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What is a system  .A system is a set of integrated chains of things……
What is a good system?... What is a bad system?...
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What is control   . Control is to regulate a system to desired performance…...
That is to do whatever one can to achieve a pre-set goal......!
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Questions 1 to 5 will be answered in Part 1, and the last one in Part 2…

What are we going to learn in this class?.

Is it a good system? (System structural properties)  

How does it behave?(System responses)

⑥

②

③

④

⑤


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My philosophy towards control systems design……
 Break the system to be controlled into essential pieces and examine their inherent properties.

道

 For a lousy system, it is better to re-design the system itself (instead of employing advanced techniques to control it, even it is possible).
 Do not push to the physical limits of the system (most of the so-called optimal performance measures do not mean anything in practice).
 Choose the simplest possible control law (if it is not for publication)
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ENGG 5403 Quiz 1:Write your name and SID on your paper now! It is obvious that the statement on the right made by the course lecture, i.e., me, is rather personal. Feel free to express your own option on such a statement. You are totally free to agree or to disagree or to express your own personal view and understanding on the topics covered so far.Any statement with logical justifications is considered to be acceptable and will be credited with a full mark. Statements without logical justifications are to be awarded with a zero mark. 

My philosophy towards control systems design…… I personally believe that a good control system design should not start from differential equations but should be down to earth and start from the hardware level, including the selection and placement of sensors and actuators (to design 
a good system!)



CSM

24
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Course outline
o Introduction
o Mathematical background materials
o State space representation of systems
o Realization of linear systems
o Solution of state equations
o Stability analysis
o Controllability and observability
o Systems zeros and invertibility
o Some structural decomposition techniques
o Review of classical control system design
o State feedback design
o Observer and compensator design 
o Modern control systems design 
o Concluding remarks

Fundamental

Design

Preparation

Conclusion
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Reading materials

o C.T. Chen, Linear System Theory & Design, Holt, Rinehart & Winston, 1984
o T. Kailath, Linear Systems, Prentice Hall, 1980
o B.M. Chen, Z. Lin, Y. Shamash, Linear Systems Theory, Birkhauser, 2004
o L. Qiu, K. Zhou, Feedback Control, Prentice Hall, 2010
o F.L. Lewis, Applied Optimal Control & Estimation, Texas Instruments, 1992
o B.M. Chen, Robust and H∞Control, Springer, 2000
o A. Saberi, P. Sannuti, B.M. Chen, H2 Optimal Control, Prentice Hall, 1995
o A. Saberi, B. M. Chen, P. Sannuti, Loop Transfer Recovery, Springer, 1993
o G. Cai, B.M. Chen, T.H. Lee, Unmanned Rotorcraft Systems, Springer, 2011
o B.M. Chen, et al., Hard Disk Drive Servo Systems, 2nd Edn., Springer, 2006
This text is available for downloading at SpingerLink Book through CUHK Library…

Systems
Control

Applications
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Important Notice:We will focus only on continuous-time systems and control in this course. All results presented here, however, have discrete-time counterparts. Interested students are advised to take another class on digital/computer control systems if there is such a module at CUHK. Alternatively, one could grasp the ideas on discrete-time version from the references listed on the previous page.Basically, there are two ways to design and implement a control system for real problems: 1. doing everything in the continuous-time setting to design an appropriate control law and then discretize it when implemented to the real system.2. discretizing the plant first and preparing everything in the discrete-time setting to design a discrete-time controller for direct implementation.The methods covered in this course are sufficient to handle the first case…
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Homework assignments and design problemsThere will be six (6) homework assignments and two (2) design problems to design controllers for real physical systems. All students are expected to have knowledge in MATLABTM (Control Toolbox and Robust Control Toolbox) and SIMULINKTM after completing these assignments. Homework assignments and projects are to be marked and counted towards your final grade.
Some problems might be solved by using a linear systems toolkit developed by the course instructor and his co-workers.
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Final Grade =  30% ~ Midterm Exam30% ~ Homework Assignments (6)20% ~ Design Projects (2)20% ~ Quizzes (to be randomly announced in the class)
Notice:1. Lectures are to be conducted in the face-to-face mode. Online lectures might be arranged if necessary. 2. Midterm exam will be of open-book. It covers materials in the first part. The schedule will be announced in the class.3. The following is the teaching assistants and their contact information. You can approach them for help when needed…

 Ding Wendi & Zhou Sicong, emails: {wdding & szhou}@mae.cuhk.edu.hk4. There is no final exam for this course.
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Course Material Flow (theory)…

Introduction
Mathematical Background

Dynamic Modeling/State Space Representation/Realization
System Dynamic Responses

System Stability
Controllability & Observability

Systems Invertibility & Zeros
Structural Decompositions

Advanced Concepts of Linear Systems
Decomposition of Proper Systems

Linear Systems Toolkit
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Course Material Flow (design)…

Review of Classical Control
Stabilization of Multivariable Systems

LQR Control
Kalman Filter

H2 and H∞ Control

Robust and Perfect Tracking Control
Loop Transfer Recovery (LTR) Design

Concluding RemarksLQG Control

Introduction to Robust Control
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IntroductionIntroduction
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What is a system?Some examples and preliminary systems concepts…
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Examples: Some systems of interest…
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Block diagram representation of a system

SystemSystem
u (t) y (t)

u (t) is a signal or certain information injected into the system, which is called the system input, whereas y (t) is a signal or certain information produced by the system with respect to the input signal u (t).  y (t) is called the system output. For example,
+
−u (t)

R1

R2

+
y (t)─

)()(
21

2 tu
RR

Rty ⋅
+

=

input: voltage source
output: voltage across R2
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Linear systems

Let y1(t) be the output produced by an input signal u1(t) and y2(t) be the output produced by another input signal u2(t). Then, the system is said to be linear if a) the input is α u1(t), the output is α y1(t), where α is a scalar; andb) the input is u1(t) + u2(t), the output is y1(t) + y2(t).Or equivalently, the input is α u1(t) + β u2(t),  the output is α y1(t) + β y2(t).  Such a property is called superposition. For the circuit example on the previous page,
It is a linear system! We will mainly focus on linear systems in this course.

SystemSystem
u (t) y (t)

[ ] )()()()()()()( 212
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2
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Time invariant systems

A system is said to be time-invariant if for a shift input signal u( t− t0), the output of the system is y ( t− t0). To see if a system is time-invariant or not, we testa) Find the output y1(t) that corresponds to the input u1(t).b) Let u2(t) = u1(t− t0) and then find the corresponding output y2(t).c) If y2(t) = y1(t− t0), then the system is time-invariant. Otherwise, it is not!In common words, if a system is time-invariant, then for the same input signal, the output produced by the system today will be exactly the same as that produced by the system tomorrow or any other time.

SystemSystem
u (t) y (t)
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Time variant systems examples

Example 1: Consider a system characterized by
Step One:

Step Two: Let                               , we have
The system is not time-invariant. It is time-variant!
Example 2: Consider a financial system such as a stock market. Assume that you invest 
$10,000 today in the market and make $2,000. Is it guaranteed that you will make exactly another $2,000 tomorrow if you invest the same amount of money? Is such a system time-invariant? You know the answer, don’t you?

)()cos()()()cos()( 0100111 ttuttttytutty −⋅−=−⋅=

)()()cos()()cos()( 010122 ttyttuttutty −≠−⋅=⋅=

)()( 012 ttutu −=

)()cos()( tutty =
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Systems with memory and without memory

A system is said to have memory if the value of y (t) at any particular time t1 depends on the time from − ∞ to t1. For example, 
SystemSystem

u (t) y (t)

~u (t) C
+
y (t)─ 

∞−

==
t

dttu
C

ty
dt

tdyCtu )(1)()()(

On the other hand, a system is said to have no memory if the value of y (t) at any particular time t1 depends only on t1. For example, 
+
−u (t)

R1
R2 )()(

21

2 tu
RR

Rty ⋅
+

=
+
y (t)─ A static system…
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Causal systems

A causal system is a system where the output y(t) at a particular time t1 depends on the input for t ≤ t1. For example, 

∞−

==
t

du
C

ty
dt

tdyCtu ττ )(1)()()(

On the other hand, a system is said to be non-causal if the value of y (t) at a particular time t1 depends on the input u (t) for some t > t1. For example,
in which the value of y (t) at t = 0 depends on the input at t = 1. )1()( += tuty

~u (t) C
+
y (t)─

SystemSystem
u (t) y (t)
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What is control? A brief introduction to the concept of control….
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ControllerController

Typical structure of a control system

System to be controlled
Desired PerformanceREFERENCE

INPUTto the system
Information about the system: OUTPUT

+ –

DifferenceERROR

Objective: To make the system OUTPUT and the desired REFERENCE as closeas possible, i.e., to make the ERROR as small as possible.
Key issues: (1) How to describe the system to be controlled? (Modeling)(2) How to design the controller? (Control)

26
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System to be controlled

Some control systems examples…

Controller
+ –

Economic SystemEconomic System

Government PoliciesGovernment Policies

Similar idea of feedback… Op Amp Harold S. Black (1898–1983) was an American electrical engineer, who revolutionized the field of applied electronics by discovering the negative feedback amplifier in 1927. To some, his discovery is considered the most important 
breakthrough of the twentieth century in the field of electronics, as it has a wide area of application. He published a famous paper, Stabilized Feedback Amplifiers, in 1934.

曾子：吾日三省吾身。老子：人法地、地法天、天法道、道法自然。
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Uncertainties, nonlinearities and disturbancesThere are many other factors of life have to be carefully considered when dealing with real-life problems. These factors include:
R (s)

+ U (s)
)(sK

Y (s)–

E (s)

disturbances noises

uncertainties

nonlinearities

If you were the system, what would be your disturbances, noises, uncertainties, and nonlinearities???
32



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 27 © BEN M. CHEN

A brief view on control design techniques
 Classical controlPID control, developed in 1930s/40s and used heavily for in industrial applications.
 Optimal controlLinear quadratic regulator control, Kalman filter, H2 control, developed in 1960s to achieve certain optimal performance.
 Robust control 

H∞ control, developed in 1980s & 90s to handle systems with uncertainties and disturbances and with high performances.
 Nonlinear controlDeveloped to handle nonlinear systems with high performances.
 Multi-agent systems & model predictive control (MPC)It is relatively hot at moment.
 Intelligent control (with a possible link to reinforcement learning…)Knowledge-based control, adaptive control, neural and fuzzy control, developed to handle systems with unknown models. 
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An actual control system example…
∞ Flight formation of fully autonomous unmanned helicopters ∞

Commands  

Control SystemMotion PlanningMission/task ManagementGCS

Data Link

A Product of NUS Unmanned Research Team 
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First-principles modeling approach is adopted to obtain an accurate nonlinear model in full envelope, which includes:• kinematics• 6 DOF rigid-body dynamics • main rotor flapping dynamics• yaw rate gyro dynamics
 G. Cai, B. M. Chen, T. H. Lee and K. Y. Lum, Comprehensive nonlinear modeling of a miniature unmanned helicopter, Journal of the American 

Helicopter Society, Vol. 57, No. 1, pp. 012004-1~13, January 2012.

Flight dynamics variable descriptionFlight dynamics variable description
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The model structure can be determined by the first-principles approach…

6th order6th order

6th order6th order
2nd order2nd order

1st order1st order

Flight dynamic model structureFlight dynamic model structure
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Automatic vs Autonomous Systems 

*B. M. Chen, On the trends of autonomous unmanned systems research, Engineering, 2022. https://doi.org/10.1016/j.eng.2021.10.014
Autonomous Unmanned System

Control SystemMotion PlanningTask Management

Commands  

Data Sensors

GCS

HCI / HMI / AI Results 
for 

End Users
Data Processing

Applications…

GPS
Automatic System

Positioning/SLAM 


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Mathematical BackgroundMathematical Background
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Vector spaces and subspaces

Example:

1 2 3

1 0 0
0 , 1 , 0 for a basis for 3D.
0 0 1

s s s
     
     = = =     
     
     
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1 2

2 3
1 2 3 1

ker ( ) 1 0 , im ( )
2 4 6 2

0 1
A A Aα α α

    
        =  = − + =                 −    

Example:
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1 2
2 4

A  
=  
 

Example:

V
1
2

α
  

=   
  

is an invariant subspace of A.

( )1 1 2 1 5 1
5

2 2 4 2 10 2
A α α α
          

= = = ∈         
          

 V
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Matrix inverse

The following identities are useful.

1 1 1( )A B B A− − −=


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Eigenvalues: Given an n x n matrix A, a complex scalar λ is said to be 
an eigenvalue of A if
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We can show that

3 2 1

0 1 0
0 0 1A
a a a

 
 =  
− − −  

has a characteristic polynomial of

( ) 3 2
1 2 3

3 2 1

1 0
( ) det 0 1I A a a a

a a a

λ
χ λ λ λ λ λ λ

λ

−
= − = − = + + +

+

Generally, we can show that

1 2 2 1

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 1

n n n

A

a a a a a− −

 
 
 
 

=  
 
 
 − − − − − 





     



Arthur Cayley
1821–1895 

British Mathematician

William R. Hamilton
1805–1865

Irish Mathematician

1
1 1( ) n n

n na a aχ λ λ λ λ−
−+ = + + +

This result is 
particularly 
useful for pole 
placement…

178

72
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Spectral radius and trace

Remark: Matrix trace be computed using an m-function TRACE and the roots of a 
polynomial can be computed using ROOTS in MATLAB.
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Special matrices
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Special matrices (cont.)

Note that Hermitian and symmetric matrices have all its eigenvalues being real 
scalars. Moreover, a Hermitian or symmetric matrix A >0 (positive definite) iff all 
its eigenvalues are positive, A≥0 (positive semi-definite) iff all its eigenvalues are 
non-negative, A <0 (negative definite) iff all its eigenvalues are negative.
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Matrix norms
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Norms of continuous-time signals
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Laplace transform

Given a time-domain function f (t), the one-sided Laplace transform is defined as 
follows:

where the lower limit of integration is set to 0− to include the origin (t = 0) and to 
capture any discontinuities of the function at t = 0.

Given a frequency-domain function F(s), the inverse Laplace transform is to 
convert it back to its original time-domain function f (t):

Laplace transform technique is invaluable in solving engineering problems!

{ }
0

( ) ( ) ( ) ,stF s f t f t e dt s j
−

∞
−= = = + σ ω

{ }
1

1

1 1( ) ( ) ( )
2

σ j
st

σ j

f t F s F s e ds
π j

+ ∞
−

− ∞

= =  σ1

ROC
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Summary of Laplace transform properties 

Property f (t) F (s)

Linearity

Scaling

Time shift

Frequency shift

Time derivative

Time integration

Time periodicity

Initial value

Final value

Convolution

( )
t

df
0

ζζ

sTe
sF
−−1
)(1

)0( −f

Pierre-Simon Laplace
1749-1827

French Scholar

67
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( )

( )

2 2

2 2

2 2

2 2
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2 2
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s
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ωω
ω

ω
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ω
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ωω
ω

ω
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−

⇔

⇔
+

⇔
+
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+
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⇔
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+⇔
+ +( )

2

1

2
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⇔

⇔
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Some commonly used Laplace transform pairs
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Dynamic Modeling & State Space RepresentationDynamic Modeling & State Space Representation

( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

= +
 = +



( )G s

( ) ( )( ) ( ), ( ) , ( ) ( ), ( )x t f x t u t y t g x t u t= =

Linear 
system

nonlinear

≈


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Basic laws for electrical systems

v

i

R

resistor

Riv =

capacitor

Cv (t)

i (t)

dt
dvCi =

inductor

Lv (t)

i (t)

dt
diLv =

Kirchhoff’s Voltage Law (KVL):The sum of voltage drops around any close loop in a circuit is 0.
v5

v1

v4

v3

v2

054321 =++++ vvvvv

Kirchhoff’s Current Law (KCL):The sum of currents entering/ leaving a node/closed surface is 0.
i i

i
ii

1

2
3

4

5 i i

i
ii

1

2
3

4

5

054321 =++++ iiiii
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Some basic mechanical systems

Mass-spring-damper system

Newton’s law of motion
m

x

f

f ma mx mv= = = 

x

m f

k
x

c

mx cx k x f+ + = 

Isaac Newton
1642–1726

English…

Gustav Kirchhoff 
1824–1887

German Physicist

Clarence de Silva
University of 

British Columbia

C. W. de Silva, Modeling of Dynamic Systems, Taylor & Francis/CRC Press, 2017.
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Dynamic modeling based on first principles
Example (Qiu and Zhou): Consider an RLC circuit as shown in the figure below, 
where the diamond symbol labeled, gv1 means a dependent current source whose 
current is proportional to v1. The input and output of the system are vi (t) and vo(t), 
respectively. Find the dynamic model of the given system.

The common practice in solving an electric circuit problem is to assign a voltage 
variable to a capacitor and a current variable to an inductor. 

For the given circuit, we assign v1 and v2 as the voltages across C1 and C2 and i as 
the inductor current. The system is of 3rd order as it has 3 energy storing elements.
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1
1

dvC
dt

2
2

dvC
dt

1
1

dvC i
dt

+ 2
2 1

dvi C gv
dt

− −+ −

diL
dt

Assign all the branch currents and calculate their values using KCL… 

As it is of a 3rd order system, find 3 equations from 3 independent loops using KVL

1
1 1 1 i

dvC i R v v
dt

 + + = 
 

Red Loop: Blue Loop:

2 1
diL v v
dt
+ =

Gray Loop:

2
2 1 2 2

dvi C gv R v
dt

 − − = 
 

KCLKCL KCLKCLKCLKCL

2
2

dvi C
dt

−
KCLKCL
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1
1 1 1 1 1

1 1 1 1 1

1 1 1
i i

dvC i R v v v v i v
dt R C C R C

 + + =  = − − + 
 

Red Loop:

Blue Loop: 2 1 1 2
1 1diL v v i v v
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Define 
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The dynamic equation of the system can be expressed as

and the system output    

ix A x Bv= +

0 .o iv C x C x v= = + ⋅

The dynamic equation together with the output equation form the so-called state 
space representation of the given electrical circuit or system.  

In fact, all linear time-invariant systems can be expressed in the form of

,x A x Bu y C x Du= + = +

* R.E. Kalman, On the general theory of control systems, Proceedings of 1st International IFAC Congress on Automatic and Remote 
Control, Moscow, USSR, pp. 481–492, August 1960.  

Rudolf E. Kalman 
1930–2016
Hungarian-

American Scholar

CHF
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Example (Qiu and Zhou): Consider a two-cart system as depicted in the figure 
below

The carts, assumed to have masses M1 and M2, respectively, are connected by a 
spring and a damper. A force u (t) is applied to Cart M1 and we wish to observe the 
position of Cart M2, i.e., y = x2.

( ) ( )1 1 1 2 1 2( )M x u t K x x F x x= − − − −  

Applying Newton’s law of motion to M1, we obtain

Applying Newton’s law of motion to M2, we obtain

( ) ( )2 2 1 2 1 2M x K x x F x x= − + −  

u
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Define a state variable vector
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The variable to be observed, i.e., the system output

which together form the state space representation of the two-cart system.
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Example (Qiu and Zhou): Consider a pendulum system shown in the figure below

In a rotational motion, Newton’s second law takes the form

where J is the moment of inertia and τ is the total torque applied.

2

2 ( )dJ t
dt
θ τ=

Kemin Zhou
Louisiana State 

University

Li Qiu
HKUSTA torque u (t) can be applied around the pivot point and we are 

concerned with the angle θ(t). The length of the pendulum is L and 
the mass M of the pendulum is concentrated at its tip.
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For the pendulum system, the moment of inertia J = ML2 and there are two torques 
applied to the system: the external torque u(t) and the torque due to the gravity of 
the mass, which is MgLsin θ(t). As such, the equation governing the motion is 
given by

2 2
2

2 2 2
1sin sind d gM L u MgL u

dt dt L M L
θ θθ θ θ= −  = = − +

Question: Can we write this dynamic equation in the form of

with properly defined state variable? 

,x A x Bu y C x Du= + = +

Let us define 

x
θ
θ
 =  
  2 2

0 0
0 1

1 1
0s ?in

x u ug
M L M LL

θ θθ
θθ θ

             = = + = +        −             


 

Can or 
Cannot?

Why not? Because it is a nonlinear system! . 
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Linearization
We now study how to approximate a nonlinear system by a linear model. Assume 
that a nonlinear system is described by the following dynamic equations:

where x∈ n is the state vector, u and y are respectively the input and output scalar 
variables,  f and g are continuously differentiable functions.

( ) ( )( ) ( ), ( ) , ( ) ( ), ( )x t f x t u t y t g x t u t= =

A triple of constant vectors                   is said to be an operating (equilibrium) point 
of the system if 

The physical meaning of an operating point is that if the system has initial condition 
x0 and a constant input u0 is applied, then the state and output will stay at constant 
values x0 and y0, respectively, for all time, i.e.,

0 0 0( , , )u x y

( ) ( )0 0 0 0 00 , , ,f x u y g x u= =

0 0 0 0( ) , (0) ( ) , ( )u t u x x x t x y t y= =  = =
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Denote 

0 0 0( ) ( ) , ( ) ( ) , ( ) ( )u t u t u x t x t x y t y t y= − = − = −  

It can be shown that 

0 0 0 0, ,

high-order terms( ) ( ) ( )
x x u u x x u u

f fx t x t u t
x u= = = =

∂ ∂= + +
∂ ∂

  

0 0 0 0, ,
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x u= = = =
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For a small neighborhood of the operating point, i.e., 

are small, we can neglect the higher-order terms and approximate the original 
system by the following linear system:

where   

0 0 0( ) ( ) , ( ) ( ) , ( ) ( )u t u t u x t x t x y t y t y= − = − = −  

( ) ( ) ( )

( ) ( ) ( )

x t A x t Bu t

y t C x t Du t

= +

= +

  

  

0 0 0 0, ,

,
x x u u x x u u

f fA B
x u= = = =

∂ ∂= =
∂ ∂

0 0 0 0, ,
,

x x u u x x u u

g gC D
x u= = = =

∂ ∂= =
∂ ∂

This linear system is called the linearized state space model of the original 
nonlinear system.
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Example: Revisit the (inverse) pendulum system studied earlier

We have obtained earlier a nonlinear dynamic equation governing the system

Let us define the system output to be θ. We have the output equation

2

( , ),1sin
x f x u xg u

L M L

θ θ
θ θ

 
  = = =   − +   

 


 

( , )y g x uθ= =
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We note that there is an operating point of the system at  

0 0 0

0
( , , ) (0, ,0)
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In the small neighborhood of the operating point, i.e., when θ is small, we have
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Another operating point of the system is at  

0 0 0( , , ) 0, ,
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In the small neighborhood of the operating point, we have

[ ]
2

00 1
, 1 0 ,1

0
u yg y yM LL

θ θ θ θ πθ
θ θ πθ

        = −   = + =        = −         

   
  

Linearized model around θ = π !

1 1

, 0 2 2
0 , 0, 0

, 0, 0

1

, 0 2
0 0

, 0
0

0 1 0 1

cos 0 0

0
,1

x u
u

u

x u xn

x u

f f
fA g gf fx

L L

f
f guB C

fu x
M L

u

π

θ π θ
θ π θ

π π

π

θ θ
θ

θ θ
 = = 
  = = =

= = =

   = = =  
  

 = = 
 

∂ ∂      ∂ ∂ ∂    = = = =     ∂ ∂∂ −       ∂ ∂
∂    ∂ ∂∂  = = = =   ∂∂ ∂      ∂








[ ]
, 0

1 0
u=



=

L

Inverse Pendulum
Inverse Pendulum



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 65 © BEN M. CHEN

Feedback linearization of nonlinear systems

There exist a class of nonlinear systems

for which we can find a pre-feedback law of the following form

such that when it is applied to the given nonlinear system, the resulting system is 
linear, i.e.,  

Such a technique is commonly called as feedback linearization.

Example: Let us consider the pendulum system once again, i.e.,

( ) ( )( ) ( ), ( ) , ( ) ( ), ( )x t f x t u t y t g x t u t= =

) ( )) )( ( (h y tt tu u= + 

)( ) ( ) ,( ( ) ( )) (A t xux tx t t y ttB C D u= + = +  

2

( , ), ,1sin
x f x u xg u

L M L

θ θ
θ θ

 
  = = =   − +   

 


  ( , )y g x uθ= =
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Let us apply a pre-feedback control law

which implies
i ( ) ( )s n ( ) sin () )( u tgM L t gM L yu t u ttθ= + = + 

[ ]1 0y Cx xθ= = =

( )2 2

2

2
1 1 1sin sin sin

00 1
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g gu
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θ
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     
       = = =       − + − + +       

     

 = + 
 

 
 = + =  

  
  
 



 





  




 











We indeed obtain a linear system in the entire state space through. Such a technique 
has been widely used in the nonlinear research community.

}



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 67 © BEN M. CHEN

Throughout the rest of this course, we will be dealing with linear systems in the 
state space form 

( ) ( ) ( ), ( ) ( ) ( )Cx t x t u t y t x t Du tA B= + = +

Taking Laplace transformation on both sides of the above equations, we obtain 

[ ] [ ]
[ ] [ ]

( ) ( ) (0 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

x t X s x x t u t X s U

U

s A B s

y

B A

sC D sC Dt Y s x t u t X

−= − = + = +

= = + = +



1 1

11

( ) ( ) ( ) (0 )

( ) ( ) ( ) ( )

( )

( ) ( )) (0

X

U

sI A B

C D Cs sI

s U s sI A x

Y X s U s s C sIB AA D x

− −−

− − −

= + −

 = + = + −

−

− + 

which implies 

For the case when the initial condition is x (0–) = 0,

where                                          is called the system transfer function matrix.1( ) ( )G s C sI A B D−= − +

Transfer function of linear systems

ss2tf

1(( ) ( ) : (( ) ))Y C sI A B D Gs U s Us s− =− =  +

46
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Let us revisit the electrical system studied earlier 

Time domain vs frequency domain…

For simplicity, assume R1 =R2 =1Ω, L=1H, C1 =C2 =1F, and g= 100. We then have

1 0 1 1
100 1 1 0 ,

1 1 0 0
ix x v

− −   
   = − − +      −   

 ( )0 1 0 ,ov x=

which has an (input-output) transfer function

3 2
100 1( )

2 3 102
o

i

V sG s
V s s s

− += =
+ + +

)
( ) ( )

)
(
(s j G

G
j

j G s
G

j=


 →
∠


= ω

ω
ω

ω

Ratio of input-output magnitudes at ω

Phase shifting at ω

internal 
variables

1

2

v
x v

i

 
 =   
 
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Frequency domain response…
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Just an illustration…
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State, input and output transformations
It is very often that we need to perform some transformations on the state, input 
and output variables, for the ease of systems analysis and control design. These 
transformations, so long as they are nonsingular, in fact, preserve all the structural 
properties of the given system. 

( ) ( ) ( ), ( ) ( ) ( )Cx t x t u t y t x t Du tA B= + = +

We define a set of nonsingular state, input and output transformations, Γs, Γi and 
Γo, respectively, i.e., 

s i o, ,x x u u y y= Γ = Γ = Γ  

( ) ( ) ( )1 1
s

1
s ss

1
s iA ux x xB A BA x Bu x u−− −−= Γ = Γ ΓΓ+ = + +Γ Γ =     

( ) ( ) ( )1 1
o s o i

1 1
o oy y C x Du x u x uC D C D−− − −Γ Γ= Γ = Γ + = + = +Γ Γ    

which implies 

Consider again the following system 

( )1 1 1
s i o, ,x x u u y y− − −= Γ = Γ = Γ   
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We obtain a transformed system characterized by 

( ) ( ) ( ), ( ) ( ) ( )xAx t x t u t y t t uB C D t= + = +     

which has a transfer function 

( ) ( )( ) ( ) ( )
( )

11 1 1 1
o s s s s i o i

1
o i

1
o i

1

1

)

)

(

(

B

G s C sI A B D IC A B D

C sI D

G s

s

A

−− − − −

−

−

−

−

= = Γ Γ −Γ Γ Γ Γ + Γ Γ

Γ

− +

+

 = Γ Γ 
=

−

Γ

    

For single-input and single-output (SISO) system, 

, 0( )) (GG s sα α= ≠

We note that the nonsingular transformations of the system state, input and output 
have been proven to be a powerful tool for solving many systems and control 
problems. We will see very often this technique used in this course. Nevertheless, 
we first illustrate it by an example…
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Example: Consider a system characterized by 

[ ]
1 1 1 1
1 2 2 0 , 3 1 3
2 1 1 1

x x u y x
   
   = + = −   
      



With the state transformation

we obtain a transformed system 

s

1 1

2 2

3 3

0 2 1
2 3 0
2 1 1

,
x x
x x x x x x
x x

− 
 Γ  



   
   = = = =   


 − − 


  


   



[ ]

0 1 0 0
0 0 1 0
0 0 4 1

8 1 0 0

x x u

y x

   
   = +   
      

= ×

 



It has an identical transfer function as the original one:                                        .
3 2

8( ) ( )
4

G s G s
s s

= =
−



ex1070

39
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Realization of Transfer FunctionsRealization of Transfer Functions
u(t) y(t)( ) ( ) ( )

( ) ( ) ( )
x t A x t Bu t
y t Cx t Du t

= +
= +

( )( )
( )

Y sG s
U s

= 
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Black-box system identification

input output
black-box

u(t) y(t)

Laplace transforms

Transfer Function – A linear model in frequency domain

U (s) Y (s)( )( ) ( )
Y sG s U s=

FFT is actually used instead…

？
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Let a SISO system be given by a proper n-th order transfer function 
1

0 1
01

0 1

( ) ( )( ) : , 0
( ) ( )

n n
n

n n
n

b s b s bY s b sG s a
U s a s a s a a s

−

−

+ + += = = ≠
+ + +




A physical realization of the above transfer function is shown in the figure below: 



( )
0

na x

( 1)
1 1

n
n na x a x a x−
−↑ − − − −

( )
0

( 1)
1

1

n

n

n

n

b x
b x

b x
b x

−

−

↑

+
+
+
+




( )
0

nb x
( 1)

1
nb x −

1nb x− 

nb x

( 1)
1

na x −

1na x− 

na x

…
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To show this, we note that 
( ) ( 1)

0 1( ) ( ) ( ) ( )n n
na x t a x t a x t u t−= − − − +

Taking the Laplace transforms (with 0 initial conditions), we obtain

( )

1
0 1

1
0 1

( ) ( ) ( ) (

( ) ( ) ( )

)

( ) ( )

n n
n

n n
n

a s X s a s X s a X s U s

a s a s

U

a X s U s

a s X s s

−

−

= − − − +



+ + + =


=





Also note that 
( ) ( 1)

0 1

1
0 1( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n n
n

n n
n

y t b x t b x t b x t

b s X s sY s bb s X ss X s b X

−

−

= + + +



= + + =+





( ) ( )
( ) ( )

Y s b s
U s a s

=
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Let us define a state variable vector 
( 1)nx

x
x

− 
 
 =
 
 
 

x 


Then the corresponding state space model is given as

11

00 0 0

1

01 0 0( ) ( ) ( )

00 1 0

n na aa
aa a a

t t u Bt A u

−   − − −   
   

= + =   
   
   

  
 

+



x xx



 
   



0 0 0 0
1 1 1 1

0 0 0 0

( ) ( ) ( )n n n n
b b b by ut b a b a b a t u t
a a a a

C D− −

 
= − − − + = 
 

+xx

Exercise: Verify that  1 .( ) ( )G s C sI A B D−= − +

Controller 
Form 

Realization
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Another realization of the same G(s) is as follows: 

01
1 1

0 0

1 0
1 1

0 0

0

0 0

1 0

( ) ( ) ( )
0 1

0 0

n
n n

n
n n

u

ba b a
a a

t t u ta bb a
a a
a bb a

A

a

B

a

−
− −

  − −  
  
  
  = + =  − −
  
  
  − −   



+

  

x xx



    






0

0 0

1( ) 0 0 ( ) ( ) C Duby t t u t
a a

 
= + = 


+

x x

This realization is called the observer form realization. We note that the realization 
of the transfer function to the state space form is generally non-unique. There are 
many forms of realization for any given transfer function! 

Exercise: Verify that  1 .( ) ( )G s C sI A B D−= − +
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Example: Find the controller and observer form realizations of 
2

2 2
0 0

0
1 1 1( )

( 1)
s sG s

s s s s s s
+ += = =

+
⋅

+
⋅

+ +

The controller form realization is given as

1 1 1

1 0 1
1 0 0

,A Bu u= +
−   
   

 
=


+


x x x [ ] 1 10 1 0y u uC D= + ⋅ = +x x

The observer form realization is given as

2 2 2

1 1 0
0 0 1

,A Bu u= +
−   
   

 
=


+


x x x [ ] 2 21 0 0y u uC D= + ⋅ = +x x

We note that x1 and x2 are related by the following nonsingular transformation:

tf2ss

21

1 1
1 0
− 

=  
 

xx
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Dynamical Responses of Linear SystemsDynamical Responses of Linear Systems
u (t) y(t)=?

( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

= +
= +



x0

x(t)=?


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Also, n is referred to the order of the system in (3.1.1), which is
used throughout this whole course unless otherwise specified.
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θ

2x2x

0x
0x

Phase plane – Illustration of solutions to some 2nd order systems…
0

0

( )
( ) t

t
t

x
=

 
=  
 
θ
θ

0x

L

θ

θ θ

0x

0x

0x
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To introduce the definition of a matrix exponential function, we derive 
this result by separating it into the following two cases: 

i) the system is free of external input, i.e., u(t) = 0; and 
ii) the system has a zero initial state, i.e., x0 = 0.

(i) (ii)
Due to initial 

condition with no 
external force

Due to external 
force with zero 
initial condition
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A x
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2 2

0

1 1e
! 2!

At k k

k
A t I At A t

k

∞

=

= + + + 

where z is a scalar.
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2 2 3

2 2

3

2

3 3

3 2

2 2

1 1
2! 3!

2
1 1

2!
1 1
2!

1

3!

1
! !

At

At

At A

e I At A t A t

I At A t e

I At

d d
dt dt

A A t A t A

A t A At e

A

 =  
 

 = + +

=

+ + + +

+ +

+

+ = = 
 

 + = 

+

 
+ +







Properties of matrix exponential

(3.2.8)exchangeable

expm
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♣ Jordan Canonical Form: For every n x n matrix, there exists a non-
singular similarity transformation P such that

where each λi is an eigenvalue 
of A, and the number l of 
Jordan blocks is equal to the 
total number of independent 
eigenvectors of A.
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3 0 1
1 1 0
1 1 2

A
 
 =  
 − 

♣ Example: Given a matrix

its Jordan canonical form is given by

1

1 1 1 2 1 0
1 0 1 0 2 1
0 1 1 0 0 2

P J PAP−

   
   =  = =   
      

Matrix A has three eigenvalue at λ = 2, but with only one independent 
eigenvector.

Note: It can be computed using an m-function JCF in Linear Systems Toolkit.

Camille Jordan 
1838–1922

French Mathematician

jcf
ex1037
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♣ Example: Given a matrix

which is symmetric. Its eigenvalues are given by

1 2 30.468, 1.653, 3.879λ λ λ= = =

We can find a non-singular transformation such that

1

0.449 0.293 0.844 0.468 0 0
0.844 0.449 0.293 0 1.653 0
0.293 0.844 0.449 0 0 3.879

P J PAP−

− − −   
   = − −  = =   
   − −   

Note: It can be computed using an m-function JCF/RJD in Linear Systems Toolkit.

3 1 1
1 1 0
1 0 2

A
− 

 =  
 − 

0 (i.e., positive definite!)>

rjd
ex1040

S. Bingulac 
Virginia Polytech
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Properties of matrix exponential (cont.)

For the case when A is a diagonal matrix, i.e., 

1

2

1

2

n

t

t
At

t
n

e
e

A e

e

λ

λ

λ

λ
λ

λ

  
  
  =  =
  
  

   

 

When A is given by a Jordan block, i.e., 

2 1

2

3

1 2! ( 1)!
1 ( 2)!

( 3)!
1

t t t n t

t t n t

At t n t

t

e te t e t e n
e te t e n

A e e t e n

e

λ λ λ λ

λ λ λ

λ λ

λ

λ
λ

λ

−

−

−

 − 
   −  
  =  = −
  
  
     




  
  

0
0

0
0

0

0

0

00
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At Ate A x e x− −− + 
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By the superposition property of linear systems, we obtain the solution of the state response of the given system in (3.1.1) as 
Moreover, the uniqueness of the above solution to (3.1.1) with an initial condition
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Recap:

Property of an impulse function δ (t) –– for any continuous function f (t),    

( ) if
( ) ( ) ( ) ( ) and ( ) ( )

0 otherwise  

d

c

f a c a d
f t t a f a t f t t a dtδ δ δ

< <− = − = 



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Example: Find the state and output responses of the following system 

1
0

2

1 1 0 0
, , (0)

0 1 1 1
x

x x u x x x
x

      
= + = = =      
      



[ ]1 0y x=

Solution: By the property of matrix exponential, we have 

with u being a unit step function, i.e., u (t) = 1, and a impulse function u (t) = δ (t). 

0

0
10 0

t t t t t
At At

t t t

e te e te te
e e x

e e e
      

=  = =       
      

( ) 0( ) ( )( ) 1
10

t t t
A t

t t

e t e t e
e Bu

e e

τ τ τ
τ

τ τ

τ ττ
− − −

−
− −

   − − 
 = ⋅ =     

    

( )
0

0

(2 1) 1and ( ) ( ) , ( ) (2 1) 1
2 1

t t
At A t t

t

t e
x t e x e Bu d y t t e

e
τ τ τ−  − +

= + = = − + − 


for a unit step function. 

…unit step state response… unit step output response… 

ss
ex1089
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State response due to a unit step input… 
M

ag
ni

tu
de

1y x=

2x

initial
step
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( ) ( ) ( )
d

c

f t t a dt f aδ − =

State response due to a unit impulse input can be calculated as follows: Noting 

( ) 0( ) ( )( ) ( ) ( )
10

t t t
A t

t t

e t e t e
e Bu

e e

τ τ τ
τ

τ τ

τ ττ δ τ δ τ
− − −

−
− −

   − − 
= ⋅ =     

    

( )
0

0 0

( )( ) ( ) ( )

2
2

( ) 2

t tt t
At A t

t t

t t t

t t t

t

te t e
x t e x e Bu d d

e e

te te te
e e e

y t te

τ
τ

τ

ττ τ δ τ τ
−

−
−

−

   −
= + = +   

   
     

= + =     
     

=

 

0

t
At

t

te
e x

e
 

=  
 

and 

we have 

…unit impulse state response… 

…unit impulse output response… 
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State response due to a unit impulse input… 

1y x=

2x

t (seconds)

impulse
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System StabilitySystem Stability
( ) ( )x t A x t=



L
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Chernobyl Nuclear Disaster, 1986

?

Inaugural Bode Lecture, 1989

Chief Scientist @ Honeywell Labs

Control Systems Magazine, 2003

= 300
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Examples of system stability…

Stable? Stable?

Inverse Pendulum
Inverse Pendulum

Pendulum
Pendulum
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Bounded-input bounded output (BIBO) stability

A system is said to be BIBO stable if for any bounded input u (t), i.e.,

the corresponding output y (t) is also bounded.

For a continuous-time linear time-invariant (LTI) system, the condition for BIBO 
stability is that its impulse response, h (t), be absolutely integrable, i.e., its L1

norm exists:

Note that BIBO stability is only applicable when the system is initially relaxed, 
i.e., with initial condition being 0. 

SystemSystem
u(t) y(t)

( ) , for all 0mu t u t≤ < ∞ ≥

1
0

( )h t dt h
∞

= < ∞
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Example: The linear model of the inverse pendulum system around θ0 = π is

[ ]
2

00 1
, 1 01

0
u yg

M LL

θ θθ
θ θθ

         = + =                

  
 

L
which has a transfer function

2

2

2

1
( )

2
1

M LG s gs L

s

=
−

=
−

The impulse response  

Inverse Pendulum
Inverse Pendulum

[ ]1 1 1
2
2 1 1( ) ( )

1 1 1
t th t L G s L L e e

s s s
− − − −   = = = − = −   − − +   

0 0 0

( ) the system is  stable.not BIBOt th t dt dt de e t
∞ ∞ ∞

− ≥ − = ∞   

M

2
1Set 2,  1  

for simplicity

g
LM L = =
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Internal stability

0, . ., ( ) ( ), (0) ,e g x t A x t x x= =

The

Note: For LTI systems, asymptotic stability and exponential stability are equivalent. 
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We proceed to define a non-singular state transformation

It follows from (3.2.6) that the solution to the transformed system is given by

Alternatively, we note that

which implies

Thus,

1 1 1 1
0 0,x P x x P x P Ax P AP x J x x P x− − − −=  = = = = =     

( )0 0 0 0
1( ) ( ) ( )Jt J Jt At tx t e x e Pe P ex t P x t P x x x−=  = = = =   

( )( ) ( )1 1 1 1 1k kA PJ P A PJ P PJ P PJ P PJ P− − − − −=  = =

1 1 1

0 0 0

1 1 1
! ! !

At k k k k

k kk

k k J te A t PJ P t P P P P
k k

J t e
k

∞∞ ∞
− − −

= = =

 = = = = 
 

  

( )1
0 0( ) At Jtx t e x Pe P x−= =
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We note that the result in (3.3.7) follows from the properties of matrix exponential 
given earlier.

Take note on the off-diagonal elements in (3.3.7), which are functions of t powers! 
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In other words, the given system is asymptotically stable, i.e., the state trajectory 
converts to zero as time progresses, if and only if all the eigenvalues of A (which 
are also called the poles of the given system or A) are on the open left-half 
complex plane. The given system is marginally stable if and only if all the 
eigenvalues or poles of A are on the closed left-half plane with those on the 
imaginary axis being simple (why?).
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Remark: The BIBO stability does not imply internal stability as it can be seen 
from the following simple example:

which is a BIBO stable system, but not internally stable as it has an unstable pole 
at s = 1. Any non-zero initial condition will cause the state (and output) variable 
blowing up to infinity.

On the other hand, the internal (asymptotic or exponential) stability of an LTI 
system does imply its BIBO stability. This can be shown by finding its impulse 
response of the system and showing that the L1 norm of the impulse output 
response is bounded and hence the system is BIBO stable.

However, it will be shown by a counterexample (Q.6 in Homework Assignment 1) 
that the marginally internal stability does not guarantee the given system is BIBO 
stable. In fact, we can show that a marginally internally stable system is always
BIBO unstable.

1 0 ,x x u y x= ⋅ + ⋅ =
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Marginally 
stable poles

Unstable 
poles

Stable 
poles

Summary of internal stability
A linear time-invariant system is said to be asymptotically stable if all its poles 
are located on the left-half complex plane (LHP), marginally stable if all its 
poles are in closed LHP with those on imaginary axis being simple, and unstable 
otherwise… 

( )( ) cos sint j t te e e t j t+= = +λ σ ω σ ω ω
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Lyapunov stability of dynamical systems

Consider a general dynamic system,                 with f (0) = 0.  

If there exists a so-called Lyapunov function V(x), which 

satisfies the following conditions:

1. V(x) is continuous in x and V(0) = 0;

2. V(x) > 0  (positive definite);

3.                                         (negative definite),

then we can say that the system is asymptotically stable at x = 0. If in addition,

then we can say that the system is globally asymptotically stable at x = 0. In this 

case, the stability is independent of the initial condition x(0).  

)(xfx =

0)()( <∂
∂= xfx
VxV

( ) , as  V x x→∞ →∞

Aleksandr Lyapunov
1857–1918
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Lyapunov stability for LTI systems

The following result is particularly useful for stability analysis when numerical 
values of system matrix are unknown. It will be used in coming lectures when we 
deal with control systems design.

We note that unlike Lyapunov stability theory for general dynamical systems on 
the previous page, Theorem 3.3.1 gives a necessary and sufficient condition for 
the stability of LTI systems. 

The result of Theorem 3.3.1 also holds for Q ≥ 0 and (A,Q) being observable (the 
concept of observability is to be studied in the next section).
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Conversely, for any Q > 0, if the Lyapunov equation has a solution P> 0, we 
define a Lyapunov function 

which obviously a continuous function in x and positive definite, and

Furthermore,  

( )V x x P x′=

( ) ( ) 0( ) x P x x P x AxV Px x PAx x A P PA xx x Qx′ ′ ′ ′ ′ ′= + = + = + ′−= < 

( ) , as  V x x→∞ →∞

By the Lyapunov stability theorem,             is asymptotically stable.x Ax=



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 115 © BEN M. CHEN

On the other hand, we can prove the result by directly determining the locations of 
the eigenvalues of matrix A. If there are positive definite P and Q that satisfy the 
Lyapunov equation (3.3.9), i.e.,

then all eigenvalues of matrix A have negative real parts, and thus it is stable. We 
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Example: The linear model of the pendulum system around θ0 = 0 is

[ ]
2

00 1
, 1 01

0
u yg

M LL

θ θθ
θ θθ

         = + =       −          


 

L The eigenvalues of the system matrix are

The above pendulum system has two simple poles on the imaginary axis of 
the complex plane. It is thus a marginally stable system. 

Pendulum
Pendulum

2
1,2

1
g gI A jg L L

L

λ
λ λ λ

λ

−
− = = +  = ±

g L±

Recall that it was showed earlier that the inverse pendulum system is BIBO 
unstable. It is easy to verify that the system matrix of the inverse pendulum 
has two poles at            . Clearly, it is an internally unstable system.  
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Example: Consider an LTI system 

2 1 1
1 2 1
1 1 3

x A x x
− 
 = = − 
 − 



whose system matrix A has eigenvalues at 

1 2 33.7321, 3, 0.2679,λ λ λ= − = − = −

respectively. The system is clearly stable. Let

The solution to the corresponding Lyapunov equation A′ P + PA = –Q is given by

3 3

1 0 0
0 1 0
0 0 1

Q I ×

 
 = =  
  

the given system is stable!
5 4 3

1 4 5 3 0
6

3 3 3
P 

 
 = > 
  

lyap
eig

ex1112
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Q.1. Consider the mechanical system shown in the figure below. Here u (t) is an 
external force applied to the mass M, y (t) is the displacement of the mass 
with respect to the position when the spring is relaxed. The spring force and 
friction force are given respectively by

Homework Assignment 1
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Q.2. Consider the electric circuit network in the figure below. Let the input be 
vi(t) and output be vo(t).

Assuming that R1 =R2 =R3 =1Ω, C1 =C2 =1 F and L1 =1H,

1. Derive the state and output equation of the network.

2. Find the transfer function of the network.

3. Find the unit step response of the network.

4. Find the unit impulse response of the network.
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Q.3. 



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 121 © BEN M. CHEN

Q.4.

Q.5. 

Q.6. Show that the pendulum system is a BIBO unstable system even though it 
was proved to be internally marginally stable. Identify a bounded input 
signal such that when it is applied to the pendulum, the resulting output 
response will go unbounded. 

For simplicity, you can assume that 2 1 and .M L g L= =



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 122 © BEN M. CHEN

Controllability and ObservabilityControllability and Observabilityu(t)

y(t)
( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

= +
= +




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Controllability and stabilizability

The system (3.4.1) is said to be controllable if 
for every x1∈ and every finite t1 > 0, there 
exists a control signal u(t), t∈[0, t1], such that 
the resulting state trajectory goes from a given 
initial condition x(0) = x0 to x(t1) = x1. 
Otherwise, it is said to be uncontrollable.

x0

x1
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i.e.,                                                       we have

If Wc(t) is nonsingular for all t > 0, for a fixed t1 > 0, we let
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the mx1 vector function

( )1

c 1 00 0 0 0( ) e e 0
t At A tx xt xW BB t xd′− −′ = ′′ =



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 126 © BEN M. CHEN



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 127 © BEN M. CHEN

This is the most commonly used result to determine the controllability of an LTI 
system. It only involves checking the rank of a constant matrix generated from 
the given system, rather than time domain functions.

However, one should note that the determination of the rank of the controllability 
matrix sometimes can be ill-conditioned when the system order is high. 
Nonetheless, it is still much easier than checking the condition in Theorem 3.4.1.

Note: CTRB in MATLAB Control Toolbox calculates the controllability matrix.



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 128 © BEN M. CHEN

c 1( )W t
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( ) 0 0 c 000 e ( ) 0e
t A AB Wx B d x x t x′− −′ ′ ′= = τ τ τ
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Example: Consider an LTI system 

0 1 1 1
1 1 1 1

1 0 11
x A x Bu x u

   
   = + = +   
      



Calculate the controllability matrix, we obtain

2
c c

1 2 5
1 3 7 , rank( ) 2 3
1 2 5

Q B AB A B Q
 
  = = = <   
  

The given system is uncontrollable.

ctrb
rank

ex1125
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Example: Consider an LTI system 

0 1 1 1
1 1 1 1

1 0 10
x A x Bu x u

   
   = + = +   
      



Calculate the controllability matrix, we obtain

2
c c

1 2 4
1 3 6 , rank( ) 3
1 1 3

Q B AB A B Q
 
  = = =   
  

The given system is controllable.
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The proof of the above result can be found in Chen, Lin and Shamash (2004). 
The significance of the PBH test is that it leads to the introduction of another 
important concept in control theory – the system stabilizability, which turns out to 
be a necessary and sufficient condition to stabilize a system to be controlled.

Vasile M. Popov
Romanian American
1928–

Vitold Belevitch
Belgian Mathematician
1921–1999

Malo Hautus
Eindhoven University 
of Technology 
1940–

PP BB HH
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The system (3.4.1) is said to be stabilizable if all its uncontrollable 
modes are asymptotically stable. Otherwise, the system is said to 
be unstabilizable.
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Example: Consider an LTI system 

0 1 1 1
1 1 1 1
1 1 0 1

x A x Bu x u
   
   = + = +   
      



It is verified earlier that the given system is uncontrollable as its controllability 
matrix Qc has a rank of 2 < 3. 

The eigenvalues of A are respectively at                                   

Using the PBH test,

1, 1 2, 1 2.− − +

[ ]
1 1 1 1

rank 1 rank 1 2 1 1 2 3
1 1 1 1

I A B
− − − 
 − ⋅ − = − − − = < 
 − − − 

Thus, λ1 = – 1 is an uncontrollable mode. Without any further calculation, one can 
conclude that the other two modes are controllable as Qc has a rank of 2.

ex1125
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Nonetheless, let us proceed the PBH test for the other two modes…

For                     , 

Thus, λ2 is a controllable mode. For                    ,

( )
1 2 1 1 1

rank 1 2 rank 1 2 1 1 3

1 1 1 2 1

I A B

 − − −
 

 − ⋅ − = − − − =    
− − −  

which implies that λ3 is also a controllable mode. As the only uncontrollable mode 
is stable, the given system is stabilizable.

2 1 2λ = −

3 1 2λ = +

( )
1 2 1 1 1

rank 1 2 rank 1 2 1 1 3

1 1 1 2 1

I A B

 + − −
 

 + ⋅ − = − − =    
− − +  
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The above result is heavily used in control systems design. It shows that the 
stabilizability of a given system is necessary for any control problem if one 
wishes to make a controlled system stable.

One should not proceed to carry out a control system design any further if the 
given system is not stabilizable. Instead of designing a controller, the designer 
should try to re-design the system to be controlled.


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Observability and detectability

able to see what is going 
on inside the system

able to see what is going 
on inside the system

Definition 3.4.3. The given system Σ of (3.4.24) is said to be observable if for 
any t1 > 0, the initial state x(0) = x0 can be uniquely determined from the 
measurement output y(t), t ∈ [0, t1]. Otherwise, Σ is said to be unobservable.
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We note that all modern control techniques with measurement feedback using the 
above observer framework or its variant form!
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Example: Consider an LTI system 

[ ]
0 1 1
1 0 1 , 2 1 1
1 1 0

x A x x y x
 
 = = = 
  



Calculate the observability matrix (m-function OBSV), we obtain

o o
2

2 1 1
2 3 3 , rank( ) 2 3
6 5 5

C
Q CA Q

CA

   
   = = = <   
      

The given system is unobservable. The unobservable mode is –1 as 

2 1 1
1 1 1

rank rank 2 3
1 1 1 1

1 1 1

C
I A

 
 − − −   = = <   − ⋅ − − − − 
 − − − 

The system is detectable. In fact, the given system has two modes at –1 with one 
being unobservable and one not. 
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Homework Assignment 2
Q.1. For the Double Inverted Pendulum on a Cart (DIPC) depicted below, it was shown in [] that 

for sufficiently small θ1, θ2, and for m0 = 1.5 kg, m1 = 0.5 kg, m2 = 0.75 kg, L1 = 0.5 m, 
L2 = 0.75 m and g = 9.8 m/s2, its linearized dynamic model can be expressed as follows:

where C is to be determined,

and where xc and vc are the displacement and velocity of 
the Cart, respectively. 

a) Determine the stability of the system,
b) Determine the controllability of (A, B), and

c) Among θ1, θ2 and xc, find a smallest set for y such that the resulting (A, C) is observable.     

[] A. Bogdanov, Optimal Control of a Double Inverted Pendulum on a Cart, Technical Report, OGI School of Science and Engineering, OHSU, 2004

, ,x A x Bu y C x= + =

c

1

2

c

1

2

,

x

x
v

θ
θ

θ
θ

 
 
 
 

=  
 
 
  
 




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

, ,
0 7.35 0.7875 0 0 0 0.6071
0 73.5 33.075 0 0 0 1.5
0 58.8 51.1 0 0 0 0.2857

A B

   
   
   
   

= =   −   
   − −
   

−    Courtesy of 
Ian Crowe-Wright 
University of New 

Mexico

DIPC
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Q.2.

Q.3. 

Q.4. Given A∈Rnxn, B∈ nxm, show than if the pair (A, B ) is controllable 
(detectable) if and only if ( AT, BT) is observable (stabilizable).
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Q.5.
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Q.6. Verify the result in Q.5 for the following systems:

Q.7.
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System Invertibility and Invariant ZerosSystem Invertibility and Invariant Zeros
u(t) y(t)=0

( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t
y t Cx t Du t

= +
= +

 
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It is meaningless to talk about a good system or a bad system without controller design in 
the picture. When controlling a given system, its (structural) properties do play crucial 
roles. Up to now, we have learned that…

1. An unstable system is bad as it blows up everything inside out.

Solution: To employ a control law to stabilize it, if possible. How to work out a 
stabilizing controller for an unstable system is the story of Part 2.

An unstable system is not necessarily bad so long as it can be stabilized.

2. An unstabilizable system is bad as it cannot be stabilized and thus cannot be 
controlled.

Solution: No solution besides redesigning the system itself. 

3. An undetectable system is bad as it cannot be stabilized and controlled.

Solution: No solution besides redesigning the system itself.

There are more to be added to the above list as we progress. There are systems that can 
be controlled but would generally yield bad control performance.  

Good systems vs. bad systems…
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The topic of system invertibilities has been left out in many popular 
texts in linear systems (for example, in almost all the references listed 
for this course), although it is important and crucial in almost every 
control problem.

By definition, it is clear that an invertible system has to be a square 
system, i.e., the number of the system inputs, m, and the number of the 
system outputs, p, are identical. A square system is, however, not 
necessarily invertible. Unfortunately, confusion between invertibility 
and square systems is common in the literature. Many people take it 
for granted that a square system is invertible. We illustrate this in the 
following example.

System invertibility
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ex1351

G

G
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A rational function is a ratio of two polynomials… 

Recall the given system (3.1.1), which has a transfer function
G

L(s)G(s)

G

function matrix of s,

function matrix of s,



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 150 © BEN M. CHEN

Example (left invertibility): Consider an LTI system 
0 1 1 1
1 1 1 1
1 1 0 1

x A x Bu x u
   
   = + = +   
      



2 1 1 0
9 8 5 0

y C x Du x u   
= + = +   

   which has a transfer function
2

2

3 2

4 5 1
22 30 8

( )
3 1

s s
s s

G s
s s s

 + +
 + + =

− − −It is easy to see that
( ) ( )
3 2 3 2

2 2

3 1 3 1( ) ( ) ( ) 1
2 4 5 1 2 22 30 8
s s s s s sL s L s G s

s s s s

 − − − − − − =  =
 + + + + 

ss2tf
ex1144
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Example (right invertibility): Consider an LTI system 
0 1 1 1 3
1 1 1 1 2
1 1 0 1 1

x A x B u x u
   
   = + = +   
      



which has a transfer function
( )2 2

3 2

4 5 1 9 8 1
( )

3 1
s s s s

G s
s s s

+ + + +
=

− − −It is easy to see that
( )

( )

3 2

2

3 2

2

3 1
2 4 5 1

( ) ( ) ( ) 1
3 1

2 9 8 1

s s s
s s

R s G s R s
s s s

s s

 − − −
 + + =  = − − − 
 + + 

ss2tf
ex1145

[ ] [ ]2 1 1 0 0y C x Du x u= + = +
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Example (invertible system): Consider an LTI system 
0 1 1 1 3
1 1 1 1 2
1 1 0 1 1

x A x B u x u
   
   = + = +   
      



which has a transfer function
Exercise: Find the inverse of the above system, i.e., find 

ss2tf
ex1146

3 2 2

2 3 2

3 2

3 2 9 8 1
22 30 8 47 49 11

( )
3 1

s s s s s
s s s s s

G s
s s s

 + + + +
 + + + + + =

− − −

1( )G s− =

2 1 1 1 0
9 8 5 0 1

y C x Du x u   
= + = +   

   

For D=I, it follows from (2.3.15) on p. 35 that 1 1( ) ( ) .G s I C sI A BC B− −= − − + 
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The system left and right invertibilities can be interpreted in the time domain as follows. 

 For a left invertible system, given an output y (t) produced by the system with an 
initial condition x0, one is able to identify a unique control signal u (t) that generates 
the given output y (t). 

Interpretation of system invertibility

SystemSystemu(t)∈Rm
y(t)∈Rp 

m ≤ p x0
? unique

SystemSystemu(t)∈Rm y(t)∈Rp 

m ≥ px0

? one or many

?

fixed & 
known

arbitrarily given

fixed

 For a right invertible system, for any given signal yref (t)∈Rp, one is able 
to determine a (or many) control input u (t) and an (or many) initial 
condition x0 for the system, which would produce an output y(t) = yref (t) .

Peter Moylan
University of 

Newcastle
Australia
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Robot ArmRobot Arm

elbowelbow

shouldershoulder

A good example that illustrates a left invertible system is underactuated robot manipulators 
or a double pendulum…

Consider the double pendulum system on the right, 
where the output variables are θ1 and θ2. If we have 
torque to control both the elbow and the shoulder, 
the double pendulum system is fully actuated and 
the resulting dynamical system is invertible. If there 
is only one actuator providing torque to the elbow, 
the pendulum is underactuated and the resulting

A left invertible system would cause problems in output tracking. Dually, a right invertible 
system (over-actuated) is good for output tracking but would degrade the performance of the 
overall system with output feedback controllers where an observer is used. The concepts of 
left and right invertibility are dual. This will be clear in Part 2 when we study advanced 
control design techniques.

system is left invertible. In such a case, the system does not enough control authorities to 
drive all the output variables to desired values as illustrated on the previous page. 

Double PendulumDouble Pendulum
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Normal rank and invariant zeros

We note that Example 3.5.1 given earlier has a 2x2 transfer function matrix

The normal rank of this function matrix is 1.

Historically, many researchers had made lots of mistakes in defining system
zeros. Normal rank was introduced to give a correct and precise definition of 
zeros, more specifically the invariant zeros, for multivariable systems.

G

G
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Here

Invariant zeros

which is known as the so-called Rosenbrock system matrix.

Howard H. Rosenbrock
1920–2010 

We note that

• Invariant zeros play a crucial role in designing sensible 
control systems.

• For a SISO system, invariant zeros are identical to the zeros or transmission 
zeros, i.e., the roots of the numerator of its transfer function. 
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Other but incorrect definition of transmission zeros has been used in the literature. The 
same mistake has been spread over all the places including our textbook by C.T. Chen… 

♣ E. J. Davidson and S. H. Wang, “Properties and calculation of transmission 
zeros of linear multivariable systems,” Automatica, pp. 643–658, 1974.

♣ ♣ E. J. Davidson and S. H. Wang, “Remark on multiple transmission zeros 
of a system,” Automatica, p. 195, 1976.

Edward Davison
University of 

Toronto 

Chi-Tsong Chen
Stony Brook 
University 

1 0 1 0 0
1 1 1 , 0 1
1 1 1 1 0

A B
   
   = =   
      

0 0 1 0 0
,

1 0 0 0 0
C D   
= =   
   

Example: Consider an LTI system 

{

5rank min4 ( , )
A I B

n p m
C D
λ− 

= < + = 
 

We will demonstrate using MATLAB that for 
any scalar λ on the complex plane, 

ex1351
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Proof. First, it is simple to verify that (3.6.5), i.e.,

We first show that
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SystemSystem

Interpretation of invariant zeros (transmission zeros)

y(t) ≡0

We note that physically

• An invariant zero β with a state zero direction xR and input zero direction wR

means that the input signal at frequency eβ t entering the system at the 
direction wR will be totally blocked by the system provided that the initial 
condition of the given system is xR.

• There are cases that a certain complex frequency, say β, might be totally 
blocked in all input directions. Such a β is called a blocking zero of the given 
system.



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 161 © BEN M. CHEN

Example: Consider an LTI system 

[ ]
0 1 1 2
1 1 1 1 , 9 8 5
1 1 0 1

x A x Bu x u y x
   
   = + = + =   
      



which has a transfer function                                        with a normal rank of 1.  
2

3 2
31 34 7( )

3 1
s sG s

s s s
+ +=

− − −

Since it is a SISO system, its invariant zeros are the zeros or roots of the numerator 
of its transfer function 

It is easy to check for each of them, the rank of the corresponding Rosenbrock 
system matrix drops.

For MIMO systems, the computation of invariant zeros are rather complicated! The m-
function TZERO in MATLAB and INVZ in Linear Systems Toolkit can do the job. 

1 2
17 6 2 17 6 20.2747, 0.8221

31 31
z z− + − −= = − = = −

tzero
invz

ex1155
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Remarks:

• In this course, we define an LTI system to be of minimum phase if all its 
invariant zeros are in the LHP (note that we don’t need the system to be 
stable). Otherwise, it is called to be of nonminimum phase. 

• Invariant zeros are invariant under state feedback and output injection, i.e., 
we cannot re-place the locations of invariant zeros through a feedback 
control law. On the other hand, we can freely assign a closed-loop pole so 
long as its corresponding mode is controllable.

• A nonminimum phase zero would cause a lot of problems in designing a  
control system. The overall control performance would be bad. 

o In particular, the time-domain response of a nonminimum phase system 
to a step input might have an undershoot.

o The frequency-domain performance will be limited as to be seen in the 
results given in Part 2.
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Why are invariant zeros invariant? What else are invariant?

Consider the LTI system characterized by

with a state feedback law u=F x+v, the resulting closed-loop system is given by

We have the following results:

:
x A x Bu
y C x Du
= +Σ  = +



( )
( )F :

x A BF x Bv
y C DF x Dv
= + +

Σ  = + +



(…To be defined on p. 206…)
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Obviously, s is an invariant zero of Σ if and only if it is an invariant zero of ΣF, i.e., 
invariant zeros are invariant under state feedback. Similarly, we can show that the 
invariant zeros are invariant under output injection, i.e.,

0
sI A KC B KD I K sI A B

C D I C D
− − − − − − −     =     

     



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 165 © BEN M. CHEN

For simplicity, we consider a SISO with a transfer function G(s), i.e., 

Why are bad (nonminimum phase) invariant zeros bad?

U (s) Y (s)G (s)

If we want the output to track a reference r, the simplest way is to design a control 
law of the following form

which results in pole-zero cancellations. Actually, almost all the control techniques 
to be studied in Part 2 possess inherent pole-zero cancellations whenever the zeros 
of the given systems are stable. Unfortunately, unstable pole-zero cancellations 
are not allowed in control system design (to be explained in the class). As such, 
the unstable phase zeros would limited the performance of the closed-loop system. 
For instance, the unstable zeros would cause an undershoot in its step response…

U (s) Y (s)G (s)G–1 (s)R (s)
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Example: The step responses of the systems with stable and unstable zeros… 

2( )
1

1 sG s
s s

+=
+ + 2( )

1
1 sG s

s s
−=
+ +2

( )( )
( ) 1

1Y sG s
R s s s

= =
+ +

Undershoot Undershoot 
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1. An unstable system is bad as it blows up everything inside out.
Solution: To employ a control law to stabilize it, if possible. How to work out a 
stabilizing controller for an unstable system is the story of Part 2.
An unstable system is not necessarily bad so long as it can be stabilized.

2. An unstabilizable system is bad as it cannot be stabilized and controlled.
Solution: To redesign the system itself. 

3. An undetectable system is bad as it cannot be stabilized and controlled.
Solution: To redesign the system itself.

4. A nonminimum phase system is bad as it would yield bad control performance.
Solution: To redesign the system if better performance is wanted.

5. A degenerate system is bad as it would yield bad performance in the overall control 
system
o In state feedback control, left invertible (underactuated) systems would generally 

yield bad performance. 
o In observer-based feedback control, right invertible systems would cause troubles. 
Solution: To redesign the system if better performance is wanted.

Good systems vs. bad systems (cont.)…

(this is even worse than a nonminimum phase one). 
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nonminimum phasenonminimum phase

How to get rid of bad zeros (and other bad structures)?

Even though unstable zeros (or nonminimum phase or bad systems in general) cannot 
be changed by feedback control laws, they can be relocated by…

• Reselection of the system actuators (matrix B) and/or
• Replacement of the measurement sensors (matrix C)

Example: Consider a system characterized by

[ ]
1 1 0 0
1 0 1 0 , 0 0
0 0 1

1
1

x A x Bu x u y x
   
   = + = + =   
      



If we replace the measurement sensor to measure the first state variable instead, i.e.,  

[ ]0 01y x= 3 2
1( )

2 1
G s

s s s
=

− − +
minimum phase!minimum phase!

3 2( )
2 1

1G
s

ss
s s

=
− − +

−





ex1160

The following are techniques that can also be used to solve all the 
problems highlighted on the previous slide…  
X. Liu, Z. Lin and B. M. Chen, Assignment of complete structural properties of linear systems via 
sensor selection, IEEE Transactions on Automatic Control, Vol. 54, pp. 2072–2086, 2009.
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Some Structural DecompositionsSome Structural Decompositions
The performance of a control system is primarily determined by the structural 

properties of the system to be controlled, rather than the control law 
controlling it… 

A good system can be controlled by a simple controller.

A bad system cannot perform well no matter what control law is used.


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Why and what?
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Unsensed systems

We now proceed to introduce the controllability structural decomposition (CSD) 
for the unsensed system characterized by

We note that the CSD is also commonly known as the Brunovsky canonical form 
(1970). But the same result was reported by Luenberger earlier in 1967.

Pavel Brunovský
1934–2018

Slovakian Mathematician 

David Luenberger
Stanford University

USA
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x A x B u= +    such that the transformed system                        has the following form: 

uncontrollable modes

controllable pairs

{ }1 2where , , , are called the controllability index of ( a, ),  which is .inv riantmk k k A B
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For illustration, we let

We can then expand the state equation 
of the transformed system, i.e., 

as follows: (i) the unstable dynamics 

1

1,1

1
1

,

0

1

,

,

ˆ

,

m

m

k

m

m k

u

x

u

u
x

x

x

x

x

 
 
 
 
   
   = =   

    
 
 
 
 
 















x Ax Bu= +    

0 0 0ˆ ˆx A x=

(ii) for each controllable subsystem 
associated with input :

Clearly, the uncontrollable dynamics 
is totally isolated and is not effected 
by any control input and other state 
variables. For each controllable 
subsystem associated with an input, 
all its state variables form a chain of 
integrators (differentiators).

1, , ,iu i m= 

,

0

,1 ,2

,2 ,3

, 1

, , ,0 1 1
ˆ

i i

i

i

i i

i i

i k i k

m k
i k i j i j ii j

x x

x x

x x

x x ux

−

= =

=

=

+ ΔΔ

=

= + 

 
 


 

  

… …

…
…

…
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

  

Uncontrollable dynamics of 
the systems

The shorter this chain of integrators is, the easier to control it.
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Example: Consider an LTI system                         with x A x B u= +

s i

63 292 15 126 86 90
38 226 30 101 68 75
25 70 45 25 35 60 1 01 ,
49 109 60 77 122 45 0 115
62 13 75 1 29 30
37 127 90 26 41 15

T T

− − − 
 − − − 
 − − −  

= =   − −   
 − − − −
 

− − 

Using the CSD function in Linear System Toolkit, we obtain a state transformation 

which transforms the given system into the CSD form, i.e., 
csd

ex1166
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1 1
s s s i

0.8286 0.1619 0.0095 0.2286 0.4381 0
,

.2095

0.8381 2.5714

,

3.4095

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
0 0

4

0 0 0 0 0
0 0 0 0 0 0 0

081. 381 2.42 6 1.9905 1

1
1

1

1
1

A T AT B T BT− −− −


   

  
   
   

= = = =   
   
   
 

−
 

   − −

 

Thus, we have 

1,1 1,2

1,2 1,3

1,3 1,1 1,2 1,3 12,1 2,2 2,30.8286 0.1619 0.0095 0.2286 0.4381 0.2095

x x

x x

x x x x ux x x+

=

=

= + ++ − −

 
 
     

and 

21,1 1,

,

2 1

2 1 2,2

2,2 2,3

2,3 2,1 2,2 2,,3 30.8381 2.5714 3.4095 1.4381 2.4286 1.9905

x x

x x

x xx x ux x x−

=

= − + + −

=

++

 
 
     

Controllable Subsystem ①

Controllable Subsystem ②
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0

1
1

0 0 0 0 1

1
1

1

    
    
    
    
    
    
    
         

1 1
s s s i

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
,

0

4

1
1

0.8286 0.1619 0.0095 0.2286 0.4381 0.2095

0.8381 2.571 3.4095

0

1.4381 2

1

.428
0

6 1.

0

99

0

0
0

5
0

1
1

0 0 0
0 0 0 0

0 1

T AT T BT− −− −

−


   
   
   
   

= =   
   
   
  
  − − 

This controllability structural decomposition form is particularly useful if we 
want to design a state feedback control law to place the closed-loop system poles 
to any desired locations. By using a proper pre-feedback gain, we can simplify 
the above pair to the following form.

This special form is 
particular useful in 
designing state feedback 
control law as illustrated 
on the next page…
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It is straightforward to show that the state feedback law u= x with being 
given below would place the closed-loop poles at the desired locations:

F

Pole placement is trivial in the CSD form. For simplicity, we consider a 3rd 
order matrix pair in the CSD or Brunovsky canonical form, i.e.,

and a set of desired closed-loop system poles at              , respectively. The 
desired characteristic polynomial is then given as 

1 2 3 1 2 3
3 2( ) ( )( )( ) a as s s s s as sχ λ λ λ= − − − = + + +

1 2 3

0 0 0
0 0

1
1 0

1
,A B

   
   = =   
     Δ Δ Δ

 

2

1 2 3

3 1

0 1 0
The resulting closed-loop poles:  ( ) 0 0 , ,1A BF

a a a
λ λ λ λ λ

  
  + = =   − − −   

  

1 2 3, ,λ λ λ

[ ] [ ] [ ]3 2 1 3 2 21 2 3 1 3 1a a a a a aF = − − = − − − − −Δ Δ Δ Δ Δ −Δ



腾笼 换鸟

F
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Example: Consider the following single-input LTI system                   

1 1
1 1

s i 2 s s 2

3 3

93 18 9
177 30 9 , 1, , ,
135 141 6

x x
T T x x T x T x u u

x x

− −

−     
    = − − = = = = =    
         


  



which has poles at – 0.7104, – 2.2591 and 9.9695. It is an unstable system. Using 
the CSD function in Linear System Toolkit, we obtain a state transformation 

which transforms the given system into the Brunovsky canonical (CSD) form, i.e., 

1

2

3

1 2 3 9
2 1 1 9 ,
9 8 5 6

x
x Ax Bu x u

x

     
    = + = +    
         



1 1 1 2

2 2 2 3

3 3 3 1 2 316 28 2

0 1
1

17 16 8 7

0 0
0 0 0

x x x x
x x x u x x

x x x x x x u

       
      = = +        

          +  + 

=
=
= +

    
      

      



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 180 © BEN M. CHEN

We want to stabilize the system using a state feedback law u = F x. Assume that we 
want the desired poles of the resulting closed-loop system are placed at –1, – 2 and 
–3, respectively. Then, the desired characteristic polynomial is given as

It follows that the required controller gain in the transformed system is given by

The control law for the original given system is then given as the following:

and                                                                                        . Mission Accomplished…!

3 2 3
1 2 3

2 61 2( ) ( ( 3) ( 1) ) 6 1as s s s s s s sa sa sχ = + + + = + + + = + + +

[ ] [ ]
[ ]
[ ]
[ ]

1 2 3

1

3

2 3

2 1

3 2 1

1

1, 2, 3

1
6 11 66 11 6

0 0
( ) 0 0

22
6

3
1 7

1
28

9 3

F
A BF

a a a
a a a λ λ


 







= − −  
  + == − + + +    = − + + +    

= − = −

− − −

Δ Δ Δ
Δ Δ

−

Δ

−


  

[ ]1 1
s s 0.5904 0.5424 0.4674,u F x F T x TF Fx F− −= = −= = =  

4.3140 2.8817 1.2064
( ) 3.3140 3 3.8817 3.2064

5.4573 4.7455 2.
,

19
2,

57
1A FBλ λ

− − −  
  + = − − − =   

− −
 

−


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Just for fun…

On Taoism and system theory with feedback control...

『系统与控制纵横』

第6卷第1期第81–84页, 2019
中国科学院数学与系统科学研究院和中国自动化学会控制理论专业委员会

联合出版
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问题的背景：老子的“道”（道德经第 25 章）

有物混成，先天地生；寂兮寥兮，独立不改，周行而不殆，可以为天下

母；吾不知其名，字之曰“道”，强为之名曰“大”；大曰逝，逝曰远，远

曰反。

故道大、天大、地大、人亦大。域中有四大，而人居其一焉。人法地，

地法天，天法道，道法自然。

[译文] 有一物体混然而成，在天地形成以前就已存在。听不到它的声音也看不见它的形

体，寂静而空虚，它不依靠任何外力而独立长存永不停息，循环运行而永不衰竭，它可

以作为万物的根本。我们不知道它的名字，所以勉强把它叫做“道”，再勉强给它起个

名字叫做“大”。它广大无边而运行不息，运行不息而伸展遥远，伸展遥远而又返回本

原。

所以说道大、天大、地大、人也大。宇宙间有四大，而人居其中之一。人取法地，

地取法天，天取法“道”，而“道”纯任自然。
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问题的问题：何谓“道法自然”？

版本 1

道法自然，是出自『道德经』的哲学思想，意思是“道”所反映出来的规律

是“自然而然”的。“人法地、地法天、天法道、道法自然”，老子用了一气贯

通的手法，将天、地、人乃至整个宇宙的生命规律精辟涵括、阐述出来。“道法

自然”揭示了整个宇宙的特性，囊括了天地间所有事物的属性，宇宙天地间万事

万物均效法或遵循“道”的“自然而然”规律，道以自己为法则。

—— 百度百科

对“道法自然”的解释历来分歧较大，迄无定论。这问题之所以到现在

还一直争论不休，是因为“人法地、地法天、天法道、道法自然”也是『道

德经』中其他部分理论的公理。
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问题的问题：何谓“道法自然”？

版本 N

 河上公注:「“道”性自然，无所法也。」（东晋『神仙传』中所载之隐士）

 王弼注:「道不违自然，乃得其性，法自然者，在方而法方，在圆而法圆，于自

然无所违，自然者，无称之言，穷极之辞也。」（北魏）

 吴澄说:「“道”之所以大，以其自然，故曰“法自然”。」（元）

 董思靖说:「“道”贯三才，其体自然而已。」（南宋）

 车载说:「“道法自然”一语，是说“道”应以“无为”为法则的意思。」

 童书业说:「老子书里的所谓“自然”，就是自然而然的意思，所谓“道法自然”

就是说道的本质是自然的。」（1908−1968）

 陈鼓应说:「道法自然：道纯任自然，自己如此。」（台大、北大）

（1959）
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问题的问题：何谓“道法自然”？

版本 N+1

 冯友兰说:「“人法地，地法天，天法道，道法自然”。这并不是说，于道之

外，还有一个“自然”，为“道”所取法。上文说:“域中有四大”，即

“人”、“地”、“天”、“道”，“自然”只是形容“道”生万物的无目

的、无意识的程序。“自然”是一个形容词，并不是另外一种东西，所以上

文只说“四大”，没有说“五大”。老子的“道法自然”的思想跟目的论的

说法鲜明地对立起来。」

—— 摘自『老子今注今译』，陈鼓应注译

∞ 冯友兰（1895–1990），中国哲学家、哲学史家。被誉为现代新儒家。

∞ 绕来绕去绕不出来，冯自己也是醉了 ∞
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版本 N+2
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荒诞的延伸

宇宙动态系统（3）的极点都在原点，要让宇宙天地万物系统（3）稳定，我们

必须设计一个合适的控制器（5）来镇定系统（3）。根据老子的无为无不为之哲学

思想，可以推断要使自然系统（3）稳定，我们只需一个小增益反馈控制器让闭环

系统的极点由原点稍微往左半平面移动ε就足够了，即所谓的「无为而治」。

4 3 24 6 4F  = −  ε ε ε ε

道法自然： ( ) ( ) ( ) ( )4 3 2
dao ren di tian dao4 6 4x u F x x x x x= = = − − − − ε ε ε ε

人 地 天 道

从以上「道法自然」数学表达式可以推出，在天地万物的宇宙系统框架之下，

作为积分链最末端的人，其作用是如此渺小的（ε 4）！

根据林宗利（Low Gain Feedback, Springer, 1999）之低增益反馈

理论，将闭环系统的极点设定在原点往左平移ε。我们得到
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Unforced systems

We proceed to present next an observability structural decomposition (OSD), 
which is dual of the CSD introduced earlier, i.e., 

OSD of ( , ) CSD of ( , )A C A C′ ′→ ⇔→→ ←←←

(see, for example, Q.4 in Homework Assignment No. 2).
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,x A x y C x= =    such that the transformed system                              has the following form: 

A=

C =

unobservable modes

observable 
pairs
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

  

{ }1 2Also, , , ,  are called the observability index of ( , ).pk k k A C

Unobservable dynamics of 
the systems

The shorter this chain is, the easier to observe it from the output.
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The following transformations will bring the system into the OSD form:

sT o, T

osd
ex1431
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From the OSD form, it is simple to see that the given system is unobservable, 
but detectable as the unobservable mode is –1. There are two observable pairs 
associated with the system. 

,x A x y C x= =    such that the transformed system                              has the following form: 

A=

C =

Note: It can be computed using an m-function OSD in Linear Systems Toolkit.

1
o

0 1 0 0 0 0
0 0 0 1 0 0sC T CT−  = =  

 


unobservable modes
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Illustrative Example: Consider a linear system characterized by 

[ ]
0 1 1
1 1 1 , 1 1 0
1 1 0

x A x x y C x x
 
 = = = = 
  



We define a new state variable 

[ ] [ ]1 11 1 0 1 2 2x y C x x x y C x CA x x= = =  = = = =  

which is independent of = y. We proceed to define

[ ] [ ]2
2 1 21 2 2 4 5 3x x x x C x CA x x= =  = = =  

which is independent of and    . We proceed to define2x1x

[ ]3 2 4 5 3x x x= =

which implies
1

1
2

3

1 1 0
1

3

4 3 2
5 3 2
3 1

2 2
5 14

S
x

x x x S x
x

−

− − 
 = − 
− − 

   
   = = =    
 

 
ex1174

1x
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We obtain a transformed system 

We define another set of new state variables…

1 1

2 2 1

3 3 1 2

1

1 0 0
1 1 0

3 1 3 1
1

1

x x
x x x x x x

x x x x
T −

   
   = = − ⋅ = =   
   − ⋅ − ⋅



   


 − 
− −  


 



( ) ( ) [ ]
1

1
2

3

0 1 0
0 0 1 , 1 0

3
0

1 1

x
x A x S AS x x y C x C S x x

x

−

  
  = = = = = =      



( )

1 2 1

2 3

3 1 2 31

,

1 3 1

x x y x
x x
x x x x

= =
=
= ⋅ + ⋅ + × ⋅





1 1

2 1 2

3 1 2 3

1 0 0
1 1 0
4 1 1 4

x x
Tx x x x x x

x x x x

 
 
 
  



   
    = = = = +   
   + +   


   

  
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1 1

2 1 2

3 1 2 34

x x
x x x
x x x x

   
   = +   
   + +   


 
  

We obtain a final transformed system 

3

2

3 2

1 1 2

2 2 1 3 2

3 3 1 2 1 2 3 2

2 2

1 2 3 1 2 1 3

1 1

1 2

1

1

3

1

3 3 3

4 3

3

x x x
x x x x x x

x x x x x x x x x

x x
x x x x x x x

x x

x x
x x

x

x

x
x

x

     
     = = − = −     

    − − + + − −   
     
     = = + + − − = +     
     
     

+ 
 = +

 

−

 
    

   

      
 

 
 


1

2

3

1 0
0 1 ,

1
3

0 01

x
x
x

  
  =          





[ ]1 1 0 01y x x x= = = 

The required state transformation 

( )s

1 1 2
0 1 2
0 0 1

x x xSx T
−

=


 Γ − 
  

= =  

sC C= Γ

1
s s

1 0
0 1
0

1
3
1 0

A A−

 
  =  


Γ



=


Γ
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Homework Assignment 3

Q.1. It was showed earlier that the invariant zeros of linear systems are invariant 
under state feedback. More specifically, for a system characterized by

with a state feedback u = F x + v, it gives a closed-loop system 

We have showed that if a scalar β is an invariant zero of the original system, 
it is also an invariant zero of the new one as well.

x A x Bu
y C x Du
= +
= +


( )
( )

x A BF x B v
y C DF x D v
= + +
= + +


(a)  Show that the state feedback law does not change the controllability 
property of the given system either. 

(b) Show by a simple example that the state feedback law, however, may 
change the observability property of the given system. 
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Q.2.
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Q.3.

Q.4.
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Q.5. Given an unsensed system characterized by a matrix pair in the CSD form

Let the output equation be             .  Verify that the resulting system has

(a) No invariant zero if C = [ 1   0   0 ];
(b)  One invariant zero if C = [ 0   1   0 ]; and
(c) Two invariant zero if C = [ 0   0   1 ].

Q.6. Given the matrix pair (A, B) as that in Q.5, determine an appropriate state 
feedback gain matrix F such that A +B F has its eigenvalues at –1, –1± j, 
respectively. Show that such an F is unique.

Show by an example that solutions to the pole placement problem for a 
multiple input system is non-unique. Hint: put the pair in the CSD form.

0 1 0 0
, with  0 0 1 , 0

2 1 1 1
x A x Bu A B

   
   = + = =   
      



y C x=
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Q.7.  Consider the LTI system characterized by

with an output injection (of gain K ) and the resulting system

Show that

(a) ΣK is an observable (detectable) system if and only if Σ is an observable 
(detectable) system;

(b) The normal rank of ΣK is equal to that of Σ;

(c) The invariant zeros of ΣK are the same as those of Σ;

(d) ΣK is (left or right) invertible or degenerate if and only if Σ is (left or 
right) invertible or degenerate. 

:
x A x Bu
y C x Du
= +Σ  = +



( )
K

( )
:

x A KC x B KD u
y C x Du

= + + +
Σ  = +


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Advanced Concepts in Linear SystemsAdvanced Concepts in Linear Systems
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System invariant structural indices (infinite zeros, etc…)

.

Kronecker canonical form characterizes all the structure properties of linear 
time-invariant systems, i.e., it contains almost everything one needs to know 
about linear systems. More detailed illustrations on are given on the next…
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1

1

0

( )

0

pb

mc

l

l

r

r

m

sI J
L

L

R
U P s V

R

I sH
I

Σ

− 
 
 
 
 
 
 
 =
 
 
 
 − 
 
 
  





Left invertibility structureInvariant zeros

Right invertibility structure

Infinite zero structure

rank(D)

Redundant 
inputs 

or outputs

Kronecker form of linear time-invariant system… 
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Everything about a linear system is characterized by these indices (which are related to the so-called lists of Morse). Control performance is fully determined by these structural properties!

Σ is a SISO system, i.e., m=1 , q1 is also called a relative degree.
If Stephen Morse

Yale University, USA



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 207 © BEN M. CHEN

U V= = 

Note: U and V can be obtained using m-function KCF in Linear Systems Toolkit.

kcf
ex1361

(to be demonstrated using MATLAB in class)
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Leopold Kronecker 
1823–1891

German Mathematician

Felix Gantmacher 
1908–1964

Soviet Mathematician
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道

Structural Decompositions of LTI SystemsStructural Decompositions of LTI Systems
,x A x Bu y Cx= + =
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∗ 
 
 
 
 =  
 
 
 
 ∗ ∗ ∗ ∗ ∗ ∗ 





       
      




aaA

A

0 0 0 00 0 1 0 0 00 0 0 1 0 0 ,
0 0 0 0 0 1

B

0000
01

 
 
 
 
 =  
 
 
 
  





[ ]C 0 1 0 0 0 0= 

Transformed System:

aaA

A B F

0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0

∗ 
 
 
 
 + =  
 
 
 
  





   
      






CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 211 © BEN M. CHEN

Invariant zero dynamics

Infinite zero structure



  

The shorter this chain of integrators is, the easier to control it…
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0 1 2 3 4 5 6 7 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Response to Initial Conditions

Time (seconds)

Minimum phase system vs. nonminimum phase system…

1 1 0 0
0 0 1 0

,
0 0 0 1
0 0 0 0

A

− 
 
 =
 
 
 

0 1
0 1

, (0)
0 0
1 0

B x

   
   −  = =
  
  

   

[ ]0 1 0 0C =

[ ]250 100 150F = − { }( ) 1, 5, 5 5λ A BF i+ = − − − ±

Case 1: Minimum phase

Case 2: Nonminimum phase

1 1 0 0
0 0 1 0

,
0 0 0 1
0 0 0 0

A

 
 
 =
 
 
 

[ ]0 1 0 0C =

[ ]482 132 17732F = − { }( ) 1, 5, 5 5λ A BF i+ = − − − ±

0 1
0 1

, (0)
0 0
1 0

B x

   
   −  = =
  
  

   
0 1 2 3 4 5 6 7 8

-1.5

-1

-0.5

0
Response to Initial Conditions

Time (seconds)

Closed-loop responses

Smaller Gain

Larger Gain

Good Response

Bad Response
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.8

-0.6

-0.4

-0.2

0
Response to Initial Conditions

Time (seconds)

Comparison between different lengths of integrator chains…

0 1
,

0 0
A  
=  
 

0 1
, (0)

1 0
B x

−   
= =   
   

[ ]1 0C =

[ ]100 20F = − { }( ) 10, 10λ A BF+ = − −

Case 1: System with a shorter chain

Case 2: System with a longer chain

0 1 0 0
0 0 1 0

,
0 0 0 1
0 0 0 0

A

 
 
 =
 
 
 

0 1
0 0

, (0)
0 0
1 0

B x

−   
  
  = =
  
  

   

[ ]1 0 0 0C =

[ ]10000 4000 600 40F = − { }( ) 10, 10, 10, 10λ A BF+ = − − − −

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.8

-0.6

-0.4

-0.2

0
Response to Initial Conditions

Time (seconds)

Closed-loop responses

Faster Response

Slower Response

Smaller Gain

Larger Gain
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Normal form of nonlinear systems…

Then, the given nonlinear system can be transformed into the following normal form:

If

Alternatively,

Alberto Isidori
University of Rome, Italy
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invariant 
zero
(JCF)

left 
invertibility 
structure
(OSD)

right 
invertibility 
structure
(CSD)
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infinite zero structure. why?

Ali Saberi
Washington State 

University 

Pedda Sannuti
Rutgers University

USA

We note that for each of these SISO subsystem, 
the corresponding transfer function from its 
input ud,i to its output yd,i can be expressed as

It has a zero at ∞ with an order of qi. It is also 
related to the relative degree. 

) 01( ) (
ii q siH s H s

s =∞
=  =

+
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invariant zero

left invertibility structure
right invertibility structure
infinite zero structure



  

  



Block diagram interpretation…
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unstable invariant zero
left invertibility structure
right invertibility structure
infinite zero structure



  

  



stable invariant zero
aaA−

ax−

aaA+

ax+

Good and bad subsystems for state feedback control…
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unstable invariant zero
left invertibility structure
right invertibility structure
infinite zero structure



  

  



stable invariant zero
aaA−

ax−

aaA+

ax+

Good and bad subsystems for observer-based feedback…
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scb
ex1531



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 224 © BEN M. CHEN

The required state, input and output transformations…

These transformations are non-unique!
Note: It can also be done using an m-function SCB in Linear Systems Toolkit.



CUHK MAE ENGG 5403 – PART 1: SYSTEMS ~ PAGE 225 © BEN M. CHEN

The transformed system

[ F ]
[ K ]

= + + A A B F K C in an essential form shown on the next page…

道
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道

The essential structures of the system…

two invariant zerostwo invariant zeros left invertibility structureleft invertibility structure right invertibility structureright invertibility structure infinite zero structureinfinite zero structure
the essentials
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A brief introduction of geometric approach to linear systems…… 
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Definitions of other geometric subspaces can be found in Chapter 3 of Chen et al…
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Links between the special coordinate basis and geometric subspaces… 
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 invariant zeros
 left invertibility
 right invertibility
 infinite zeros
 stable zeros
 zeros on jω axis
 unstable zeros

Partition of the state space in 
the special coordinate basis…
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What are these geometric subspaces for?Let us consider the following linear system
where x is the state, u the control input, z the output and w is disturbance entering the system as an additional input.We can show that there exists a state feedback control law                such that when it is applied to the given system, the resulting closed-loop system transfer matrix from 
w to z can be made perfectly zero (disturbance decoupling), i.e.,
if and only if                                   In the special coordinate basis,   
and                                                                . It means the disturbance input can only allow to enter in the subsystem spanned by                                             . 

,x A x B u E C x D uw z= + + = +

u F x=

( )( ) 1( ) 0zwH s C DF sI A BF E−= + − − ≡

Im ( )E ⊂
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Super good subsystems for disturbance decoupling…If in addition it requires A + B F to be asymptotically stable, the disturbance decoupling problem is solvable if and only if the disturbance enters the system through                    , which spans a geometric subspace               if (A,B,C,D) has no invariant zeros on the imaginary axis. 
Note that if (A,B,C,D) is right invertible and is of minimum phase with no infinite zeros, then                     spans the entire state space      of the given system, which means the disturbance decoupling problem is solvable for any disturbance entering the system. Such a system is super good for disturbance rejection under state feedback.We will examine this issue further in the second part of this course when we are studying topics related to H2 and H∞ control.
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Good subsystems for disturbance decoupling…We can also show that if (A,B,C,D) has no invariant zeros on the imaginary axis and if the disturbance enter the system through the subspace               , which is spanned by                             , then there exists a stabilizing state feedback law such that when it is applied to the given system, the resulting closed-loop system is asymptotically stable and the resulting closed-loop transfer function matrix from w to z can be made arbitrarily small (almost disturbance decoupling).
Note that if (A,B,C,D) is right invertible and is of minimum phase, then              or abcd spans the entire state space      of the given system, which means the almost disturbance decoupling problem is solvable for any disturbance entering the system. Such a system is good for disturbance rejection under state feedback.
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I personally believe that a good control system design should not start from differential equations but should be down to earth and start from the hardware level, including the selection and placement of sensors and actuators. 

03.201303.2013 09.201309.2013 03.201403.2014

2017201720162016

Examples on designing good and bad systems…
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More examples on designing a practical system…

2016–20192016–2019
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More examples on designing a practical system…

Courtesy of MicroHiggs Technologies 
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More examples on designing a practical system…
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We conclude this part on linear systems theory by noting that the topics covered in this 
course are pretty elementary, but sufficient for students to understand basic linear system 
theory and to grasp basic ideas and solutions to many linear control problems. 

Some advanced topics such as the geometric subspaces of linear systems, which are 
instrumental in developing many control theories (including some nonlinear control 
theories), are left out as there is too much mathematics involved.

Interested readers can find more 
detailed information in the text by 
Chen, Lin and Shamash (2004). 
One can also utilize a Linear 
Systems Toolkit developed by 
Lin, Chen and Liu, available for 
free by request, for computing all 
the structural decompositions and 
geometric subspaces of general 
linear systems. 2004

Zongli Lin
University of Virginia

Yacov Shamash 
Stony Brook University
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Other advanced linear systems 
theory for control using a 
geometric approach can also 
be found in the literature, e.g., 
the texts listed on the right. 

Finally, we note that the 
control performance of a 
system depends more on its 
system structural properties 
rather than control 
methodologies used. 

Don’t expect to have a good 
performance if the system to 
be controlled is bad!

W. M. Wonham
Canadian Control Theorist

1934–2023

H. L. Trentelman
University of Groningen

The Netherlands

20011985
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Xinmin Liu
University of Pennsylvania
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Linear Systems & Control Toolkit m-functionsFor control system design in Part 2…

Copyrighted  Ben M. Chen

Geometric subspaces…
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What is a system?A system is a set of integrated chains of things.In this course, A system is a set of chains of integrators...
End of Part One…  Go to Part Two…       .


