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Partial	Differential	Equations
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Partial	Differential	Equations	– 1…	

1. Even and odd functions, periodic functions
2. Fourier series of a periodic function
3. Fourier series: Half-range expansions
4. Concepts of partial differential equations
5. Heat equation (or diffusion equation)
6. Wave equation
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Even	and	Odd	Functions	

 During Fourier series analysis, it is useful to distinguish two classes of 
functions for which the Euler formulae for the coefficients can be 
simplified. 

 The two classes are even and odd functions, which are characterized 
geometrically by the property of symmetry with respect to the y-axis 
and the origin, respectively.

even odd
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Let f be defined on an x interval, finite or infinite, that is centered at x = 0. We 
say that f (x) is an even	function	if 

f (–x) = f (x) 

and an odd	function	if       

f (–x) = – f (x) 

Definition	of	Even	and	Odd	Functions	

(i.e. the graph of f is symmetric about the y-axis.)

(i.e. the graph of f is anti-symmetric about the origin.)

Even function examples:  

1,  x2,  cos x,  |x|,  5x6  2 sin2x
Odd function examples:  

x,  x3,  sin x, 5x7  2 sin3x
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Properties	of	Even	and	Odd	Functions

 even + even = even
i.e., the sum (difference) of two even functions is even.

 even  even = even
i.e., the product (quotient) of two even functions is even.

 odd + odd = odd
i.e., the sum (difference) of two odd functions is odd. 

 odd  odd = even
i.e., the product (quotient) of two odd functions is even.

 even  odd = odd
i.e., the product (quotient) of an odd and an even function is odd.

Note: These properties can be verified directly from the definitions. 
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Two	Useful	Integral	Properties

 If f is an even function, then

 If f is an odd function, then

0
( ) 2 ( )


 

a a

a
f x dx f x dx

0)(  dxxf
a

a

– a a 

– a 
a 
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Note: A given function is not necessarily even or odd. Every function 

can be uniquely decomposed into the sum of an even function  fe , 

and an odd function fo as

( ) ( ) ( ) ( )( ) ( ) ( )
2 2 e o

f x f x f x f xf x f x f x   
   

~ even ~

~ odd ~

( ) ( ) ( ) ( )( ) ( ) ( )
2 2e e e

f x f x f x f xf x f x f x   
    

( ) ( ) ( ) ( )( ) ( ) ( )
2 2o o o

f x f x f x f xf x f x f x   
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 Since                      is neither symmetric nor anti-symmetric about x = 0.

 it is neither even nor odd.

 Putting                       and                           into 

xexf )(

Example

Decompose a function into the sum of an even function and an odd function

xeexf
xx

e cosh
2

)( 





xexf  )(xexf )(

gives

( ) ( ) ( ) ( )( ) ( ) ( )
2 2 e o

f x f x f x f xf x f x f x   
   

xeexf
xx

o sinh
2

)( 





even odd
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Given a function f defined over I, if there exists a positive constant T such 

that 

Periodic	Functions

f (x+T) = f (x) 

for all real x I. Then, f is a periodic	function	of x with period T.
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 For a periodic function of period T, f (x + T) = f (x) for all x.   

 Note that 2T is also a period, and so is any multiple of T.

 Of all these possible periods, if there exists a smallest	one, that period 

is called fundamental	period	of f.

 Example:

are periodic with fundamental period                                                               . 

Fundamental	Period

   sin sin , cos cosm x m xx x
L L
         

   

1 2
2 2

m Lf T
L f m
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Partial	Differential	Equations	– 2…	

1. Even and odd functions, periodic functions
2. Fourier series of a periodic function
3. Fourier series: Half-range expansions 
4. Concepts of partial differential equations
5. Heat equation (or diffusion equation)
6. Wave equation
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Given a periodic function f (x) with fundamental period 2ℓ, 
we can define a trigonometric series as follows

0
1

FS cos sinn n
n

n x n xf a a b 



             
  

where the coefficients are given by the Euler	formulas	

and are known as the Fourier	coefficients	of f (x).





















1,2,     ,sin)(1

1,2,    ,cos)(1

  ,)(
2
1

0































ndxxnxfb

ndxxnxfa

dxxfa

n

n





Fourier	Series	of	a	Periodic	Function

This 
series is 

called 
Fourier	
Series	of 

f (x).

Joseph Fourier 
(1768–1830) 

French Mathematician
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Piecewise	Continuous	Functions

A function f (x) is piecewise continuous on an interval [a, b] if this interval 

can be partitioned by a finite number of points

a = x0 < x1 < … < xn = b such that 

(1)    f (x) is continuous on each (xk, xk+1) 

In other words, a function f (x) is piecewise continuous on [a, b] if it is 

continuous on [a, b] except for a finite number of jump discontinuities.

1

(2) lim ( ) , 0, , 1

(3) lim ( ) , 0, , 1

k

k

x x

x x

f x k n

f x k n










   

   



 a bx1 x2 x
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For example, consider the following piecewise-defined function f (x),

Obviously, f (x) is piecewise continuous on [0, 3].

2 , 0 1
( ) 3 , 1 2

1 2 3

x x
f x x x

x x

  
   
   

Left- and right-hand limits of f : 

0 0
( ) lim ( ); ( ) lim ( )

h h
f x f x h f x f x h 

 
   

where h → 0 through positive values.
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Theorem:	Let f (x) be 2ℓ -periodic, and let f (x) and f (x) be piecewise	

continuous	on [– ℓ, ℓ]. Then, for any x in (– ℓ, ℓ), we have

Convergence	of	Fourier	Series

 0
1

1cos sin ( ) ( )  ,
2n n

n

n x n xa a b f x f x 
 



     
 

  

where the an’s and bn’s are given by the Fourier coefficients of f (x).	

It converges to the average value of the left‐ and	right‐hand	limits	of  f (x). 

Remark:	If f (x) is continuous, then 

 0
1

1cos sin ( ) ( )  ( )
2n n

n

n x n xa a b f x f x f x 
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Q1	(Saw‐tooth	Wave).	Consider the function below.	

This function represents a saw tooth wave, and is periodic with fundamental 
period T	=	2L.

Find the Fourier series representation for this function.

Example

)()2(,
,0
,

)( xfLxf
Lx

LxLx
xf 
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Given a periodic function f (x) with fundamental period 2ℓ, the trigonometric 
Fourier series representation:

0
1

FS cos sinn n
n

n x n xf a a b 



          
    

  

where





















1,2,     ,sin)(1

1,2,    ,cos)(1

  ,)(
2
1

0































ndxxnxfb

ndxxnxfa

dxxfa

n

n





Soln.: Fourier Series Representation
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0
1 0

2
L

L
a xdx

L 
 

0
1 ( )
2

a f x dx
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1 cos 0, 1, 2,
L

n L

n xa x dx n
L L




   








1,2,    ,cos)(1







 



ndxxnxfan


Because is an odd function         cos n xx
L


 even  odd = odd
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c1 1 ossin
L L

n L L
b x dx

L
L n

n
n x

LL
x xd

L





 
 


 

 odd  odd = even

1 cos cos
L

L

L
L

n x n xx dx
n L L

 
 



 
    

 


 

  1

1 2 ( 1)

, 1,2,2 1

0n

nL
n

L
n

n









  

  

o si1 n2 c s
L

L

LL n n
Ln n

x
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1

1

sin12)(
n

n

L
xn

n
Lxf 


It follows that the Fourier series of  f is 

Note: Later we will find that f is an odd periodic function with period 2L
 an = 0

0
1

FS cos sinn n
n

n x n xf a a b 



             
  

  ,2,1,12 1   n
n

Lb n
n 
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The graphs of the partial sum f9(x) and f are given below 

 





9

1

1

9 sin12)(
n

n

L
xn

n
Lxf 
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1

sin12)(
n

n

L
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1

1

sin12)(
n
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L
xn

n
Lxf 
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1

1

sin12)(
n
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L
xn

n
Lxf 
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y y y

sawtoothsawtooth
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Remarks

•		f is discontinuous at x = (2n +1)L,	

•  f	is discontinuous at x =  (2n +1)L,	and at these points the series converges 

to the average of the left and right limits, which is zero.

At x =  (2n +1) L 

( ) ( )( )
2

0
2

f x f xf x

L L
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Gibbs	Phenomenon (occurs near the discontinuities)

 The partial sums appear to converge to f at points of continuity while they 
tend to overshoot f near points of discontinuity. 

 This behavior is typical of Fourier series at points of discontinuity and is 
known as Gibbs phenomena. 
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Q2 (Triangular	Wave)

A triangular wave given below is periodic with fundamental period 2ℓ	=	4.	
Find the Fourier coefficients an and bn of f (x):






 20,

02,)( xx
xxxf
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Solution:

 
0 2

0 2 0

1 1 1
4 4

a x dx x dx


     

0
1

FS cos sinn n
n

n x n xf a a b 



          
    

  





















1,2,     ,sin)(1

1,2,    ,cos)(1

  ,)(
2
1

0































ndxxnxfb

ndxxnxfa
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n
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1 ( )cos ,    1,2,n
n xa f x dx n



   
 






 

 
















2

0

0

2

2

0

0

2

2
sin2

2
1

2
sin2

2
1

2
cos

2
1

2
cos

2
1

xnxd
n

xndx
n

dxxnxdxxnxan









0 2
0 2

2 0
2 0

0 2

2 0

1 sin sin sin sin
2 2 2 2

1 4sin( ) sin sin
2 2

n x n x n x n xx dx x dx
n

n x n xn dx dx
n

   


 







 
      

 
    
 

 

 

 

0 2

2 0

1 2 24sin( ) cos cos
2 2

1 44sin( ) 1 cos( )

n x n xn
n n n

n n
n n

 
  

 
 



 
    

 
    
  2

0, even
8 / ( ) , odd

n
n n
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1 ( )sin 0   n
n xb f x dx



   
 



 

0
1

2 2 2

2 2 2 2
1,3,5, 1

( ) cos sin

8 1 3 1 51 cos cos cos
2 3 2 5 2

8 1 8 1 (2 1)1 cos 1 cos
2 (2 1) 2

n n
n

n m

n x n xf x a a b
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2 2
1

8 1 (2 1)( ) 1 cos
(2 1) 2m

m xf x
m
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triangulartriangular



ENGG 2420 – PDE ~ Page 33 Ben M. Chen, CUHK MAE

Fourier	Series	for	Even	and	Odd	Functions

Recall the Fourier series of f (x) with period 2ℓ be

0
1

FS ( ) cos sinn n
n

n x n xf x a a b 
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Case	1: If f (x) is an even function, then

1 ( )sin 0   n
n xb f x dx



   
 



 

 even  odd = odd

0
1

( ) cosn
n

n xf x a a 



        
 

is a Fourier cosine series…
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Case	2: If f (x) is an odd function, then

 odd  even = odd

is a Fourier sine series…

0
1 1( ) 0, ( ) cos 0
2 n

n xa f x dx a f x dx

 

     
  

 

   

1
( ) sinn

n

n xf x b 
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Exercise:	Compute the Fourier series for

3

0 0
1. )

0

2. ( )  ,   1 1

3. ( ) ,

,    π x
f(x

x,      x

g x x x

h x x x
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Partial	Differential	Equations	– 3…	

1. Even and odd functions, periodic functions
2. Fourier series of a periodic function
3. Fourier series: Half-range expansions
4. Concepts of partial differential equations
5. Heat equation (or diffusion equation)
6. Wave equation
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Problem: needs to expand a given function f (x) in a Fourier series, where f (x)
is defined only on a finite interval, e.g., 0 < x < L.	

f (x) is non-periodic, how to expand it in a Fourier series?

Extend the domain of definition of f (x) to – ∞ < x < ∞ by defining an extended	
periodic	function fext of period 2L such that

ext ( ) ( ), 0f x f x x L  

Half‐range	expansions:	ƒ	is given only on half the range, half the interval of 
periodicity of length 2L.

L 2L 3L– L– 2L– 3L

F

fext

x

L

F

f

x
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Two Ways of Extensions of ƒ(x)

1. Extend ƒ(x) into an even periodic function (even extension)

In this case, 

ext

( ) for 0
( )

( ) for 0
f x x L

f x
f x L x

 
     

Note: fext(x) is symmetric about x = 0    fext(x) is an even periodic function  
 Its Fourier series contains only cosines (no sines).

Half-Range Cosine Expansion

and ext ext( 2 ) ( )f x L f x 

L

F

f

x
L 2L 3L– L– 2L– 3L

F

fext

x

ext 0
1

( ) cosn
n

n xf x a a
L
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with 

0
1

( ) cos , (0 )n
n

n xf x a a x L
L




         


Half‐Range	Cosine	Expansion

0 0

0

1 1( ) ( )
2

 
1 2( )cos ( ) cos

L L

extL

L L

n extL

a f x dx f x dx
L L

n x n xa f x dx f x dx
L L L L
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2. Extend ƒ(x) into an odd periodic function (odd extension)

In this case, 

ext

( ) for 0
( )

( ) for 0
f x x L

f x
f x L x

 
     

Note: fext(x) is anti-symmetric about x = 0    fext(x) is an odd periodic function  
 Its Fourier series contains only sines (no cosines).

Half-Range Sine Expansion

and ext ext( 2 ) ( )f x L f x 

L

F

f

x

ext
1

( ) sinn
n

n xf x b
L




       


extf
F
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where

1
( ) sin , (0 )n

n

n xf x b x L
L




        


 







L

n dx
L

xnxf
L

b
0

sin)(2 

Half‐Range	Sine	Expansion

Similarly, the half-range sine expansion of f (x) can be expressed as  
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Q1.: Find the Fourier cosine series for the function









210
101

)(
xif
xif

xf

Solution. L = 2, bn = 0,

2
11

2
1)(1 1

00
0   dxdxxf

L
a

L





















  2

sin2
2

coscos)(2 1

00




 n
n

dxxndx
L

xnxf
L

a
L

n

1

1 2( ) sin cos
2 2 2
1 2 1 3 1 5cos cos cos
2 2 3 2 5 2

n

n n xf x
n

x x x

 


  






        
   

                      





Example
)(xf

21

1
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Q2.: Find the Fourier sine series for f (x)









210
101

)(
xif
xif

xf

Solution: L = 2 and an = 0, 





























  2

cos12
2

sinsin)(2 1

00




 n
n

dxxndx
L

xnxf
L

b
L

n

 
1

2 2 1 3( ) 1 cos sin sin sin sin
2 2 2 3 2n

n n x x xf x x
n

   
 





                                   
 

)(xf

21

1

Example
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y y

y y

 
1

2 2 1 3( ) 1 cos sin sin sin sin
2 2 2 3 2n

n n x x xf x x
n

   
 





                                   
 

y
y
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1

2 2 1 3( ) 1 cos sin sin sin sin
2 2 2 3 2n

n n x x xf x x
n

   
 





                                   
 

y y y

y y y

halfsinstephalfsinstep



ENGG 2420 – PDE ~ Page 47 Ben M. Chen, CUHK MAE

Exercise. Find the two half-range expansions of 

2 if 0
2( )

2 ( ) if
2

kx Lx
Lf x
k L x L x L

L

     


2 2
1

22cos ( 1) 14( ) cos
2

n

n

nk k n xf x
n L

 






          
  



1.  Half-range cosine expansion (answer)

2 2
1

8 1( ) sin sin
2n

k n n xf x
n L

 






   
 



2.  Half-range sine expansion (answer)

k

2
L L

halfcoshalfcos

halfsinhalfsin
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Partial	Differential	Equations	– 4…	

1. Even and odd functions, periodic functions
2. Fourier series of a periodic function
3. Fourier series: Half-range expansions
4. Concepts of partial differential equations
5. Heat equation (or diffusion equation)
6. Wave equation
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Notation:	Given a function u (x,y), we denote

We will mainly focus on second order PDEs…

2

2

2

2

2 2

x

y

xx

yy

xy yx

uu
x
uu
y
uu

x
uu

y
u uu u

x y y x
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Order	of	Partial	Differential	Equations

•  The order of a differential equation is the order of the highest derivative of 
the unknown function that appears in the equation. 

Examples:

• Second-order PDEs will be the most important ones in applications. 

Example:

)15(5 2  yxyuuu yxx  2nd	order	

4 2
2

4 2

3 0

3 2 0

1 t

y y

y y t

d y d y e
dt dt

  

   

  

1st Order

2nd Order

4th Order
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Linearity

•   A PDE is linear if and only if it is a linear equation in the unknown function 
u and all of its partial derivatives. 

Otherwise, it is called nonlinear, for example, if it contains terms such as 
u2, u3, (uxx)2, (uxy)3, …, etc.

Homogeneous

A linear PDE is homogeneous if each term contains either u or one of its 
partial derivatives. Otherwise, it is non-homogeneous. 

Example:	

2 (x  y)uxy + y uy3 xu =  ex+y

is a 2nd order linear PDE, u is the dependent variable, while x and y are the 
independent variables. It is non-homogeneous.
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•  One dimensional heat Equation: ut = α2 uxx

•  One-dimensional wave Equation:   utt = c2 uxx

•  Two-dimensional Laplace Equation:				 uxx + uyy = 0

•  Two-dimensional Possion’s Equation:   uxx + uyy = f (x,y)

Some	Important	2nd	order	PDEs

where α and c are positive constants, t is time, x and y are Cartesian 
coordinates.

Which of the above PDEs are homogeneous and which are not? 
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2nd	Order	Linear	PDEs	and	Their	Classification	

A uxx + 2B uxy+ C uyy + D ux + E uy+ F u = f 

Classified by three types:

Consider a linear second-order PDE

Parabolic: if   B2 – AC = 0

Hyperbolic: if   B2 – AC > 0

Elliptic: if   B2 – AC < 0
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A uxx + 2B uxy+ C uyy + D ux + E uy+ F u = f 

Solutions	to	Differential	Equations

• A solution to a PDE in some region R :

 A function u (x,y) that has all the partial derivatives appearing in 
the PDE in some domain D containing R, and satisfies the PDE 
everywhere in R.

 The function u (x,y) is continuous on the boundary of R, and has 
those partial derivatives in the interior of R.
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•   In general, the totality of solutions of a PDE is very large.

•   For example, u = x2 – y2, u = ex cos y, u = sin x cosh y, u = ln (x2 + y2) are all 
solutions of

02

2

2

2









y
u

x
u

Check for u = x2 – y2, 

2 2 2 2 2 2 2 2

2 2 2 2

( ) ( ) (2 ) ( 2 ) 2 2 0u u x y x y x y
x y x y x y

        
       

     

Check for u = ex cos y, 

   

   

2 22 2

2 2 2 2

cos cos

cos sin cos cos 0

x x

x x x x

e y e yu u
x y x y

e y e y e y e y
x y
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•  The unique solution of a PDE will be obtained by the use of additional 
conditions arising from the problem. 

◊ Boundary conditions

◊ Initial conditions

 Two methods for solving PDEs:

1. Using ordinary methods (as ODEs)

2. Using the separation of variables technique 
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Remarks:	

Three important questions in the study of differential equations:

 Is there a solution?  (Existence)

 If there is a solution, is it unique?  (Uniqueness) 

 If there is a solution, how do we find it?  

Analytical Solution, Numerical Approximation, …
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Solve	PDEs	using	ordinary	methods	(as	ODEs)

Problem: Find all solutions of the PDE:	uxy = 0

 Integrate with respect to y to get:  ux = f (x) 

 Integrate with respect to x to get: u = X (x) + Y (y) 

u = sin x + e y and u = 3x + x2 + cosy are solutions of the above PDE.

Solution:

   sin 0y y
xyu x e e

x y x
   

       

   23 cos sin 0xyu x x y y
x y x
   

         



ENGG 2420 – PDE ~ Page 59 Ben M. Chen, CUHK MAE

Note

 Solutions of PDEs involve arbitrary functions (instead of arbitrary 
constants).

 Those arbitrary functions can be found from some given boundary 
(or initial) conditions.
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Method for solving separable equation

Use the separation of variables technique to solve

023  yx uu with xexu  4)0,(

Soln.	 Assume                                                   . Then PDE becomes ( , ) ( ) ( )u x y X x Y y 

' 2 '3 ' 2 ' 0
3

X YX Y XY
X Y

    

kxecxXkXX 1)(0' 

Example:

kyecyYkYY 2
3

2)(0'
2
3 

)32(
21

22
3

)()(),( yxkykx k

ceececyYxXyxu  

Given that                                                                                            , we have  1,4)0,(4  kccexue kxx

)32(2
1

4),( yxeyxu 

{
constantk 
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To verify if                                                  is indeed a solution of

we check 

023  yx uu

)32(2
1

4),( yxeyxu 

   
   

1 1
2 2

3 3
2 2

3 3
2 2

(2 3 ) (2 3 )3 2 3 4 2 4

12 8

312 8
2

0

x y x y
x y

y yx x

y yx x

u u e e
x y

e e e e
x y

e e e e

   

 

 

 
  

 
 

 
 

   



Checked! It is indeed a solution. The separation of variables technique 
works for solving this problem…
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Remarks:	

 Separation method is a very effective way in solving many PDEs, 

e.g., heat equations, wave equations, Laplace equations, which 

are to be studied next.

 All PDEs we are going to tackle in the coming sections are to be 

solved using the separation method with some mathematical 

tricks.
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It can be verified that                                  is a solution to 

with 2( , 0)u x x

Example:

Is the separation of variables method a universal technical for solving 
PDE problems?

The	answer	is	No!

2 2( , )u x y x y 

02

2

2

2









y
u

x
u

However, this solution can never be expressed as the product of two separate 
functions of X (x) and Y (y), i.e., 

The	separation	of	variables	technique	is	effective,	but	not	universal…

2 2( , ) ( ) ( ).u x y x y X x Y y   



ENGG 2420 – PDE ~ Page 64 Ben M. Chen, CUHK MAE

Partial	Differential	Equations	– 5…	

1. Even and odd functions, periodic functions
2. Fourier series of a periodic function
3. Fourier series: Half-range expansions
4. Concepts of partial differential equations
5. Heat equation (or diffusion equation)
6. Wave equation
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Heat	Equation	and	Modeling

One of the classical partial differential equation of mathematical physics is 
the equation describing the conduction	of	heat in a solid body (originated 
in the 18th century). 

A modern one: space	vehicle	reentry	problem – to analyze transfer and 
dissipation of heat generated by the friction with earth’s atmosphere.
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Heat	Equation	

Consider a straight bar with uniform cross-section and 
homogeneous material. We wish to develop a model for heat 
flow through the bar.

 Describe the temperature u(x,t) in a solid body as a function 
of position x and time t

 Assumptions…
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Suppose that the sides of the bar are perfectly insulated so that no 
heat passes through them. 

Assume the cross-sectional dimensions                                    
are so small that the temperature u can                                          
be considered constant on the cross                                       
sections.

Then u is a function only of the axial                                    
coordinate x and time t .  
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(i). The amount of heat per unit time flowing through a unit of 
cross-sectional area is proportional to             with constant 
of proportionality k called the thermal	conductivity of the 
material.

•   Let  u(x, t) be the temperature on a cross section located at x and 
at time t. We shall follow some basic	principles of physics:

xu  /

(ii). Heat flow is always from points of higher temperature to 
points of lower temperature.

(amount of heat) / uA k
t x
 


 



ENGG 2420 – PDE ~ Page 69 Ben M. Chen, CUHK MAE

which must be equal to the rate of change of the heat (mcu ) 
contained in the element, where c is the specific heat capacity and 
m=A∆xσ, with σ the mass density of the material. 

(iii). The net heat influx into the element per unit time is

xxkAu

xx x
xxxkAu



x xx x x
k Au k Au




 

| | ( ) ( )

| | ( )

x x x x x

x x x x x x

k Au k Au cu cu
t t

k A u u kA u A x

A x

t

m

cu





 
  

 


   



 


i.e., 
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txx uu
c
k




1D Heat Equation Thermal 
diffusivity

  ( )xkA u A x cu
t


  



( )x
t

uk u u
c x t

       

A xc A xc

Taking               , we have0x 

( )xkA u A x cu
t


  


Dividing on both sides of                                            by                , i.e.,  A xc
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Solution	to	the	Heat	Equation

The temperature u(x, t) is described by 1D heat equation

Problem: Consider a long 
bar of constant cross 
section and homogeneous 
heat conducting material.

The problem is to find a	solution	u (x, t) that satisfies (6-1a) to (6-1c)… 

2 2, 0 , 0 ,xx t
ku u x L t

c
 


      

1 2(0, ) , ( , ) , 0u t u u L t u t    

( ,0) ( ), 0 ,u x f x x L  

with boundary conditions: 

(6-1a)

(6-1b)

(6-1c)

where u1 and u2 are given constants, and initial condition:
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yields

( , ) ( ) ( )u x t X x T t 

   
2

2 2
2 ( ) ( ) ( ) ( )xx tu u X x T t X x T t

x t
   

    
 

TXTX 2

T
T

X
X 




2

1


Solution	by	the	Separation	of	Variables	Technique

Step	1: Assume that the solution u (x, t) has the form

Substituting this form into the partial differential equation

or

(6-2)

(6-3a)

(6-3b)
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Since the left side depends only on x and the right side only on t, both 
sides of this equation must equal the same constant, say – ĸ2 ሺĸ ≥ 0ሻ. 
If they were variable, the changing t or x would affect only the left or the 
right side, respectively. Then, we have

Thus, solving the partial differential equation is replaced by solving 
two ODEs. 

2
2

2 2 2

01
0

X XX T
X T T T




  
   

   
 

Remark: Motivation for having the constant non-positive, i.e., – ĸ2, 
will be explained later. If we choose ĸ2 instead of – ĸ2, we 
will end up with a meaningless solution.

(6-4a)

(6-4b){
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Step	2: iሻ.  When  ĸ = 0,

GtTExDxX  )(,)(

where D, E and G are constants.

(6-5)

2

2 2

0 0
0 0

X X X
T T T


 
    

    

Thus, we have

(Why?)

The characteristic equation associated with X is given by

and that associated with T is given by

2 0
1,20 0 ( ) ( ) xX x D Ex e D Ex         

00 ( ) tT t G e G    
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Step	2:

),sin()cos()( xBxAxX  

iiሻ.  When  ĸ ≠ 0,  solving the above two equations gives

where A, B and F are constants.

(6-6)
tFetT

22

)( 

(Why?)

The characteristic equation associated with X is given by

and that associated with T is given by

2 2
1,20 ( ) cos ( ) sin ( )i X x A x B x            

2 22 2 2 20 ( ) tT t Fe              
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Thus, 

for ĸ = 0, andGExDtTxXu )()()( 

  2 2

( ) ( ) cos( ) sin( ) tu X x T t A x B x Fe      

for any ĸ ≠ 0.

Let DG = H, EG = I, AF = J and BF = K,  then, 

for ĸ	= 0,  andIxHu 

  2 2

cos( ) sin( ) tu J x K x e      for any ĸ ≠ 0.

(6-7a)

(6-7b)

(6-8a)

(6-8b)

Note: If we choose ĸ2 instead – ĸ2 earlier, we will have a solution with   
2 2

 as te t      , which cannot happen in real-life.   



ENGG 2420 – PDE ~ Page 77 Ben M. Chen, CUHK MAE

Since Equation (6-1a) is linear, the sum of these solutions must also 
be a solution, 

  2 2

( , ) cos( ) sin ( ) tu x t H I x J x K x e        (6-9)  

How to determine H, I, J and K?

Boundary Conditions
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Substituting u (x, t) of Equation (6-9) into the boundary conditions

1),0( utu 

yields

0J)(0 11 uHuH 

)0(),0(
22

1   tJeHutu t

i.e., 0)1)((
22

1   tJeuH  (6-10)

Since the functions 1 and te
22 are LI on the t interval (why?), 

and

  2 2

( , ) cos( ) sin ( ) tu x t H I x J x K x e        (6-9)  
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The functions y1(t) =1 and                              are linearly independent 

because their Wronskian determinant

By definition, the linear independence of y1 and y2 implies                               

2 2

2 ( ) ty t e  

2 2

2 2

2 2

1 2 2 2

2 2
1 2

( ) ( ) 1
0

( ) ( ) 0

t
t

t

y t y t e
e

y t y t e

 
 

 
 

 





   

  

1 1 2 2 1 2( ) ( ) 0     0, 0.a y t a y t a a    

Side	Note:
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Thus, Equation (6-9) is simplified to
2 2

1( , ) sin( ) tu x t u I x K x e      (6-11)

(6-12)

Applying the boundary condition                          into Eq. (6-11) gives2),( utLu 

2 2

2 1( , ) sin( ) tu L t u u I L K L e       
or

2 2

1 2( )(1) sin( ) 0tI L u u K L e       

(6-13)
1 2( ) 0I L u u   

and
sin( ) 0K L 

LuuI /)( 12  0K or sin( ) 0L 
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If we choose K = 0, then

which is independent of t. Obviously, this cannot be the case.

K = 0 is not a valid choice! 

2 2

1

2 1
1

( , ) sin( ) tu x t u I x K x e
u uu x

L
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Thus, we have to settle with

1, 2,...n n
L
  sin( ) 0L  (6-14)

Substituting    and (6-14) into (6-11), we obtain 

By superposition principle,

2 2

2

( / ) (2 / )2 1
1 1 2

( / )2 1
1

1

( ) 2( , ) sin sin

( ) sin

L t L t

n L t
n

n

u u x x xu x t u K e K e
L L L

u u x n xu K e
L L

 



 



 







    


  



(6-15)

which satisfies Equation ሺ6-1aሻ and boundary condition ሺ6-1bሻ. 

2( / )2 1
1

( )( , ) sin , 1, 2,L t
n

u u x n xu x t u K e n
L L

 
    

LuuI /)( 12 
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the coefficients Kn should be determined by

or 

2 1
1

1

( )( ,0) sin ( )n
n

u u x n xu x u K f x
L L






    (6-16)

2 1
1

1

( )( ) sinn
n

u u x n xf x u K
L L






   (6-17)

Denote 

L
xuuuxfxF )()()( 12

1


 (6-18)

,0),()0,( Lxxfxu 

Step	3. In order to satisfy the initial condition

1

( ) sin (0 )n
n

n xF x K x L
L




   (6-19)
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1

( ) sin (0 )n
n

n xF x K x L
L




   (6-19)

Have we seen this type of equation before?

half-range Fourier sine series expansion of F(x) in the interval (0,L)

It is an …

where
1

FS ( ) sin , (0 )n
n

n xf x b x L
L




        


 







L

n dx
L

xnxf
L

b
0

sin)(2 
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The solution to the 1D	heat	problem	is thus given by

0

2 ( )sin
L

n
n xK F x dx

L L


  (6-20)

2( / )2 1
1

1

( )( , ) sin n L t
n

n

u u x n xu x t u K e
L L







  

(6-21)

Thus,

(6-19)
1

( ) sin (0 )n
n

n xF x K x L
L
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Example	(a): Solve the following heat flow problem

(0, ) (3, ) 0, 0

( ,0) 5sin 4 3sin 8 2sin10 , 0 3

u t u t t

u x x x x x  

    

    







 tx

x
u

t
u 0,30,2 2

2

Solution:	Recall the solution to the heat equation

2( / )2 1
1

1

( )( , ) sin n L t
n

n

u u x n xu x t u K e
L L







  

For the given problem, we have
1 2

2 1
1

0
( )( ) ( ) 5sin 4 3sin 8 2sin10 , 3

u u
u u xF x f x u x x x L

L
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Thus,
2( / )

1
( , ) sin n L t

n
n

n xu x t K e
L








with L = 3, α2 = 2 and

 
3

0

3

0

2 5sin 4 3sin 8 2sin10 sin , 1, 2,
3 3
2 12 24 305sin 3sin 2sin sin , 1,2,
3 3 3 3 3

n
n xK x x x dx n

x x x n x dx n

  

   

   

     
 









0

2 ( )sin
L

n
n xK F x dx

L L
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Based on the orthogonality property of cosine and sine functions, i.e., 

0 0

1sin sin cos cos
2

L Lm x n x m x n x m x n xdx dx
L L L L L L
                    

 

, if 
2
L m n

0 0

1 ( ) ( )cos cos
2

L Lm n x m n xdx dx
L L
   

  
 
 

0 0

1 ( ) ( )sin sin 0,   if 
2 ( ) ( )

L L
L m n x L m n x m n

m n L m n L
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3

0

3

0

2 12 24 305sin 3sin 2sin sin , 1,2,
3 3 3 3 3
2 12 24 305sin sin 3sin sin 2sin sin
3 3 3 3 3 3 3

n
x x x n xK dx n

x n x x n x x n x dx

   

     

     
 
       
 







3

12 0

2 12 12 24 12 30 125sin sin 3sin sin 2sin sin
3 3 3 3 3 3 3
2 2 35 5 5
3 2 3 2

x x x x x xK dx

L

             
 

      



24 3,K   30 2,K  0, otherwisenK 

The solution to the given problem in Example (a) is thus given by

     2 2 232 128 200( , ) 5sin 4 3sin 8 2sin 10t t tu x t x e x e x e        
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     ( ,0) 5sin 4 3sin 8 2sin 10u x x x x    

Graphically, the temperature u(x, t) at t = 0…

x
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Graphically, the temperature u(x, t) at t = 0.001…

     2 2 20.032 0.128 0.2( ,0.001) 5sin 4 3sin 8 2sin 10u x x e x e x e        

x
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Graphically, the temperature u(x, t) at t = 0.015…

     2 2 20.48 1.92 3( ,0.015) 5sin 4 3sin 8 2sin 10u x x e x e x e        

x

heatheat
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Solution: and thus

Example	(b)

1 21, 1, 0L u u    
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2 1
1

( )( ) ( ) ( )u u xF x f x u f x
L


   

1 12
10 2

11 12
10 21

2

1 11 122
10 10 2 2

2 sin( ) (1 )sin( )

1 1 12 cos( ) cos( ) cos( )

2 cos( ) cos( ) cos( ) cos cos( ) cos( )
2

nK x n x dx x n x dx

x d n x n x x d n x
n n n

nx n x n x dx n x n x n x dx
n

 

  
  

    


     
 
    
  
                  



 

 

 
1 12

10 2

2 2

2 1 1 1 1cos 0 sin( ) cos( ) cos cos( ) cos sin( )
2 2 2 2 2

2 1 1 4sin sin sin
2 2 2

n n nn x n n n x
n n n

n n n
n n n n

     
  

  
   

 
        
  
     

0 0

2 ( )sin 2 ( )sin( )
L L

n
n xK F x dx f x n x dx

L L
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u(
x,
t)

   2 2 2 2

2 2
1 1

4 1( , ) sin sin sin
2

n t n t
n

n n

nu x t K n x e n x e
n

  


 
 

 

  

The solution to the problem is thus given by

heat2heat2
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2

27  ,    0 ,    0u u x t
t x

 
    

 

Exercise

Given (0, ) ( , ) 0 0
( ,0) 3sin 2 6sin 5 , 0

u t u t  ,   t  
u x x x  x π

    
   

Solve
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Steady	2D	Heat	Problems	and	Dirichlet	Problem

We now consider a 2D heat problems as depicted in the figure below:

2D Heat Problem on a region R   ….

It can be showed that the temperature u on R is characterized by 

2 2
2

2 2

u u uc
t x y
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For the steady (that	is,	time‐independent) problems, i.e., u/t = 0, the 
heat equation reduces to Laplace’s	equation:

A heat problem consists of this PDE in region R of the xy-plane and a given 
boundary condition on the boundary curve C of R is called a Dirichlet
Problem	if u is prescribed on C.

2 2 2 2
2

2 2 2 2 0u u u u uc
t x y x y

     
          

1( )u f x

2 ( )u f x

2 ( )u g y1( )u g y
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We consider a Dirichlet problem in a rectangle R, assuming that the 
temperature u (x,y) equals a given function f (x) on the upper side and 
0 on the other three sides of the rectangle:

We solve this problem by separating variables. Substituting u (x, y)=F(x)G(y)
into 

   2 22 2 2 2

2 2 2 2 2 2

( ) ( ) ( ) ( )
0 0

F x G y F x G yu u d F d GG F
x y x y dx dy
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2 2

2 2

1 1 ( 0)d F d G k k
F dx G dy
      

iሻ.  When  k = 0,

where D and E are constants.

0 0 ( )F k F F F x D E x       

( ) cos( ) sin( ),F x A k x B k x 

iiሻ.  When  k ≠ 0,  solving the ODE gives

where A and B are constants.

2

2 0d F k F
dx

  

()

()
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From the above boundary conditions, we obtain

and () implies

(0) 0 and ( ) 0F F a 

(0) 0, ( ) 0 0F D F a D Ea Ea E       

( )F x D E x  ()
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() implies

(0) cos( ) 0 0F A k A   

( ) cos( ) sin( ),F x A k x B k x  ()

( ) cos( ) sin( ) sin( ) 0F a A k a B k a B k a   

Since we cannot choose B = 0 (why?), we have

and the corresponding nonzero solution

2

sin( ) 0 nk a k
a
     

 

( ) ( ) sinn n
n xF x F x B

a
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2 2

2 2

1 1d F d G k
F dx G dy
     

Recall
22

2 0d G n G
dx a

    
 

We then have

( ) ( )
n y n y

a a
n n nG y G y C e E e

 
  

(0) 0n n

n n

G C E

C E

  


 

( ) ( ) 2 2 sinh
2

n y n y
a an y n y

a a
n n n n n

e e n yG y G y C e C e C C
a
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We thus obtain a solution 

 ( , ) ( ) ( ) sin sinh sin sinhn n n n n n
n x n y n x n yu x y F x G y B C D

a a a a
   

  

which is called an eigenfunction of the problem. By superposition, we 
have obtained a solution to the Dirichlet problem

1 1
( , ) ( , ) sin sinhn n

n n

n x n yu x y u x y D
a a
  

 

  

1

( , ) ( )

sin sinhn
n

u x b f x
n x n bD

a a
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1
( , ) ( ) sinh sinn

n

n b n xu x b f x D
a a
 



     
 



By half-range sine expansion,

0

2sinh ( )sin
a

n n
n b n xb D f x dx

a a a
 

  

Thus, the solution to the Dirichlet problem is given as

1
( , ) sin sinhn

n

n x n yu x y D
a a
 





where

  0

2 ( )sin
sinh /

a

n
n xD f x dx

a n b a a
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1

1 2

Example:	Solve the Dirichlet problem with a = 2, b = 1 and 

if 0 1
( )

(2 ) if 1 2
x x

f x
x x

 
   

Solution:	The solution is given by 

1

( , ) sin sinhn
n

n x n yu x y D
a a
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with 
   

2

0 0

2 1( )sin ( )sin
sinh / sinh / 2 2

a

n
n x n xD f x dx f x dx

a n b a a n
 

 
  

2 1 2

0 0 1
( )sin sin (2 )sin

2 2 2
n x n x n xf x dx x dx x dx  

    

1 2
1 2

0 1
0 1

2 2cos cos (2 )cos cos (2 )
2 2 2 2

n x n x n x n xx dx x d x
n n

   
 

   
         

      
 

1 2

0 1

2 2cos (2 ) cos
2 2

n x n xx d x d
n n

 
 

    

2 2

2 2

2 2 8sin 0 sin sin
2 2 2

n n n
n n n

  
  

           
     

1
2

1
0

2 2 2cos sin cos cos
2 2 2 2

n n x n n x dx
n n n

   
  

              


2 2 2

1

2 2sin 0 sin
2 2

n n x
n n
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2

0

2 2

1 ( )sin
sinh / 2 2

8 sin
2sinh

2

n
n xD f x dx

n
n

nn









 



The solution to the Dirichlet problem is given by 

1

2 21

( , ) sin sinh

8 sin sin sinh
2 2 2sinh

2

n
n

n

n x n yu x y D
a a

n n x n y
nn

 

  












 





2
21

sin8 2( , ) sin sinh
2 2sinh

2
n

n
n x n yu x y nn
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Graphically, 

dirichdirich

u(
x,

y)
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Partial	Differential	Equations	– 6…	

1. Even and odd functions, periodic functions
2. Fourier series of a periodic function
3. Fourier series: Half-range expansions
4. Concepts of partial differential equations
5. Heat equation (or diffusion equation)
6. Wave equation
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1D	Wave	Equation:	Vibrations	of	an	Elastic	String	

•   Suppose that an elastic string of length L is tightly stretched 
between two supports at the same horizontal level.  

•   Let the x-axis be chosen to lie along the axis of the string, and let 
x = 0 and x = L denote the ends of the string.  

•   Suppose that the string is set in motion so that it vibrates in a 
vertical plane, and let u(x,t) denote the vertical deflection 
experienced by the string at the point x at time t. 



ENGG 2420 – PDE ~ Page 112 Ben M. Chen, CUHK MAE

•   It can be showed that under these assumptions, the string vibration 
is governed by the one-dimensional wave equation, and has the 
form

where the constant coefficient c2 =	T	/ with T being the tension, 
while  the mass per unit length of the string material. 

0,0,2  tLxucu xxtt

•   Assume that damping effects, such as air resistance, can be neglected, 
and that the amplitude of motion is not too large.



ENGG 2420 – PDE ~ Page 113 Ben M. Chen, CUHK MAE

•  

Since the wave equation is of 
second order with respect to t, it 
is plausible to prescribe two 
initial conditions, the initial 
position of the string, and its 
initial velocity:

Lxxgxu
xfxu

t 


0),()0,(
),()0,(

0,0),(,0),0(  ttLutu

xxtt ucu 2

Initial	and	Boundary	Conditions

xxtt ucu 2

•  Assume that the ends of the string remain fixed, 
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Wave	Equation

• This is an initial value problem with respect to t, and a boundary 
value problem with respect to x. 

0,0,2  tLxucu xxtt

Thus the wave equation problem is 

• The wave equation governs a large number of other wave problems 
besides the transverse vibrations of an elastic string. 

Initial conditions : ( ,0) ( ), ( ,0) ( ), 0tu x f x u x g x x L   

Boundary conditions : (0, ) 0, ( , ) 0, 0u t u L t t  
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Solution by	Separating	Variables						

Problem: Find the solution of the following 1D wave equation

where f (x) denote the initial deflection and g(x) the initial velocity. 

u(x, 0) = ƒ(x)    and   ut(x, 0) = g(x)    (0 < x < L)

(1)

with the boundary conditions

u(0, t) = 0  and  u(L, t) = 0    for all t > 0, (2)

and initial conditions are

(3)

0,0,2  tLxucu xxtt
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Solution	in	Three	Steps

Step	1.

Set u(x, t) = F(x)G(t)    Obtain two ODEs, one for F(x) and 
the other one for G(t).

• The method of separating variables 

Step	2.

Determine solutions of these ODEs that satisfy the boundary 
conditions (2). 

Step	3.

Compose the solutions gained in Step 2 using Fourier series           
 Obtain a solution of (1) satisfying both (2) and (3).
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Step	1.	Method	of	Separating	Variables

 Determine solutions of Eq.(1) in the form

u(x, t) = F(x)G(t)

which are a product of two functions, each depending only on 
one of the variables x and t. 

 Differentiating (4), we get

where dots denote derivatives with respect to t and primes 
derivatives with respect to x.

(4)

 By inserting them into Eq. (1), we have
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 Dividing by c2FG gives

The variables are now separated, the left side depending only on 
t and the right side only on x. Since both sides must be equal to 
some common constants, say, k, 

 Multiplying by the denominators gives two ODEs

0'' kFF (5)
and

02  kGcG (6)
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Step	2.	Satisfying	the	Boundary	Conditions

Reason: If G ≡ 0  u = FG ≡ 0, which is trivial solution. 
Hence G ≠ 0.

Determine solutions F and G so that u = FG satisfies the boundary 
conditions, i.e., for all t

u(0, t) = F(0)G(t) = 0      F(0) = 0    

u(L,t) = F(L)G(t) = 0      F(L) = 0

(7)

(8)
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Solving F(x) from

 k must be negative. 

Why? For k = 0, the general solution of (5) is F = a x + b, and from 
(7) (i.e., F(0) = 0) and (8) (i.e., F(L) = 0), we obtain a = b = 0, so 
that F(x) ≡ 0 and u = FG ≡ 0, which is trivial solution. 

•   For positive k = λ2 > 0 a general solution of (5) is

and from (7) (i.e., F(0) = 0) and (8) (i.e., F(L) = 0), we obtain 

which imply F(x) ≡ 0 once again. 

0'' kFF (5)

( ) x xF x Ae Be  

(0) 0

( ) ( ) 0 0, 0L L L L

F A B B A

F L Ae Be A e e A B    
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 We have to choose k as k = –λ2 (λ > 0). Then, Eq. (5) can be rewritten 
as F " + λ2F = 0, which has a general solution

   1 1( ) cos sinF x A x B x  

This results in infinitely many solutions to Eq. (5) given by  

Using Eqns (7) (i.e., F(0) = 0) and (8) (i.e., F(L) = 0), we have

F(0) = A1 = 0     

1( ) sin , 1,2,n n
n xF x B n

L


   (10)

1( ) sin( ) 0F L B L 

Since B1 ≠ 0 (otherwise F ≡ 0)    . Thus

for 1, 2,...nL n n
L
      (9)

sin( ) 0L 
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Solving G(t)

 Solve (6) with k = – λ2 = – (nπ/L)2,  that is,     

2 2 0G c G 

(11)

 A general solution is

L
n

n
 with

2 2( ) cos sinn n n n nG t A ct B ct  

02  kGcG (6)
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Solving un(x, t)

 Solutions of (1) satisfying (2) are 

un(x, t) = Fn(x)Gn(t)

(12)( , ) ( cos sin )sinn n n n n nu x t A ct B ct x   

for all  n = 1, 2, … and                  . 

This is an eigenfunction for solving the problem. 

L
n

n
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(13)














1

1

sin)sincos(

),(),(

n
nnnnn

n
n

xctBctA

txutxu



 By the superposition	principle, the general solution of (1) is

Step	3.	The solutions of u(x, t)  

where An and Bn’s are determined using the initial conditions. 
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By Fourier Series:







1

sin)0,()(
n

n L
xnAxuxf 

Case	1:When initial deflection is given: u(x,0) = ƒ(x)

(14)t = 0 

0

2 ( )sin , 1, 2,
L

n
n x

L
A f x dx n

L
   

   (15)

Note:	
An’s are the Fourier coefficients in the half-range Fourier sine 

series expansion of f (x) in the interval (0, L).
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Differentiate (13) w.r.t. t,

Case	2:When initial velocity is given: ut(x,0) = g(x)

t = 0 

0

2 ( )sin
L

n n
n xB c g x dx

L L
  

(16)

(17)










1
sin)cossin(

n
nnnnnnn xctcBctcA

t
u 

 
10

( ) sinn n n
nt

ug x B c x
t

 





 
 

0

2 ( )sin
L

n
n xB g x dx

cn L



 L

n
n

 

Since
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The	general	solution	of	1‐D	wave	equation:

where An and Bn’s	are given by (15) and (17), i.e.,

The general solution of the 1D wave equation (1) with boundary 
conditions (2) and initial conditions (3) is 

(13)
1

( , ) cos sin sinn n
n

n ct n ct n xu x t A B
L L L
  



    


(17)
0

2 ( )sin , 1, 2,
L

n
n xB g x dx n

cn L



  

0

2 ( )sin , 1, 2,
L

n
n xA f x dx n

L L


   (15)
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Corollary	1

with An’s being given by 

When only deflection is non-zero,	i.e.,	u(x,0) = ƒ(x) ≠ 0 and 
ut(x,0) = g(x) = 0, in which case all Bn’s are zero. Then the 
general solution is





















1
sincos),(

n
n L

xn
L
ctnAtxu 

0

2 ( )sin , 1,2,
L

n
n xA f x dx n

L L
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Corollary	2

with Bn’s being given by 

When only initial velocity is non-zero,	i.e.,	g(x) ≠ 0 and f (x) = 0,
then the general solution is





















1
sinsin),(

n
n L

xn
L
ctnBtxu 

0

2 ( )sin , 1, 2,
L

n
n xB g x dx n

cn L
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Examples
Q1. (Vibrating	String	Problem).	Consider the vibrating string 

problem of the form

300,0)0,(),()0,(
0,0),30(,0),0(

0,300,4





xxuxfxu
ttutu

txuu

t

ttxx









3010,20/)30(

100,10/
)(

xx
xx

xf

where

Solve u(x,t).
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Solution.

1

2( , ) cos sin
30 30n

n

n t n xu x t A  





the solution to the vibrating string problem satisfies 

30,2  Lc

Since ,0)0,(,0)()0,(  xuxfxu t according to Corollary	1,

0

10 30

0 10

2 ( )sin

2 2 30sin sin
30 10 30 30 20 30

L

n
n xA f x dx

L L
x n x x n xdx dx



 




 



 

10 30 30

0 10 10

2 30 2 30 2 30cos sin cos
30 10 30 30 20 30 30 20 30

n x n x n xx d dx x d
n n

  
 

  
   

    
10 30

10

0
0 10

30
30

10
10

1 3cos cos cos
5 30 30 30

1 cos cos
10 30 30

n x n x n xx dx
n n

n x n xx dx
n
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2 2
1

9 2( , ) sin sin cos
3 30 30n

n n x n tu x t
n

  








10

0

30

10

2 2

2 2

1 30 3 310cos sin cos cos
5 3 30 3

1 3030cos 10cos sin
10 3 30

2 6 3 3cos sin cos cos
3 3 3

3 1 3cos cos 0 sin
3 3

n
n n x nA n

n n n n

n n xn
n n

n n nn
n n n n

n nn
n n n

  
   

 
 

  
   

 
  

 
       

 
 

    
 

    

   



2 2

9 sin , 1, 2,
3

n n
n
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Graphically, the displacement u(x, t) at t = 0…

2 2
1

9( , ) sin sin
3 30n

n n xu x t
n

 








x
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Graphically, the displacement u(x, t) at t = 3…

2 2
1

9( ,3) sin sin cos
3 30 5n

n n x nu x
n

  








x
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Graphically, the displacement u(x, t) at t = 10…

2 2
1

9 2( ,10) sin sin cos
3 30 3n

n n x nu x
n

  








x
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Graphically, the displacement u(x, t) at t = 18…

2 2
1

9( ,18) sin sin cos(1.2 )
3 30n

n n xu x n
n

  








x

wavewave
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Q2.

Solution. By Corollary 2,
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Based on the orthogonality property of cosine and sine functions, i.e., 

0 0

0 0

0 0

1sin sin cos cos
2

1 ( ) ( )cos cos
2

1 ( ) ( )sin sin 0,   if 
2 ( ) ( )

, if 
2

L L

L L

L L

m x n x m x n x m x n xdx dx
L L L L L L

m n x m n xdx dx
L L

L m n x L m n x m n
m n L m n L

L m n

     

 

 
 

               
  

  
 
  

    
   

 

 

 

0

0, if 
sin sin

, if 
2

L
m n

m x n x dx LL L m n
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Graphically, the displacement u(x, t) with c = 1.5 and L = 30 at t = 1…
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Graphically, the displacement u(x, t) with c = 1.5 and L = 30 at t = 3…
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Graphically, the displacement u(x, t) with c = 1.5 and L = 30 at t = 30…

wave2wave2
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Exercise

 
 

4

4 2

3
2 4
3
4

1
4

3
4

0 if 0

4 if
( )

4 if

0 if

L

L L

LL

L

x
L

x
L

x

h x
f x

h x

x L





  

  
 
  

  

A string of length L is stretched and fastened to two fixed points. 
Find the solution of the wave equation

xxtt ucu 2

f (x)
h

L x

with u (0,t) = 0, u (L, t) = 0 and u (x,0)= f (x), 0)0,( xut

2
L

4
L 3

4
L

2 2

8 3Answer:   2sin sin sin
2 4 4n

h n n nA
n

  


    
 wave3wave3
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Just	for	fun…	

Solutions to some 2D wave equations…

2 2 2
2

2 2 2

u u uc
t x y
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Homework Assignment No: 5

Due Date: 6:00pm, 5 December 2019 
Please place your assignment to Assignment Box 3 outside PC Lab (ERB 218)
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Summary	of	Partial	Differential	Equations…

Given a periodic function f (x) with fundamental period 2ℓ and f (x) and f (x) 
being piecewise continuous, we can express it as a Fourier	series

with

0
1

FS cos sinn n
n

n x n xf a a b 



             
  





















1,2,     ,sin)(1

1,2,    ,cos)(1

  ,)(
2
1

0































ndxxnxfb

ndxxnxfa

dxxfa

n

n
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Summary	of	Partial	Differential	Equations	(cont.)…

Given a function f (x) defined only on a finite interval, 0 < x < L,	and with f (x)

and f (x) being piecewise continuous, we can either a Half‐Range	Cosine	

Expansion

with

0
1

( ) cos , (0 )n
n

n xf x a a x L
L




         


0 0

0

1 1( ) ( )
2

 
1 2( )cos ( )cos

L L

extL

L L

n extL

a f x dx f x dx
L L

n x n xa f x dx f x dx
L L L L
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Summary	of	Partial	Differential	Equations	(cont.)…

or a Half‐Range	Sine	Expansion

with

1
( ) sin , (0 )n

n

n xf x b x L
L




        


 







L

n dx
L

xnxf
L

b
0

sin)(2 
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Summary	of	Partial	Differential	Equations	(cont.)…

Temperature u(x, t) distributed on a long bar is described by a 1D heat	equation

with boundary conditions:                                                                          

And initial condition:

The solution to this heat equation:

with

 tLxuu txx 0,0,2

1 2(0, ) , ( , ) , 0u t u u L t u t    

( ,0) ( ), 0 .u x f x x L  

2( / )2 1
1

1

( )( , ) sin n L t
n

n

u u x n xu x t u K e
L L







  

2 1
10 0

( )2 2( )sin ( ) sin
L L

n
u u xn x n xK F x dx f x u dx

L L L L L
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Summary	of	Partial	Differential	Equations	(cont.)…

Temperature u(x, t) distributed on a steady 2D heat	problem	(more specifically, 

the Dirichlet	problem) is characterized by a Laplace	equation:

with boundary conditions:                                                                          

The solution to this 2D heat equation is given by…

with

2 2

2 2 0u u
x y
 

 
 

1

( , ) sin sinhn
n

n x n yu x y D
a a
 



   0

2 ( )sin
sinh /

a

n
n xD f x dx

a n b a a
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Summary	of	Partial	Differential	Equations	(cont.)…

The vibrations of an elastic string can be characterized by a wave	equation

with boundary conditions:                                                                          

And initial condition:

The solution to this heat equation:

with

0,0,2  tLxucu xxtt

(0, ) 0, ( , ) 0, 0u t u L t t  

( ,0) ( ), ( ,0) ( ), 0tu x f x u x g x x L   

1

( , ) cos sin sinn n
n

n ct n ct n xu x t A B
L L L
  



    


0

2 ( )sin , 1, 2,
L

n
n xB g x dx n

cn L



  

0

2 ( )sin , 1, 2,
L

n
n xA f x dx n

L L
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That’s	all,	folks!

Thank	You!

That’s	all,	folks!

Thank	You! Bugs	Bunny
1940–


