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Course Outlines

» Complex Numbers
Basic algebraic properties; Algebraic and geometric representations of complex
numbers

» Complex Functions, Complex Differentiation

Elementary complex functions — Exponential and trigonometric functions,

logarithm and power functions; Limit, continuity, and derivative; Analytic

functions, Cauchy-Riemann equations; Harmonic functions, Laplace’s equation
» Complex Integration

Line integral on the complex plane; Cauchy’s integral theorem and formulae

> Series

Sequences and series, Convergence tests; Power series and basic manipulations;
Taylor and Maclaurin series; Laurent series

> Residue Integration

Singularities, residues; Cauchy’s residue theorem; Applications
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General Announcements

1. Assessments and Tests

« Homework Assignments 15%
* Quizzes (to be randomly announced in the class) 10%
* Mid-term Exam (common) 25%
* Final Exam (common) 50%

2. The mid-term exam is scheduled to be held from 10:30-12:15, Thursday

in the last week of October, in the tutorial session.

3. Both the mid-term and final exam are closed-book. One double-sided A4

handwritten cheat sheet and calculators are allowed.

4. Students are not allowed to switch classes.
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General Announcements

5. Tutorial classes start in Week 2. The following are the assignments of tutors for

this class...

Tutors email: Tutorial Sessions Homework
..@mae.cuhk.edu.hk in Charge Assignments

Feel free to approach them if you have any problem and/or question about the

materials covered in this course. They can be reached by email as in the link

above.
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Week 01
Weeks 02 & 03
Weeks 04 & 05
Weeks 06 & 07

Week 08

Week 09

Week 10
Weeks 11 & 12

Week 13

Coordinator

Lecture
To mark Quiz 1
To mark HW 1
To mark HW 2

Midterm
To mark HW 3
Congregation
To mark HW 4
To mark HW 5
To mark Quiz 2
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Flow Chart of Materials to be Covered

i=+-1

Complex number
manipulations
Euler’s formula

Complex function of
a real variable
~ define a curve on
a complex plane

Complex function of a complex
variable
~ define a complex mapping from
one complex plane to another

theorem

curve C

Cauchy’s Integral

~ valid when f (z) is
analytic for every point
encircled by a closed

Complex integral Complex
~ integration of a complex Differentiation
function (of a complex Cauchy-Riemann
variable) on a complex curve equations,
~ upper bound of a complex analytic functions,
integration singularities
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Flow Chart of Materials to be Covered in (cont.)

n+l
~Z—2Z - (z—2z,) n
Cauchy’s integral formula Generalized Cauchy’s integral formula
~ Cis a closed curve encloses z, and f (2) ~n 20, Cis a closed curve encloses z,
is analytic for every point inside C and f(z) is analytic inside C
o0 o
> PRYPPR Zd(Z-Z)n ......... Zz =7 + 7 F+ 7. F0 g :
n 0 n 0 1 2
n=0 n=0
Power series Complex series
~ Region of convergence, ratio test ~ Convergence, divergence, absolute
Taylor series convergence, ratio test
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Flow Chart of Materials to be Covered (cont.)

------- > ian(z—zo)” & i a,(z—zy)" b Cj)f(z)a’zz27riRes(f,zo):27ri-a_1
n=0 C

n=-—aoo

Taylor series, Laurent series, Order of singularities, Residues
Complex integral in terms of residues

v

Applications of complex

integral
: & \\
T 2 oo _[f(x)cosmxdx
jf(cos@,sin@)d@ If(x) dx = J‘ P(x) " -
0 - € j f () sin mxdx
\_ o

" o,
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Euler's formula

Im‘

e’=cosp+ising

sin @

¢
O|cos ¢ 1 R:-

Leonhard Euler

e = cosx +1sinx (1707-1783)

1T

Swiss Mathematician

(B
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Complex Analysis - 1...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series, Taylor Series, Laurent Series

7 Residue Integration
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Material flow...

{ 1=~—1 J I$ An imaginary number

Complex number ~ Complex conjugate, modulus,
[Z = x4+ iy =7 ei9 ] $ argument, principal argument, Euler’s formula,
de Moivre’s formula, n-th root of z...

Im(z2) A

r=|z|=\/x2+y2, Hzarg(z)ztan_lf 0

—m <Arg(z)<rm, arg(z)=Arg(z)+2kz, k=0,+1,+2,---

| i(0+2kr)
[ el = cos@+isin9}
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What is the solution of x> +1 =07 = x=+J-1=+i

It was believed that this equation has no solution before the introduction
of imaginary numbers. The use of imaginary numbers was not widely
accepted until the work of Leonhard Euler and Carl Friedrich Gauss. The
geometric significance of complex numbers as points in a plane was first
described by Caspar Wessel.

Z=x+y

,’fﬁ Leonhard Euler Carl F. Gauss Caspar Wessel

o (1707-1783) (1777-1855) (1745-1818)
Swiss German Danish-Norwegian

Mathematician Mathematician Mathematician
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Complex Numbers

A complex number is defined (in the Cartesian form) as

z=x+iy “ 2= Xty

where

i =~—1 or i2=—1 X e

x is called the Real part and y the Imaginary part of z, written

0000000000

both being a real number. For example,
z=—4+2i, z=-3-5i, z=5-8i

all are complex numbers. Occasionally, we might treat a complex number as an

ordered pair (x, y) of real numbers x and y, written

z=(x,y)
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Since a complex number has two parts, we can depict it on a 2D-plane, which

is called a complex plane.

Im A
Z=X+1y
Y ;
4 2 2 2 2\
r =|Z| =x"+y
U
» Re N D O 2
X Kr—|z|—\/x +y y
-y Z = x — iy is called the conjugate of z

Additions: It is easy to do additions (subtractions) in Cartesian coordinate, i.e.,

(a+ib)+(v+iw)=(a+v)+i(b+w)
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Multiplication:

2122 = (21 4 y19) (w2 + y2i) = 2122 + T1y2i + T2y1i + Y1y2i”
= (2122 — Y1y2) + (Z1Y2 + @2y )i.

Division: The Quotient z = 71 (22 # 0)

Zl ] ZZ

zZ, zZ, %,
z-Zz=(x+1iy) (x—1iy)

. . =X +IXY—IXy—1
X, + V,l Xy = Vol Y Y Y

_| BXa T, | N TN

2 2 2 2
X, + Y, X, + Y,

:x2+y2
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Example (1a)

240 2+ij'(3+4ij
3—4; \3-4;i) \3+4i

2-3-1-4 3-1+2-4 2 11 ;
= > 2 | T T =

3 +4 3 +4 25 25

which result can be checked by showing that 3 — 41 times £ gives 2 + i.

@ The real part and the imaginary part are == and , respectnvely
@ Also, the modulus of this complex number IS

2o '=J(2T+(“T=1
3-4i 25" 25 25 25) 5
‘2+i _ 24 V24P J— 1 z ||z
3-4i] [3-4i] 32442 BN z,|
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@ The complex conjugate of z = = + y: is defined as

It can be shown that

zZ =z — Y.

Z1+22=21+22, Z129 = 2129,

and

Geometrically, z is the reflection of z along the real axis.

lel* =22

-y
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(1.8)
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@ We have the triangle inequality

|21 + 22| < |21] + |22,

and the reverse triangle inequality
‘21_22‘2‘ 2|z, ‘
Proof... ‘Zl‘z‘(zl—22)+22‘=‘0(1+22‘S‘a1‘+‘22‘=‘21—ZZ‘HZz‘
= ‘21—22‘2‘21‘—‘22‘
‘22‘:‘(22_Zl)+Zl‘S‘ZZ_ZI‘+‘ZI‘ = ‘22—21‘2‘22‘—‘21‘
‘zl—zz‘:‘zz—zl‘z‘\zl‘—‘zz‘ ‘:“Zz‘_‘zl‘ ‘
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Polar Representation of Complex Numbers

There is another way (polar representation) to represent a complex scalar

z=re"

Using the Euler’s formula

e’ =cos@+isin@

we obtain (Polar to Cartesian representations)

Im‘

; e’ =cos@+isinf

sin @

0

z=re” =r(cos@+isin@)=(rcos@)+(rsin@)i=x+yi

Conversely,

Im(z) o Z=X+YyI
=)o =7+
| y
r=|zj | Y
l y=r-sin@ tan g ==
| X
|
[
L = O=tan"' L
x=r-cosd Re(z) X
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Cartesian to
Polar
Representation

. ‘0
X+ yi=re
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@ Note that r is the absolute value or modulus of z,

r=|z| = Vx2 + y2.

l.e.,

(1.11)

The angle 6, called the argument of z, is denoted by # = arg(z), which can

be determined from the formula

0 = arg(z) = tan™! (¥)

(1.12)

for z # 0; for z = 0 the angle 6 is undefined.

Im(z) A

=z

e — e— e— — —

>
z Re(z)
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All angles
(arguments) are
measured in
radians and
positive in
counter-clockwise
sense.
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Example: MATLAB DEMO...

The argument of a complex number...

90

z=433+251 y

120 60 plot_arg
28 3

= \/4332 + 252 = 5 150 i

6 =tan" (ﬁj
4.33

= 05236 180

=2 —300
6

L-

210

330

z=Seig :5(cos£+isin£j
6 6

:5{00s(%+2k7zj+isin(%+2k7rﬂ, k=0,%1, --- "

=5ei(z+2k”j, k=0,41,%2, -

Euler’s formula | e

= cosf + isinéf
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Given any point z#0, the angle & can be determined only to within an arbitrary

integer multiple of 2.

It 1s conventional to define the value of fin the range —nt< & <7 to be the so-

called principal argument of z, denoted by ,=Arg (z). Then, we have
0 =arg(z)=Arg(z)+2kn =6, +2kx
for k=0,+£1,+2,---, as 1s evident in the demonstration on the previous page.

For example, z = x+iy =141, its principal argument is given by

Im(Z)A 90 —_ tan—l (Zj _ tan—l(l) _ Z
| X 4
I
o1, 0=0+2kn="1+2kz, k=0,+1,22,-
x=1 Re(z) 0 4 ) 9 — Ly — &

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 22 Ben M. Chen, CUHK MAE






@ EXxplicit expression of Arg(z): depends on the location of z = x + y.

Y 1
=<0
4 >0 || x
X x <0
x>0 y >0
<0 '
Xco ’ y<0
x =>0
X
Arg z = arctan(y/x) Argz = m + arctan(y/x) Arg z = —m + arctan(y/x)

—1 : (-1
s+ — Argz:tan‘lG):% z=—14+i = Argz=tan_1(Tj z=-1-i = Argz=tan 1(_—)
1 V2 4
z=1-i = Argz:tan_l(—jz—— 3 :_3_77
-1 4 :T 4
( 0, ifx>0and y=0 Im
For the case wheny =0, Arg z =+ T, ifx<0andy=0
Re
\undefined, ifx=0andy=0
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The polar form of complex numbers is especially convenient for their
multiplication and division. For example, let z; = r1€*?t and z, = rye?2.
Then

Z = 2129 = (rleigl)(rzei‘%) = pyroetldit2) — re'?

or
z129 = rire[cos(01 + 02) + i(sin(f1 + 62))]
and
& Fae r_lei(91—92)
z9 Toei¥2
or
2 :
L = Lcos(61 — 02) +i(sin(6) — 62)).
Zg T2

Euler’s formula |e*

=cosf +isinf,| = ‘elp‘

=1, |le2|=1’11’2, —|=—
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@ In particular, the integer power of z can be computed easily by
z" =(re“9) ="’ = p" (cosn0+isinn6’) (1.13)

where n is any integer. This is known as the de Moivre’s formula.

2 =(re"Y 2 = (re?) =(re?)(re")

— 2120 =r*(cos@+isind)(cosf +isind)

= y? (COS 260 +isin 2«9) e [(cos2 0 —sin’ 9) +i(2sin@ cosﬁ)]

[ c0s 26 = cé)‘\‘szé’ — sin” @ } [ sin26’:2r‘sixn 0 cos O ]

Exercise: Prove that
cos30 =cos’ @—3cos@sin’ 0, sin30=3cos* Gsind—sin’ O

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 26 Ben M. Chen, CUHK MAE



@ The de Moivre’s formula (1.13) gives a way to compute the fractional power
zn. We call z= the n-th root of z, then

1 1 i(6y+2kn)

z"=r"-e "

(1.14)

fork=0,1,...,n — 1. Note that >% is a multi-valued function.

Generally, we would focus on our attention to solutions whose arguments
are within (—m, 7], 1.e., we are to choose appropriate values of &k such that

the corresponding roots with a principal argument.

We will illustrate it through the following examples...

Abraham de Moivre

z=re" e’ =cos@+isind (1667-1754)
French Mathematician
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Example (1b)

Evaluate the values of (1 4 4)3. [ principal argument |
r=+124+12=+/2 f,=tan"'1=7%
1472 = \/iei"ll / \
i(6y+2kr) 3

Q/E ezm' L”i
9/5 e!?

v

1 T 2k
(1_|_3)E — 9612173
1 3 7
— 7Tl

B, B B | Y,

k=0, k=1, k=-1

We are selecting appropriate & such that the arguments of the solutions are within (—n, m]...
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Example (1¢)

To ensure the arguments
of all solutions being in

Evaluate the values of z* =1 (-7, 7]

1 1 2kmi ki

z=1"=(1+0-i)*=e * =e?, k=-1,0,1,2
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Homework Assignment No: 1 (Due in two weeks)

Question 1.1: Write the following complex numbers in the form of a + bi

(a) e_f%; (b) " c) e

Question 1.2: Write the following complex numbers in the form of polar representation

1

19
@) —1+i: ) (2+2i)"; (©) (ﬁ‘%’}

Question 1.3: Solve the equation: z° ++/32zi—-6i=0.

Question 1.4: Let z, =2+ 27, answer the following questions
(a) Draw this complex number on the complex plane

(b) Calculate ’:0| and arg (zo)
(c) Calculate z,

=0

(d) Calculate ALL the fourth roots of zo and draw the on the complex plane
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Question 1.5: Find all complex numbers z such that z* =—1 (You can leave your answer in the polar

form). How many different solutions are there?
Question 1.6: Let z;, =2—i and z, =3+2i.

(a) Find :l-(—i)+'%.

(b) Find Re(:l -:,)

(¢) Find z -Z,

(d) Find “71“'2/
“1

Question 1.7: Given any two complex scalars z; and z», show that

Z,|| holds

(a) The reverse triangle inequality |:1 —Zs |2 | ’:1|—

-

2:2(]_-1|3+

(b) |:1 &

+|z, -z,
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Complex Analysis - 2...

Complex Numbers
Functions of One Complex Variable

Complex Differentiation

Complex Integration and Cauchy’s Theorem

Cauchy Integral Formula

Complex Series, Power Series, Taylor Series, and Laurent Series

~N OO O AW N =

Residue Integration
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Material flow...

_ : Complex functions of a real variable ~
[Z(f) X(f) +1 Y(t)a t€la, b] } Curves, circle and straight line

N Im Im
. f ;-
, a
_, ."’."-/ ? Re Re
z()=a+(b-a), tel0,1] z(t)=a+re’, tela,b]
&
— 1y — - Complex functions of a complex
[f(z) u+iv=u(x,y)+iv(x,y) 1 e
. ) 1 ; B 622 + e—zz
e =l+z+—z"+—z" +--- COS Z2 =
v 3 2
. e e ] el* — ez
ILnz= ln|Z| +iArg(z) Sz = %
Inz=Lnz+2knmi, k=0,+1,£2,-- 7¢ = e — pelnz
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Revisit: Real functions of a real variable
y=f(x)

which is a mapping from a set of real scalar x to another set of real

scalar y.

Examples:

\ y=x, —ISxSZ\

5
4<r
3¢

S
2":

(9]

=
1_
0!

domain

-1 : : ' :
-2 -1 0 1 2
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range

y=cos2.5x, —2<x<3

2

157}

0.5

157

1%
05%

0f

b

.........
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Complex Functions of a Real Variable

Complex functions of a real variable are needed to represent paths
or contours in the complex plane.

[Z(f) =x(O)+iy), te [a,b]J ‘\
plot_zt
Example 1: Example 2:
z(t)=5€", te[0,2n] z(t)=2cost+isin2t, te[0,27]
=5cost+i5sint =x(t)+iy(t) =x(t)+iy(?)

1t

05

051
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Properties of Complex Function of Real Variable

lim z(f)= lim x(¢) + i lim y(¢)
I—a r—a r—a

e zis continuous if x and y are continuous, i.e., limx(¢) = x(a) , lim y(¢) = y(a)
t—a I—a

* Z(O)=x'O)+iy' (1)

e z(?)is smooth if z'(¢) is continuous, i.e., if x'(¥) and y'(¢) are continuous.

o z(7)is piecewise smooth if z’(¢) is continuous everywhere except for a

finite number of discontinuities.
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Properties of Complex Function of Real Variable
(cont.)

. Normal differentiation and integration rules are applicable:

4 C)

!
’—
(¢z, +¢y2,) =¢z; +¢,2,

b b b
J‘(clz1 +cyz,)dt = cl_“Z1 a’t+czj‘z2 dt
a a a

b

j Z'dt = z(b) - z(a)

N /
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Curves

 The set of images
C=1{z(t)|t €la,b]}

IS called a curve in

the complex plane

* The curve is smooth if

z'(t) is continuous
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Smooth curve Smooth closed curve

Piecewise smooth (pws) curve
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Two Special Curves

« Circle

The parametric description
for a circle centred at
complex point a and with a

radius r is

[z(t):a+reit, te[O,Zn]J
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Im

Re
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Two Special Curves

« Straight Line

The parametric description im

b
of a straight-line segment /

with starting point ¢ and a

endpoint b is

{Z(i)z(b—a)Ha , tel0, I]J
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The length of a curve

« A curve is thus a mapping Im

of the real number line

onto the complex plane /\

 The length of a curve is | | Re
given by a b /

b
L={|z')dt
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Examples: Parametric Representation and Length of Curves

a) The line segment that connects the points —2—i3 and 5+i6

2()=(7+i9) t+(=2—i3), t€[0,1]

b 1 1 9
L={|z'(yde = [|7+19dt = [N7* +9% dr =130 / '
a 0 0
v J
b) The circle with radius 2 and centre 1—i 7

z(t)=(1-i)+2€", te[0,2n]

L= iz’(t)dt = Tzie"t dt = Tzz'x e'|dt = Tledt =4n
a 0 0 0
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Example (cont.)
c) y=x+2, 2<x<3
Let x=f, 2<¢<3 = y=t+2

= z(t)=t+i(t+2), 2<t<3

b 3 3
L={|z'()|dt = [\+idt = [NV2dt =2 *
a 2 2

Alternatively, from the figure above, we have a =2 +4iand b =3 + 5i. Thus,

z(O)=(b—a)t+a=(1+i)t+2+4i=Q2+t)+i(4+1), te[0,]1]

b 1 1
L={|z'()|dt = [1+i]dt = [N2dt =2
a 0 0
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Complex Functions of a Complex Variable

Example: w= f(z)=z" = (x+iy)’
=(x" =37 )+i(2x9) =u(x, ) +iv(x, )
= u(x,y)= x* —yz, WX, y)=2xy

A complex function of a complex variable maps one plane to another plane.

Im [Z] Im[w]

w = f(2)

domain

These functions are of the form f(z)=w = f(x+iy)=u+iv=u(x,y)+iv(x,y).
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The complex function

w= f(z) = f(z + yi) (2.1)

can be expressed as follows...

f(2z) = u(z,y) +iv(z,y), (2.2)

a function of one complex variable z can be regarded as a function of
two real variables x and y.

u(z,y) is real part of f

v(Z,y) is imaginary part of f.
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As usual, we define the set in the so-called z-plane (see below) on which
w = f(z) 1s defined as the domain of / and the set of all values of /(2) in
the so-called w-plane (with z being in the domain of /) as the range of /.

Im[z] Im|[w] . .
Real function of a real variable

\i y=x", -1<x<2 \

/-/ Re[w] 4
'k 3

image

‘J
N
aguel

domain

domain

z-plane w-plane R

The domain of f'can be the whole z-plane or just part of it. Similarly, the
range of f can also be the whole w-plane or just part of it.
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Example (2a)
@ Consider the complex function w = f(z) = z? defined on the first quadrant of
the z-plane: 0 < =z < 00,0 < y < oo. Then

f(z) = flz+yi) = (x +yi)* = (2% — y*) + 2zyi. ‘
. ‘ plot_fz
Thus, u(z,y) = 2% — y? and v(z, y) = 2xy.

@ Now, —oo < u(z,y) < oo and 0 < v(x,y) < oo. Therefore, the range of f is
the entire upper half plane, i.e., Im(w) > 0.

, Z-plane w-plane
Yy V4

J

“““““““ v / ”rzf(z) _ _3+4i v
domain 7=1+21 range

* X > U

Fig. 2.1. Mapping defined by w = f(z) = z~.
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Example: z% (cont.)

In polar coordinate: w= f(z)=Re" =z* =(re'®)* =r* e

For example, the set of the region 1 < <3/2, /6 <¢$ < 1/3 under the

mapping w =z~ is 1<RL9/4, n/3<0<2m/3

v
kY i
y - ", £
domain \ / range
kY
2 - & -
P -
o~ s s
¥ /
1 + - - /
/ N ! P
P Y { i/ A
- ' | [ |
X [ | [ U
z-plane w-plane
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Elementary functions...

Recall the Taylor series expansion of the real exponential function e”*...

2 3 4
. xT X X
e =l+x+_—+—+—+--
21 31 4]
The complex exponential function e“is defined as
~
2 3 -
: z° z oz
e =l+z4+—+—+—+--
20 31 41
/

For the ease of references, we also recall the Taylor series expansions of real
sin and cos functions...

2 4
)C3 XS X X

simx=x——+——---, coSx=1—-—+——---
3! 5! 2!
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*The Euler’s Formula...

We now prove the formula that we have used many times this far, i.e., the Euler’s
formula,
e =cosO+isin®

Proof. By the definition of
2 3 4 5
- Z Z z Z
e =l+z+—+_—-+—+—+--
2031 40 5!

and by letting z=10, we have

.n\2 N\ 3 .n\4 -n\d
o0 144 0 (O (0) (O)
2! 3! 4! 5!
L 0000 P00 ‘et PO
=1+i0+ o + + +

o =07 —i6® o' o
=1+i0+ 2'+ +—+ +

0> 6 (o 0 0 o
—(1—2!4'4!—'“)4'1[9—3!4'5!—‘” =cosO+isinb C—(\DJ
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From the Euler’s formula, we can deduce

Tl
627-[1 :1 67 :i
mi .
=1 7 —7i 0i 27
, e’ =e " =-1 e =e " =1
Tl >
e =-—1
Re
e ™ =—i 7
. e ? =—1
e =-1 \
* Periodicity of e? with a period 2 7i...
exH2mi _ oz EE?TE —e?.1 = e?
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Writing z = & + yi and using Euler’s formula, we have
zZ __ Xty

e’ =" =e"e” =e"(cosy+isiny)

=e' cosy+ie siny=u(x,y)+iv(x,y)

@ Note that

e¥| = | cosy + isiny| = \/c052y+5in2y =1 forally

E> le*| = |e®(cosy + isiny)| = |€*||cosy +isiny| = ¢*  forall z.

Therefore, e* # 0 in the entire z-plane (entire: see section 3).
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Example: e?(cont.) [w =e” =" =e"e” = Re” }

For w = ¢”, consider the images of: y v

1.  Straightlines x = x, = const / -
and V=Y, = const X, * KJ !

FromR=e¢", 0=y ,h wesee

that x = x,, is mapped onto the z-plane w-plane

circle |w|=¢"™ and y =, y .,

is mapped onto the ray Yo

arg(w) = y, x AR

[ R=e¢", 6=y J

z-plane w-plane
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Example: e (cont.) [ R=e*. 0

2. Rectangle D={z=x+iy|a<x<b, c<y<d}:

From 1, we can conclude that any rectangle with side parallel to the
coordinate axes is mapped onto a region bounded by portions of rays and

circles. Therefore the range of D is

D'={W=Re’e‘e“SRSeb,cSGSd } ‘
plot_fz
Y Vv
p e’ 1~ -
e’ T EO\
C A o “ e
T I X U
a b
z-plane w-plane
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Example: e?(cont.)

3. The fundamental region —T < y < T:

The fundamental region is mapped onto the entire w-plane, excluding the

origin. The strip 0 < y < 7 is mapped onto the upper half-plane ‘\
Y v plot_fz
T

: AN,

-1 1

z-plane w-plane
More generally, every horizontal strip ¢ < y < ¢+ 27 is mapped onto the

full w-plane excluding the origin.
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Trigonometric and Hyperbolic Functions

@ Changing ¢ to y and —y in Euler’s formula (1.9), then we get

e =cosy+isiny, e 'Y =cosy—isiny. (2.5)

@ Note: Euler’s formula is valid in complex.

Solving (2.5) for cos y and sin y, we obtain n
cosy = e’te ” siny = anknd B plot_fz
.- ’ 21
_e“+te tan z = : secz =
COs z = 9 ) Li) COSz CcoSz
‘ el — gtz COS Z 1
Sin z = * cotz=——-, CSCZ = —
24 \ Sin z Sin z /
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Graphical illustration of complex functions

sin z

COSzZ

Domain

15

10

-5

-10

-1

2 © 2 b3 2
sixy AleuiBeuw |
R X,
% 2 %
£y wE ¥ Exo o J
& ¥ 4
D
= ¥
* 15 *
N * 37
2 ﬁv¢ « A
o Ty a®
u 3
g R ek E
Eﬁ.wﬁﬁ.w.w... ..ﬁ.w.w.wﬁ*ﬁ.
m&*w.w.wﬁﬁ.. PRI 4 e 4
a %
E e
T
E
i %
o N
A% £ %
= & |
w wn o Lol w
sixy Aleu|bew |
1]
e
5 1
[=%
N
~ © o~ ~— o — o @ <

sixy Aleujbew |

Real Axis

Real Axis

Real Axis

z
=Ilnz

n

\
w plane: w

=cotz

cotz
w plane: w

sixy AdeuiBew|

tan z
b2

tan z
w plane: w =
g

P4

g

sixy Aleu|bew|

Real Axis

Real Axis

Real Axis

Ben M. Chen, CUHK MAE

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 57



We can also define the hyperbolic cosine and hyperbolic sine functions

ez _l_e—z
cosh z =
2
= —_z
. e —e
sinh z = 5

b

It can be shown that (coshz)’ = sinh z,

(sinh z)" = cosh z.

Similarly, other complex hyperbolic functions can be also defined...

f sinh z cosh z
tanhz = , cothz = —
cosh z sinh z
1 1
sechz = , c¢schz = —
cosh z sinh z
\_ -/
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sinh x cosh x
tanh x = , cothx=—
cosh x sinh x
1
sechx = , cschx=—
cosh x sinh x
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® Complex trigonometric and hyperbolic functions are related:

the connections between trigonometric and hyperbolic functions are

cos(iz) = coshz, sin(iz) = ¢sinhz, 6@\“\
cosh(iz) = cosz, sinh(iz) =1isinz. sl

@ Based on definitions of €7, cos z, sin z, cosh z and sinh z
most familiar formulas for real exoonentials, trigonometric and
hyperbolic functions still apply. For example, we still have

. 1, . : 1, . .
sin? z 4 cos® z = —Z(e”‘ —e )% 4 Z(e”’ + e %%)?
1 : . .
— Z(_621,.:: +92 e—2zz + e?zz +24+ e—?zz) =1
However, it .1s easy to show that there are z, in the z-plane, < V\eg’é%‘:\@
for which ‘sm ZO‘ > 1, |cos ZO‘ > 1. >
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Logarithmic Functions

@ define logarithmic function In z (sometimes also by log z).

for z #£ 0, express z in polar form and write

Inz = In(re?) = Inr + In(e*)
= Inr + 10, (r=|2| > 0,0 =argz)

or

[ Inz =Inr+i(6y + 2km) }

for@ =argz =0g+ 2km,—m < Oy <m,k=0,£1,%£2,....
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@ Since the argument of z is determined only up to integer multiples of 2x, the
complex natural logarithm In z(z # 0) is infinitely many-valued.

0 =argz =0y + 2km,—m < Oy <m, k=0,%+1,42,....

I_J}) Inz=Inr+i6

Example: Inl=0+2k7zi=0,*27i,+4xi,------

@ The value of In z corresponding to the principal value Argz is denoted by Lnz
(Ln with capital L) and is called the Principal value of In z(z # 0).

Lnz = In |z| + ¢Argz (2.9)

@ The uniqueness of Argz for given z(# 0) implies that Lnz is single-valued.

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 61 Ben M. Chen, CUHK MAE



@ Since the other values of argz differ by integer multiples of 27, the other
values of Inz are given by

Inz = Lnz + 2k (k=+1,4£2,...),

@ Note: All have the same real part, and imaginary parts differ by integer
multiples of 2.

® If z is positive real, then Argz = 0, and Lnz becomes identical with the real
natural logarithm ; If z is negative real, then Argz = n and

Lnz = In|z| + i, (z negative real)
Examples: Lo(-1) =In|-1|+ 7zi = 7i
Lo(i)=Inli|+=i="i
2 2

Ln(—i):ln\—i\—gi:—gi

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 62 Ben M. Chen, CUHK MAE



Example (2b)
@ Since 1 +i=+/2e7,

,;') T
In(141i) = h% +i G +‘2k~r) L k=0,+1,+2,.. ..

Ln(1+i)= ln\f+—z
e Given (1-i)?, compute its In and Ln values...
l—i=Ze . (1—1’)2:26?
ln(l—i)zzln(Ze?):ln2+i(—7;+2kﬂj, k=0,%£1,£2,-

Ln(l—i)2 =1n2—72Zi
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General Powers of z

@ Suppose z and c are both complex numbers, we have

clnz

@ Since In z is infinitely many-valued, z¢ will be multivalued, and
e — gelInr+i@o+2km)]  fork =0,4+1,42,.. ..
c-power of z

The particular value (k = 0)

2C — Ean z

Is called the principal value of z¢.
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@ c-power of z as

o Ec[ln T—I-i{ﬂ'{]-i-?k?r]]‘

In particular, when c is real, then

,C — (,reiﬂ)c — pcei(fo+2km)c (2.11)

Example (2¢)
@ Since Ini = Inl+i(5 + 2km) = i(5 + 2kn),

= e~ (F12km) k=0.4+1.42.....

Inz =Inr+i(6p + 2kn) L€ — pclnz
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Complex Analysis - 3...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem
5 Cauchy Integral Formula

6 Complex Series, Power Series, Taylor Series, and Laurent Series
/ Residue Integration
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Material flow...

Vs

Neighborhood

N(zo;r) ={z€C: |z — 2| <1}

k4
I“\)
’ R T -
’ S
! \
I
s
A 7/
\\ —rlo\’
s-—’,&'\‘
= 1

Connected set, interior points, boundary points,
interior, boundary, region, open region, domain, simply
connected domain, multiply connected domain
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Limit

Continuous

lim £(z)=1

z—>zg

lim f(z) = f(z,)

zZ—z
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Material flow (cont.)...

f(zy +Az)~ f(2)) f(2) - /(z)

. . . ! : .
Differentiation f'(z,)=lim = lim
Az—0 AZ Z—2Z, Z — ZO
y v
v I PNy
\ S=a
" ) % ‘l I;’-\-h“"" \\\
‘A / ] P \
. 4 ! I &N 7))
\‘-—’/ | 'l
A 1
x ‘\ /l
\\ // u

\_-__-_'

Analytic functions

A complex function f(z) is analytic at z = z; if there exists a neighborhood
N (z0; €) of zp such that f is differentiable at every point in N (zo;€).

& oA
~Singular point ~ a point on which f(z) is not analytic ." £ oz, -
is called a singular point of the function. ol i
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Material flow (cont.)...

Cauchy-Riemann Equations

Let f(z) = u(z,y) + iv(z, y) be defined and continuous in some neighborhood of
a point z = x + iy and differentiable at z itself. Then, at that point, the first-order
partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations

Ou Ov 311,_ Ov
oz 8y’ 8y 8z

fl=uz +ivy = vy —iuy = uz — tuy = vy + v,

Laplace’s Equations

If f(2) = u(z,y) + iv(z, y) is analytic in a domain D, then both u and v satisfy
Laplace’s equations

Viu=uz +uy,, =0
V20 = vgz + vy =0

in D and have continuous second partial derivatives in D.
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Revisit: The derivative of a real function

y=Jfx)

is a measure of the rate at which the value y of the function changes

with respect to the change of x.

Example: Consider the function

y .
(a straight line) plotted in the A (22,11) #
figure on the right. The derivative
of the function (or the rate of Ay=1y2—1y
changes) of the function is its slope. A0
(3317 yl) .l_

Note that the derivative cannot be Az=12—m1

defined on a single point. We need

N0
an interval of x, i.e., Ax, to define a \ >

S X
derivative.
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Similarly, we need a 2D region in a complex function domain to define a
complex derivative as a complex function is actually a mapping from a 2D

plane to another 2D plane.

Terminologies

@ heighborhood of a point zp with radius r

N(zo;7) ={z € C: |z — 2| < r}.

Vs
N(zgr)

Fig. 1.4. Neighborhood of a point zy with radius r.
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@ A set S is called connected if every point in .S can be joined by an unbroken

line entirely within S

A

-

K\.

ountry Rark

disconnected set

@ A point zp is called a boundary point of S if every neighborhood of zg

contains a point in .S and a point not in S. The set of all boundary points of S
is called the boundary of S.
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@ A point zg is called an interior point of .S if there exists a neighborhood
N (zp; €) of zg lying entirely within S. The set of all interior points of S is called
the interior of S.

R
IS

0

v

@ A connected set is called a region.

@ S is called an open region or a domain if it contains none of its boundary
points. S is called a closed region if it contains all of its boundary points.
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@ A simple closed path is a closed path that does not intersect or touch itself
as shown in Fig. 1.5

Simple

Simple

Fig. 1.5. Closed paths

On the other hand, a non-simple closed
path is a closed path that intersect or

touch itself as shown in the examples on

the right.
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Open simple curve

~

/

Non-simple closed path
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@ A simply connected domain D in the complex plane is a domain such that

every simple closed path in D encloses only points of D). A domain that is not
simply connected is called multiply connected

P Y e O
4 & N - ) 8 B 'r' ‘\\ o5 N
’ e 1 z I Ay ’ \ — A
L/ I Ly~ { ) t — \ 85” N
‘ \ - t 7 i Vg g T ' \
H VR B o A GRp oo L )
\ 1 1 s_f' ;, (V] ‘\ ‘\ I’ .r' T I'—-" ’
e A . \ ‘s LN ’, " I '
~ ’ . -y . ’ A ~__/ 7
4 o ~ 3] L o ~ - s’
- — ﬂ--,‘ s"—_p \-_"’
Simply Simply Doubly Triply
connected connected connected connected

Fig. 1.6. Simply and multiply connected domains

PN e L
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Example

@ Considertheset S’ ={z€ C: |z — (1 +4)| < 1}.

Yy

AN

Fig. 1.7. The sketch of S’.

X

@ Then,
a) S’ is connected, and also simply connected.

(
(b) The boundary of S”is |z — (1 +i)| = 1. The interior of S is |z — (1 + )| < 1.
(c) The union of boundary of S” and interior of S’ is S”.

(d) The intersection of boundary of S’ and interior of S is @, i.e., the empty set.
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Limit and Continuity

@ Let zp be an interior point in the domain of f(z). We say that the limit of f(z),
as z approaches a point zp, is , i.e.,

lim f(z) =1, (3.1)

Z—rZzZ0

if for each € > 0 there exists a é > 0 such that

|f(z) — 1] < e whenever 0 < |z — z| < 4. &
z-plane y ” w-plane
r zo-\-‘i ----------- LT -
/ 1 S \
! o) zo 1 / ‘\‘H \
‘/ / > 0
Step 2: Find & i : ¢ 1¥ ) Step 1: Given &
. .,___’/\\.\. \/ |
( Generally, & N0 l
el S / u
depends on &) NS ‘
Fig. 3. 1. Limit- p|ot_fz
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® f(z) is continuous at z = zj if

lim f(z) = f(z0). (3.2)

Z—rZ0

z-plane I =T e

@ In many cases, we can manipulate complex limits like real limits.

example,

lim(z2 4 iz) = 2 + 4% = —2.
Z—r1
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Complex Differentiation and Analytic Functions

@ Let zg be an interior point in the domain of f(z). We define the derivative of
fatz =z as

f(zo + &z) — f(z0)

f'(z0) = lim_ - (3.3)
provided that the limit exists.
(3.3) can be rewritten as
f/(z0) = lim f(z) — f(20) (3.4)

Z—rzZp =5 — ED

If f'(z0) exists, we say that f is differentiable at z = 2.
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@ Note: By the definition of limit, f(z) is defined in a neighborhood of z
and z in (3.4) may approach zg from any direction in the complex plane.
Hence, differentiability at zp means that, along whatever path z
approaches zg, the quotient in (3.4) always approaches a certain value and

all these values are equal.

f(z) = f(20)

v A
A~

f'(z) = lim

z—2g z —

¥ v
P e —
’ ED"'-\T ————————— P
/ ¢ k -hh"""w’f *\\
/ \ .r'_"'-..___ f'(z) s
1 6 Z | Fi "‘--._‘.ﬂ %\
f‘i / ! \
\ ," I & \ , \
-\_‘-___—_,- ' f(ZO) JI
\ I
L Fi
x . s u

z-plane w-plane >~ -
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Examples (3a)

@ The function f(z) = 22 is differentiable for all z and has the derivative
f'(z) = 2z because

5 5 o o o
f'(z) = lim Oz -2 lim 2"+ 2202+ (B2)" — 2
Lz—0 Az Az—0 A >

= lim (22 4+ Az) =2z

Hz2—0

A The function f(z) = ¢” is differentiable for all z and has derivative f”(z) = ¢".

f’( )_( Z), B 1 ez+Az _ez B 1 eAzez _ez B l (eAz _l)ez
2)=\e _Air—l)l() AZ _Alr—I)lO AZ _Air—l;l() AZ
2 3
:limi(lJrAer(AZ) +(AZ) +---—1)ez
Az>0 Az 2! 3!
2
= lim (1+AZ+(AZ) +---]ez =e
a0 21 3l
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Analytic Functions

@ A complex function f(z) is analytic at z = z, if there exists a neighborhood
N (z0;€) of zp such that f is differentiable at every point in N(zo;€). If it is not
analytic at zp, it is singular there.

J!

@ Itis called an analytic function at a domain D C C if it is analytic at every
point in D). Functions that are analytic everywhere in the z-plane are called
entire functions.

Im [Z] Im[w]

@
z-plane
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domain




Singularities

Points where a function is not analytic are called singular points or

singularities or poles sometimes.

Example:

f(2)= 1 is analytic everywhere
z

in D except z =0, which is thus
the singular point or pole of the

function.

Note that a function is either analytic or singular at any given point...
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Rules of Complex Differentiation

@ The familiar rules of real differentiation carry over to the complex case.
example,

the product rule

[f(2)9(2)]" = f'(2)g(2) + f(2)g'(2)

and the chain rule

= 1(6(2)) = £/(9())g'(2).

the complex differentiability of f at a point z = zp implies the continuity
of f at that point.
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@ useful results of complex differentiation:

(z") =nz""1, (ef) =€, (sinz) =cosz,

(cosz)' = —sinz, (sinhz)' =coshz, (coshz) =sinhz

@ Remark: Exponential, trigonometric and hyperbolic functions are entire
functions, while z~1 is analytic on C\{0}.
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Cauchy-Riemann Equations

@ A necessary condition for the differentiability of a complex function
f(z) = u(z,y) + iv(x, y) is to satisfy the relation

4 ou Ov ) 4 F Ou Ou A
- = -, or Z/lx P u)’ a0
dx Oy simplicity, Ox qy (3.5)
6’u, 6’0 1/‘1:‘8 , oV . ov
—_———, write. V. =7~ V, =~
Gy =) *Y
&

Or simply written as

[ U = Vy, Uy = —’UI.} (3.6)

They are known as the Cauchy-Riemann equations (C-R equations).

Bernhard Riemann
(1826-1866)
German Mathematician

Augustin-Louis Cauchy
(1789-1857)
French Mathematician
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Theorem (3.1 Cauchy-Riemann Equations)

Let f(z) = u(x,y) + iv(z,y) be defined and continuous in some neighborhood of
a point z = x + 1y and differentiable at z itself. Then, at that point, the first-order

partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations
(3.6).

Hence, if f(z) is analytic in a domain D, those partial derivatives exist and satisfy
(3.6) at all points of D.

e If f is differentiable, then f’ is given by any of these four equivalent
expressions:

f’ = U, + 'i’UI — Uy — Z’U.y — Uy — ?:Uy = Uy + z.'UJ:- (37)

® Remark: The four equivalent expressions are obtained by simply applying
the Cauchy-Riemann equations (3.6).

Ou  Ov 7. — v 7 — —o Bu_ Ov
or Oy’ T i . il

e - oz
dy T
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Proof (optional)...

In spite of these similarities, there is a fundamental difference between
differentiation for functions of real variables and differentiation for
functions of a complex variable. Let z = (x, y) and suppose that 4 is
real. Then

But if & = ¢k 1s purely imaginary, then

o ey R = fley) LA
[(z) _Jﬂ“—"" 5 - - huog (2) fy (2)-

Thus, the existence of a complex derivative forces the function to
satisfy the partial differential equation

F@)=fx = —tfy.
Writing f(z) = u(z) + v (z), where u and v are real-valued functions of
a complex variable, and equating the real parts and imaginary parts of

we obtain the Cauchy-Riemann differential equations
Ou _ Ov Ou Ov
6.’!:_6!” uxzv},, sz—uy. a_y—_a_m.
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Example (3b)

f(z)zgzx—iy:u+iv = u(x,y)=x, v(x,y)=-y

8_u:1¢@:_1 :
Ox oy

Ou _
Oy

_ov

0=""
Ox

= f(2) is not analytic anywhere

ou ov ou ov
—=—and
ox Oy oy ox
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Theorem (3.2 Cauchy-Riemann Equations)
If two real-valued continuous functions u(zx,y) and v(z,y) of two real variables x

Example (3c)

Is f(2) = u(z,y) + iv(x.y) = €*(cosy + isiny) analytic?
Solution:

we have u = e* cosy. v = ¢* sin y and by differentiation

Ur = €°Cosy, Uy =€ cosy, Uy = —e'siny, vy =e siny

The Cauchy-Riemann equations are satisfied and conclude that f(z) is analytic
for all z.

f'(z)=u, +iv,=e"cosy+ie’siny=e"(cosy+isiny)= f(z)
Ou _0v ou ov
ox Oy oy ox

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 90 Ben M. Chen, CUHK MAE




Example:

f(2)=z"=x"—y" +i2xy =u(x,y)+iv(x,y)
U

u(xay):xz_yza v(x,y):2xy

ox - oy YT

and the partial derivatives are continuous V z.

Consequently, f(z) 1s analytic V z.

f'(Z)=(Zz) =u_+iv, =2x+i2y=2(x+iy)=2z
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Example:

f<z>=i=(x2x j—i( Y 2j=u<x,y>+iv<x,y>

‘z +y2 x2+y

ou_ y'-x* _ov ou_ 2y _ Ov
ox (xX*+yH)? oy T oy (FP+yH)r ox

= f(z) 1s analytic everywhere, except when x>+ =0
1.e., at the origin and

, ou ov y -x> . 2xy
f@)="+i =" ", 2
ox oOx (x"+y°) (x“+y7)

ou ov ou ov — —
= —_— = UI — Uy, Uy w— —UI'

—=—an
ox Oy oy Ox

Ben M. Chen, CUHK MAE
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Example:
f(2)=x"y" +i2x7y* =u(x, p) +iv(x, y)

au:2xy2 : av:4x2y : 6u=2x2y : 6v=4xy2

Ox oy oy Ox

o M mm s mm s mm s mm s Em s ot o s o s s e = s = s = s = s = s = = = = s e e e ey

The Cauchy-Riemann equations
only hold forx =0and/or y = 0.

Since the function is not

analytic in a neighbourhood of

)

. 7
T

x=0ory=0,f(z)is not analytic

_______________________________________________

anywhere.

@ A complex function f(z) is analytic at z = z if there exists a neighborhood
N (zo;€) of zg such that f is differentiable at every point in N(zo;€). If it is not {\;‘/ozo )
analytic at zp, it is singular there.

x
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Analyticity of the Logarithm...

Recall the logarithm function
Inz=ILnz+2nmi=1Inz/+iArg(z)*2nni, n=0,1,2,-- (3)

where Ln z is the principal value of In z. Then,

For every n =0, £1, £2,--- formula (3) defines a function, which is analytic,
except at O and on the negative real axis, and has the derivative

|
(Inz) = P (z not 0 or negative real).

The proof of this result can be done by checking its associated CR equations. We

rewrite

]
Inz=1Inr+ i@ + ¢) :Eln(x2 +y2) + i(arctanzjL c)
X

where c is a multiple of 2.
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d . 1
dxarc anx—1+x2

By differentiation,
X | 1

bl = —— = Oy = .
v x2+y2 ¥ 1+(y/x)2 X

! x2 + y2 ’ 1+ (y/x) x2/)

Hence the Cauchy-Riemann equations hold and

(In ), Lo s 4 1 ( y) X — 1y |
V4 — U l = l _——_— == —
v ToxZ+y? 1 + (y/)c)2 x2 x2+y%  z

Each of the infinitely many functions in (3) is called a branch of the logarithm. The
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 338.

The branch for n = 0 is called the principal branch of In z.

¥
lim Arg(z) = +n i
LIlZ:hl‘Z‘-I-l.AI'g(Z) o—o—o—.fgo-o-o-o—. =
lim Arg(z) =—n T

Fig. 338. Branch cut for Inz
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Observations
1. The sum or product of analytic functions is analytic.
2. All polynomials are analytic.

3. Arational function (the quotient of two polynomials) is analytic,

except at zeroes of the denominator.
4. An analytic function of an analytic function is analytic.

5. Functions e®, sinz, cosz, sinhz, coshz are analytic everywhere.

+ )

About Homework Assignment No. 2......

You can start working on Problems 2.1 to 2.4, but hand in the

complete set when it is due (to be announced later).

N
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Theorem (3.3 Laplace’s Equations)

If f(z) = u(z,y) + iv(x, y) is analytic in a domain D, then both u and v satisfy
Laplace’s equations

V2u = ugzz +uy, =0,
vgv = Vzgz + Vyy = 0 (3.11)

in D and have continuous second partial derivatives in D.

@ Remark: The above theorem follows from Cauchy-Riemann equations (3.6):

Uze + Uyy = (Uz)z + (Uy)y = (Vy)e + (—vz)y =0,

Vzz + Vyy = (Vz)z + (Vy)y = (—Uy)z + (uz)y =0,
assuming that « and v are C?.

— — ! o0u o0u 0%y
i Uz —Uy, uy = —Vr. : uxx:—z’ uxy: , Vyy:_zﬁ
! ; Ox Ox0y oy
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Harmonic Functions

A function / (x, y) is harmonic if it is a twice continuously differentiable that

satisfies Laplace's equation: z,, + 72, = 0.

Note thatif f(z) =u (x, y) +iv (x, y) is analytic, then the pair # and v are both
harmonic functions. We say that v is a harmonic conjugate function of u in

the domain D.

If z is harmonic and v is a harmonic conjugate of u, then it can be showed

that « is a harmonic conjugate of —v by noting that g(z) =i f(z) is analytic

g(x,y)=if(x,y)=i[u(x,y)+iv(x,y)|=—v(x,y) +iu(x,y)

a )
Vu=u_+u, =0
Yy Pierre-Simon Laplace
(1749-1827)

2
Viv=y_4+v =0
XX Yy French Mathematician

N /
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Example™ " "...

How to Find a Harmonic Conjugate Function by the Cauchy—Riemann Equations

Verify that u = x? = yz — y 1s harmonic in the whole complex plane and find a harmonic conjugate function
v of u.

Solution. V?u = 0 by direct calculation - - -

u,=2x, u, =2, u,=-2y-1, u,=-2 = Vzu:uxx+uyy:O.

Hence because of the Cauchy—Riemann equations a conjugate v of u must satisfy

Uy = Uy = 2x, Ug = —Uy = 2y + 1.

Integrating the first equation with respect to y and differentiating the result with respect to x, we obtain

v(x,y)= Ivydy = I2xdy =2xy+h(x), v.=2y+ ;;h(x)

A comparison with the second equation shows that dh/dx = 1. This gives h(x) = x + ¢. Hence v = 2xy + x + ¢
(c any real constant) is the most general harmonic conjugate of the given u. The corresponding analytic function is

f@)=u+iv=x’—y> —y+i(2xy+x+c)
=(x2 +i2xy+(iy)2)+i(x+iy)+ic=Z2 +iz+ic.
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Complex Analysis - 4...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem
5 Cauchy Integral Formula

6 Complex Series, Power Series, Taylor Series, and Laurent Series
/ Residue Integration
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Material flow...

Complex line integral of f(z)

Sn — Z .f(Cm)(zm - zm—l)
Curve: z(¢) % - m=1
"";l/o\zm . a
IAzm ’\X.' @
B f(z)dz = lim S,
C n—+0o0

Estimation Let f(2) be continuous on C:7—2z(7), te[a,B]. If | f(2)|< M on C, then
of a complex

integral

SML

[ f()dz

where L is the length of the curve C, i.e.

p B \2 \2
L:jzf(r)drzj\/(%) +(%) dt

o
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Material flow...

Theorem (4.1 Indefinite Integration of Analytical Functions)

Let f(z) be analytic in a simply connected domian D. Then there exists an
indefinite integral of f(z) in the domain D, that is, an analytic function F(z) such
that F'(z) = f(z) in D, and for all paths in D joining two points zy and z; in D we
have

[ " f(z)dz = Flz1)— Flzo) , [F'(z)= £(2) (4.5)

(Note that we can write zp and z; instead of C, since we get the same value for all
those C from zg and z;.)

Theorem (4.2 Integration by the Use of the Path)

Let C be a piecewise smooth path, represented by z = z(t), where t € [a,b]. Let
f(z) be a continuous function on C. Then

b
f e — / F(2())2(2) dt. (4.6)
- C a -

Theorem (4.3 Cauchy'’s Integral Theorem)

If f(z) is analytic in a simply connected domain D, then

f f(z)dz=0 (4.9)
C

for every simple closed path C in D.

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 102 Ben M. Chen, CUHK MAE



INTEGRATION

Integration is an important and useful concept in elementary calculus.
The two-dimensional nature of the complex plane suggests the
consideration of integrals along arbitrary curves in € instead of only
on segments of the real axis. These “line integrals” have interesting
and unusual properties when the function being integrated is analytic.
Complex integration is one of the most beautiful and elegant theories
in mathematics.
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Revisit: Real Integration...

Sum becomes Integral

In limit as

Ax — 0 fx) A
N _) e x.'"
=) Jreonas

X 0 X

m

Xm N
Area = j fOo)dx = lim 3" f(x)Ax
0 =
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Line Integral in the Complex Plane

@ Complex definite integrals are called (complex) line integrals. They are
written

I:[ f(z)dz (4.1)
C

Here the integrand f(z) is integrated over a given curve C' in the complex z-
plane, called the path of integration.

L
&
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@ Such a curve C' can be represented by a parametric representation

z(t) = z(t) + iy(t) (4.2)
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Special Curve: Circle

e C(Circle
The parametric description Im
for a circle centred at 7.
complex point a and with a a
radius ris \\/ Re

z(t)=a+re", te[0,2m]
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Special Curve: Straight Line

e Straight Line

The parametric description
of a straight-line segment

with starting point a and

Im

endpoint b is

{ z@)=(b—a)t+a, te[0,1] }
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@ We assume C to be a smooth curve, i.e., C has a continuous and nonzero

derivative

A(t) = % = &(t) + ig(t)

at each point.

@ Geometrically, this means that C' has a continuously turning tangent

everywhere.

5(t) = lim z(t + At) — z(t)

At—0 Pt
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Definition of Complex Line Integral

@ Consider a smooth curve C'in the complex plane given by
z(t) =z(t) +iy(t), a<t<b
Subdivide the interval a < ¢t < b by points
a=tg, t1, to, ..., tp_1, tn =20

@ Suppose that C has initial point and end points at z = A and z = B,
respectively, the Corresponding to points on C' will be,

A=24, B1, 23, :055 Zn1; Ba =B 2 = 2lk)
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%

Sn — Z f((m)(zm - zm—l) (43)
m=1

@ Form the sum

where (,,, is some point between the arc from z,,,—1 to z,,. The choice of the
zm'S and (,,,’s defines a partition of C, and we call the largest
|Azp| = |zm — 2zm—1| the norm of the partition.

Zm :;/8_\;2'"

@ The partition is chosen such that the norm of the n-th partition tends to zero
as n — oo. If the corresponding sequence of the sums 57, S5, ... converges
to a limit, we call that limit the complex integral [, f(z) dz and say that the
integral exists, i.e.,

/ f(z)dz = lim S, (4.4)
C

n—roo
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@ Recall a curve C'is simple if it does not intersect itself and it is called a
closed path if A = B in Fig.4.1. In such case,

r:/cf(z)dz » I:ﬁf(z)dz.

v

Fig. 4.1

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 112 Ben M. Chen, CUHK MAE



Properties of Complex Integrals

As for real integrals, the following rules apply:

L [[f(2)+g@)dz=[f(z)dz+ | g(2)dz
C C C

2. j k f(z)dz=k j f(z)dz, k complex
C C
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Properties of Complex Integrals

3. [f@dz=[f@ydz+ [ f)dz 4 [f(2)dz==] f(2)dz
C G G, C c*

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 114 Ben M. Chen, CUHK MAE



Estimation of a Complex Integral (ML-Inequality)

» Letf(z) be continuous on C:t—>z(f), t €[a, B]. If |f(z) <M on C, then

SML}

The ML-Inequality

j f(2)dz j f(2)Z'()dt
C C

IA

= [|£ @)z @)ar

C
<M j Z(t)dt
C
=ML

p
where L is the length of the curve C, i.e., L = Iz'(t)dt.
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Estimation of Complex Integral — An Illustration

Graphically, take real integration as an example,

b
jf (t)dt| = shaded area with red lines < M - L
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Estimation of Complex Integral — An Illustrative example

tan z

2
z

For complex cases, for example, we take 7(z) = and C to be a unit circle

A A |
............. 1. |
’ |
~15 | |
-1 1 > emar " 1_::.5 . i )
........ - _i
B tanz| T
z 2 B
4 : :
tan z i 2
“- f(Z)dZ‘:J. 2 dz <ML=—2n=m
C ‘. 2
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Evaluation Method: Indefinite Integration and Substitution

Of Ll m |tS & remarks

Theorem (4.1 Indefinite Integration of Analytical Functions)

Let f(z) be analytic in a simply connected domian D. Then there exists an
indefinite integral of f(z) in the domain D, that is, an analytic function F'(z) such
that F'(z) = f(z) in D, and for all paths in D joining two points zy and z, in D we
have

f(2)dz = F(z1) — F(29) [F'(2) = f(2)] (4.5)

(Note that we can write zo and z, instead of C, since we get the same value for all
those C' from zg and z1.)

———
- “

* An indefinite integral is a function whose derivative -

equals a given analytic function in a region. X O 3 simply
b .# connected

T
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Example (4a)

n—roo

/Cf(z) dz= lim S,, S,= Z P e — i)
m=1

m
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Evaluation Method: Use of a Representation of a Path

Theorem (4.2 Integration by the Use of the Path)

Let C be a piecewise smooth path, represented by z = z(t), wheret € [a,b]. Let
f(z) be a continuous function on C'. Then

b
/ f(2)dz = [ F(=())=(2) dt. (4.6)
. Ja

By Theorem 4.2, the complex integral might depend on the
path/curve chosen.

This 1s generally true for non-analytic functions.

Complex integral 1s independent of paths for analytic functions.
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Example (4b) %

@ Show that by integrating % counterclockwise around the unit circle (the circle
of radius 1 and center 0)

d..

JC <

=27 (4.7)

@ (a). Represent the unit circle C' by
z(t) = cost +isint = e 0< t<2r

so that counterclockwise integration corresponds to an increase of ¢t € [0 27].
o (b). Differentiation gives z(t) = ie.
@ (c). By substitution, f(z(t)) = & = e~ .
o

z(t)
(d). From Eq.(4.6), we obtain

d= 27 27
% / et dt =4 / dt = 2mi.

(Check this result by using z(t) = cost + isint)
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Theorem (4.1 Indefinite Integration of Analytical Functions)

Let f(=) be analytic in a simply connected domian D. Then there exists an
indefinite integral of f(z) in the domain D, that is, an analytic function F(z) such

@ that F'(z) = f(z) in D, and for all paths in D joining two points zo and z, in D we
have

Some remarks on Theorem 4.1... st i

(Note that we can write zp and z; instead of C, since we get the same value for all
those C' from zy and z;.)

[ J::f(Z)dZZF(Zl)—F(ZO), F'(z)= f(2) (4.5) }

-----

I, \\
. . . . . £ l’-\\ ]
* f(z) is analytic in a simply connected domain ,:' e
. . . ]
is essential in Theorem 4.1. 9 v
Simply
connected

* Eq. (4.5) in Theorem 4.1 gives 0
for any closed path because then
z, =z, and thus F(z,) — F(z,) = 0. C

21

o Now, % is not analytic at z = 0. But any simply connected domain containing
the unit circle must contain z = 0, so that Theorem 4.1 does not apply.

@ Itis not enough that % Is analytic in an annulus, say, % < |z| < ‘—2’, because an
annulus is not simply connected!
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Example (4¢)
@ Suppose we want to evaluate the complex integral

/ |z|2d.z,
Jo

where C'is a straight line fromz =0toz =1 + 1.

o Parametrize C' as z(t) =t + ti,t € [0, 1], then z'(¢) = 1 + 7. Hence, by
property (4.6),

Im
./0

; = (2t )(1 + i) dt
Re
3
= (1+ )2;
Lz(t):(b—a)tﬂz, tE[Oal]} _ %(14_3)
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Example (4d)

@ Evaluate

I = % (z —a)"dz,
Jo

where a is a given complex number, n is any integer and ' is a circle of
radius R, centered at a and oriented in an anticlockwise direction as follows.

. ‘
' y;

L) ;

\\_/ Re

>

4 .
z()=a+re", te[0,2n]
Fig. 4.3. The closed contour C'.
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@ Parametrize C as | I
z=a+ Re’, 0< o< 2.

Then, by property (4.6),

27
I = / (Re'®)"(Ric®) do
70

27
‘I'.Rn-}-l / Cz(n+1)¢’ d(D
0

Rn+1 .(
n + 1

27

n+1)o —0

»=0

provided that n = —1.

27 27
@ lfn=—1,thenl =iR" / e dp = i / dé = 27i. Hence,
J 0 J 0

n o ) 2mi, ifn=-1,
= %(L —a)ids = { 0. if n # —1.
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Homework Assignment No: 2 (Complete set due in one week)

Question 2.1: What is an analytic function? What is the Cauchy-Rieman condition for? What is the
derivative of a complex function? What is a curve? What is the length of a curve? How to
characterize a circle and a straight line? What is a complex integral? What is the upper bound of a

complex integral?

Question 2.2: Find all the values of the given expressions:

(@) In(1+7): by 1'; (c) (l+i)1+i

Question 2.3: Find and plot the domain of analyticity of the complex function f(z)= Ln(l +z ),

where Ln denotes the principle value of the complex logarithm.

Question 2.4: Compute the derivatives of the following analytic functions:

iz+3 2 1
2 p N (b) e ; ) ———
zZ2=2+Dz+(4-3) e +e

(b)
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Question 2.5: Given the following complex functions, determine 1) the domain of each function, and

11) which of them are analytic by using the Cauchy Riemann equations:

@) f(2)=f(x+iy)=(x"=3x3"=x)+i(3x*y—1" —x)

) f(2)=f(x+iy)=x"+iy’
© f@=f+in=(V =i ey

Question 2.6: Verify the following inequalities:

(a) Lzzdz‘gzﬁ, C:z(t)=t+it, 0<tr<1

1
(b) C‘ﬁ dz

S%T, C:z(r)=5(cost+isint), 0<r<z

Question 2.7: Let C be a circle with radius 7 and centred at the origin, i.e.,C: z(f) =a + re”,

t €[0,2n] and f(z) = z*. Calculate the integral Izz dz .
c
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Different Paths different Values
@ In general, a complex line integral depends not only on the end points of the

path but also on the path itself.
Example (4e)

® Integrate f(z) = Re(z) = = from 0 to 1 + 2i (a) along C*, (b) along C
consisting of Cy and Cs.

® (a). C" can be represented by 2(¢) =t +2it 0< ¢t<1.

dz(t
ZE:) =142 and flz(t)]=z()=t on C”.
ra s z=1+2i
,’? I* / Rez dz = / t(1 + 2¢)dt
/ c-
Cy
/ AC,
K c,
S 1 =
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Ci:z(t)=t, z(t)=1, f(z(t))=z(t)=t 0< t<1

C,: z()=2it+1, ##)=2i, f(z(t)=x()=1, 0<t<]

1 =ICRede :jc Rezdz+jc Rezdz=j§tdt+j;2idt =

@ Note that this result differs from the result in (a).

Im

a Re l,/, ﬁ((
/, C1
Lz(t)z(b—a)ﬂra, te[O,l]J L
Path Dependent
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Complex Integration: Path dependent

We want to compute the integral ] Z dz where C is the
Je

m /ine between 2, =1 and 2o =1

2(t) =1+t —1),t€|0,1] \c\

Then fcfdz = fol (14+t(—=i—1))(i—1)dt

=(i—l)(t—g(z’+1))|;=(i—l)l—i:i

m arc of unit circle between 2y and 2o =1

2(t) = e, t € [0,7/2] z"’H’

Then Jc zdz = IOW/Z e~ *ie' dt

w/2
= im /2

=t

0

NoTEe: The result of the integration is path-dependent.
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We want to compute the integral fc z dz where C is the

m /ine between z1 =1 and zo =1

z(t) =1+t(E —1), t €[0,1]
(1+t(i—1))(i—1)dt

sy
= (i—l)(t+%(z’—1))’o = (i—1)

Then L 2dz =

m arc of unit circle between z1 and zo = 1

2(t) = e, t € [0,7/2]
T .
Then Jc zdz = i etie® dt
_ e2z’t/2 '"/2_ e™ —1 B cosmt—sinm—1 B
0 2 2

NoTe: The result of the integration is the same for the two contours. Is it

that the integral is path-independent and if so, why?
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Cauchy’s Integral Theorem

Theorem (4.3 Cauchy’s Integral Theorem)

If f(z) is analytic in a simply connected domain D, then

% f(z)dz =0 (4.9)
JC

for every simple closed path C' in D.

———
- ~—

Fig. 4.4. Cauchy'’s integral theorem.

/ ¥ (2)dz = F(z1) — F(z)  [F'(2) = f(2)] (4.5)
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Example (4g) Sa=D 1

plot_int

@ Entire functions

% e*dz =0, % coszdz = 0, % z"dz=0, (n=0,1,...)
JC JC JC

for any closed path, since these functions are entire (analytic for all z).

CJS sinzdz =0 Cﬁ tanzdz =0
C c
A A A A

e e —
N } (—— Y > >
YC ;
............................... - S BT e — e

z-plane w-plane z-plane w-plane
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Example (4h)

@ Consider
7 % dz _ % dz .
Joz2=5246  Jo(z—=2)(z-3)
where C'is the unit circle |z| = 1 oriented in an anticlockwise direction.
@ Now, the integrand f(z) = (3_2)1(:_3) IS analytic everywhere except at z = 2
and z = 3. Since the curve C' does not enclose these two points, I = 0 by

Cauchy’s theorem (4.9).

A
NI
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Applications of Cauchy’s Theorem

Applications: ,

1. If f(z) is analytic in a simply connected
domain D, then the integral of f(z) is

independent of path in D.

j f(z)dz + j f(z)dz=0 .,
C, C,
= [ f@dz=-] f(2)dz= | f(2)dz
C C, C,
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Path Independence Theorem

Theorem (Path Independence)

If f(z) is analytic in a simply connected domain D, then [ of z) dz is independent
of path in D. That is, given any initial point P in D and for any fmal point QQ in D,

the value of [, f o f(z) dz is the same for every piecewise smooth path C, lying
entirely within D, from P to Q.

v
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Applications (cont.)

2. Consider a doubly connected domain D. If

the function f(z) is analytic in D, then the
integral of f(z) is the same around any

closed path that encircles the opening.

[fydz+ [ f(2ydz+ [ f(2)dz+ [ f(z)dz=0
L C L o

j f(2)dz+ j f(2)dz=0 (\ J

= [ f@dz=—| f(2)dz= [ f(2)dz Note that we can always
G G G choose C, to be a circle...
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Example...

. COSZ . . COSZ .
<_f>c f(z)dz, with f(z)= has a singular point at z=0. C_f)c dz=2mi
z Z
A A N where C is
SR — . Z B B S z any closed
: A & ";:, curve
i \ 1 Cy N encircling
’ . }Z N ; the origin
YC &l C ¥ . . counter
.............................. e e clockwise.
z-plane z-plane
A A
COSz Cosz
/T
z z .'_.' 5
N
w-plane w-plane w-plane plot_int
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Applications (cont.)

3. The integral along a closed path C, of the function f(z) which is
analytic in the multiply connected domain D, is given by the sum of
the integrals around paths which encircle all openings within the

region bounded by C,, e.g.

f(z)dz+ | f(z)dz f(z)dz=0

JraeLiad O

Thus, j f(2)dz=— j f(2)dz - j 1(2)dz @ @
= j f(z)dz+ j f(z)dz

Note that we can always choose both C, and C; to be a circle...
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Complex Analysis - 5...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem
5 Cauchy Integral Formula

6 Complex Series, Power Series, Taylor Series, and Laurent Series
/ Residue Integration
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Material flow...

Theorem (5.1 Cauchy Integral Formula)

Let f(z) be analytic in a simply connected domain D. Then for any point zg in D
and any simple closed path C' in D that encloses z, (Fig.5.1)

f[f(z)}dz — 2mi f(z0). (5.1)
c\® — 20

Generalized Cauchy’s integral formula...

2 2
§ L s = 2 ) 52)

n!

Theorem (5.2 Derivatives of Analytic Function)

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point z
in D are given by the formulas

f(n)( 0) = l’fc f(z) dz

2wt Jo (2 — zp)nt1
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Recap...

Cauchy’s Integral Theorem

Theorem (4.3 Cauchy’s Integral Theorem)

If f(z) is analytic in a simply connected domain D, then

% f(z)dz=0 (4.9)
JC

for every simple closed path C in D.

Fig. 4.4. Cauchy'’s integral theorem.
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Cauchy Integral Formula
Theorem (5.1 Cauchy Integral Formula)

Let f(z) be analytic in a simply connected domain D. Then for any point zo in D
and any simple closed path C' in D that encloses =z, (Fig.5.1)

f [ffﬁd: — 27 f(z0). (5.1)

’’’’’

” \
<3 / | D :
s J /
/ '/ o2 /I
I 8
| i
C S g -

Fig. 5.1. Cauchy'’s integral formula.
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* kK

Proof of Cauchy’s Integral Formula™""...

By addition and subtraction, f(z) = f(zg) + [f(z) — f(zo)]. Inserting this into (5.1) on the
left and taking the constant factor f(zo) out from under the integral sign, we have

d _
2 3€ f(@ i =f(20)jL : % f(@) — f(zo) iz
C C

g = Zg o %20 Z— 20

The first term on the right equals f(z¢) - 277i. Noting that

f(2)~ (%)

1s analytic except at z,, by Application 2 of Cauchy’s Theorem, we can replace C by
a small circle K of radius p (to be determined) and center at z,, as follows:
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Since f(z) is analytic, it is differentiable. Hence, an € > ( being given, we can find a
0> 0suchthatforallzin0<|z—-z,| <7,

e i I G R Ch RO RS (EN B

Thus, f(Z)_f(Zo) f,(Zo)‘i'f’(Zo) '
zZ—2z, zZ—2z,
. _f,(Zo) +‘f’(zo)‘<8+‘f’(zo)‘:

forallzin 0 <|z—z,| <. Let us choose apwith0<p<min{5, %4} We have

f@-fG) ¢ ( pet

Z—z, p
at each point of K. The length of K is 277p. Hence, by the ML-inequality
f(2) — f(zo)
j(K Z= Zo dz| < 527Tp = 27T€.

Since € (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must
have the value zero, and the theorem is proved. u
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Example (5)

@ Evaluate

€~
g = % dz.
Jo (z—=2)(z+4)

where (' is a counterclockwise circle of radius 3, centered at the origin.

Fig. 5.3. The contour C'.
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Example (5) ﬁ@@

@ Evaluate

o
i :jé dz,
c(z—2)(z+4)

where (' is a counterclockwise circle of radius 3, centered at the origin.

Y A

e
-

@ Let f(z) = ‘._;4
Cauchy inteéral formula (5.1),

. 2 2 -
< ‘ s _ ) (. me~1
I = /) dz = 2mi f(z9) = 2mi (—) = :

o~ =0

and zg = 2, then f(z) is analytic inside C'. Hence, by the
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@ The Cauchy integral formula enables us to evaluate any integral where the
integrand has a “first order singularity” at some point z = 2z within the
contour C'. If the singularity is second order or higher, then we have the
generalized Cauchy integral formula

f{ Ly 1) (5.2)
c ( !

where n = 0,1, 2, ... if we have the same assumption as in Theorem 5.1.

ﬂdz = 2mi f(2p).

C < — R0
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From the generalized Cauchy integral formula...

< 2711
fc (2 —f,(:O;nH dz = %f(")(f«’o)» (5.2)

@ Remark: Observe that having assumed only that f(z) is analytic (once
differentiable), one finds with no further assumption that f(z) possesses
derivatives of all orders:

! =
™ (z0) = ng ! _sz;nH dz.

271
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Derivatives of Analytic Functions

Theorem (5.2 Derivatives of Analytic Function)

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which

are then also analytic functions in D. The values of these derivatives at a point =
in D are given by the formulas

/ 1 jg f(z)
z0) = lz.
f'(z0) 21t Jo (2 — 20)? ‘

t' —
Flz) = = ¢ &) 4.

§ & ~ a
271 Jo (2 — 20)3
’a'——-— ————————————— -
4 PR m,
/ /! ] - 9
I ! \
1 \_,/ D \
\ \
\ ]
\\ 1
—————————— \ ’I
\\\ C /7
< " 4

5h——’
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or in general

n! Z
£ (20) = n j{v . _f;(;[);-nﬂ d=. (5.3)

2me

Here C' is any simple closed path in D that encloses =y and whose full interior
belongs to D; and we integrate counterclockwise around C'.

——— —-——
- — -
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Example (5a) =
@ Evaluate

~

[
I — ‘—,3 ([.J.
Cv s

‘| = 1 oriented in an anticlockwise direction.

e
[=¢ ——d=
é" (z —0)3

for comparison with the generalized Cauchy integral formula (5.2). It can be
seenthatn =2, zo =0, and f(z) = ¢* so0 (5.2) gives

ah
<

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 152

where (' is the unit circle
@ Rewrite [ as follows

(5.2)

(
—
SO~
—~
o2
||,
}/""'\
[en T 'S 3
 — [
p~
+
—_—
QL
<
|
< |
=3
.
2
—_
&
o
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Example (5b)
@ Evaluate

Jo 2(z—=2)(z —4)

where (' is the circle |z — 3| = 2 oriented in an anticlockwise direction.

\ / ~ \
C
@f ()= =f), f ()=, f(Z@
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N ! ¥/
s

@ The integrand has singularities at = = 0.2 and 4, of which 2 and 4 fall within
the contour C'. If we deform (' into two closed contours (1 and (' so that 2
lies only within ”y and 4 lies only within C'5, then the generalized Cauchy
integral formula (5.2) gives

=2 z=—d4
o -3MI | 23/11 &
T8 64
T
64
§ O e ey T ’
c (z—z)"t1 " nal i
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Homework Assignment No: 3 (Due in one week)

Question 3.1: Find the values of L(x —y+ix*)dz, where z=x+iy and C is the following:

(a) The straight line joining 0 to 1 +7
(b) The imaginary axis from 0 to 7

(¢) The line parallel to the real axis from7to 1 +7

Question 3.2: Let C,: z(1)=2+2¢", 0<t<2m and C,: z(1)=i+e ", 0<t<T
1 2 p)

(a) Draw the path C; and C..

. dz .. dz
(b) Calculate (i) L yrand ) [ o

1 ; 1 .
Question 3.3: Let C;: z(r):—1+;e”, 0<t<2m and C,: z(r):l+;e”, 0<r<2m and

C: z(1)=2€", 0<t<2m Alsolet f(z)= . Use the Cauchy Integral Theorem to deduce that

2

22—
Icf(z)dz :jcl f(z)dz+'|.c2 f(2)dz
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Question 3.4: Find the upper bound for the absolute value of ICZ dz where C 1s the half-circle, 1.e.,

z(t)=¢", t<[0,n], as shown in Figure 1.

Figure 1: z(r)=¢€", t<[0,n]

2z—1

2 2~

Question 3.5: Calculate the integral dz . Hint: You can try Cauchy's integral theorem here

and note the poles inside. Draw a graph of the circle and indicate the poles.

Question 3.6: Calculate ; +: dz .
2 2
1
Question 3.7: Calculate <j> ————dz.
z(z+4)

|2=2
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Connections to some engineering topics and problems... (xxx)

Laplace transform: Given a time domain function, f(¢), its Laplace transform is defined

as follows:

F(s)=L{f}=[ /)¢t

where s = o+ i w (with oand ® being real) 1s a complex frequency parameter. F(s) is

regarded as a mapping of f(¥) in the frequency domain.

Inverse Laplace transform: On the other hand, one could transform a frequency domain
function, F(s), back to its time domain counterpart, f(¢), as the following:

G, +ioo

f(t):L_l{F}zzlm_ j F(s)-e"ds

O —I®©

where o is chosen such that the above integration exists.

Roughly, by setting s =i @, the Laplace transform becomes a so-called Fourier transform
with @ being the real frequency parameter, i.e., the term of frequency we use everyday.

Many engineering problems become rather straightforward in the frequency domain!...
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Some commonly used Laplace transform pairs... (+*x*)

Waveforms Sinoular points
vef f©) o F(s) gular p
(vs time) (z-plane)
- i 10,
[ /} i Sin wt = - 3 S R
' ‘ S+
A 1 1
S 1(z) = — ,
)
% ’ t < I —
S2
2 1
AN t* = =
)
/ at 1
I e <‘;> —T— %
s—a
X a>0
B —at 1
N e Y e
E E—— S+a
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Pierre-Simon Laplace
(1749-1827)
French Scholar

Joseph Fourier

(1768-1830)
French Scholar
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Some real engineering problems... (+x*)

Generally, a linear physical system can be represented by a complex rational function:

m—1 m—1
bz +---+b,z+b, _ bz +--+b, z+D,
n n—l1
zZ"+az"" +-+a, z+a, (z=-A)z—Ly)(z—1A,)

f(z)=

which is usually derived by using the Laplace transform. The stability of the system is then
fully characterized by the singular points (or poles) of the complex function f(z), which are
the roots of the denominator, i.e., z" + alz”_1 +--4a, ,z+a, =0.

Summary of internal stability

A linear time-invariant system is said to be asymptotically stable if all its poles
are located on the left-half complex plane (LHP), marginally stable if all its
poles are in closed LHP with those on imaginary axis being simple, and unstable

otherwise...

Im(s) ? Marginally é
| stable poles

,,,,,,,,,,,

) S ;—’ poles

e e
P | e KRR 2

CUHK announces the invention of
an aerial-aquatic hybrid drone

et =7 = (coswit + jsinwr)
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Complex Analysis - 6...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series, Taylor Series, Laurent Series
/ Residue Integration
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Material flow...

{ Zyy Zyy Zgytte J $ Sequence ~ Convergence, divergence

¥

o0
Z Z =Zy+z,+2Z, $ Series ~ Convergence, dlvergen_ce, absolute
convergence, root and ratio tests

n=0
.|z, the series is absolutely convergent if L <1
im|"~=L = L :
ooz the series 1s divergent if L > 1
&
o0
Z a (Z _ )n $ Power series ~ Region of convergence,
0 v 0 ratio tests, radius of convergence
n=
5/
Divergent
1 .. |a it 1s convergent for ‘z — ZO‘ <R
R=—=lm—/—"| = L
el it is divergent for ‘z = ZO‘ >R
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Material flow (cont.)...

€

GEDWACEES U

Taylor series expansion for analytic
functions in a disc

P S LIPS A
27i v,

(Z . ZO )n+1

¥

f@)= Y a-z)

n!

Laurent series expansion for
analytic functions in a ring

L @,
KAy C'([) (z—z,)"" a
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Sequences

@ A sequence is obtained by assigning to each positive integer n a number z,,
called a term of the sequence, and is written

21,29,..., or {z1,z9,...} or {z,}

@ A real sequence is one whose terms are real.

Examples...

and

o
Z
-

2+, (2+0)%, (2+i)°, ..., 2+, ...
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@ A convergent sequence zq, 2o, ... 1S one that has a limit ¢, written

lim z, =c¢ orsimply =z, — c.
n—oo

By definition of limit, this means that for every ¢ > 0 we can find an N such
that |z,, —c| <€ forall n > N.Geometrically, all term z,, with n > N lie in

the open disk of radius € and center ¢, and only finitely many terms do not lie
in that disk.

X

@ A divergent sequence is one
that does not converge.
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Example (6a)

@ The sequence
" 1 1
Is convergent with limit 0.

@ The sequence
{zn} ={(1+9)"}

Is divergent.

Theorem (6.1 Sequences of the Real and the Imaginary Parts)

A sequence z1,zo,....,%n.... Of cOmplex numbers z,, = x,, + 1y, (Where
n=1,2,...) converges to c = a + b if and only if the sequence of the real parts
r1.To. ... converges to a and the sequence of the imaginary parts y1. yo. . . .
converges to b.
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Series

@ Given a sequence z1,29,...,2m, ..., We may form the sequence of the sums
S1 =21, 89 =21+29, 83=21+20+23,...
and in general
So,=2Z1+2+...+ 2, (n=1,2,...).

s, is called the nth partial sum of the series

M]3

Zm =21 +22+1....

m=1

The zy, zo, ... are called the terms of the series.
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@ A convergent series is one whose sequence of partial sums converges, i.e.,

o0
lim s, =s. Then wewrite s= E Zm =21+ 220+ ....
n—oo 1
m=

and call s the sum of the series. A series that is not convergent is called
divergent series.

Theorem (6.2 Real and the Imaginary Parts)

(o @
A series Z i = 21 + 29 + ... With z,,, = &, + 1y, converges and has the
m=1

sum s = u + v ifand only if 1 + x9 + ... converges and has the sum u and
y1 + y2 + ... converges and has the sum v.
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Jition

. ry €
Theorem (6.3 Divergence) Anec"’ssa

If a series z1 + z9 + .. .. converges, then lim z,, = 0. Hence if this does not
m— o0
hold, the series diverges.

@ For a simple test, the series zy + 29 +.... + 2, + ... converges only if
zn — 0 as n — oo. On the other hand, if a complex series does not
converge, it diverges.

Example (6b)

@ Determine the convergence or divergence of the series

:if: 3+n 100
4+n '

n=0

; 100 3 .~ 100
: 3+n =41 | : :
@ Since 1 = | g — 1 as n — oo, the series diverges.
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Just for fun... Consider the following series,

D n=142+43+4+5+6+7+8+9+10+:--
n=1

which is obviously divergent. Assuming S =) n, we have

n=I1

S=14+2+3+44+5+6+7+8+9+10+---

=1+(2+3+4)+(5+6+7)+(8+9+10)+---

o / - _/ o v
—

=1 + 9 + 18 + 27 +-e

=1+9x(1+2+3+4+5+6+--)
=1+9-§

We then have §=1+9-§ = S:—é,i.e.,

S:1+2+3+4+---:—% (what happens?)
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Theorem (6.4 Cauchy’s Convergence Principle for Series)

A series z1 + zo + .. .. IS convergent if and only if for every given e > 0 (no matter
how small) we can find an N (which depends on ¢, in general) such that

|Znt1 + Zng2 + ... + Zngp| < € foreveryn > Nandp=1,2,...

itz tetzy itz T2y, e * e

the tail of the series ® ‘ZN+1 +Zy,, T |<E

series_tail.m ‘ \

For £=0.01, we have

w [ n—1
s L Chmac06931 N=50,ie, for N> 50,
2, 273 4

Example: Consider the following series,

. . . . . ZN+1+ZN+2 +"'<0.01.
which is known as the alternating harmonic series.
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@ Absolute Convergence: A series z; + z3 + . ... is called Absolutely
Convergent if the series of the absolute values of the terms

oo

Z |zm| = |z1|+|z2|+...

m=1
IS convergent.

If 21 + 20 +....converges but |z1| + |22]| + ... diverges, then the series
z1 + 29 +....Is called Conditionally Convergent.

Example (6¢) (A conditionally Convergent Series)
The alternating harmonic series |
l— =4+ —=+—... —n?2

converges,but only conditionally since the harmonic series diverges.

. . > 1 1 1 1 1
[N - — 1 ey - - — L
Harmonic series 2 - tytztgtEt

n
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Theorem (6.5 Comparison Test)

If a series z1 + z9 + . ... IS given and we can find a convergent series
b1 + ba + . ... wWhich nonnegative real terms such that < by, |2o| < b
then the given series converges, even absolutely.

-
~1

@ A good comparison series is the geometric series, which behaves as follows.

Theorem (6.6 Geometric Series) |
The geometric series

o0
qu=1+q+q2+...

m=0

converges with the sum = if |q| < 1 and diverges if |q| > 1.
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Example (6d)

@ Determine the convergence or divergence of the series

" ) o 2
n=>0
" 1 1 _
@ Now, = — < — foralln > 4, and Z = — = 2Is a convergent
T TP Y L= 2" ~ i 5
geometric series. By comparison test, the original series converges.
) 1 1
n'=1-2-3-4.5---n>2-2.2.2.2.-:2=2" = —<—, n24
24 16

The geometric series

oo
qu=1+q+q2+...

m=>0
converges with the sum ﬁ if |q| < 1 and diverges if |q| > 1.
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Theorem (6.7 Ratio Test)

Ifaserieszy +zo+....Withz, #0 (n ="
every n greater than some N,

<g<l1 (n>N) (6.1)

(where q < 1 is fixed), this series converges absolutely. If for every n > N,

Zn+1

>1 (n>N) (6.2)

n

the series diverges.

@ The inequality Eq.(6.1) implies |=2+%| < 1, but this does not imply
convergence, as we see from the harmonic series, which satisfies
Entl _ a1 < 1forall n but diverges.

Zn

il = 1+1+1+1+1
—n 2 3 4 5
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Theorem (6.8 Ratio Test)

If a series zy +zo+....Withz, #0 (n=1,2....)Is such that
lim [[Z24L] = L, then the series converges absolutely if L < 1 and diverges if
n— oo :,n

L > 1. No information is obtained if L. = 1 or if the limit does not exist.

Example (6e)
@ Determine the convergence or divergence of the series

Z'x: (1+ )"
ErE—
=0 .

@ Since
(144)"* |4
; “n+1 : n+1)! ; + 1 =
lim |2 = lim |- V-l = lim —| =2 lim = 0.
n— oC o n— 00 (1+':) n—oo [N+ 1 n—oo | N
1.

L = 0. By ratio test, the series converges.
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Root Test 1

If a series 71 + z9 + -+ is such that for every n greater than some N,
Wi =
|Zn|=6]<l (11>N)
(where q <1 is fixed), this series converges absolutely. If for infinitely many n,

Vn |Zn| = 1,

the series diverges.

Root Test 2
If a series 71 + 79 + -+ is such that Aim V 1zn| = L, then:

(a) The series converges absolutely if L < 1.
(b) The series diverges if L > 1.

(¢) If L = 1, the test fails; that is, no conclusion is possible.
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)
Power Series @L

@ Generally, the terms in a series may be some functions of z, then the series
becomes

Z fn(2) = fo(2) + fa(z) +--- .
n=0

The set of all points in the z-plane for which the series converges is called the
region of convergence of the series.

constants in general, then the resulting series

oC

Zan(z—zo)” = ag + a1(z — 29) +(12(z—20)2+“' , (6.5)

n=0

Is called a power series (about the point z = zg). a,,’s are called coefficients
of the power series (6.5).
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7
Convergence Behavior of Power Series %

@ Power series have variable terms (functions of z), but if we fix z, then all the
concepts for series with constant terms in the last section apply.

@ A series with variable terms will converge for some 2 and diverge for others.

@ For a power series, e.g., (6.5), it may converge in a disk with center zg or in

the whole z-plane or only at z.

Example (69)

n+l

The geometric series . |z .|z
9 ~ lim|=L | = lim = ‘z‘
" 7 9 n—wol - n—>0 Z”
E 2z =14+2z4+2"+4... ’
=0

converges absolutely if |z| < 1 and diverges if |z| > 1.

/ 211+l \
Example (6h) ; (n+1)
: lim |~ = lim :
The power series o el o7
e .2 23 Zp i
Z”! 1+ &4 g7 Fgr Frae n!
n=0 .
Is absolutely convergent for every z. (Check by using the ratio test) = ,171_1330 1 :/
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Theorem (6.11 Convergence of a Power Series)
(a) Every power series (6.5) converges at the center zy.

(b) If (6.5) converges at a point z = z; # zg, it converges absolutely for every z
closer to zy than z1, thatis, |z — zo| < |21 — 20].

(c) If (6.5) diverges at = = z9, it diverges for every z fartheraway from zg than zs.

- N
o /”:::‘“\ Divergent
Z an(z — 20)" = ap + a1(z — 20) //..-";.._.."';.\\
—~ {1 " 4 Cogv.\‘\ A
[ ) ¢ |
+ GQ(Z _ Z0)2 + * s e (65) \\\ . \\\io_’// S )‘S 22
\ / 2 %

Fig. 6.2. Theorem 6.11.
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Radius of Convergence of a Power Series

4

/ \ Divergent

oo

an(z —20)" = ap+ a1(z — 2p)

n=0

+as(z — 20)% + -+ (6.5)

N Y, E

Fig. 6.3. Circle of convergence

Let R denote its radius, the circle,
|.‘: — :ol =R

Is called the circle of convergence and its radius R the radius of

convergence of (6.5), if power series (6.5) is convergent for all z inside the
circle and divergent for all z outside.

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 180 Ben M. Chen, CUHK MAE



Recap: the power series (6.5) is convergent for all z for which
‘Z—ZO‘ <R.

It is divergent for all z for which
‘Z — ZO‘ > R.

No conclusion can be made about the convergence of the power series
(6.5) on the circle of convergence.

Divergent

oo
Z an(z —20)" = ag + a1(z — zo)

n=>0

+ ag(z — z9)% + - - - (6.5)

N Y, :
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Example (61)

On the circle of convergence (radius R = 1 in all three series),

n . . o0 2
(a) ) %5 converges everywhere since ) n% converges. [leﬂJ

(b) > =™ diverges everywhere.

(c) 3= 2= converges at —1 but diverges at 1.

A Z :: with z = —1 gives an alternating harmonic series
1 1 4 i 1 n 2
- T == = == = — . e e = —In
R=1 * 2 3 4
‘ ‘ > n

3 Z "r—z with z =1 gives a harmonic series

i : = 1+ 1 + 1 + 1 + 1 +

.............. n=1 n N 2 3 4 5
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v

h_series.m
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Determination of the Radius of Convergence from the
Coefficients

Notations R = cocand R =0 :
(a) R = oo if the series (6.5) converges for all z,

(b) R =0if (6.5) converges only at the center z = z.
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Theorem (6.12 Radius of Convergence R)

Suppose that the sequence |““+1| n=1,2,..., converges with limit L*. If
L* =0, then R = oo that is, the power series (6 5) converges for all z. If
L* # 0 (hence L* > 0), then

1 n
R=—= lim @ (6.8)
L* n—o0 an—i—l
If “ZA — 00, then, R = 0 (convergence only at the center z).
/ Y,
oo Divergent

Z an(z —20)" = ag + a1(z — 29)

n=>0

+az(z—20)*+-+  (6.5)

N J :
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oo

Z an(z — 20)™ = ag + a1(z — 20) + az(z — z0)% + - --

n=0

By Theorem 6.8 (ratio test), the above series converges when

n+l
. Z . a Z— Z . a s
lim |+ = lim e O)n =lim|—. |z -z | =L |z — z,| <1
n—o Zn n—0 an(Z_ZO) n—0 an
U
1 .. |a
‘Z—ZO‘<—*=11H1 =R
L e an+1
Theorem (6.8 Ratio Test)
If a series zy + zo +.... Withz, #0 (n=1,2,...)is such that
lim |=2*L| = L, then the series converges absolutely if L < 1 and diverges if
n— 00 ':n

L > 1. No information is obtained if L = 1 or if the limit does not exist.
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L

Example (6)) (Radius of Convergence) -
' , =, (2n)! .
By Eq.(6.8), the radius of convergence of the power series Z )2 (z —34)" is
i
n=>0
[ %2’.’;3 1 .
R - 71131; (2'7?+2)! :rlzl—l;]% a

| (n+D))2 | "

20! 1))? ! 1?2 2
= i [ (21 ) . ((n +‘ ‘)) ) ] i (2n)! (n)’(n+1)
n—oo | (2n + 2)! (n!)? e (2m)2n+1)(2n+2)  (n!)

, (n+1)?
= lim — — _
n—oo (2n + 2)(2n + 1)
| y
— I Divergent
_ ' _ Canv.
The series converges in the open disk "
7
|z = 3i| < ; of radius ;
and center 3i. *
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Functions Given by Power Series

@ To simplify the formulas, we take zg = 0, and write Eq. (6.5) as

oo

Z a,z" (6.9)

n=0

@ If any given power series (6.9) has a nonzero radius of convergence R (thus
R > 0), its sum is a function of z, say f(z). Then we write

f(z):Zanz"=a0+a1z+a2z2+... (6.10)

n=>0

we say that f(z) is represented by the power series or that it is developed in
the power series.
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Uniqueness of a Power Series Representation

Theorem (6.13 Uniqueness of Power Series)

Let the power series ag + a1z + asz® + ... and by + byz + byz? + ... both be
convergent for |z| < R, where R is positive, and let them both have the same sum
for all these =, Then the series are identical, that is, ag = bg. a1 = by.as = bo, .. ..

Hence if a function f(z) can be represented by a power series with any center =,
this representation is unique.

e If a,.b, are coefficients of two power series and a,, = b,,, then it is sure that

ianz” = ibnz”, (6.11)
n=>0 n=0

l.e., the two power series are the same about the point z = 0. =

A function f(z) cannot be represented by two different power series with the

same center. That s, if f(z) can at all be developed in a power series with
center zg, the development is unique.
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Power Series Represent Analytic Functions

Theorem (6.15 Analytic Functions. Their Derivatives)

A power series with a nonzero radius of convergence R represents an analytic
function at every point interior to its circle of convergence.

The derivatives of this function are obtained by differentiating the original series )
term by term.

J

2

All the series thus obtained have the same radius of convergence as the original
series. Why?

_
Hence, by the first statement, each of them represents an analytic function.

o0
f(2) zz:anz":ao—l—alz +a9z% + ...

n=0

f’(Z):(Zanan :O+al +2a22-|—---
n=0

Divergent
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Why? We note that
f(2)= (Z anznj = Z anz" =Z a, (m+1)z" :Z a,  (n+1)z"
n=0 n=0 m=0 n=0

1

*

L

n+1
n+2

an+1 an

a

1=

= lim

n—»o0

-lim

n—»ao0

— R=lm

n—o0

a

an+2(’l+_2)

n+2 n+l

For a convergent series, we have...

f(Z):ian(Z_Zo)n = d +a1(Z_Zo)+a2(Z_Zo)2 T = [f(zo):ao}

[(@)=a,+2a,(z-z)+3a,(z—2, + = | [(z)=a,]

f"(z2)=2a,+3x2xa,(z—z)+ = [f"(z,)=2a,

N [%:—f "(ﬂ ...... [a /(=) J
2! ! n!
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Laurent & Taylor Series Expansions of Complex Functions

If a function f'(z) is analytic for |z —z,| < R,

then f(z) has a Taylor series expansion

=Y a, (z-2)
n=0

where

1 Z
_ qgf()

"2 Y (z-z))

_ f(n)(Zo) @

n!

n+l

| Z
£ (20) = Lﬁ . A )n+1 i (5.3)

2
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Taylor Series

@ If a function f(z) is analytic at z = zg, then it admits derivatives of all orders
there by generalized Cauchy integral formula, i.e., f(™)(z) exist for any

integer n > 0. If we let a,, = £ (z0) in the power series (6.5), we have

n!

0 (n)(,
foy =3 gy (6.19)

n!

n=>0

which is called the Taylor series of f(z) about the point z = 2.

Colin Maclaurin
(1698-1746)
Scottish Mathematician

Brook Taylor
(1685-1731)
English Mathematician
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f(n)(ZO) L 7_7“'f f(Z) d>

- 2mi Jo (2 — zo)ntHL

@ or, by (5.3),

Lo L)

2 o (z* — zp)nt1

dz*. (6.14)

@ If we let zp = 0 in Taylor series (6.13), then the Taylor series about z = 0 is
called a Maclaurin series, i.e.,

2 £(n)
f(z)zzf '(O)z”. (6.15)
n=0

n:
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Example (6l)
@ Find the Maclaurin series of Ln(1 + =) and find its radius of convergence R.

. > —1)nt+1 n—1)! :
@ Let f(z) =Ln(1+ z). Since f("')(,:) — 4 1)(1+:()n. 1)! > 1, we have

f(n)(()) (_1)72-{—1

Ay = - = . n>1.
n! n
and ap = Ln(1) = 0. Now, . = lim Ontil — lim |—— } = 1. Thus
! n—oc s n—oo |+ 1
R :L* — 1 and the Maclaurin series (6.15) is
o0 e 2 .3
Ln(l + z) = Z(—l)““T =z-5+ T —.ee, 2l < 1.
n=1 - .
It can be proved that the alternating harmonic series
_ 1 1 1 .
1 — 5+ 271 + —...=In2 byletting z=1.
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Important Special Taylor Series

n=1
zZ - Zn
=)
n=0
o0 2n+1
. n 2
sin z = Z(—l) on F 1]
n=>0
cosz = (=)™
|
— (2n)!
o0 2n+1
sinh z = nz;() Gn 1)l

cosh z = Z (Z I
n)!
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1424224

AT

~2

1+ 4+ =+

21

~4

4!

in|z| <1,

in|z| <1,

in |z| < oo,

in |z| < oo,

in |z| < oo,

in|z| < oo,

in |z| < oo.
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Laurent Series Expansions of Complex Functions

If a function f'(z) is analytic in
the ring area R, <|z—z)|<R,,
then f(z) has a Laurent series

expansion

=3 a,(z-z)

n=—00
where
_ 1 Cﬁ f(2) dz Note that points where a function is not
"o2mi Y (z—z,)" Iyt lled singulariti
C 0 analytic are called singularities.

Note that for n =—1, we have a | = 1 Cf)f(z) dz = (j)f(z) dz=2ri-a |
27i v, -
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Example 10

(@) The functions ¢, sinz and cos z are analytic functions, and have

Taylor series expansions with a centre z, =0 of

- ¢z
e =l+z+—+—+--
21 3!
3 5 7
. z z z
SINz =z — + — +
31 57!
2 4 6
z z z
cosz=l-—+———+
21 41 6!
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a

n

= R=Ilm

n—»0

an-i—l

1

.l
= lim —"%—
n—o 1

(n+1)!

n—»o pl

= lim(n +1) =

n—»0
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Pierre A. Laurent
(1813-1854)
French Mathematician

Example 10 (cont.)

sin z
3

(b) The functions € and
z z

region excluding the point z, = 0, these functions have Laurent series

are not analytic in the point z= 0. In the

expansions of

+ About Homework Assignment No. 4......

You can start working on Problems 4.1 to 4.3 at this point.
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Example 10 (cont.)

1
(c) The function e is analytic for \z\ < 1. The Taylor series expansion with

centre z, = 0 of this function is the geometric series, i.e.,

Lo iza2 4
-z

(d)* Find Taylor series expansion of f(z) = ! at z, =3 & its convergence radius.
Z
1

13 13-z (3-2Y (3-z) |1 23 (-3 (-3
f(z)zl_(MJ{H 3 { j+( j+ }_3 ¥ Ty 3
3

The series converges for all

<l = |z-3|<3.Thus,its R =3.

‘3—2
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Complex Analysis - 7 ...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy's Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series, Taylor Series, and Laurent Series

7 Residue Integration
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Material flow...

Classification of Singularities

A complex function f(z), which has a Laurent series

expansion at z,...

=3 a,(z-z)

a a a
=——m 4wl 44—l G g ta(z—z))+
m m—1
(z—zy)" (z2—2z)) Z7 2

Then, 1t 1s said that f(z) has a singular point (pole) of order m at z,,.

Residues

Res(f,z,)=a_, =1<I>f(z) dz = C_f)f(z) dz=2mi Res(f,z,)
27i Y, -
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Material flow (cont.)...

Residue integration

If /(z) is not analytic in several points z,, z,, ...z, , then

$rydz=Pf(2)dz+ §f(2)dz+-+§ f(2)dz
C G C, o
=2mi Res(f,z))+2xmi Res(f,z,)+---+2xi Res(f,z,)

=27i ) Res(f,z,)
j=1

$ f(2) dz =27 Zn:Res (f.z,)
C J=1

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 203 Ben M. Chen, CUHK MAE



Material flow (cont.)...

Calculation of Residues

1. f(z) has a simple pole at z =z LRes(f z,)=lm(z-z,) f(2) 1

zZ—> Zy

2.  f(z) has an nth order pole at z =z,

Res(f,2,) = —— lim dnl[(z z)" f(2)]
O (1) | d 2 ’

A(2)

B(2)

3. f(2)=

where B(z) has a simple zero at z = z,, while A(z,) #0

and both 4 and B are differentiable at z = z;; LReS(f’ZO) _ ;’((Zo)) J
20
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Material flow (cont.)...

2
Real integral of the form '[ f(cosf,sinf) db
0

i 1 1)y 1( 11
[ f(cos6,sin6)d6= ¢ f{—(z +—),—(z ——ﬂ.—dz
) e 2 z) 2i z) iz
o0 o0 P
Improper integrals of rational functions J- f(x)dx= I QEX; dx
—00 —0 X
Q(x) # 0 for all x being real, degree[O(x)]> degree[ P(x)]+ 2
- < | % S
J‘f(x)dx=27ziZRes(f,zj) X X X«
—o0 J _R > R
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Material flow (cont.)...

+00 +0 .
Improper integrals of Fourier-type If(x)cos mxdx or If(x)sm mxdx

P(x)

f(x) = o)

,  O(x)#0 for all x being real,

degree[O(x)] > degree[ P(x)]+1, m >0

]9 f(x)cosmx dx = R{Zm’ ZRes(feimZ,zj)}

Tf(x)sinmx dlem{%riZRes(feimz,Zj)} R
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Classification of Singularities

Recall: Analytic Functions and Singularities...

Theorem (3.1 Cauchy-Riemann Equations)

(3.6).

(3.6) at all points of D.

Let f(z) = u(x.y) + iv(x,y) be defined and continuous in some neighborhood of
a point z = x + iy and differentiable at = itself. Then, at that point, the first-order
partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations

Hence, if f(z) is analytic in a domain D, those partial derivatives exist and satisfy

(3.6)

Points where a function f(z) is not analytic are called singularities or poles

or singular points.
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Classification of Singularities

Poles

Consider the Laurent expansion of different functions:

: : . sin z
1. No negative powers of z in the expansion. For example has a

z
singularity at z, = 0.

sinz 1 22 2 7 22 4z
= | z— + — I =]- + — Feanann
z z 31 5 7 31 51 7!

so that its Laurent expansion has no negative powers of (z—z,). The

function is said to have a removable singularity at z, = 0.

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 208 Ben M. Chen, CUHK MAE



Poles (cont.)

2. Afinite number of negative powers of z in the expansion, e.g.,

e21( 2223Z4j11112
—=—=|1l+z+ e =g+ "

=3 + o+ 4 R TR el St
z2 z 2! 31 4] z2 z- 2z 31 4]

The highest negative power is 3. This function is said to have a 3rd

order pole at z, = 0.

3. Aninfinite number of negative powers of z in the expansion, e.g.,

/2 11 1
e =l+—+ S+
z 21z7 3!z

+ ..

This function is said to have an essential singularity at z, = 0.
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Example 11

(a) _cosz—-1 _1 1_22+Z4_z6+m 1 :_Z+23_ZS+
J@=—= " u e 21" 41 6!

The function f'(z) has a removable at z, = 0.

(b) f(Z):Z5 :;Z Sl s +— =" 4.

sinz 1 2 2z’ 1 1 1 Z?
_7_|_ e —_
31 51 7! zt 3122510 7!

The function f'(z) has a 4th order pole at z, = 0.
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Example 11 (cont.)

© f)=z2e" o214y 12+ 13+--- B SR S
z 2z 3lz 2! 3z

The function f'(z) has an essential singularity at z, = 0.

22-2 2 42z+1-2z-1-2 (z+1)*=2(z+1)-1
(z+1)° (z+1)° (z+1)°
1 2
— 5= +1
(z+1)" (z+1])

d) f(z)=

Thus, f(z) has 2nd order pole at z, = —1.
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Example 11 (cont.)

e) f(z)= 2 =2 _z+72 2 1_|_1_2

Z(z—l—l) z+1 z z+1 z

It is clear that f'(z) has 2 singular points at z, = 0 & z, = —1, respectively.

For z, = 0, we have the following Laurent series of f(z) centered at z, = 0

z? -2 12 2 1
=1+ ——=1-—4+
z(z+1) z+1 z z 1—-(-2)

=—2+1+[1+(—2)+(—2)2+(—Z)3+---]

2
=—1+2—Z+ZZ—Z3+"'
z

f@)==

Thus, the order of singularity of f(z) atz, = 0 is 1.
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Example 11 (cont.)

For z,=—1, we have the following Laurent series of f(z) centered at z, = —1

) 1 2 1 2
_1 _|_

f(z)=

= +
z(z+1) z+1 z z+1 1-(z+1)

:1+1+2-[1+(z+1)+(z+1)2+(Z+1)3—|----}
z+1

= GeD) +34+2(z+ D) +2(z+1)° +2(z+1)° +---
z+

Thus, the order of singularity of /(z) at z, = —1 is again equal to 1.

[ 1st order poles are also called simple poles or simple singularities. }
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Z.eros

If g(z,) =0, then the function g(z) is said to have a zero or root at z = z,,.

If g(z,)=g'(z,)=g"(z)) =---=g" " (2,) =0 and g"”(z,) # 0, then the function

1s said to have an n-th order zero at z = z,.

Obviously, for a function g(z) with an n-th order zero at z =z, its Taylor series

expansion at z, can be written as

(”)( Zp)

}'l+1) (ZO )

( 1)' (Z )n+1

g(2)=0+5 (7)) +

\

Theorem:

If the function g(z) has an n-th order zero at z =z, then f(z) = b has an n-th

order pole atz = z,,.

/
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Example 12
I
(z=1)(e” —e)

a) Consider the function £(z) = , Which has a singularity at z, = 1.

Let g(z)=(z-D)(e” —e)
Then g'(z)=e"—e+(z-1)e*, g'(1)=0
g'(z)=e"+(z=De" +e”, g"(1)=2e+#0

Therefore g(z) has a 2nd order zero at z, = 1, and f(z) has a 2nd order

pole at z,= 1. Also, g(z) has a Taylor series expansion at z,= 1 as follows
g(z):(z—l)(eZ—e):(z—l)(e-ez_l—e)ze(z—l)(ez_l—l)
=e(z—l)(1+(z—l)+21'(z—l)2+31'(Z—1)3+---—1j
oD+l 1P+ (-1 4.
=e-(z—1) +2!(Z 1) +3!(Z D™+
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Example 12 (cont.)

b) Consider f(z) = 1. , which has a singularity at z, = 0.
z—sInz

Let g(z)=z—sInz.

Then, g'(z)=1-cosz 2'(0)=0
g"(z)=sinz 2"(0)=0
g"(z)=cosz g"(0)=1=0

Therefore g(z) has a 3rd order zero at z,= 0, and f(z) has a 3rd order

pole at z, = 0. Also, g(z) has a Taylor series expansion at z, = 0 as follows

3 5 7 3 5 7
z z z z z z
4. +

+ — — — —
3t 57! 3t 5 7!

g(z):Z—sinzzz—(z—
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Residues

We know that if /(z) is analytic in domain D except at the point z,, it has a

Laurent series expansion of

o0

(@)=, a,(z-z)"

n=—0o0

with

a, = 21 : 4) f(Z)n+1 dz
Tl C

(z—2)

and C any closed curve in D which encloses z,,.

———
- o

-"—-."

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 217

Ben M. Chen, CUHK MAE



Residues

From last expression of a,, it follows that
1
a=——§f(2)dz=Res(f.z)
27i Y,

where Res (1, z,) is known as the residue of f at z,. Thus

<}S f(z)dz =2xi Res(f,z,)
C
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Residues

If /(z) is not analytic in several points z,, z,,...z, , then

$r2)dz=f(z)dz+ §f(2)dz++ f(2)dz
C G Cy o
=2riRes(f,z)+2xiRes(f,z,)+---+2xiRes(f,z,)

=27i ) Res(f,z,)
j=1

$ f(2) dz =27 Zn:Res (f.z,)
C J=1
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Calculation of Residues

1. f(z) has a simple pole at z =z [Res (f,z,)=lim (Z_ZO)f(Z)J

2.  f(z) has an n-th order pole at z = z,:

L "
LRes (f’ZO):(n_l)!Zh—{Izt|:dznl [(Z—Zo) f(Z)ﬂ J

A
3. [f(2)= Bg where B(z) has a simple zero at z = z;,, while 4A(z,) #0

and both 4 and B are differentiable at z = z,: [Res (f,zy) = ;,((Zo)) }
20
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Proof of.. [Res(f Z) = lim (2 - Zo)f(Z)J and[Res(f 2)= ;((Z“)) }

For a simple pole of f (z) at z = z,), its Laurent series can be written as follows

f(Z)—

+a0+a1(z zy)+ta,(z— ZO) +-
—2)

Multiplying both sides by z — z, and then letting z — z,, we obtain

lim (z-2)f(2) = lim [, +ay(z—2))+a,(z = 2)° +ay(z =2+ |=a,

Z—)ZO Z—)ZO

This 1s exactly the Ist formula for calculating the residue.

For the 3rd formula, since B(z) has a simple zero at z, its Taylor series can be written as

’ B” z

B(2)=B(z)z-z)+ o0 2z +-

Then, it follows from the 1st formula,

Res (/.2)) = lim (2-2,) ;18 v
i (=2 A(2) e A2) _ A(z)

Z_)ZOB(ZO)(Z Zp) + ;0)(2 Zo) +o OBz 0)+B§0)(Z Zo)+e B,(ZO)
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‘ 1 ' dn—l
Proof of... {Res (f.z0) = (n—1)! A1 szn_l (-2 f(Z)}ﬂ

For f(z) having an n-th order pole at z =z, its Laurent series can be written as follows

a
f(z)—(Z‘Z)+---+Z ‘12 +a,+a,(z—zy)+-
0 0

Multiplying both sides by (z—2z,)" gives

(z=z2))" f(D)=a ,+a_,,(z=z)++a (z=2)" +a,(z—z)" +---

Let g(2) =(z2—2,)" f(2) . Then, we note that
g
g(z)=a_, +a_n+1(z—zo)+---+a_l(z—zo)”_l+aO(Z_ZO)” N @

1s a Taylor series expansion g(z) and « , 1s the coefficient of its (n— 1)-th term.

For the Taylor series expansion of g(z), the coefficient of the (n—1)-th term is given by

(n—l)Z . n—1
Ca,=f Al Ly {d (z-2,)" f(z)]} v

(n=1)!  (n=1)! 55| dz""
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Example 13

4-3 :
(a) Calculate <f> 5 . {RGS (f,2) = im (Z—Zo)f(Z)}
42 T :
f(2)= 42_ 32 _ 4032 has simple poles in z,=0and z, = 1.

22—z z(z—-1)

gﬁ 4752 o [Res(f,0)+Res(f,1)]

2
‘Z‘:Z Z _Z
— 2zl lim 2737 4 lim 4_32} C
_Z—)O z—1] z—l z
=27i(—4+1) !
=— 611
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Example 13

e z
dz

z

(b) Compute C_[}

‘Z‘Zl
¢ - dz=2miRes(f,0)
-1 2

=271 lime*
z—0

=27
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Res (f,z,) = lim (Z_Zo)f(z)}

Ben M. Chen, CUHK MAE



Example 13

SIn z

(c) Compute (j) 2 dz
‘Z‘Zl C
f(z)= 511122 has a simple pole at z, = 0.
z K
0 |
Thus
RLEIR S
=1 7=l ©
=27 lim > -
o Res(f,2,) = lim (z—2,) /(2)
=271 222

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 225 Ben M. Chen, CUHK MAE



Example 13

2z
(d) Compute Zqi (4o 1)

[ Res(f,z,) = 1

lim
(n—1)! 2>z Lz’

i @—zp)" f(z)]}

C

& X
—X

2z

The function f(z) = 2 >~ has a simple
(z+4)(z-1
pole at z,=—4 and a 2nd order pole at z, = 1.
Res(f.—4)=lim — 2% _=_%
z>-4 (z—1)? 25
1 d| 2z >
R 1)=—Ilim —
es(f.D)= 'Zlgdz{z+4}
_lim 2(z+4)—222
=1 (z+4) 25

=0

|

zZ—> )

Res(f,2) = lim (z-2,) (2)

|
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s (z+4)(z-1)°

_8 ) =27zi[ Res(f,~4)+Res(f.1) ]
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Example 13

(e) Compute cj)
|Z|=l

S[S LA Res(f,0)

|
= 27Tl { IZ }
—€ z=0

=27

‘z‘zl

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 227

[Res(f,zo)—

A(z,)
B'(z,)

Ben M. Chen, CUHK MAE



Example 13

2z+4
(f) ComputeCﬁ 22 dz C
s Z +z—-6
X X
2z+4 2z+4 -3 2 /2.5
f@=4 =
z2+z-6  (z+3)(z-2)

has a simple pole at z,=2 enclosed by C. Thus,

22Z+4 dz =2ri Res(f,2)
a5 2 +z—-6
:Zﬂilim{22+4}
z>2| z+4+3
—167zz'
" s LRGS(f,Zo)= lim (Z—Zo)f(z)J
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Homework Assignment No: 4 (Due in one week)

Question 4.1: What is a singular point? What is the order of singularities? What is the Cauchy’s
integral theorem? What is the Cauchy’s integral formula? What are the Taylor series expansion and

Laurent series expansion of complex functions? What are the residues of complex functions?

Question 4.2: Determine the convergence or divergence of the following series:

of n

n=1 n=1

1

Question 4.3: Consider the function f(z) =————.
cosh(z)

(@) Let f(2)= Zan z" be the Taylor series expansion of f(z) around z = 0. Determine ao, a1, a>.

n=0
(b) Let f(z2)= Zb” (z - %) be the Taylor series expansion of f(z) around z = % . Determine b,
n=0

b1, b>. Simplify the resulting expressions as much as possible.
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Question 4.5: Find the residue of f(z) =———

e:
Question 4.6: Calculate CI) £ﬁ] dz
l4=2720\ = ~ <

<

Question 4.7: Calculate dz .

2
22" ]

22 +1
dz .

Question 4.8: Calculate Cj) —
i € Sinz

. 2
sin“ 0

Question 4.9: Calculate _[
5 > +4cos0
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Question 4.4: Find the singularities of f(z) = ¢ —sinz-1
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Applications to solve real integration problems...

2r
Real Integral of the form j f(cos@,sinb) db
0

These integrals can be transformed to an integral of a complex function

along the circle |z| =1 counterclockwise.

The circle can be described by z=¢'’, 0<0 <2z, Then

/cosH: em;em\ /sinez
Y _
N ] ZL \

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 231

ei@_e—ie\ 4
dz=——d0O =ie
do

-

dz

1

= d@zde:.—dZ

e

~

i@de
1

1z

J

Euler’'s formula

e = cos@ + isinb,
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Real Integrals

Consequently, we have

/ D
ff(cose,sine)dez <ﬁfB(z+1J, :

0 |Z|=1

- J
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Example 14

2
1
(a) Evaluate | do

-
N

vas
p cos@+2 T3 o3 |
T;dé— ! : ! dz
y cosf+2 i %(z+§)+2 iz
Y S [Res(f,z()): Zlggz—zo)f(z)}
e z°+4z+1

icﬁ 1
i (- (2+43))(z - (-2-43)

=272 Res(f,—2+\/§)

_ 2
B \/g 2
[ [ f(cos6,sin6)d0 = ¢ f{l(z+1j,l(zlﬂ-ld2}
) ot 2 z) 2i z iz
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)dz




2

Example 14 (b) Compute |

[Res (f,zy)=lm(z- Zo)f(z)J

z—> Zy

Si1/3 7

, S+3sinfd
A 1 1
£5+3sm6’ |i15+3[21i(z—;)} 12 z
1
=2 d
|351 322 +10iz—3
2 1
_??5 R
2 1
Z| 1( ) Z+l3
—27zzRes( i)
3
4
-3 H—% (z+13) -
3 [ I|).f(cos«9,sir1¢9)a’6’:
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Improper Integrals of Rational Functions

We now consider real integrals for which the interval of integration is not

finite. These are called improper integrals, and are defined by
o0 R
| FGydx=1lim | f(x)dx
—00 -R

is a real rational function with

Assume that the f(x) = P(x)
(x)

> Q(x)=0 forall real x (i.e., no real poles)

» degree[Q(x)] > degree[ P(x)]+ 2
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Improper Integrals of Rational Functions (cont.)

Consider the complex integral (J'Df(z)dz with C as indicated in the figure
C
below. Since f(x) is rational, /' (z) will have a finite number of poles in the upper

half-plane, and if we choose R large enough, C encloses all these poles.

Note that C consists of a straight

path from — R to R and a half

circle S on the upper plane.

-R R N )
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Improper Integrals...
Then

§ 1= | ([ 1@d ()
C —R S

-R
The 2nd condition, i.e., degree [Q(x)] > degree [P(x)] + 2, implies that if we set

2)=q z" +q, 2" ++q,, P(2)=p z"+p 2" ++p
q, 4, do Pm m—1 0

then, n>m + 2. Also, for z on S when R is sufficiently large,

sz(Z): ZzP(Z) — pmzm+2+pm—lzm+1+'“ — pm+pm—lz_l+'”

Q(Z) an +qn 1Zn—l + Zn—m—2 (C]n"i'qn—lz_l—i_“.)

< Pl #Puatl 2+ PP R
2 g g e R g g R

<|Pm]. — —— <k <o, forsomeoa>0andk>0
9, | R

k k
_> ‘f(z)‘g 2 - R2 =M
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Improper Integrals of Rational Functions (cont.)

By ML-inequality,

ﬁ jf(z)dzéML:kﬁR:]Z—)O as R—>owo  (Result§)
s

RZ

Consequently, lim | f(z)dz =0. From the equation (*) on the previous slide,

R—00 ¢
S

we therefore have that

R—x

lim j f(2)dz = g[> f(2)dz
-R C

or

Ojo f(x)dx=27zi Y Res(f,z;)

-R

where the sum is taken over all the poles in the upper half-plane.
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Example 15

o0

(a) Calculate I

1 1

Let f(z) = |

122 (z+i)z—i)

j ! —dx=2ri Res(f,i)
o 1+x
1

=27 —
21

=T
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[ Res(f20) = lim (z-z2,) f(2) }
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Example 15

| . dn -1
[Res( frzy) = (n_l)!jgnzlo{ I S| @z f (z)ﬂ

\____

(b) Calculate _[ ) dx
o (l+x
L 1

Let f(z)= (1+22)3 B (z—|-i)3(Z—l')3

J‘ (1+lx2)3dx:2m Res(f,1)

12
= 71 lim

z—1 (Z+l) >< -l

(—61)
=7i| ——
16
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Example 15

o0

(c) Calculate j

—00

1 dx. Let f(Z): 2

and its poles are given by
4+x z +4

A 4d=0 = od=4d®r — o(4)le A

N T P

s =V2el = 14+ n=0
Zz=\/§ei3%=—l+i,n=1
Z3=\/§ei5%:—l—i, n=>2
z,=\2e = 1-i, n=3 X | X
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Example 15

Then

T ! a’x:27zi[Res(f>1+i)+Res(f’_l+i)]

Z—l i z= 1 l‘

-1 1
=27 | —(+i)+—(1-i
7 16( [) 16( 1)}

— X X
P j
8
A(z,)
_ 7 R ,Z0) = L
_T [ es(f,z,) B’(ZO)}
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Improper Integrals of Fourier-type Functions

Consider integrals of the form

T f(x)cosmxdx  or Tof (x)sin mxdx

Assume that f(x) = P(x)/ O(x) is a real rational function with

» (O(x) =0 for all real x (i.e., no real poles)

» degree [Q(x)] > degree [P(x)] + 1

> m>0

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 243 Ben M. Chen, CUHK MAE



Improper Integrals of Fourier-type Functions

Consider the complex integral
R
<_f> f(2)e™ dz = j f(2)e™dz + j f(z)e™ dz =21y Res(f ™ ,a;)
C -R N J

We will show (i.e., Theorem X next page) that under the conditions m > 0 and
degree [Q(x)] > degree [P(x)] + 1, we have Cﬁf(z)eimz dz=0 as R— . Noting
S

that eimZ = cosmz +isinmz, It can be shown

.

{ T f(x)cosmx dx = R{Zm’ ZRes (f e"’”z,z].)

-/

7))

L T £ (x)sin mx dx = Im{Zm’ D Res(fe™,z))

=/
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Theorem X

If g(z) = gg; with degree[Q(x)] > degree[P(x)]+1 and m >0, then
;glgoig(z)e dz=0 <

-R

There is no name for this theorem. As such, for easy references, we call it
Theorem X. The result has been used earlier in deriving improper integrals

of Fourier-type. It will be used later few more times.
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Proof of Theorem X

Observing the curves on the right, if we let LY
X —> o (= Y—> oand R - ), the integral S
of the function along S is the same as it
along the blue straight lines. Under that
-R X X R

degree [Q(x)] > degree [P(x)] + 1

and along the straight line from X+ i0 to X+ /Y, we have

K K K

<. le

— eim(X+iy)
z| | X+iy|] X

‘Zg(Z)‘SK = \g(z)\ﬁ | imz |— imX | | e " |: e ™

and thus
X+iY Y
, K¢ _ K 1 _ K
J g(z)e"dz Sje mydy:-(l—e ’"Y)<—>O as X >
X+i0 XO X m mX
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Proof of Theorem X (cont.)

Similarly, we can show the integral along

the straight line from -X + iY to —X + i0 has S
a same bound, i.e.,
- X+i0 . K
_X“;iyg(z)e’mzdz <ﬁ_)0 as X - oo R —Xx X R
For the integration along the line from X+ iY to — X+ iY, we have
K K K : . ) .
<K < — < imz |__ | im(x+iY)| _| imx | ,mmY — -mY
@K = [e@I = TS [ =™ |-le™ |=e
and thus
- X+iY -mYy X
_[ g(z)e" dz < KeY j dx =2K();emyj—>0 as X >0, Y >
X+iY -X QED
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Example 16

=Re| 27i Res| ——.,i

(@) J‘ XCOS.X ze

z=I

[Res(f,zo) — g,((ZZO)) 1
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Example 16

= — >< -1

Eee)
2
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Example 16

o0

S22 dv=Re

CoS2x
© j 9+ x

i2z C
Re 2%7(8 j X 3i
2z
B z=3i
- . .
Rel 7€ }
i 3
re® X —3i
3

[Res(f,zo) — g,((ZZO)) 1
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Example 16

K sin x e’
d dx =Im| 27i Res ,—1+1i
()_L X2 +2x+2 ( 2 ﬂ

z°+2z+2

=Im| 271 €
2z4+2 .
z=—1+i

[ |
| 2 2]} e
- l X
1| 7€ } >
| e X
im 7 (cosl—isinl) }
i e
Res(f 1 20) =
=— " sinl B(z)

e
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*Integrals of Rational Functions (IRF-1) / R k: Th \
emark: €

. : . P id f]
Given a rational function of z, f(z) ==& idcd came 1rom an
O(z) example presented
with real or complex coefficients and with by Liu Haitong in
d >d p ) an ESTR 2014
> degree[Q(z)] = degree[ P(z)]+2, Interactive
we then have KTutorial Class.. /
§ rrdz=§ L dz=0
2 2 00)
X X
forany »>0so long as O(z) =0 has all its V r

roots (or equivalently f(z) has all its & N
singular points) inside the circle |z| =r.
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Proof of IRF-1...

As in the proof of Result S, the condition, i.e., degree [O(x)] > degree [P(x)] + 2,
implies that

N=qg z" + _Zn_1_|_..._|_ , P(z) = 7"y _Zm_1_|_..._|_
q, 4 qy P Pma Po

with n >m + 2. Then, for z on C when R is sufficiently large, we have

2 ()= EPE) | puF T p e
0(z) q,2" +q,2"
C
<|Pm . n(—);—z <k<o, forsomeoa>0,k>0
9 | |2] X X P
k k >
Z) < =
z)dz SML=k27zR=2k7[—>O as R — oo.
2

R R R
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Proof of IRF-1 (cont.)...

In view of the fact that

[f@d=]r@dz+ [ f(2)dz+ | f(2)dz
C G G, G

we have
 f(2)dz= ¢ f(2)dz
|z|=r |z|=R
(JS P(Z)dz 0 as R — oo,
|z|= RQ(Z

forany »>0so long as O(z) =0 has all its

roots (or equivalently f(z) has all its

singular points) inside the circle |z|=r.
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(&

Example 17 \
2z
: d
Compute 952 =D+ z+)z+1-i) )
2
By the result of IRF-1, we have % 7 >
2z
$ o - dz =
o (z—l)(z+1)(z—z)(z+§)(z+1—l)
We can verify this by finding all the residues (very tedious!), i.e.,
2z 1
R 1) = =—(1+1 , e
A YOS S W S A
Res(f,—l):;(1+3i), Res(f,i):—i, Res(f,—é)z—fgzs—fjsi, Res(f,—1+i):2§—'2§i.
We have
§ rodezml(20 (B UT) 0 (2 ) (8 108,
P 195 195 195 195 195 \195 195 195 195
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*Integrals of Rational Functions (IRF-2)

Given a rational function of z, /(z) = Pz)

0(z)

with real or complex coefficients and with K xr
‘.\‘ « ;

> degree[O(z)] > degree[ P(2)]+ 2, \ X \ j

it then follows from the result of IRF-1,

Cj) f(z)dz=2rmi ZRes (f»z,), where z; are all singular points inside |z| = .
|z|=r J=1

nout

=271 ZRes (f,z,), where z, are all singular points outside |z| = r.
k=1

This result is particularly economical when n_, is significantly smaller than n. .

out

It shows that the integration is somehow linked to the singular points outside

the integration path as well.
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Example 18

Compute

CJS 2 : dz f/ \v\ 1.25 ,
s EDEHDE =D+ 5z +1-1) \/

By the result of IRF-2, we have

Cﬁ f(2)dz=-2mi-Res(f, —1+z)——2m(28_36 j (72_56 j
7=1.25 65 65 65 65

where the residue was calculated in Example 17.

Instead of computing 4 residues for the singular points inside the path, we only

need to work out one outside.

ENGG 2720 / ESTR 2014 - Complex Variables for Engineers ~ Page 257 Ben M. Chen, CUHK MAE



Homework Assignment No: 5 (Due in one week)

1

Question 5.1: Calculate 85 —_—dz.
’-|:3 z°+2z42
Z
Question 5.2: Calculate —dz.
’jjiz zZ°+2z+2

|
ae @+’ (z-2)'(z+3)’(z- 9’ (z+50z-7)

Question 5.3: Calculate

]
Question 5.4: Calculate dx .

_T(\ +1)(\ +9)

Question 5.5: Calculate .[ —dx.
% 31y
Question 5.6: Calculate J‘&d,\a
X" +2x+5
Question 5.7: Calculatej‘ﬁdx_
(x +l)“
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Final Remarks on Complex Analysis...

In this course, we have learnt some special operations of —1, 1.e., we start with
v/—1 and end up with the residue a_,. If you know where this a_; comes from,

you know almost everything about what we have covered in the class.

Finally, also note that for a complex function, its singularity matters the most...

e’=—1 &

!
f{ Roger
/ Cotes
(1682-1716) =

=4
This side of the story... Another side of the story...
e =cosx+isinx ix=1In(cosx+isinx)
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That's all, folks!
Thank You!
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