourhood of the origin. 

1( ) ( ) , ( ) ( ) 180p p p p pK j G j K j G j−= ∠ = − GM where  is  such  that  ω ω ω ω ω

( ) ( ) 180 , ( ) ( ) 1PM   where  is  such  that  g g g g gK j G j K j G jω ω ω ω ω= ∠ + =

y
+

r
–

e
( ) ( )K s G s

GM

Gain margin is the additional gain 
that can be tolerated in KG(s) (or 
gain uncertainties in G(s)) such 
that the resulting closed-loop 
system would still remain stable. 
Similarly, phase margin is the 
additional phase that can be 
tolerated in KG(s) (or phase 
uncertainties in G(s), such as input 
delay) such that the corresponding 
closed-loop would still be stable.

•
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=  =1 0.21 GM 4.8GM

Gain and phase margins in Nyquist plot

Example:
3 2

5( ) ( )
5 5 1

K s G s
s s s

=
+ + +

0, 0 0P N Z P N = =  = + =
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gain crossover frequency
phase crossover frequency

gain margin

Gain and phase margins in Bode plot

margin

GM 4.8 13.62 dB= =

PM 49.8= °

–1

Bode plot

Nyquist plot

3 2
5( ) ( )

5 5 1
K s G s

s s s
=

+ + +

GM = 4.8

GMdemo

phase margin

e jz x i y r θ= + =
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When the open-loop system is unstable, its Nyquist plot must encircle –1 point (counter clockwise) to ensure the closed-loop stability. The following is such an example (the open-loop system has one unstable pole)…
 If we increase the open-loop gain by more than 2.3, the right circle will encircle –1point clockwise instead. By Nyquist stability criterion, the resulting closed-loop system has 2 unstable poles. Thus, we cannot increase the open-loop gain more than 2.3, which the upper gain limit.
 On the other hand, if we decrease the open-loop gain by a factor less than 0.82, there will be no encirclement of –1 point. By Nyquist stability criterion, the resulting
 The closed-loop system will remain stable so long as the open-loop gain is perturbed within (0.82, 2.3), which is the gain margin for this example.

closed-loop system one unstable pole. Thus, we cannot decrease the open-loop gain by less than 0.82, which is the lower gain limit.

GM = (0.82, 2.3)

PM = 14.3°

Gain margins for unstable open-loop systems

X 
2.3
X 

2.3
X 

0.82
X 

0.82 ++
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Sensitivity and complementary sensitivity functions
Sensitivity and complementary sensitivity functions are two other measures for a 
good control system design. The sensitivity function is defined as the closed-loop 
transfer function from the reference signal, r, to the tracking error, e, and is given 
by

The complementary sensitivity function is defined as the closed-loop transfer 
function between the reference, r, and the system output, y, i.e.,

Clearly, we have S(s) + T (s) ≡1.

1( )
1 ( ) ( )

S s
K s G s

=
+

( ) ( )( )
1 ( ) ( )

K s G sT s
K s G s
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+

+
r

( )G s( )K s
y

–

e
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A good control system design should 
have a sensitivity function that is 
small at low frequencies for good 
tracking performance and disturbance 
rejection and is equal to unity at high 
frequencies. On the other hand, the 
complementary sensitivity function 
should be made unity at low 
frequencies. It must roll off at high 
frequencies to possess good 
attenuation of high-frequency noise.

Gunter Stein
Honeywell, USA

SS
TT

2006
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+
R (s)

( ) ( )K s G s⋅( )C s
Y (s)

–

Now, recall the block diagram of control system: 

in which as usual G (s) is the plant to be controlled, K (s) is the controller one 
has designed to meet the time-domain specifications, and controller (commonly 
called compensator) C (s) is to be meet the frequency-domain specifications. 

The common choices for C (s) are either a lead or a lag compensator:

1,
1

1)( >
+
+= α

αTs
TssC10,

1
1)( <<
+
+= α

αTs
TssC

LEAD COMPENSATOR LAG COMPENSATOR

The key idea in designing these lead and lag compensators is rather simple – it 
tries to shift the frequency response to have desired gain and phase margins…

!(0) 1 ?C ≡  
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Frequency responses of lead and lag compensators

1,
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Idea of adding a lead compensator

Phase of lead 
compensator

Phase margin 
after 
compensation

Gain of lead 
compensator

Gain cross-over 
frequency gets 
shifted after 
compensation

Generally, it requires 
many iterations to 
have a good result…

Original PM
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Desired PMDesired PM

Phase after 
compensation

Gain cross-over 
frequency 
shifted to lower 
frequency after 
compensation

Gain of lag compensator

Phase of lag compensator

Idea of adding a lag compensator

Again, it 
requires 
many 
iterations 
to have a 
good 
result…
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Summary for designing C(s) and the overall controller…

Step 1: Given a plant, G (s), together with a pre-designed controller, K (s), which meets 
the time-domain design specifications (e.g., overshoot, settling time, etc.), we are 
to design an appropriate compensator to meet frequency-domain specifications 
(e.g., required gain and phase margins).

Step 2: Choose an appropriate compensator (either lead or lag compensator), C (s), and 
work out the required design parameters. 

Step 3: Simulate the above design to verify the result. Repeat Step 2 until a satisfactory 
result is obtained.

Step 4: Perform simulation for the over design consisting of both K (s) and C (s). Check 
if all the design goals are achieved…

+
R (s)

( )G s( )K s
Y (s)

–

Step 5: Repeat the design processes of K (s) and C (s) all over again, if necessary 

( )C s
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Advantages and drawbacks of classical controlThe advantages of the classical or PID control are:
 It is structurally simple and it is easier to tune controller gains.
 It links directly to the time- and frequency-domain specifications.
 It can be applied to plants whose dynamic model is unknown.The drawbacks are also very obvious:
 All specs are approximately met through out the design process. Many iterations are required.
 It can only be used to control certain classes of SISO plants. For instance, a PID controller cannot even stabilize a triple integrator plant.
 It only takes the error signal e for feedback rather than r and y independently, which limits the overall control performance. 
 It is not feasible to control MIMO systems directly. We need to decouple a MIMO system first before utilizing PID control.
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Stabilization of Multivariable SystemsStabilization of Multivariable Systems
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Design philosophy and procedure…

Given a general LTI system (plant) characterized by

with (A, B) being stabilizable and (A,C) detectable. We would like to design a 
measurement feedback controller to make it asymptotically stable.

, R , R
, R

n m

p

x A x Bu x u
y C x Du y

 = + ∈ ∈


= + ∈



PLANT

OBSERVERSTATE FEEDBACK
LAW

ˆ x

u y

−

F K

Measurement 
Feedback 
Controller
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Stability, more specifically the internal stability, is of the utmost importance in 
control systems design. It is meaningless to discuss control system performance 
without internal stability.

In this section, we focus on a systematic methodology in designing the necessary 
controller…

1. Assuming that all the state variables of the system, i.e., x, are available, we 
design a state feedback control law to stabilize an unstable system 
provided that it is stabilizable. This step would also allow us to re-locate 
the closed-loop poles of a controllable pair to any desired locations for a 
stable given system. More specifically, we can use any technique, such as 
the well-known pole placement method, to design an state feedback law    
u=Fx such that when it is applied to

the resulting A+BF has desired poles that are prespecified.

x A x Bu= +
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2. Since we only know the measurement information from the system, i.e.,

we then design an observer or estimator to estimate the state variables of 
the given plant, i.e., to obtain an         , provided that the given system is 
detectable. That is to design a gain K such that the resulting A+KC is 
asymptotically stable. This is basically a dual version of the procedure in 
Item 1.

3. Replace x in Step 1 with    in Step 2 to form a so-called observer-based 
controller for the stabilization of a general multivariable LTI system with 
measurement feedback.

We will prove later in this section that the control law obtained above works. 
In fact, such a property is known as the so-called separation principle in the 
multivariable control theory…

y C x Du= +

x̂ x→

x̂
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State feedback control law

We first consider a SISO system characterized by

with (A, B) being controllable. It follows from Theorem 4.4.1 (the controllability 
structural decomposition or the Brunovsky canonical form) of Part 1 that there exist 
nonsingular state and input transformation Ts and Ti such that

and

where                            are some constants of no interest.

, R , Rnx A x Bu x u= + ∈ ∈

s i,x T x u T u= = 

2

1 1
s s s i

1

0 1 0 0
0 0 0 0

,
1

1n

A T AT B T BT− −

   
   
   = = = =
   
   

 Δ Δ Δ


 

   


, 1,2, , ,i i n=Δ 
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Mathematical background material from Part 1…
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We wish to design a state feedback law u =F x such that when it is applied to the 
given system, the resulting closed-loop system has poles are desired locations, say 
at s1, s2, …, sn, respectively. We write the corresponding closed-loop characteristic 
equation as

Then, the required gain matrix is 

Let us examine the closed-loop system matrix A + B F, 

which has a characteristic polynomial exactly matched the desired one. 

The gain matrix F is uniquely determined for a SISO system if it is controllable!

1
1 12( ) ( )( ) ( ) n

n n
n as s asχ λ λ λ λ λ λ −= − − − = + + + 

[ ] [ ]( ) 1
1 2

1
i s i 1 1 snn nF T a aT F T Ta −

−
− Δ Δ= = − Δ −  

1 1 1 1 1
s s s i i s s s s

11

s

0 1 0
0 0 0

( )
1

n n

A BF T AT T BT T FT T A F

a a

B T T

a

T− − − −

−

−

 
 
 + = + = + =
 
 − − − 


    

  


Replace the rubbish with the desired
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Example: Consider a SISO system characterized by

Using CSD in the Linear Systems Toolkit, we obtain a set of transformations

Let the desired closed-loop system poles be placed at

and the desired state feedback gain is given by

0 1 1 2
1 1 1 1
0 1 0 1

x A x Bu x u
   
   = + = +   
      



s i

1 0 2 0 1 0 0
1 3 1 , 1 0 0 1 , 0
1 0 1 2 11 1

T T A B
−     
     = =  = =     
          

 

1 2,3,s s jα σ ω= − = − ±
2 2 23 2 22 2 ( )( ) ( ) ( )s s s sσ α σ ω ασ α σχ ω += + ++ ++ +

2 2 2 2( ) 21 2
1 0 2

1 0 1
3

1 0
1

1
2 1F α σ ω σ ω ασ σ α

− 
  = − + + + −   
 

+



+ + +
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Just for fun…

v

Illustration of system 
stabilization using the 
pole placement 
through a state 
feedback control law…

Lariat Logan applies state feedback bang bang control 
for eigenvalue placement.

Suresh M. Joshi
NASA Langley Research Center
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We now consider a MIMO system characterized by

with (A, B) being stabilizable. By Theorem 4.4.1 of Part 1 that there exist 
nonsingular state and input transformation Ts and Ti such that

and the transformed system                        has the CSD form

, R , Rn mx A x Bu x u= + ∈ ∈

s i,x T x u T u= = 

uncontrollable modes

controllable pairs

x A x B u= +    
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We can apply a pre-feedback again, say      , to clean up all the  terms first, 
i.e.,

0u F x=  

0A BF+ =   0 0 0 0 0

0 0 0 0 0

For the uncontrollable modes in A0, it cannot be changed by any state feedback law. 
The stabilizability of (A, B) implies A0 is stable. We leave it as it.

For each controllable pair, we can use the result derived earlier for SISO systems to 
design an appropriate sub-gain matrix. A desired state feedback control law u = F x 
can then be obtained by putting all these sub-gain matrices together. We omit the 
detailed procedure. 

Note that one can also use m-function PLACE to obtain a desired gain F.
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State observer or estimator

The state feedback control law given in the previous section requires all the 
state variables of the given system to be available for feedback, which usually 
not the case in real-life situations. More often, we would face problems in 
which the information of the system state variables is partially available. 

In what follows, we proceed to design a so-called observer or estimator to 
estimate the state variables of the given system when there is only partial 
information available.

To be more specific, we consider an LTI system characterized by

with the matrix pair (A,C ) being detectable (which is necessary for designing 
an observer). 

, R , R
, R ,

n m

p

x A x Bu x u
y C x Du y p n
= + ∈ ∈
= + ∈ <
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ˆ ˆx A x Bu= +

Let us try to be a copycat by duplicating the system dynamic equation

We note that u is the input to the system and is known. Define an error signal

It follows from (3.2.1) in Part 1 that the solution to the above error dynamic 
equation is given by 

If x(0) is known, we can choose the initial condition of the observer dynamics to 
match it exactly and thus e0 = 0 gives perfect estimation e(t)=0 for all t. 
Unfortunately, this can never be the case in real life, in which x(0) is generally 
unknown. On the other hand, if A is a stable matrix,

would give us an asymptotic estimation of x(t) if A is stable! 

( )ˆ ˆ ˆ:e x x e x x A x Bu A x Bu Ae= −  = − = + − + = 

0 0 ˆ( ) e , (0) (0) (0)Ate t e e e x x= = = −

0lim ( ) lime 0At

t t
e t e

→∞ →∞
= →

ˆ( )x t
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For the case when the system matrix A is unstable, the copycat estimator on the 
previous page does not work at all.

Instead, we introduce an output error feedback term to solve the problem, i.e.,

As usual, define the error signal                               , we have

and  

Obviously, if K is chosen such that A+KC is stable, we would have an asymptotic 
estimation of x(t), i.e., 

ˆ ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ( )
ˆ ˆ( )

x A x Bu K y y A x Bu K y C x Du
A x Bu K C x Du C x Du
A x Bu KC x x

= + − − = + − − −
= + − + − −
= + − −



ˆ( ) : ( ) ( )e t x t x t= −

( )ˆ ˆ ˆ( ) ( )e x x A x Bu A x Bu KC x x A KC e= − = + − + + − = + 

( )
0 0 ˆ( ) e , (0) (0)A KC te t e e x x+= = −

( )
0 0 ˆlim ( ) lime 0, for any (0) (0)A KC t

t t
e t e e x x+

→∞ →∞
= → = −
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The problem now becomes on how to choose K such that A + KC is stable. It can 
be solved using the observability structure decomposition given in Theorem 4.3.1 
of Part 1.  Alternatively, we can define an auxiliary system

It is straightforward to verify that (A, C) detectable implies (Aaux,Baux) stabilizable.

Then, follow the procedure given in the state feedback control law section to 
design an appropriate state feedback gain Faux such that Aaux+Baux Faux is stable and 
has all its eigenvalues in the desired locations. The required observer gain matrix 
is therefore given as

which gives 

and                                                                 (all are in the stale locations).

aux auxx A x B u= + : A x C u= +T T

( )auxK F= T

( )aux aux aux( ) CA KC A B Fλ λ −+ = + ⊂

( )A KC A C K+ = +T T T T
aux aux auxA B F= +
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Example: Consider a SISO system characterized by

Using m-function PLACE in MATLAB, we obtain an observer gain matrix

which places the eigenvalues of A + K C at –1, –2 and –3, respectively. The 
simulation result shown on the next page verifies that the observer 

indeed gives an asymptotic estimation of the given plant. 

[ ]

0

0 1 1 9 3
1 1 1 8 , (0) 6
0 1 0 5 9

2 1 1

x A x Bu x u x x

y C x Du x

     
    = + = + = =     
         

= + =



1
4
1

K
 
 = − 
 
 

ˆ ˆ ˆ ˆ ˆ( ) ( ) , (0) 0x A x Bu K y C x A KC x Bu K y x= + − − = + + − =

place
ex2050
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Estimation error signals

1( )e t

2 ( )e t

3 ( )e t

simulink
ex2050
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Observer-based controller

We now consider the stabilization of a general LTI system with measurement 
feedback. Consider 

with (A, B) being stabilizable and (A,C) detectable. We would like to design a 
proper dynamical measurement feedback control law of the following form

such that when it is applied to the given plant, the overall closed-loop system is 
asymptotically stable.

The design procedure for the above problem turns out to be rather straightforward 
and systematic.

, R , R
, R

n m

p

x A x Bu x u
y C x Du y

 = + ∈ ∈


= + ∈



cmp cmp cmp cmp

cmp cmp cmp

x A x B y
u C x D y

= +
 = +
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Step 1. Assume that all the state variables are available for feedback, we design a 
state feedback control law

()

such that A+BF is asymptotically stable. 

Step 2. Design an observer 

()

such that A + K C is asymptotically stable. 

Step 3. Replace x in () with     in (), we obtain a measurement feedback 
controller 

which will do the job for us.

u F x=

ˆ ˆ ˆ( )x A x Bu K y C x Du= + − − −

x̂

ˆ ˆ( )
ˆ

KDFx A BF KC x Ky
u F x

 = + + + −


=



m

cmp cmcmp cmp

c p cmp

p

c pm

x x y
u C x y

A B
D

= +
 = +
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Why? Let us recall

and

We have

,x A x Bu y C x Du= + = +

ˆ ˆ ˆ( ) ,x A BF KC KDF x Ky u F x= + + + − =

ˆ,x A x B F x= +

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

ˆ( )

x A BF KC KDF x K Cx Du
A BF KC KDF x K Cx DF x
A BF KC x KCx

= + + + − +
= + + + − +
= + + −


and

and the closed-loop dynamic equation

ˆ ˆ
A BF
KC A B C

x x
x F K x

   =   
 
 − + +  
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Noting that

It is then clear that the closed-loop system is asymptotically stable provided that 
both A +B F and A +K C are asymptotically stable.

The beauty of this result shows that in order to stabilize the given plant, we can 
separate it into (i) designing a stabilizing state feedback gain, and (ii) designing a 
stabilizing observer gain. Such a result is commonly called the separation 
principle in the control literature and has been used heavily in deriving tons of 
new techniques including what we are to learn in this part. All advanced methods 
are to design specific F and K to meet specific requirements.

Finally, we should note that there are many types of 
observers studied in the literature, which include full 
order and reduced order types. The most general 
type of observer was given by Luenberger in 1966.

David Luenberger
Stanford University

10
0

0 AA B
C

F
B

I I
IF I

FBF
K A K CC I I

B
A K

−
 
 − +

+ −   =    −  −  

 
 +  + 
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Implementation of a multivariable control law with a reference and D = 0…
PLANTReference

u yr −

+
G

1
2

1[ ( ) ]A BFG BC − −= +

Matrix C2 is related to output variables of interest, say
z = C2 xwhere z is to track the reference r.

Multivariable controller
G is chosen such that the DC gain from r to z is unity.

ˆ x
F ˆ ˆ( )x A BF KC x K y B rG= + + − −

r
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Example: Consider the linear model of the pendulum system characterized by

L with it being set at θ =10° initially. Design an observer-
based compensator to stabilize the system and to regulate 
the pendulum to θ =0°. 

[ ]0 1 0
, 1 0

1 0 1
u y

θ θθ
θ θθ

        = + =        −       


 

Step 1. Assume that all the state variables are available for feedback, we design 
a state feedback control law

such that A+BF has eigenvalues at –1± j, i.e., the desired characteristic 
polynomial s2 +2s+2 and 

[ ]1 2u F x f f
θ
θ
 = =  
 

( ) [ ]2
2 1

1 2

1 2
1

1
1

s
sI A BF s

f
Ff s f

f s
−

− − = = − + −  = −
− −
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Step 2. Design an observer 

such that A + K C has eigenvalues at –1± j, i.e., the desired characteristic 
polynomial s2 +2s+2 and

( ) ( )1

2

ˆ ˆ ˆ ˆ ˆ
k

x A x Bu K y C x A x Bu y C x
k
 = + − − = + − − 
 



( )1 2
1 2

2

1
1

2
11

s k
sI A KC s k s

s
Kk

k
−


−

− − = = − + −
−

 = −
 

Step 3. The measurement feedback controller with the reference r=0 is given as

[ ]

1ˆ ˆˆ

ˆ
2 2
3
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ˆˆ

ˆ ˆ

2 1

1 2
ˆ ˆ

A BF KC KDF K

u F
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Closed-loop system response…

Time (seconds)

θ

θ̂

θ

θ̂

Exercise: Verify the above result using SIMULINK in MATLAB…
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2. Comment if it is possible to control the system using a PID controller. Why or why not?

Homework Assignment 4

Consider the Double Inverted Pendulum on a Cart (DIPC) in Homework Assignment 2 (Part 1), which 
is characterized by

where 

and where xc and vc are the displacement and velocity of the 
Cart, respectively, and y = xc. 

Courtesy of 
Ian Crowe-Wright 
University of New 

Mexico

DIPC

c

1

2

c

1

2

,

x

x
v

θ
θ

θ
θ

 
 
 
 

=  
 
 
  
 




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

, ,
0 7.35 0.7875 0 0 0 0.6071
0 73.5 33.075 0 0 0 1.5
0 58.8 51.1 0 0 0 0.2857

A B

   
   
   
   

= =   −   
   − −
   

−   

, ,x A x Bu y C x= + =

1. Design an observer-based controller to stabilize the system 
and to maintain the position of θ1 =θ2 = 0. Assume that the 
initial conditions of the state variables: xc = 0, θ1 =θ2 = 0.1 rad, 
and                                 . Simulate your design in SIMULINK with a reference r = 0. c 1 20, 0, 0x = = =  θ θ
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Linear Quadratic Regulator (LQR)Linear Quadratic Regulator (LQR)
OBSERVER

x

u y

−

x A x Bu
y x
= +
=


F
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Background 
The theory of optimal control is concerned with operating a dynamic system at 
minimum cost. The case where the system dynamics are described by a set of 
linear differential equations and the cost is described by a quadratic function is 
called the LQ problem. One of the main results in the theory is that the solution 
is provided by the linear quadratic regulator (LQR), a feedback controller 
utilizing all the information of the system state variables. LQR together Kalman 
filtering, which is commonly called LQG (linear quadratic Gaussian) form a 
corner stone in modern control theory.

Like the role of PID in the classical control, LQR (or LQG) plays even a more 
important role in modern multivariable control although there are tons of new 
control methods developed in the literature. To tackle a real-life problem, one 
should first try a PID controller if it is a SISO plant, or LQR control law if it is 
a MIMO system, before trying anything else.
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1 TF R B P  −=

Linear quadratic regulator (LQR)Consider a linear system characterized by
where (A, B) is stabilizable. We define a cost index
and                  is detectable. The linear quadratic regulation problem is to find a control law u =– F x such that A –B F is stable, and J is minimized. The solution is given by                      , with P being a positive semi-definite solution of the following Riccati equation:
Nonetheless, LQR technique is a special way to design a state feedback law. 

x A x B u= +   
0,0,)(),,,(

0

>≥+= 
∞

RQdtRuuQxxRQuxJ TT

1/ 2( , )A Q

T 1 T 0A A BRP P P PB Q−+ − + =

Jacopo F. Riccati
Venetian Mathematician 

1676–1754

arelqr
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The derivation of the LQR result is rather involved. It is 
rooted from the general optimal control problem for a 
nonlinear time-varying plant characterized by the following 
dynamical equation:

where x is the state vector and u is the control vector, subject 
to the minimization of the cost function

( , , )x f x u t=

0

0( ) ( ( ), ) ( ( ), ( ), )
T

t

J t x T T L x t u t t dtφ= + 
with t0 the initial time and T the final time of interest. The 
final-state weighting function φ (x(T),T) and weighting 
functions L(x, u, t) are selected depending on the performance 
objectives.

1986

Frank L. Lewis
Univ. of Texas at Arlington

The general optimal control problem is to determine a control input u(t) that 
minimizes the cost function and also ensures some final state constraint.
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The solution to the optimal control problem involves 
using Lagrange multipliers and the introduction of a 
costate variable and a Hamiltonian function. The 
original constrained problem can be reformulated into 
an optimization problem without constraints. For the 
LQR problem considered in this course, we are 
interested in the result for the linear time-invariant 
system

with a cost function

with Q ≥ 0 and R > 0, the optimal solution is

which gives a minimal cost Jmin = xT(0) P x(0), where 
P≥0 is a solution of  

0

( )J x Qx u Ru dt
∞

= + T T

( , , )x f x u t A x Bu= = +

1( ) ( ),u t F x t F R B P  −= − = T

1 0PA A P PBR B P Q−+ − + =T T

1972

1975

1971

Brian Anderson
Australian National University

Huibert Kwakernaak
Univ. of Twente, The Netherlands

Arthur Bryson
Stanford University

Larry Y.C. Ho
Harvard University
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We first prove that A–BF is asymptotically stable. Noting that
The detailed derivations of all the optimal control problems can be found in the beautiful textbook by Lewis. In what follows, we should just concentrate on examining the properties of this remarkable LQR control.

By Lyapunov stability theorem, A–BF is indeed asymptotically stable.
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For the LQR design or the state feedback control in general, we assume that y = x. For such a case, the state feedback and output feedback are the same thing as the measurement output is the same as the state variable. Thus, we can arrange the statefeedback control either as
–

y x=u

F

x Ax Bu= +

or as the following to connect to the form linked to the Nyquist stability criterion 

As such, the stability of the closed-loop system under the state feedback control law is fully determined by the its open-loop transfer function T (s) =F (s I – A)–1 B .

Fx Ax Bu= +
–

xu 1( )F sI A B−−
–=
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( ) ( )P j I A j I A P F RF Qω ω− + − − + =T T

( ) ( )1 1 0PA A P PB B Pj RP I Pj I QR Rω ω − −+ + + −− + =T T

Return difference equality and inequalityConsider the LQR control law. The following so-called return difference equality holds:
The following is called the return difference inequality:
Proof. Recall that
Then, we have

RBAIjFIRFAIjBI ≥−+−−+ −− ])([])([ 11 ωω TTT

& 1 0RPA A P PB B P Q−+ − + =T T1F R B P−= T

1 1 1 1( ) ( ) [ ( ) ] [ ( ) ]R B j I A Q j I A B I B j I A F R I F j I A Bω ω ω ω− − − −+ − − − = + − − + − −T T T T T
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1 1 1 1

1 1 1 1
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1( )j I A Bω −−Multiplying it on the left by       and on the right by                           , 1( )B j I Aω −− −T T
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Single input caseIn the single input case, the transfer function 
is a scalar function. Then, the return difference equation is reduced to

1( )Open loop transfer function f sI A b−= −

211 ( ) 0where r r f j I A bα ω α−+ = + − ≥

rbAIjfr ≥−+ − 21)(1 ω

211 ( ) 1  Return Difference Inequality...f j I A bω −+ − ≥

1 1 1 1( ) ( ) [1 ( ) ][1 ( ) ]r b j I A Q j I A b r b j I A f f j I A bω ω ω ω− − − −+ − − − = + − − + − −T T T T T
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Let Z be the number of the unstable closed-loop poles, P the number of unstable open-loop poles. Then, the Nyquist plot 
of the open-loop transfer function shall encircle the point –1 (clock-wise) N = Z – P times (i.e., Z = N + P).

Graphically,                                                                                                            implies 

–1

PM ≥ 60°

21 11 ( ) 1 ( ) ( ) 11 0f j I A b f j I A b jω ω− −+ − ≥  +− −− ≥

The phase margin resulting from the LQR design is at least 60 deg.
* R.E. Kalman, Contributions to the theory of optimal control, Boletín de la Sociedad Matemática Mexicana, Vol. 5, pp. 102–119, 1960…* R.E. Kalman, When is a linear control system optimal? Journal of Basic Engineering, Trans of ASME, Series D, Vol. 86, pp. 51–60, 1964.

The gain margin is at least from 
[0.5, ∞).

A stable A unstable

X 
0.5
X 

0.5
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Example: Consider a given plant characterized by 
which has a pole at                            , an unstable one if a >0. Solving an LQR problem, which minimizes the following cost function
we obtain
and

0 1 0
1 1

x x u
a
   = +   −   



0

1 0
( , , , ) ( ) , , 0.1

0 0
J x u Q R x Qx u Ru dt Q R

∞  
= + = = 

 
 T T

2
1 0 0

0 2 1 0 2 0 2
0 2

20 1 110, , , 10
10 10

p p pa aP p p p p p p a p
p p

+ −  + += = = = + − ⋅ 
 

( )1 4 1 1
2

a + −

( )2 210 2 10 1 1F a a a a = + + + + + −  

ex2070
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PM = 83.6°

GM = ∞

X

• For a = – 1…

+
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PM = 61.2°

GM = (0.458, ∞)

X

X

• For a = 5…

+
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How to select Q and R in LQR design?There is no universal rule in selecting the weighting matrices Q and R in the LQR design. In practice, one might try diagonal matrices first, i.e., 

Then, the cost function can be written as
We can then proceed to select the entries of Q and R in accordance with the properties of their associated state and input variables.

11 11

22 22,

nn mm

q r
q r

Q R

q r

   
   
   = =
   
   
   

 

( ) 2 2

1 10 0

( , , , )
n m

i ii i
i i

iiJ x u x x u u dt x uQ R Q R q dr t
∞ ∞

= =

 = + = + 
 
  T T

What is the shortfall with the LQR design? It requires full state information x!
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Kalman FilterKalman Filter

Rudolf Kalman (1930-2016) & Richard Bucy (1935-2019)

x̂

u yx A x Bu
y Cx

v
w

= + +
= +


ˆ ˆ ˆ( )
ˆ ˆ
x Ax Bu y y
y Cx

K= + + −
=



The problem of Kalman 
filter (or Kalman-Bucy
filter) is a special way to 
design an observer gain 
matrix K for a state 
estimator. What we have 
covered in this section is 
more related to the work 
done by Bucy and his co-
workers…

Kalman-Bucy Filter?

 R. S. Bucy & P. D. Joseph (1968).
Filtering for Stochastic Processes with 
Applications to Guidance.
Interscience: New York. 
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Rudolf E. KalmanRudolf E. Kalman

Rudolf E. Kalman
1930–2016

Hungarian American 

Rudolf Emil Kalman was a Hungarian-born American 
electrical engineer, mathematician, and inventor. He 
earned both his bachelor’s and master’s degrees in 
electrical engineering from MIT, and completed his 
PhD at Columbia University. He was most noted for his 
co-invention and development of the Kalman filter, a 
mathematical algorithm that is widely used in signal 
processing, guidance, navigation and control systems. 
For this work, U.S. President Barack Obama awarded 
Kalman the National Medal of Science, 2009.

Kalman was a member of the U.S. National Academy of 
Sciences, the American National Academy of 
Engineering, and the American Academy of Arts and 
Sciences. He was a foreign member of the Hungarian, 
French, and Russian Academies of Science. In 2012 he 
became a Fellow of the American Mathematical Society.

Kalman received the IEEE Medal of Honor in 1974, the 
IEEE Centennial Medal in 1984, Inamori Foundation’s 
Kyoto Prize in Advanced Technology in 1985, Steele 
Prize of the American Mathematical Society in 1987, 
Richard E. Bellman Control Heritage Award in 1997, 
and National Academy of Engineering’s Charles Stark 
Draper Prize in 2008.

His passing not only brought about 
personal loss but also a sad  
reminder of the passing of a 
golden era in systems and control.

⎯ Larry Y.C. Ho

 R. E. Kalman, Y. C. Ho and K. S. Narendra, “Controllability of linear dynamical systems,” Contributions to Differential
Equations, vol. 1, no. 2, pp. 189–213, 1963.
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Review of random processesA random variable X is a mapping between the sample space and the real numbers. A random process (a.k.a
stochastic process) is a mapping from the sample space into an ensemble of time functions (known as sample functions). To every member in the sample space, there corresponds a function of time (a sample function) X(t). 

X (t)

t

XX1 X2

H.H.

H.T.

T.H.

T.T.

x2(t)

x1(t)

x3(t)

x4(t)
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Mean, moment, variance, covariance of random processesLet f (x,t) be the probability density function (p.d.f.) associated with a random process 
X (t). If the p.d.f. is independent of time t, i.e., f (x,t) = f (x), then the corresponding random process is said to be stationary. We will focus our attention only on this class of random processes in this course. For this type of random processes (RP), we define:1) mean (or expectation): 2) moment ( j-th order moment)
3) variance 4) covariance of two random processes

Two RPs v and w are said to be independent if their joint p.d.f.

[ ] ( )m E X x f x dx
∞

−∞

= = ⋅ ( )j jE X x f x dx
∞

−∞

  = ⋅  

2 2 2( ) ( ) ( )E x m x m f x dxσ
∞

−∞

 = − = −   [ ]( , ) ( [ ])( [ ])v w E v E v w E w= − −con
[ ] ( , ) ( ) ( ) [ ] [ ]E vw vw f v w dvdw v g v dv w h w dw E v E w

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

 = ⋅ = ⋅ ⋅ =   

( , ) ( ) ( )f v w g v h w= ⋅
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Autocorrelation function and power spectrumAutocorrelation function is used to describe the time domain property of a random process. Given a random process v, its autocorrelation function is defined as follows:
If v is a wide sense stationary (WSS) process,
Note that Rx(0) is the time average of the power or energy of the random process.
Power spectrum of a random process is the Fourier transform of its autocorrelation function. It is a frequency domain property of the random process. To be more specific, it is defined as 

[ ]1 2 1 2( , ) ( ) ( )xR t t E v t v t=

[ ]1 2 2 1( , ) ( ) ( ) ( , ) ( ) ( )x x x xR t t R t t R R t t E v t v tτ τ τ= − = = + = +

ττω ωτdeRS j
xx

−
∞

∞−
= )()(
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However, many noises (or the so-called colored noises, or noises with finite energy and finite frequency components) can be modeled as the outputs of low-pass linear systems with an injection of a white noise into their inputs, i.e., a colored noise can be generated by a white noise as follows

Finally, Gaussian Process v is also known as normal process has a p.d.f.

White noise, colored noise and Gaussian random process

White Noise is a random process with a constant power spectrum, and an autocorrelation function 
which implies that a white noise has an infinite energy and thus it is nonexistent in real life. 

( ) ( ) ( ) ( ) ( )j j
x x xR q S R e d q e d qωτ ωττ δ τ ω τ τ δ τ τ

∞ ∞
− −

−∞ −∞

= ⋅  = = = 

2
2

( )
221( ) , mean, variance

2
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f v e
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σ μ σ
σ π

− −

= = =

white noise colored noiseLow-pass SystemwhiteS
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Kalman filter for a linear time invariant (LTI) systemConsider an LTI system characterized by
Assume:    (1) (A, C) is detectable(2) v(t) and w(t) are independent white noises with the following properties

(3)                      is stabilizable (to guarantee closed-loop stability).

( )  is the input noise
( )  is the measureme

 
nt noise

x Ax Bu v t v
y Cx w t w
= + +

 = +



[ ( )] 0, [ ( ) ( )] ( ), 0,e e eE v t E v t v Q t Q Qτ δ τ= = − = ≥T T

[ ( )] 0, [ ( ) ( )] ( ), 0e e eE w t E w t w R t R Rτ δ τ= = − = >T T

( )1
2, eA QThe problem of Kalman Filter is a special way to design a state estimator to estimate the state x (t) by         such that the estimation error covariance is minimized, i.e., the following index is minimized:)(ˆ tx

ˆ[ ( ) ( )], ( ) ( ) ( )eJ E e t e t e t x t x t= −T
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Construction of steady state Kalman filterKalman filter is a state observer with a specially selected observer gain (or Kalman filter gain). It has the dynamic equation:
with the Kalman filter gain Ke being given as
where  Pe is the positive semi-definite solution of the following Riccati equation,
Let                     . We can show (see next) that such a Kalman filter has the following properties:

 
ˆ ˆ ˆ ˆ( ), (0) is given
ˆ ˆ

ex Ax Bu K y y x
y Cx
= + + −
=
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Kalman filter and LQR – They are dualRecall the optimal regulator problem,

The LQR problem is to find a state feedback law u = – F x such that J is minimized. It was shown that the solution to the above problem is given by
and the optimal value of J is given by                     . Note that x0 is arbitrary. Let us consider a special case when x0 is a random vector with
Then, we have

( )
0

0

, (0)

, 0, 0

x Ax Bu x x

J x Qx u Ru dt Q Q R R
∞
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The duality

♣ Linear quadratic regulator ♠ Kalman filter

P  BRF T1−= 1
e eK PC R−= T

1 0PA A P PBR B P Q−+ − + =T T 1 0e e e e e eP A AP PC R CP Q−+ − + =T T

ePJ   traceoptimal =PJ   traceoptimal =

These two problems are equivalent (or dual) if we let
A
B
F
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T
e
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A
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Proof of properties of Kalman filterRecall that the dynamics of the given plant and Kalman filter, i.e.,
( )

( )
x Ax Bu v t
y Cx w t
= + +
= +
  ˆ ˆ ˆ( )

ˆ ˆ
ex Ax Bu K y y

y Cx
= + + −
=

  &
We have

with
Next, it is reasonable to assume that initial error e (0) and d (t) are independent, i.e.,
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We will next show  is asymptotically stable andeA A K C= −

lim [ ( ) ( ) ] et
E e t e t P

→∞
=T

Furthermore,

where                                          . 
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Recall that                              and                                                                     . We have

Since Qe ≥ 0 and                      is assumed to be stabilizable, it follows from Lyapunov stability theory (see Theorem 3.3.1 of Part 1) that matrix      is stable.

1 0e e e e e eP A AP PC R CP Q−+ − + =T T

11 1 0e e e e ee e e ee e eP PA A CP PC R CP P QPC R CP C R−− −+ −− + + =TT T T

( ) 0e e e ee e K RP A PA K Q++ = − = − ≤∇T T
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2, eA Q
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tAtA ddeeete
0
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Recall also the solution to                            , i.e.,
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Noting that          is deterministic, we have
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We next show that P(∞) = Pe , i.e., the solution to the Kalman filter ARE. Let
In view of (♣), i.e., , we have

Next, we have

Thus, we have for every given z(0),                                                     , which implies 
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It is now simple to see from the definition of P(t)=E [e(t)eT(t)] that
Finally, we havelim [ ( ) ( )] ( ) lim [ ( ) ( )]et t
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Example: Consider a given plant characterized by the following state space model,

Solving the Kalman filter ARE, we obtain 
0 1 0 0.1 0
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 T

[ ]1 0 ( ), [ ( ) ( )] ( ) 0.2 ( )ey x w t E w t w R t tτ δ τ δ τ= + = − = −T
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Related topics:

Solutions to algebraic Riccati equations (AREs): Solutions to 
AREs are rather numerically involved. All solutions are closely 
associated with the eigenvectors of a so-called Hamiltonian 
matrix. A fairly completed compilation of the literature and 
results on solutions to AREs can be found in Chapter 4 of Saberi 
et al. (1995).

Extended Kalman filter (EKF): In estimation theory, the EKF is the nonlinear version 
of the Kalman filter, which linearizes about the current mean and covariance. The EKF 
has been considered the de facto standard in the theory of nonlinear state estimation, 
navigation systems and GPS.

Unscented Kalman filter (UKF): When the state transition and observation models, the 
predict and update functions are highly nonlinear, the extended Kalman filter can give 
particularly poor performance. UKF uses a deterministic sampling technique known as 
the unscented transform to pick a minimal set of sample points (called sigma points) 
around the mean, which more accurately captures the true mean and covariance.

1995
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Linear Quadratic Gaussian (LQG) ControlLinear Quadratic Gaussian (LQG) Control
x̂

u y

+

x A x Bu v
y Cx w
= + +
= +


F−
ˆ ˆ ˆ( )
ˆ ˆ
x Ax Bu y y
y Cx

K= + + −
=
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Problem statementIt is very often in control system design for a real-life problem that one cannot measure all the state variables of the given plant. Thus, the linear quadratic regulator, although it has very impressive gain and phase margins (GM = ∞ and PM > 60 degrees), is impractical as it utilizes all state variables in the feedback, i.e., u = – F x. In most of practical situations, only partial information of the state of the given plant is accessible or can be measured for feedback. The natural questions one would ask:
 Can we replace x the control law in LQR, i.e., u = – F x, by the estimated state to carry out a meaningful control system design? The answer is yes. One of the solutions is called LQG control.
 Do we still have impressive properties associated with the LQG control? The answer is NO! 
 Any solution? Yes. The technique is called a loop transfer recovery (LTR).
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Linear quadratic Gaussian designConsider a given plant characterized by
where v(t) and w(t) are white with zero means. v(t), w(t) and x(0) are independent, and
The performance index has to be modified as follows:
The linear quadratic Gaussian (LQG) control is to design a control law that only requires the measurable information such that when it is applied to the given plant, the overall system is stable and the performance index is minimized.

( )  is the input noise
( )  is the measureme

 
nt noise

x Ax Bu v t v
y Cx w t w
= + +

 = +



0[ ( ) ( )] ( ), 0, [ ( ) ( )] ( ), 0, [ (0)]e e e eE v t v Q t Q E w t w R t R E x x= − ≥ = − > =τ δ τ τ δ τT T

0

1lim ( ) , 0, 0
T

T
J E x Qx u Ru dt Q R

T→∞
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Solution to the LQG problem – the separation principle

Step 1. Design an LQR control law u = – F x which solves the following problem, 
i.e., compute

Step 2. Design a Kalman filter for the given plant, i.e., 
where

Step 3. The LQG control law is given by                      , i.e.,

  uBxAx +=

1 .F R B P   −= T1 0, 0,PA A P PBR B P Q P−+ − + = ≥T T

xCyyyKBuxAx e ˆˆ),ˆ(ˆˆ =−++=

1 0, 0.e e e e e e eP A AP PC R CP Q P−+ − + = ≥T T1,e e eK PC R−= T

 x̂Fu −=
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)ˆ(ˆˆ





−=
−++=
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Block implementation of an LQG control law with a reference…

PLANTReference
ˆ x

u yr −

+
G

1
2

1[ ( ) ]A BFG BC − −= −

Matrix C2 is related to output variables of interest, say
z = C2 xwhere z is to track the reference r.

LQG controller
G is chosen such that the DC gain from r to z is unity.

F− ˆ ˆ( )e ex A BF K C BGx K y r= − − + −
r
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Closed-loop dynamics of the given plant together with LQG controller
Recall the plant:                                       and controller
We define a new variable                     and thus
and 

 
)(

)(





+=
++=

twCxy
tvBuAxx ˆ ˆ( )

ˆ
e ex A BF K C x BGr K y

u F x Gr
 = − − − +


= − −
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e e e

e ee
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e
A K C e vx tx K C x x v t K tK w w

= − = − − + − + + + − −
= − − − + − −= − +



)
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Clearly, the closed-loop system is characterized by the following state space equation,
,

0 0e e

A BF BF vx x BG
r v v

A K C v K we e
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= − + =        − −        
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 The closed-loop poles are given by                                                    , which are stable.)()( CKABFA e−∪− λλ
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Example: Consider again the inverse pendulum system characterized by

[ ]
2

00 1
, 1 01

0
u yg

M LL

θ θθ
θ θθ

         = + =                

  
 

L Also, consider that there are some input noise v and 
measurement noise w with Qe = I and Re = 1. We 
thus have

Inverse Pendulum
Inverse Pendulum

M

2For simplicity,  we .1s ,t   1e  gM L L= =

[ ]0 1 0
, 1 0

1 0 1
u v y w

θ θθ
θ θθ

        = + + = +        
       

  
 

We proceed to design an LQG control law for the given system to keep the output 
around θ =π and also minimize the cost function

( )
0

1 01lim , , 1.
0 0

T

T
J E x Q x u Ru dt Q R

T→∞

   = + = =   
  

 T T

ex2097
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Step 1: With the given system data and Q and R, we solve the following ARE
1 0PA A P PBR B P Q−+ − + =T T

and obtain

which gives the eigenvalues of A– B F at –1.0987± j0.4551.

[ ]13.1075 2.4142
2.4142 2.1974

2.4142 2.1974
P F R B P− =  = = 

 
T

Step 2: Solving the Kalman filter ARE
1 0e e e e e eP A AP PC R CP Q−+ − + =T T

we obtain

which places the eigenvalues of A –Ke C at –1 and –1.4142, respectively.

12.4142 2.4142 2.4142
2.4142 3.4142 2.4142e e e eP K PC R−   =  = =   
   

T
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Step 3: The resulting LQG control law is given by

where                                    .

[ ]

2.4142 1 0 2.4142
( )ˆ ˆ ˆ

3.8284 2.1974 1.4142 2.4142
2.4142 2.1974 1.4142ˆ ˆ

e ex A BF K C x BGr K y x r y

u F x Gr x r

−      = − − − + = + +      − −      
 =− − = − − +



1 1[ ( ) ]G C A BF B− −= −

The closed-loop system is given by
0 1 0 0 0

1.4142 2.1974 2.4142 2.1974 1.4142
0 0 2.4142 1 0
0 0 1.4142 0 0

e

vx x
r

v K we e

   
   − −        = + +      −−        
   −   




[ ]1 0 0 0  
x

y w
e

 = + 
 

Simulation results given on the next page show that LQG control works, 
but its performance can be and should be improved before implementing 
it to the real problem.  
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1

2 0

3
0

Initial condition 
3

0
t

e
e

πθ
θ

π

=
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1e

2e
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GM = (0.4142,∞)

PM = 61.3°

GM = (0.82, 2.29)

PM = 14.3°

 Gain margins and phase margins…

LQR Control LQG Control LTR

LTRWhat is the shortfall with the LQG design? It does not guarantee robustness!
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Homework Assignment 5 + Design Problem 1

Reconsider the Double Inverted Pendulum on a Cart (DIPC) in Homework Assignment 4. 

1. Assume all state variables of the plant are available for feedback. Find an LQR control law, 
which minimizes the following performance index:

What are the resulting gain and phase margins of your LQR design?

2. Assume that there is an input noise (or disturbance) entering the system as:

and the system measurement output is                        where w(t) is the measurement noise. 
Assume both v(t) and w(t) have zero means and

Design an appropriate Kalman filter.

3. Derive the corresponding LQG control law, i.e., the combination of the LQR law in Step 1 and 
the Kalman filter in Step 2. What are the closed-loop eigenvalues? What are the resulting gain 
and phase margins of your LQG control law? Simulate your design with a reference r= 0 and 
with the same initial condition of the state variable as that in Homework Assignment 4 and the 
initial condition for the Kalman filter being 0.

( )
0

, , 1J x Qx u Ru dt Q I R
∞

= + = = T T

( ),x A x Bu Bv t= + +
c ( ),y x w t= +

[ ( ) ( )] ( ), 1, [ ( ) ( )] ( ), 1.e e e eE v t v t Q t Q E w t w t R t Rδ τ δ τ= − = = − =T T
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Introduction to Robust ControlIntroduction to Robust Control
George Zames

Canadian Control Theorist 
1934–1997 

M

Small Gain Theorem
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Representation of uncertain plant dynamics

Perturbation 

Nominal  Plant
responsemeasurements

disturbancesensor noisecontrol inputs

u y

disturbances noisesuncertainties

nonlinearities

Example: An HDD servo system…

|||
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A real control problem

responsedisturbancessensor noise
Controller references/commands

measurementscontrol input

Controller Objective: To provide desired responses in face of
 Uncertain plant dynamics + External inputs 

Nominal Plant

disturbancessensor noise

Perturbation 

}

S.G.
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Standard feedback loops in terms of general interconnection structure

Standard feedback 
system

K G
r u

d

+ –

e y

Even though it is not directly 
formulated in the problem 
formulation, classical control 
system design deals with 
system uncertainties through 
specifications imposed on 
gain and phase margins… +

y

K

G

r

? ?d

u

_

e

e
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Analysis objectives

• Nominal Performance Question (H2 Optimal Control):Are closed loop responses acceptable for disturbances? sensor noise? 
• Robust Stability Question (H∞ Optimal Control):Is closed loop system stable for nominal plant? for all possible perturbations?
• Robust Performance Question (Mixed H2 /H∞ Optimal Control):Are closed loop responses acceptable for all possible perturbations and all external inputs? Simultaneously?

Many issues related to robust performance problems are still open!... 
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H2 and H∞ Control TechniquesH2 and H∞ Control Techniques


cmpΣ

u
w z

y

Tzw(s) zw
|||
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Introduction to the problemsWe first ignore uncertainties (perturbations) in the plant. Will bring such an issue back later. Consider a stabilizable and detectable linear time-invariant nominal system Σ with a proper controller Σcmp as in the configuration below:


cmpΣ

u

w z

y

1 1

2 2

0
0

:
x A x B u

w

E w
y C x D w
z C x D u

u
= + +

Σ +=
+
+

 = +


cmpcmp cmpcmp

cmp
cmpcmp cmp

:
B yA xx
D yC xu

= +Σ  = +



cmp

R state variable R control input

R measurement & R disturbance

R controlled output R controller state

n m

p l

q k

x u

y w

z x

∈ ⇔ ∈ ⇔

∈ ⇔ ∈ ⇔

∈ ⇔ ∈ ⇔
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The problems of H2 and H∞ optimal control are to design a proper control law Σcmpsuch that when it is applied to the given plant with disturbance, i.e., Σ, we have
 The resulting closed loop system is internally stable.
 The resulting closed-loop transfer function matrix from the disturbance input wto the controlled output z, say, Tzw(s), is as small as possible, i.e., the effect of the disturbance input on the controlled output is minimized.

 H2 optimal control: the H2-norm of Tzw(s) is minimized.
 H∞ optimal control: the H∞-norm of Tzw(s) is minimized.

Note: Tzw(s) is a function of frequencies. It is meaningless to say if it is large or small. The common practice is to measure its norms instead. H2-norm and H∞-norm are two commonly used norms in measuring the sizes of a transfer function matrix.



cmpΣ

u
w z

y

Tzw(s) zw
|||
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The closed-loop transfer function matrix: Tzw(s)The closed-loop transfer function from disturbance to controlled output can be derived as follows: Recall…
2 2

1 1: y C x D w
D

ux A x B E w

z C ux

= + +
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( )
( )

cmp cmp cmp
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Thus, Tzw(s) is given by
( ) 1

cl cl cl cl( )zwT s C sI A B D−= − +

Remark: For the state feedback case, C1 = I and D1 = 0, i.e., all the states of the given system can be measured, Σc can then be reduced to u = F x and the corresponding closed-loop transfer function is reduced to 

The closed-loop system is internally stable if and only if the eigenvalues of
cmp 1 cmp

cl
cmp 1 cmp

A BD C BC
A

B C A
+ 

=  
 are all in open left half complex plane.

( ) ( ) 1
2 2( )zwT s C D F sI A BF E−= + − −The closed-loop stability implies and is implied that A + B F has stable eigenvalues.
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H2-norm and H∞-norm of a transfer function matrix

Definition: (H2-norm) Given a stable and proper transfer function matrix Tzw(s), its 
H2-norm is defined as 

1
2

H
2

1 trac (e
2

( ) )zw zw zwT T j T j dω ω ω
π

+∞

−∞

  
=   

  


Graphically,

Note: The H2-norm is the total energy corresponding to the impulse response of 
Tzw(s). Thus, minimization of the H2-norm of Tzw(s) is equivalent to the minimization of the total energy from the disturbance w to the controlled output z.

ω

|Tzw(jω)|
H2-norm

Tzw(s) zw
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♣ Singular value decomposition
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♣ Example: Given a matrix

its singular value decomposition is given as

where

1 2 3 4
2 4 6 8

A  
=  
 

12.4472 0 0 0
0 0 0 0

A U V U V ′ ′= Δ =  
 

0.1826 0.9832 0 0
0.4472 0.8944 0.3651 0.0678 0.5571 0.7428

,
0.8944 0.4472 0.5477 0.1017 0.7737 0.3017

0.7303 0.1356 0.3017 0.5977

U V

− − 
 − − − − −   = =   − − − 
 − − 

Note: It can be computed using an m-function SVD in MATLAB.

Gene H. Golub
1932–2007

Stanford University 

ex1042
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Definition: (H∞-norm) Given a stable and proper transfer function matrix Tzw(s), its 
H∞-norm is defined as 

[ ]max
0
sup ( )zw zwT T j
ω

ωσ∞
≤ <∞

=

where σmax [Tzw(jω)] denotes the maximum singular value of Tzw(jω). For a single-input-single-output transfer function Tzw(s), it is equivalent to the magnitude of Tzw(jω).Graphically,

Note: The H∞-norm is the worst-case gain in Tzw(s). Thus, minimization of the H∞-normof Tzw(s) is equivalent to the minimization of the worst-case (gain) situation on the effect from the disturbance w to the controlled output z.

H∞-norm
ω

|Tzw(jω)|

Tzw(s) zw
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Infima (optimal performance) and optimal controllers

Definition: (The infimum of H2 optimization) The infimum of the H2-norm of the closed-loop transfer matrix Tzw(s) over all  stabilizing proper controllers is denoted by      ,  that is
{ }*

2 cmp2: inf  internally stabilizes .zwTγ = Σ 

Definition: (The infimum of H∞ optimization) The infimum of the H∞-norm of the closed-loop transfer matrix Tzw(s) over all stabilizing proper controllers is denoted by      a    , that is
{ }*

cmp: inf  internally stabilizes .zwTγ∞ ∞
= Σ 

Definition: (The H2 optimal controller) A proper controller Σcmp is said to be an H2optimal controller if it internally stabilizes Σ and                      .*
22 γ=zwT

Definition: (The H∞ γ-suboptimal controller) A proper controller Σcmp is said to be an 
H∞ γ- suboptimal controller if it internally stabilizes Σ and                                .( )*

∞∞
>< γγzwT

*
2γ

*γ∞
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1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

= + +
Σ = +
 = +



Critical assumptions: regular case vs singular caseMost results in H2 and H∞ optimal control deal with a so-called a regular problem or regular case because it is simple. An H2 or H∞ control problem is said to be regular if the following conditions are satisfied,1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix2. The subsystem (A,B,C2,D2) has no invariant zeros on the imaginary axis;3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix4. The subsystem (A,E,C1,D1) has no invariant zeros on the imaginary axis;
An H2 or H∞ control problem is said to be singular if it is not regular, i.e., at least one of the above 4 conditions is not satisfied.

Note: For state feedback control, Conditions 1 and 2 are sufficient for the regular case.
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Classification of H2 and H∞ control problems……

State Feedback
Output Feedback

Regular Case Singular Case

①Regular problem under static state feedback control laws…
②Singular problem under static state feedback control laws…

Regular problem under dynamic output feedback control laws…
③

Singular problem under dynamic output feedback control laws…
④

∞
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Solutions to the state feedback problems: the regular caseThe state feedback H2 and H∞ control problems are referred to the problems in which all the states of the given plant Σ are available for feedback. That is the given system is 
wE

u

u

D

B

x
x
x

C

A

z
y
x +

+

+

=
=
=







Σ

22

:


where (A, B ) is stabilizable, D2 is of maximal column rank and (A, B, C2, D2) has no invariant zeros on the imaginary axis.In the state feedback case, we look for a static control law, instead of a dynamical control law, 
which would give us the required H2 and H∞ performance. xFu =
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Solution to the regular H2 state feedback problemSolve the following algebraic Riccati equation (H2-ARE)
( ) ( ) ( )1

2 2 2 2 2 2 2 2 0A DP PA C C B D PC D D C BP
−

+ + − + + =T T T T T T

for a unique positive semi-definite stabilizing solution P ≥ 0. The H2 optimal state feedback law is then given by
( )1

2 2 2 2( )u F x D D D C B xP−= = − +T T T

It can be showed that the resulting closed-loop system Tzw(s) has the following property:
It can also be showed that                                            .  Note: the trace of a matrix is defined as the sum of all its diagonal elements.

2

*
2 .zwT γ=

[ ] 2*
2

1
trace( )E PEγ ′=

h2care
h2state
gm2star
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Example: Consider a system characterized by 

[ ] uxz

xy

wuxx

⋅+=

=
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+






=










Σ

111

2
1

1
0

43
25

:



which has two unstable invariant zeros at 1.7639 and 6.2361, respectively.  Solving the 
H2-ARE using MATLAB, we obtain a positive definite solution

144 40
,

40 16
P  
=  
 

[ ]41 17F = − −

*
2 19.1833γ =

The closed-loop magnitude response from the disturbance to the controlled output is given on the right. The H2 optimal performance or infimum is given by 
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Classical LQR problem is a special case of H2 controlIt can be shown that the well-known LQR problem can be re-formulated as an H2optimal control problem. Consider a linear system,
The LQR problem is to find a control law u = F x such that the following index is minimized:
where Q ≥ 0 is a positive semi-definite matrix and R > 0 is a positive definite matrix. The problem is equivalent to finding a static state feedback 
H2 optimal control law u = F x for 

0)0(, XxuBxAx =+=

( )
0

J x Q x u Ru dt
∞

= + T T

uRx
Q

z

xy
wXuBxAx
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=
++=
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1

2
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0

John Doyle
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Solution to the regular H∞ state feedback problemGiven γ > γ∞*, solve the following algebraic Riccati equation (H∞-ARE)
for a unique positive semi-definite stabilizing solution P ≥ 0. The H∞ γ-suboptimal state feedback law is then given by

( )1
2 2 2 2( )u F x D D D C B xP−= = − +T T TThe resulting closed-loop system Tzw(s) has the following property: .γ<∞zwT

( ) 12
2 2 2 2 2 2 2 2( ) ( ) 0A CP P PA C C EE P B D D D D CP B Pγ

−−+ + + − + + =T T T T T T T

h8care
h8state
gm8star

Remark: The computation of the best achievable H∞ attenuation level, γ∞*, is in general quite complicated. For certain cases, γ∞* can be computed exactly. There are cases in which γ∞* can only be obtained using some iterative algorithms. One method is to keep solving the H∞-ARE for different values of γ until it hits γ∞* for which and any γ < γ∞*, the H∞-ARE does not have a solution. Please see the reference by Chen (2000) for details. 2000
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Example: Again, consider the following system
[ ] uxz
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wuxx
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It can be showed that the best achievable H∞performance for this system is             . Solving the H∞-ARE using MATLAB with γ = 5.001, we obtain a solution
330111.5 110028.8

,
110028.8 26679.1

P  =  
 

[ ]110029.8 36680.1F = − −

* 5γ ∞ =

The closed-loop magnitude response from the disturbance to the controlled output is given on the right. The worse case gain, occurred at the low frequency is equal to 5.000999775.
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About good and bad invariant zeros……For simplicity, we consider the system

with        being square and full rank, i.e., it is nonsingular. We can then apply a pre-feedback                                           to the given system, which yields

and the Rosenbrock system matrix of the subsystem from     to z is given by

2 2

:
x A x B u E w
y x
z C x D u

= + +
Σ =
 = +



2D
1 1

2 2 2 uu D C Dx− −+−= 
1 1

2 2 2(

0

)x x E w

u

A BD C uBD
y x
z x I

− −= + +
 =
 =

−

+







( )
0

sI
P s

I
A B

Σ
− −

=  
 

All the eigenvalues of  are the invariant zeros of the system!
0

x x E w
y x

x Iz

B

u

A u= + +
 =
 = +







A

u
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0

x A x B E w

u
y x
z x

u

I

= + +
 =
 = +





Then, it can be seen that P = 0 is the required solution!  The optimal solution is given by

If (A,B,C2,D2) is of minimum phase, i.e., all its invariant zeros are stable, or equivalently    is a stable matrix, the its corresponding H2-ARE, i.e.,
can be simplified as

( ) ( ) ( ) 022
1

222222 =++−++ − PBCDDDDCPBCCPAPA TTTTTT

0A P PA PB B P+ − =T T

( )1 0( ) 0 0F I I Ix xBu −= − ⋅ + ⋅= = T T T

1 1 1
2 2 2 2 2u x xD C D D Cu− − −=− −= + 

A 0 0 0I

and the solution in terms of the original control input is given by
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Similarly, the corresponding H∞-ARE, i.e.,
can be simplified as
Again, P = 0 is the required solution. The optimal solution (for this special situation, the H∞ control has an optimal solution) is given by
and the solution in terms of the original control input is given by
In both H2 and H∞ cases, the closed-loop transfer function matrix from w to z is

( ) 12
2 2 2 2 2 2 2 2( ) ( ) 0A P PA C C PEE P PB C D D D D C B Pγ

−−+ + + − + + =T T T T T T T

2 0A P PA PEE P PBB Pγ −+ + − =T T T

( )1 0( ) 0 0F I I Ix xBu −= − ⋅ + ⋅= = T T T

1
2

1 1
2 2 2 2u x xDD C D Cu−− −=− −= + 

( ) 1
) 00(zw sT I Es A

−
= ⋅ − ≡The disturbance is totally rejected. Also note that the closed-loop system poles are exactly the invariant zeros of (A,B,C2,D2). They cancel each other!

0 0 0I
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If (A,B,C2,D2) has all its invariant zeros to be unstable, or equivalently     is an anti-stable matrix, the its corresponding H2-ARE, i.e.,
has a solution P = 0 too. But it does not give a stabilizing control law (why?)… However, it can be converted into a Lyapunov equation
From the Lyapunov stability theorem, it has a unique positive definite solution. The optimal performance is                                    and the optimal solution is given by
The resulting closed-loop system matrix

0A P PA PB B P+ − =T T

( )1( ) 0x x xF I I I B Bu P P−− ⋅ += ⋅ −= = T T T T ( )( )11
2 2 2 2D C D xDu B P

−− = − + T T

A

( ) ( )1 1P A A P B B− −− + − = −
T T ( )1P A P A BB P−  − = −  

T T

That is the closed-loop system poles are located right at the mirror images of the unstable invariant zeros of the subsystem (A,B,C2,D2).

( )1A BF A BB P P A P−+ = − = −
TT xx

xx

xx

*
2 trace( )EPE′=γ
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Similarly, the corresponding H∞-ARE, i.e.,
can be re-written as
which can be solved by solving two Lyapunov equations:
It can be showed that
The γ-suboptimal solution is given as
More general results for the singular case can be found in Chen et al. (1992). 

2 0A P PA PEE P PB B Pγ −+ + − =T T T

1 1 2P A AP B B EE− − −+ = −γT T T

S A AS B B T A AT EE+ = + =T T T Tand

1 *
1

*
max 2

1n 0,( ) a dTS P S Tγ
γ

γλ γ
−

−
∞ ∞

 = = − 


> ∀ >


( )( )11
2 2 2 2D C xDu D B P

−−= − + T T

Ian Petersen
Australian National 

University

 I. R. Petersen, “Disturbance attenuation and H∞-optimization: A design method based on the algebraic Riccati equation,” 
IEEE Transactions on Automatic Control, Vol. AC-32, pp. 427-429, 1987.

 B. M. Chen, et al., “Exact computation of the infimum in H∞-optimization via output feedback,” IEEE Transactions on 
Automatic Control, Vol. 37, pp. 70-78, 1992.
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Side note: For the case when      has both stable and unstable eigenvalues, there exists a similarity transformation T such that 
One can then deal with each part separately. 

A

1 0
, stable, anti-stable.  

0
 T

A
A A A

A
T +

− −
−

+

 
=  
 

0
0
0

P
P+

 
=  
 

The solution to the ARE corresponding to the stable zero dynamic part is 0 and the solution to the ARE corresponding to the unstable part cannot be set to 0 (it can be calculated by solving Lyapunov equations as on the previous page), which implies…
 When the disturbance enters the system through the stable zero dynamic subspace, its effect to the output to be controlled can be totally attenuated. 
 When the disturbance enters the system through the unstable zero subspace, the attenuation of its effect to the output to be controlled is limited. This once again confirms that a nonminimum phase system would result in a bad overall control performance including disturbance attenuation.
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Solutions to the state feedback problems – the singular caseConsider the following system again, 
2 2

:
x A x B u E w
y x
z C x D u

= + +
Σ =
 = +



where (A, B) is stabilizable, D2 is not necessarily of maximal rank and  
(A, B, C2, D2) might have invariant zeros on the imaginary axis.Solution to this kind of problems can be done using the following trick (or so-called a perturbation approach): Define a new controlled output

2 2

0
0

C Dz
z x I x u

u I
ε ε
ε ε

    
    = = +    
         



Clearly,               if ε = 0.zz ~∝

small perturbations
P Khargonekar

University of Florida

 K. Zhou and P. Khargonekar, “An algebraic Riccati equation approach to H∞-optimization,” Systems & Control Letters, 
Vol. 11, pp. 85-91, 1988.

Kemin Zhou
Louisiana State 

University
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[ ]

5 2 0 1
3 4 1 2

1 1 0

x x u w

y x
z x u

     = + +     
     

=
= + ⋅



The perturbed system is nonunique and can be done in many ways. The whole idea is to make the perturbed system satisfying the regularity assumptions. It can be showed that
2 2

:
x A x B u E

C

w
y x

Dz x u

= + +
Σ =
 = +





with 2

2

2

2

0: an :
0

d
I

C I
C D

Dε
ε

   
   = =   
      



always satisfies the regularity assumptions when          . We should note that the perturbation block in       might be replaced by any other perturbed term so long as the resulting       is of full rank. Similarly, the perturbation block in      might be omitted or replaced by another one as long as                            has no zeros on the imaginary axis. Here is an example:2D

2 2( , , , )A B C D 

Note: The blue perturbation blocks in the above example might be omitted as the perturbed system would also meet the regularity assumptions without these blocks.  

2D

2C

0ε ≠

1

0 0

5 2 0
3 4 1 2

1 1 0

0 0
0 0

x x u w

y x

z x u
ε

ε
ε

     = + +     
     

=

   
   
   = +
   
   
   





5 2 0 1
3 4 1 2

1
0
1 0

0

x x u w

y x

z x u
ε

     = + +     
     

=

   = +   
   





or
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Solution to the general H2 state feedback problemGiven a small ε > 0, Solve the following algebraic Riccati equation (H2-ARE)
( ) ( ) ( )1

2 2 2 2 2 2 2 2 0A A C C B C D D D D C BP P P P
−

+ + − + + =         T T T T T T

for a unique positive definite solution > 0. Obviously,      is a function of ε . The H2suboptimal state feedback law is then given by
( )1

2 2 2 2( )u F x D D D C B xP−= = − +    T T T

It can be showed that the resulting closed-loop system Tzw(s) has 
It can also be showed that

*
22 as 0zwT γ ε→ →

1
2 *

2trace( ) as 0.PE E ′ → → 
 γ ε

P~ P~

gm2star
gm2sos
h2out
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Example: Consider a system characterized by 
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Solving the following H2-ARE using MATLABwith ε= 1,  we obtain
=
 
 
 

 186.1968 46.2778 ,46.2778 18.2517P [ ]= − −46.2778 18.2517F

*
2 1.225γ =

The closed-loop magnitude response from the disturbance to the controlled output:

The optimal performance or infimumis given by
=
 
 
 

 4.3046 0.6944 ,0.6944 0.2387P [ ]= − −69.4426 23.8688F

• ε= 0.1

• ε= 0.0001

=
 
 
 

 1.5016 0.0004 ,0.0004 0.0001P [ ]= − − × 44.0023 1.0012 10F

ε = 1

ε = 0.1

ε = 0.0001
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Solution to the general H∞ state feedback problem

Step 1: Given a γ > γ∞*, choose ε = 1.Step 2: Define the corresponding Step 3: Solve the following algebraic Riccati equation (H∞-ARE) for 
Step 4: If              , go to Step 5. Otherwise, reduce the value of ε and go to Step 2.Step 5: Compute the required state feedback control law
It can be showed that the resulting closed-loop system Tzw(s) has:More general results for the singular case can be found in Chen (2000). 

ε
ε

   
   = =   
      

 
2 22 2: and : 00

C D
C I D

I
22

~~ DC and

( ) 12
2 2 2 2 2 2 2 2( ) ( ) 0A DP PA C C PE BP P PE C D D D C Bγ

−−+ + + − + + =          T T T T T T T

:P

0~ >P

( )1
2 2 2 2( )u F x D D D C B xP−= = − +    T T T

.zwT ∞ < γ gm8star
gm8sos
h8out
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Example: Again, consider the following system
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It can be showed that the best achievable H∞performance for this system is                . Solving the following H∞-ARE using MATLABwith γ= 0.6 and ε = 0.01, we obtain a positive definite solution
and

6.3774 0.1373
0.1373 0.0131

P  
=  
 

[ ]1373 131.5F = − −

* 0.5γ ∞ =

The closed-loop magnitude response from the disturbance to the controlled output:

Clearly, the worse case gain, occurred at the low frequency is slightly less than 0.6. The design specification is achieved. 
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∞ 2 ∞ Output Feedback Problems ∞ 2 ∞

PLANT

OBSERVERSTATE FEEDBACK
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Solutions to output feedback problems – the regular caseRecall the system with measurement feedback, i.e.,

where (A, B) is stabilizable and (A, C1) is detectable. Also, it satisfies the following regularity assumptions:1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix2. The subsystem (A, B, C2, D2) has no invariant zeros on the imaginary axis3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix4. The subsystem (A, E, C1, D1) has no invariant zeros on the imaginary axis

1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

= + +
Σ = +
 = +
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Solution to the regular H2 output feedback problemSolve the following algebraic Riccati equation (H2-ARE)
( ) ( ) ( )1

2 2 2 2 2 2 2 2 0A P PA C C PB C D D D D C B P
−

+ + − + + =T T T T T T

for a unique positive semi-definite stabilizing solution P ≥ 0, and the following ARE

1
2 2 2 2( ) ( )F D D D C B P−= − +T T T

( ) ( ) ( )1

1 1 1 1 1 1 0QA AQ EE QC ED D D D E C Q
−

+ + − + + =T T T T T T

for a unique positive semi-definite stabilizing solution Q ≥ 0. The H2 optimal output feedback law is then given by
( )1

cmp
cmp cmp

cmp
:

x A
F

B KC x y
u x

F K= + + −
Σ

=






1
1 1 1 1( ) ( ) .K QC ED D D −= − +T T TandwhereFurthermore,

( ){ }1
2

2
*
2 2( ) .AP P P QE E A C Cγ  = + + + 

T T Ttrace trace
gm2sos
h2out
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Solving the following H2-AREs using MATLAB, we obtain

and an output feedback control law,
 

=  
 

144 40 ,40 16P   = − −41 17F

γ =*2 347.3

The closed-loop magnitude response from the disturbance to the controlled output:

The optimal performance or infimum is given by
49.7778 23.3333

,
23.3333 14.0000

Q  
=  
 

24.3333
16.0000

K
− 

=  − 

[ ]

cmp cmp
cmp

cmp

5 22.3333 24.3333
38 29 16:

41 17

y

u

x x

x

−
= +

− −Σ
= − −
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Solution to the regular H∞ output feedback problemGiven a γ > γ∞*, solve the following algebraic Riccati equation (H∞-ARE)
for a positive semi-definite stabilizing solution P ≥ 0, and the ARE

1
2 2 2 2( ) ( ) ,F D PD D C B−= − +T T T

2 1
2 2 1 1 1 1 1 1( )( ) ( ) 0QA AQ EE QC C Q QC ED D D D E C Qγ − −+ + + − + + =T T T T T T Tfor a positive semi-definite stabilizing solution Q ≥ 0. In fact, these 

P and Q satisfy the so-called coupling condition:                       . 

1
1 1 1 1( )( ) .K C ED D DQ −= − +T T T

where

2 1
2 2 2 2 2 2 2 2( )( ) ( ) 0A P PA C C PEE P PB C D D D D C B P− −+ + + − + + =γT T T T T T T

2 2 1 2
1 1( ) ( ),A A EE B I C DKP E PF QPγ γ γ− − − −= + + + − +m

T
c p

T

2 1
cmp cmp( ) , ,QPIB CK Fγ − −−= − =

cmp cmpcmp cm

m

p
c

m c
mp

c pp
:

x
x

A B
C

x y
u

= +
 =

Σ


John Doyle

Keith Glover

P Khargonekar

Bruce Francis
1947–2018

Gilead Tadmor

The H∞ γ-suboptimal output feedback law is then given by [DGKF]( ) 2PQ <ρ γ

and where
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It can be showed that the best achievable H∞performance for this system is                          . Solving the following H∞-AREs using MATLABwith γ= 97, we obtain
and the corresponding controller

144.353 40.1168
,

40.1168 16.0392
P  
=  
 

The closed-loop magnitude response from the disturbance to the controlled output:

49.8205 23.3556
23.3556 14.0118

Q  
=  
 

[ ]
cmp cmp

cmp

38.808668 1848.4365 1836.35389
59.411030 914.00139 894.116965
41.116796 17.039 215

x x y

u x

 − −   
= +    − −    

 = − −



* 96.32864γ ∞ =

Clearly, the worse case gain, occurred at the low frequency, is slightly less than 97 (96.998). The H∞ performance specification is achieved. 

gm8sos
h8out
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Solutions to the output feedback problems – the singular caseFor general systems for which the regularity conditions are not satisfied, it can be solved again using the perturbation approach. We define a new controlled output:

and new matrices associated with the disturbance inputs:
The H2 and H∞ control problems for singular output feedback case can be obtained by solving the following perturbed regular system with sufficiently small ε :

2 2

0
0

C Dz
z x I x u

u I
ε ε
ε ε

    
    = = +    
         



1 1[ 0 ] and [ 0 ].E E I D D Iε ε= = 

1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

= + +
Σ = +
 = +

 
 

 

Remark: Perturbation approach might 

have serious numerical problems!

gm2sos
h2out

gm8sos
h8out
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Block diagram of an H2 or H∞ control law with a reference……

1 1
2[ ( ) ]C A BF BG − −+=

PLANT
cmpx

u y−

+
G

H2 or H∞ controllercmpC x rx A B y BG= + −cmp cmp cmp cmp

w z
r

assuming z = C2 x ( ) , as .z t r t → →∞

R.C.

r
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Side notes on the H∞ singular case1. D2 is of maximal column rank, i.e., D2 is a tall and full rank matrix2. ( A,B,C2,D2 ) has no invariant zeros on the imaginary axis3. D1 is of maximal row rank, i.e., D1 is a fat and full rank matrix4. ( A,E,C1,D1 ) has no invariant zeros on the imaginary axis

Anton Stoorvogel & coworkers
University of Twente

Carsten Scherer
University of Stuttgart BMC & coworkers

Construction of closed-form solutions and computation of γ∞*  etc…

Some applications…
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Side notes on (almost) disturbance decoupling1. If γ2
* = 0, then the corresponding H2 optimal control problem is also called an 

H2 (almost) disturbance decoupling problem. It can be showed that the H2almost disturbance decoupling problem is solvable if the following conditions are satisfied (Good systems!):
• (A, B) is stabilizable and (A, C1) is detectable
• (A, B, C2, D2) is right invertible and has no invariant zeros on open RHP
• (A, E, C1, D1) is left invertible and has no invariant zeros on open RHPNecessary and sufficient conditions for the solvability of the almost disturbance decoupling problem is available in the literature. However, they can only be expressed in terms of certain geometric subspaces on the given system…

 B. M. Chen, Z. Lin and C. C. Hang, “Design for general H∞ almost disturbance decoupling problem with measurement feedback and 
internal stability - An eigenstructure assignment approach,” International Journal of Control, Vol. 71, pp. 653-685, 1998.

LTR
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2. If γ∞* = 0, then the corresponding H∞ optimal control problem is also called an H∞almost disturbance decoupling problem. It can be showed that the H∞ almost disturbance decoupling problem is solvable if the following conditions are satisfied:
• (A, B) is stabilizable and (A, C1) is detectable
• (A, B, C2, D2) is right invertible and of minimum phase
• (A, E, C1, D1) is left invertible and of minimum phaseStudies on disturbance decoupling problems led to the development of the geometric theory in linear systems…

Carsten Scherer
University of Stuttgart

Jan C. Willems
Belgian Scientist

1939–2013 

……

LTR

BMC & coworkers

imav

W. M. Wonham
Canadian Control Theorist

1934–2023
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Robust stabilization of systems with unstructured uncertaintiesConsider an uncertain plant with an unstructured perturbation,

cΣ

u
w z

y

w zzwT

Small Gain Theory ( ! )If      is stable and                             ,  then the interconnected system is stable.
1<⋅Δ

∞∞
M

M

Assume                     . Then the system with unstructured uncertainty is stable if    zwT γ∞ <

γ
γ 11 <Δ<Δ⋅<Δ⋅

∞∞∞∞zwT
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Robust stabilization with additive perturbationConsider an uncertain plant with additive perturbations,
mΣ

eΣ

u y
+

mΣ has a transfer function mmmmm DBAsICsG +−= −1)()(

eΣ is an unknown perturbation.
mΣ and em Σ+Σ have same number of unstable poles.Given a γa > 0, the problem of robust stabilization for plants with additive perturbations is to find a proper controller such that when it is applied to the uncertain plant, the resulting closed-loop system is stable for all possible perturbations with their L∞-norm 

≤ γa. (The definition of L∞-norm is the same as that of H∞-norm except for L∞-norm, the system need not be stable.) Such a problem is equivalent to find an H∞ γ-suboptimal control law ( with γ = 1/ γa ) for 
m m

add m m

0
:

0

x A x B u w
y C x D u I w
z x I u

= + +
Σ = + +
 = +
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Robust stabilization with multiplicative perturbationConsider an uncertain plant with multiplicative perturbations,
mΣ

eΣ

u y
+

mΣ has a transfer function mmmmm DBAsICsG +−= −1)()(

eΣ is an unknown perturbation.
mΣ and

em Σ×Σ have same number of unstable poles.Given a γm > 0, the problem of robust stabilization for plants with multiplicative perturbations is to find a proper controller such that when it is applied to the uncertain plant, the resulting closed-loop system is stable for all possible perturbations with their 
L∞-norm ≤ γm. Again, such a problem is equivalent to find an H∞ γ-suboptimal control law ( with γ = 1/ γm ) for the following system,

m m m

multi m m m:
0

x A x B u B w
y C x D u D w
z x I u

= + +
Σ = + +
 = +
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Example: Consider again the inverse pendulum system characterized by

LInverse Pendulum
Inverse Pendulum

M

[ ] [ ]

[ ]

0 1 0 0 0
1 0 1 1 0

1 0 0 1

1 0

u w

y w

z

θθ
θθ
θ
θ
θ
θ

        = + +        
       

 
= + 

 
 

=  
 

 








where contains both the input disturbance 
and measurement noise (we treat both of them 
as system disturbance). 

Design H2 and H∞ controllers such that the resulting closed-loop system is stable, 
and the controlled output z is kept around θ =π as it was done in the LQG design. 

Clearly, this is a singular problem as D2 =0. It can be calculated that the optimal 
performance      and      are given as           and                  , respectively.  *γ∞

*
2γ * 1γ∞ = *

2 1.4824γ =

ex2149

w
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Note that this perturbation 
ε is good enough to make 
the problem regular…
No need to perturb E and 
D1 as Conditions 3 and 4 
are already satisfied…

Since it is a singular problem, we adopt the perturbation approach to make it 
regular, i.e., 

[ ] [ ]

0

0 1 0 0 0
1 0 1 1 0

1 0 0 1

0
0
1 0

u w

y w

z u

θθ
θθ
θ
θ
θ
θ

ε

        = + +        
       

 
= + 

 
    = + ⋅    

    

 






 

Thus, we have

[ ] [ ]1 1 2 2

0 1 0 0 0
, ,

1 0 1 1 0

1 0 , 0 1 ,
1 0
0 0

,
0

A B E

C D C D
ε

     = = =     
     

   = = = =   
   

 

where ε is a small perturbation variable. For our design, we select ε = 0.01.
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H2 control lawSolving the following H2-AREs
we obtain
and the corresponding state feedback gain and observer gain matrices

( ) ( ) ( )1

2 2 2 2 2 2 2 2 0A P PA C C PB C D D D D C B P
−

+ + − + + =      T T T T T T

( ) ( ) ( )1

1 1 1 1 1 1 0QA AQ EE QC ED D D D E C Q
−

+ + − + + =T T T T T T

0.1421 0.0101 2.1974 2.4142
,

0.0101 0.0014 2.4142 3.1075
P Q   = =   

   

[ ] 2.1974
101.005 14.213 ,

2.4142
F K  = − = −  

 
The resulting H2 control law is given as

( )

[ ]

1cmp cmp cmp

cmp cm

11
2 p

2.1974 1 2.1974
102.4192 14.213 2.4142

0( ) . 100.0101 05 14.213 05

A BF KC K y

u F C A BF B r r

x x x y

x x
−−

= + + − =

= −

−    
+     − −   

 = − +    +
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1

2 0

3
0

Initial condition 
3

0
t

e
e

πθ
θ

π

=

  − 
   
   =
   −
   

  




θ
1e

2e

θ

θ
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Gain margins and phase margins of the H2 control lawsState Feedback Case Output Feedback Case

Here we note that the open-loop transfer matrix for the H2 output feedback control is

which will be studied in detail later in the topic of loop transfer recovery (LTR)…

LTR

) ( )( ) )( (( )oL s F sI A BF KC K C sI A B s G sκ− −   = − − − ⋅ −   = −
1 11 1

LTR
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H∞ control lawSolving the following H∞-AREs with γ = 2
we obtain
and the corresponding state feedback gain and observer gain matrices

0.1421 0.0101 2.8739 3.0972
,

0.0101 0.0014 3.0972 3.8018
P Q   = =   

   

[ ] 2.8739
101.0063 14.2133 ,

3.0972
F K  = − = −  

 
The resulting H∞ control law is given as

cmp cmp cmp cmp
cmp

cmp cmp
:

x A x B y
u C x

= +

=


Σ 




( ) 12
2 2 2 2 2 2 2 2( ) ( ) 0A P PA C C PEE P PB C D D D D C B P

−−+ + + − + + =      γT T T T T T T

( ) ( ) ( )12
2 2 1 1 1 1 1 1 0QA AQ EE QC C Q QC ED D D D E C Q

−−+ + + − + + = γT T T T T T T
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The resulting closed-loop system was derived earlier and is given as follows

It is shown in the singular value plot on the next page that the resulting closed-
loop is indeed has an H∞ norm of 1.7021 < γ =2. 

( ) ( )12 2 2
1 1

3.2619 1
103.5235 14.2129

A A EE P BF I QP K C D E P
−− − −= + + + − +

− 
=  − − 

γ γ γT T
cmp

( ) 12
cmp ,

3.2619
3.5198

B I QP Kγ
−−  

 
 

= − − =

cmp 1 cmp cmp 1

cmp cmp 1 cmp cmp cmp 1

2 2 cmp 1 2 cmp 2 cmp 1
cmp

[ ]

x A BD C BC x E BD D
w

x B C A x B D

x
z C D D C D C D D D w

x

+ +       
= +      

       


  = + +   








where

[ ]cmp . .C = − 101 0063 14 2133
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Singular values of the closed-loop system…

Time-domain simulation can be done similarly as those in the previous cases…

Tzwo
Tzws
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Gain margins and phase margins of the H∞ control lawsState Feedback Case Output Feedback Case

Here we note that the open-loop transfer matrix for the H∞ output feedback control is

which will be studied in detail later in the topic of loop transfer recovery (LTR)…

LTR

cmp cmp cmp ( ) ( )( ) ( ) ( )oL ss C sI A B B GC I A ss κ− − − = − = − ⋅ −   
1 11

LTR
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Homework Assignment 6 + Design Problem 2

P.1: Write the system to be controlled in Homework Assignment 5 in the following form

with

1. Determine the best achievable H∞-norm of the closed-loop system from     to z? 

2. Design an H∞ suboptimal control law such that the H∞-norm of the resulting closed-
loop system is reasonably close to the optimal value. 

3. Plot the singular value of the closed-loop system and find its H∞-norm.

4. Find the resulting gain and phase margins of the system under the control law. 

5. Assume that there is an unstructured but stable perturbation, Δ, presented in the given 
plant. Give the range of ||Δ ||∞ so that the closed-loop would remain stable. 

w

1

2

( )
and .

( )
v t

w z
w t

  = =   
   


θ
θ

1 1

2 2

:
x A x B u E w
y C x D w
z C x D u

= + +
Σ = +
 = +
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P.2:
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Loop Transfer Recovery (LTR) TechniqueLoop Transfer Recovery (LTR) Technique
x̂

u y

−

x A x Bu
y Cx Du
= +
= +


F
ˆ ˆ ˆ( )
ˆ ˆ

Bu
Du

x Ax y y
y

K
Cx

= +
=

+
+

−
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Is LQG controller robust?It is now well-known that the linear quadratic regulator (LQR) has very impressive robustness properties, including guaranteed infinite gain margins and at least 60⁰ phase margins. The result is only valid, however, for the full state feedback case. If observers or Kalman filters (i.e., LQG regulators) are used in implementation, no guaranteed robustness properties hold. Still worse, the closed-loop system may become unstable if you do not design the observer of Kalman filter properly. The following example given in Doyle (1978) shows the unrobustness of the LQG regulators.
Example: Consider the following system characterized by

1 1 0 1
,

0 1 1 1
x x u v     
= + +     
     

 [1 0]y x w= +where x, u and y denote the usual states, control input and measured output, and w and v are white noises with intensities 1 and  σ > 0, respectively. John Doyle
CalTech

 J. Doyle, “Guaranteed margins for LQG regulators,” IEEE Transactions on Automatic Control, Vol. 23, pp. 756-757, 1978.

LQG H2 H∞
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The LQG controller consists of an LQR control law and a Kalman filter.
LQR design: Suppose we wish to minimize the performance index
It is known that the state feedback law u = – F x which minimize the performance index J is given by                          where
We can obtain a closed-form solution,

0

1
1

( ) , 1, 1 1 , 0J x Qx u Ru dt R Q q q
∞  

    
 

= + = = > T T

1 ,F R B P   −= T

1 0, 0.PA A P PBR B P Q P−+ − + = >T T

( ) [1 1]4 1 .2 [ 1]F q f= =+ +It can be verified that the open loop of the LQR design with any q = 60 has a gain margin of (0.2,∞) and a phase margin of 
101.5 degrees. Thus, it is very robust. -5 -4 -3 -2 -1 0
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It can also be shown that the Kalman filter gain for this problem can be expressed as
which together with the LQR law result an LQG controller,
Suppose that the resulting closed-loop controller has a scalar gain 1 + ε (nominally unity) associated with the input matrix, i.e.,
Tedious manipulations show that the characteristic function of the closed-loop system comprising the given system an the LQG controller is given by

( ) 1
1

2
1

4
1

kK σ    
= =   

  
+


+

ˆ ˆ( )
ˆ

x A BF KC x K y
u F x

 = − − +


= −

 or

0
(1 )

1
Bε

ε
 

= + =  + 
the actual input matrix

( ) ( )4 3 2( ) 2 4 1k f k f k fK s s s s sε ε= Π ⋅ + Θ ⋅ + Ω ⋅ + − −+ + +

1( )u F sI A BF KC Ky−= − − + +
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A necessary condition for stability is that
It is easy to see that for sufficient large q and σ, the closed-loop could be unstable for a small perturbation in B in either direction.  For instance, let us choose q =σ = 60. Then it is simple to verify the closed-loop system remains stable only when – 0.07 < ε < 0.01 .This shows that the LQG controller is not robust at all!

2 4 0 1 0k f k f k fε ε+ + − > − >and

What is wrong?The answer is that the open-loop transfer function of the LQR design and the open-loop transfer function of the LQG design are totally different and thus, all the nice properties associated with the LQR design vanish in the LQG controller. It can be seen more clearly from the precise mathematical expressions of these two open-loop transfer functions, and this leads to the birth of the loop transfer recovery technique. -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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Open-loop transfer function of LQR

Open-loop transfer function: When the loop is broken at the input point of the plant, i.e., the point marked X, we have
Thus, the loop transfer matrix from u to        is given by
We have learnt from the previous lectures that the open loop transfer Lt (s) have very impressive properties if the gain matrix F comes from the LQR design, i.e.,

x Ax Bu= +

– F

xr = 0 ×û u

ˆ ( )u uF sI A B−−= − 1
û−

t ( ) ( )L s F sI A B−= − 1

–
BAsIPBR 11 )( −− −T
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Open-loop transfer function of LQG

Open-loop transfer function: When the loop is broken at the input point of the plant, i.e., the point marked X, we have
Thus, the loop transfer matrix from u to         is given by
Clearly, Lt (s) and Lo(s) are very different and that is why LQG in general does not have nice properties as LQR does.

û−

x Ax Bu= +

– F ( sI – A + B F + K C )–1 K 

xr = 0 × u C
yû

)ˆ ( )(u C sI A B uF sI A BF KC K− − − − + +  = ⋅   −
11

o ) ( )( ) ( C sI A BL s F sI A BF KC K −−  ⋅ −  = − + + 
11
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Doyle-Stein conditions: It can be shown that Lo(s) and Lt (s) are identical if the observer gain K satisfies
which is equivalent to B = 0 (prove it!). Thus, it is impractical. 

Loop transfer recoveryThe above problem can be fixed by choosing an appropriate Kalman filter gain matrix 
K such that Lt (s) and Lo(s) are either exactly or almost matched over a certain range of frequencies. Such a technique is called Loop Transfer Recovery (LTR).The idea was first pointed out by Doyle and Stein in 1979. They had given a sufficient condition under which Lo(s) = Lt (s). They had also developed a procedure to design the Kalman filter gain matrix  K in terms of a tuning parameter q such that the resulting Lo(s) → Lt (s) as q →∞, for invertible and minimum phase systems. The technique is known as LQG/LTR in the literature.

( ) ( ) ( )1 1 1,B BK I C C sI AK − − −+ Φ = Φ Φ = −
Gunter Stein
Honeywell

 J. Doyle and G. Stein, “Robustness with observers,” IEEE Transactions on Automatic Control, Vol. 24, pp. 607-611, 1979.



CUHK MAE ENGG 5403 – PART 2: CONTROL ~ PAGE 187 © BEN M. CHEN

Classical LTR designThe following procedure was proposed by Doyle and Stein in 1979 for left invertible and minimum phase systems (good systems): Define 
where Q0 and R0 are noise intensities appropriate for the nominal plant (in fact, Q0 can be chosen as a zero matrix and R0 = I ), and V is any positive definite symmetric matrix (Vcan be chosen as an identity matrix). Then the observer (or Kalman filter) gain is given by
where P is the positive definite solution of
It can be shown that the resulting open-loop transfer function Lo(s) from the above observer or Kalman filter has

0 0
2 ,qQ BqQ VB R R= + =T

1K RPC −= T

1 0qP P PA A Q C R CP−+ + − =T T

, .( )) (L sL qs → →∞to as
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Example: Consider a given plant characterized by
with                                              andThis system is of minimum phase with one invariant zero at s = – 2. The LQR control law is given by
The resulting open-loop transfer function Lt (s) has an infinity gain margin and a phase margin over 85°. We apply the Doyle-Stein LTR procedure to design an observer-based controller, i.e.,
where K is computed as on the previous page with 

6
0 1 0

,
3 1 14

35
x x u v   
= + +   − −  

 
 − 

 [2 1]y x w= +

[ ( ) ( )] [ ( ) ( )] ( ).E v t v E w t w tτ τ δ τ= = −[ ( )] [ ( )] 0E v t E w t= =

[ ]50 10u x xF= − = −

1 1[ ]u F BF KC K y− −= − Φ + +

2
2

0 1225 2135
[0 1] .

35
[35 61]

61 1 2135 3721qQ q
q

−   
= + =   − + 

 
− 

−  
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target
Lo(s) with 

q2 = 500

Lo(s) with 

q2 = 10000

Lo(s) with 

q2 = 100000

ltrloops
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Nyquist plots…
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New formulation for loop transfer recoveryConsider a general stabilizable and detectable plant,
The transfer function is given by                                                                    Also, let F be a state feedback gain matrix such that under the state feedback control law u = – F xhas the following properties: i) the resulting closed-loop system is asymptotically stable; and ii) the resulting target loop meets design specifications.

Such a state feedback can be obtained using LQR design or any other design methods so long as it meets your design specifications. Usually, a desired target loop would have the shape as given in the figure on the next page.

x A x B u
y C x D u
= +

 = +



1( ) , ( ) .G s C B D sI A −= Φ + Φ = −

( )L s F B= Φt
x Ax Bu= +

– F

xr = 0 ×û u
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Typical desired open-loop characteristics…

 D. B. Ridgely and S. S. Banda, Introduction to Robust Multivariable Control, Report No. AFWAL-TR-85-3102, Flight 
Dynamics Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, 1986.

Siva S. Banda
Air Force Research Lab 

USA
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The problem of LTR is to find a stabilizing controller 

such that the resulting open-loop transfer function from  u  to         , i.e.,
is either exactly or approximately equal to the target loop Lt (s). Let us define the 
recovery error as the difference between the target loop and the achieved loop, i.e.,
Then, we say exact LTR is achievable if E(s) can be made identically zero, or almost LTR is achievable if E(s) can be made arbitrarily small.

G(s)

κ (s)

r u y

û−

( )u s yκ= −

û−

( ) ( ) ( )L s s G sκ=o

( ) ( ) ( ) ( ) ( )E s L s L s F B s G sκ= − = Φ −t o

LQG

H2

H∞
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Observer-based structure for κ (s)

ˆ ˆ ˆ( )
ˆ ˆ
x A x B u K y Cx D u
u u F x
= + + − −

= = −



1 1( ) ( ) ( )s s F BF KC KDF Kκ κ − −= = Φ + + −o
( )

oo

1 1

( )

( )

( ) ( )s

F B D

L

F KC KDF K

s G s

C B

κ
− −= Φ + −

=

++ Φ   ⋅

Dynamic equations of κ (s):

Transfer function ofAchieved open-loop:
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Lemma: Recovery error, Eo(s), i.e., the mismatch between the target loop and the resulting open-loop of the observer-based controller is given by
Proof. 

[ ] ( ) ( ) ( )1
o

11)( ) ( ) (,( )E DCs M s I M s F B F KI M K Bs− −−= Φ Φ ++ −+ =

( ) ( )

( ) ( ) ( )

( )

( ) ( )
( ) ( )

1

o o

1

1 1 1

11

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1 1

( )

( ) ( ) ( )

(

( )

(

(

( )

)

)

)

L s s G s F BF KDF K C B D

I B KD K C B D

I KC K C B D

I F B F KC KD

I M F B F KC K

KF

C

KC

K

FK B

M

K

C

F

F

K

C C

D

KC C

I K

κ −

−

−

−

− − −

−

− −

− −

−

−

−−

−− −−

−

−

−

= = + + − Φ +

 = + − Φ +  

 = + Φ + Φ + 
 = + Φ + Φ + Φ +

 − Φ + Φ +

Φ

Φ +

 

Φ

Φ −

= + Φ +

Φ +

+

{ }
( ) ( ) ( )
( )
( ) ( )

1

1

1 11 1

1

1

1( ) ( )

D

M

I M F B F KC B F KC KD

I M F B

I F

F KC B KD

M B

− −

− −− − −

−

−

 = + Φ − Φ + + Φ +  

 = + Φ − 

= +

−

Φ

Φ

−

+

1 1

1 1 1

( )
( )

KC KC
I KC

− −

− − −

Φ +
= − Φ + Φ

[ ] [ ] [ ] ( )1
o

1( ) ( ( ( )))( ) F B I M s F B BME I M ss s M s FI−−= Φ Φ +− + += Φ−

1

1

( )
( )

A I BA
I AB A

−

−

+
= +

Credit to G C Goodman in a master thesis conducted at MIT in 1984
Michael Athans

MIT
1937–2020 
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Loop transfer recovery designIt is simple to observe from the above lemma that the loop transfer recovery is achievable if and only if we can design a gain matrix K such that M (s) can be made either identically zero or arbitrarily small, whereLet us define an auxiliary system 1 1( ) .( ) ( )M s F KC B KD− −= Φ + −

:
x A x C u F w
y x
z B x D u

 = + +
Σ =
 = +

 T T T

aux
T T

+ u K x= − T

Closed-loop transfer function from w to z is 1 .( )( )( )B D K sI A C K F M s−− − + =T T T T T T T T

Thus, LTR design is equivalent to design a state feedback law for the above auxiliary system such that certain norm of the resulting closed-loop transfer function is made either zero or arbitrarily small. As such, the H2 and H∞ optimization techniques (with
γ2

* = 0 and γ∞* = 0, i.e., the corresponding almost disturbance decoupling problems) can be used to solve the LTR problem.

H2 H∞
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G(s)

W

Bernard Friedland 
New Jersey Institute of Technology 

A story behind a new controller structure for LTR…
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Dynamic equations of κ (s):
Transfer function ofAchieved open-loop:

( ) ,

ˆ

x A KC x K y

u u Fx

= − +

= = −

cmp cmp
cmp

1 1
c( ) ( ) ( )s s F KC Kκ κ − −= = Φ +

( )1 1

( )

(

) )

)

( (L s G s

C B D

s

F KC K

κ
− − +

=

= ⋅  Φ +Φ
cc

Proposed by Chen, Saberi & Sannuti in 1991, the CSS based controller has the following characteristics:

Ali Saberi
Washington State University

Pedda Sannuti 
Rutgers University

LTR design via CSS architecture-based controller

BMC
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Lemma: Recovery error, Ec(s), i.e., the mismatch between the target loop and the resulting open-loop of the CSS architecture-based controller is given by
Proof. 

( ) 1

c
1( ) ( ) ( )E s F KC B KM s D

−−= = Φ + −

( ) ( )

( ) ( )
( ) ( )

1
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−
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−−

−−

−

Φ +

Φ +

Φ

Φ

Φ −

= −

= − Φ +

 = Φ + Φ − − 

= Φ −

=

Φ+ +

It is clear that LTR via the CSS architecture-based controller is achievable iff one can design a gain matrix K such that the resulting M (s) can be made either zero or arbitrarily small. This is the same as the LTR design via the observer-based controller. 
 B. M. Chen, A. Saberi and P. Sannuti, “A new stable compensator design for exact and approximate loop transfer recovery,” 

Automatica, Vol. 27, pp. 257–280, 1991.

Collected in Bibliography on Robust Control by P. Dorato, R. Tempo, G. Muscato in Automatica, Vol. 29, 1993.
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What is the advantage of CSS structure?

Theorem. Consider a stabilizable and detectable system Σ characterized by (A,B,C,D) and target loop transfer function Lt (s) = FΦB. 
 Assume that Σ is left invertible and of minimum phase (the so-called good systems),which implies that the target loop Lt (s) is recoverable by both observer-based and CSS architecture- based controllers. 
 Also, assume that the same gain K is used for both observer-based controller and CSS architecture-based controller and is such that for all ω ∈ Ω,  where Ω is some frequency region of interest,
Then, for all ω ∈ Ω,

1993Proof of this result can be found in Chen et al., Automatica, vol. 27, 1991; and a monograph by Saberi et al. (1993).

[ ]min 1F Bσ Φ 

[ ] [ ]max c max o( ) ( )E j E jσ ω σ ω
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Remark: In order to have good command following and desired disturbance rejection properties, the target loop transfer function Lt (jω) has to be large and consequently, the minimum singular value                          should be relatively large in the appropriate frequency region. Thus, the assumption in the above theorem is very practical.
Example: Consider a given plant characterized by
Let the target loop Lt (s) = F ΦB be characterized by a state feedback gainUsing MATLAB, we know that the above system has an invariant zero at s = – 2. Hence it is of minimum phase. Also, it is invertible. Thus, the target loop Lt (s) is recoverable by both the observer based and CSS architecture-based controllers. 
Using the H2 optimization method, we obtain matrix

[ ]0 1 0
, 2 1 0

3 4 1
x x u y x u   
= + = + ⋅   − −   


[ ]50 10 .F =

6.9
.

84.6
K  
=  
 

[ ]min t ( )L jσ ω
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CSS

Target

Observer
Target loops and achieved loops…

ltrloops
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Advantages and drawbacks of multivariable control techniquesThe advantages of the multivariable control techniques covered:
 It is relatively easy to formulate the control system design process into some optimization problems, which can effectively be solved using MATLAB.
 The problem formulations are mathematically elegant and are applicable to general MIMO systems.
 Some techniques, such as LQR, can automatically guarantee remarkable robust properties (such as impressive gain and phase margins). Some, such as H∞control, could yield a design that is robust to perturbation and uncertainties.The drawbacks are also very obvious:
 It is tedious to tune the parameters (e.g., Q and R in LQR, weighting functions in H2 and H∞ control) used in optimization associated with the design process.
 It is hard, if not impossible, to formulate the design process directly linked to the time-domain specifications (such as overshoot, settling time and/or rise time), as it is done in classical control. 
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Robust & Perfect Tracking (RPT) ControlRobust & Perfect Tracking (RPT) Control

We have spent too much time so far on frequency-domain methods…… 
What about the time-domain performance?

PLANT
cmpx

u yr
?

cmpC x A x B y= +cmp cmp cmp cmp

w z
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The robust and perfect tracking (RPT) control technique developed by Chen and his co-workers is to design a controller such that the resulting closed-loop system is stable, and the controlled output almost perfectly tracks a given reference signal in the presence of any initial conditions and external disturbances. One of the most interesting features in the RPT control method is its capability of utilizing all possible information available in its controller structure. Such a feature is highly desirable for UAV flight missions or other unmanned vehicles involving complicated maneuvers, in which not only the position reference is useful, but also its velocity and even acceleration information are important or even necessary to be used in order to achieve a good overall performance.

Robust and perfect tracking control 

BMC

2000
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Robust to disturbance &initial condition

Problem formulation 

Perfect in 
Tracking

RPT CONTROL
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Solvability conditions: 

The solvability condition for the general measurement feedback case is rather complicated. Please refer to the reference text for details (Theorem 9.2.1).

(8.1)

(8.2)

8.0.1.
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Solution: 

8.0.1.

(8.4)
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(8.4)

The required gain matrix is then given by

( 1)
10 1( )) (( )( )u F x H H rr H r κ

κε ε ε ε −
−+ ++ +=  

Such a controller structure is a perfect choice for flight control systems, in which not only the position reference is relevant, but also the velocity and acceleration references are crucial in many applications. 
which feeds in all the possible reference signals.
The RPT state feedback control law:
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Special case… For the special case when the given plant is of a double integrator, i.e.,
where p is the position and v is the acceleration, assuming the reference position 
(pr), velocity (vr) and acceleration (ar) are all available, it can be shown that the RPT control law can be calculated in the following closed-form
where ζ is the damping ratio and ωn is the natural frequency of the closed-loop system, and ε is the tuning parameter.We note such a plant is very common in real applications including the outer loop flight control systems. In fact, the RPT control is very effective in improving flight performance for UAVs.

[ ]0 1 0
, , 1 0

0 0 1
p p p p

u y
v

E w
v v

z
v

           
= + + = =          
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ε ε εε
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Case study: Unmanned helicopter systems

 Inner Loop to stabilize UAV attitude
o PID Control (commonly used)
o Optimal Control
o Robust Control
o Nonlinear Control
o ……

 Outer Loop to control position/velocity
o PID Control (commonly used)
o Pole placement
o RPT Control
o Robust Control
o ……

The unmanned helicopter flight control system consists of two loop: An inner loop and an outer loop…
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H∞ controlH∞ control

Wind disturbanceWind disturbance
Detailed control structure
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Inner-loop control system design setup

This part is actually 

what are solving in 

design problems for 

this course.

2011



CUHK MAE ENGG 5403 – PART 2: CONTROL ~ PAGE 216 © BEN M. CHEN

Inner-loop linearized model at hover

p
q
r

φ
θ

ψ

 
 
 
 

=  
 
 
  
 

y

out

φ
θ
ψ

 
 =  
 
 

h

One can use the techniques covered earlier, i.e., H2 control, H∞ control, or LQG to design an appropriate inner-loop controller for the above system.
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Inner-loop command generator

The inner-loop command generator is given as
r

r b,r

r

0 0.0019 0.0477
0 0.1022 0.0037

0.1022 0 0.0001

δ
φ
θ

   
   = −   
   −   

a

Here we note that the purpose of adding the inner-loop command generator is to yield a unity DC gain… 
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Outer-loop control system design setup

VIRTUALACTUATORVIRTUALACTUATOR
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Properties of the virtual actuator

X Channel

Y Channel

Z Channel

Unstable Zeros!

From practical point of view, it is safe to ignore them so long as the outer-loop bandwidth is within 1 rad/sec…

Frequency response of the virtual actuator…
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Properties of the outer-loop dynamicsIt can also be verified that coupling among each channel of the outer loop dynamics is very weak and thus can be ignored. As a result, all the x, y and z channels of the rotorcraft dynamics can be treated as decoupled, and each channel can be characterized by
where p* is the position, v* is the velocity and a* is the acceleration, which is treated a control input in our formulation. 
For such a simple system, it can be controlled by almost all the control techniques available in the literature, which include the most popular and the simplest one such as PID control…

* *
*

* *

0 1 0
0 0 1

p p
a

v v
      

= +      
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Outer-loop RPT control law
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Simulation of RPT control with ζ = 0.7 & ωn = 1…
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Simulation of RPT control with ζ = 0.7 & ωn = 1 (cont.)
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Concluding Remarks Concluding Remarks 
Improvement of transient performance. 

Nonlinear control techniques. 
Issues on implementation of controllers on physical systems… 
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fast rise 
time with 

huge 
overshoot

CNF Control

slow settling time 
with no overshoot

small damping ratio

large damping ratio

 Z. Lin, M. Pachter, and S. Banda, “Toward improvement of tracking performance — nonlinear feedback for linear systems,” 
International Journal of Control, vol. 70, pp. 1–11, 1998.

 B. M. Chen, T. H. Lee, K. Peng and V. Venkataramanan, “Composite nonlinear feedback control for linear systems with input 
saturation: Theory and an application,” IEEE Transactions on Automatic Control, Vol. 48, pp. 427-439, 2003.

Zongli Lin
University of Virginia

Siva S. Banda
US Air Force Research Lab typical responses of a 2nd order LTI system with bounded input

Key idea… u F x Gr= + | | 1( )ee BP x A BF BGrαβ − −′  − ⋅ + + 

Nonlinear switching for transient improvement

Composite Nonlinear Feedback (CNF) Control…
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CNF Control Toolkit…The toolkit, programmed by Guoyang Cheng, provides a user-friendly interface to tune nonlinear parameters… Guoyang Cheng
Fuzhou University
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2006

Applications of CNF Control…
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Some good references in nonlinear systems and control…

Jean-Jacques Slotine
MIT

Hassan Khalil
Michigan State University

Alberto Isidori
University of Rome

Jie Huang
CUHK
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Implementation of control laws obtained in this part in the real systems can be done using analog devices. It is, however, much more convenient and efficient to realize a controller using a computer or digital signal processor (DSP) instead. There are two ways to design an implementable controller: i. Design a continuous-time controller like we have done so far in this class and then discretize it using some discretization techniques such as ZOH or bilinear transformation to obtain an equivalent digital controller. 
+ U (s)R (s) Y (s)

–

E (s)

+R (s) Y (s)

– T

ZOH

( )K s

( )K z

( )G s

( )G s

Implementation of controllers……
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ii. Alternatively, we can discretize the system to be controlled first to obtain a 
sampled-data system or discrete-time system and design a controller in the discrete-time setting. The discrete-time controller obtained can then be implemented directly using a computer or digital signal processor (DSP).

+ U (z)R (z) Y (z)

–

E (z)
T

+ U (z)R (z) Y (z)

–

E (z)

ZOH

Such an approach is to be covered in a course on computer control systems or 
digital control systems.

( )K z

( )K z

( )G s

( )G z
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 We have learned in this course the most fundamental linear systems theory. It is 
sufficient to understand multivariable control design methods and to carry out some 
basic multivariable control systems design.

 None of the multivariable control techniques covered in this course can be directly 
applied to solve real-life problems unless one fully understands the nature of the 
problem to be solved. However, the design methods presented in this course can be 
used as the first attempt (and guideline) in solving the actual problem.

 A good system to be controlled is always superior to a good control technique to

Zongli Lin
University of Virginia

Yacov Shamash 
Stony Brook University BMC

achieve good performance. A 
good system is referred to a 
plant with good system 
structural properties. As 
mentioned in Part 1, one can 
find such topics in the text by 
Chen, Lin and Shamash (2004). 

Final remarks……
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Do not forget: Engineering is to solve real-life problems!……
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Beyond automatic control…Beyond automatic control…

Autonomous Unmanned System

Control SystemMotion PlanningTask Management

Commands  

Data Sensors

GCS

HCI / HMI / AI Results 
for 

End Users
Data Processing

Applications…

GPS
Automatic System

Positioning/SLAM 



Single…

*B. M. Chen, On the trends of autonomous unmanned systems research, Engineering, 2022. https://doi.org/10.1016/j.eng.2021.10.014
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A Cooperative Multi-Agent Systems Framework……



CUHK MAE ENGG 5403 – PART 2: CONTROL ~ PAGE 235 © BEN M. CHEN

A real-world application: 
Industrial building inspection with multiple unmanned aerial systems…… 
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What’s the next?…What’s the next?…

smart cities……

Just a personal view
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That’s all, folks! Thank you! 


