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Introduction...

@ Many problems in engineering can be formulated by mathematical equations.
These equations usually involve derivatives of one or more unknown
functions. Such equations are called differential equations.

Example... A cruise control system

----» x acceleration

A cruise-control ,
— Xx displacement

system friction
force bx force u

By the well-known Newton’s Law of motion: f = m a, where fis the total force applied to
an object with a mass m and a is the acceleration, we have
b u . b u

u —bx = mx & X+—x=— P V+—v=—
m m m m
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Some basic mechanical systems

Spring-mass system

S 10 15 20

time
@196~V Sparwow
modificd by D.Russd |, 1997

Mass-spring-damper system

3 : m
/" Ll Ll
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Dan Russell, Kettering
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Newton’s law of motion

S

f =ma=mi
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Basic laws for electrical systems

resistor Capacitor inductor

I | I
{ i () \ (1) \

; di
vT R [v=iR v(t)T::c z‘=Cﬂ V(t)T BL y=12
dt dt

N

Kirchhoff’s Voltage Law (KVL): Kirchhoff’s Current Law (KCL):
The sum of voltage drops around The sum of currents entering/
any close loop in a circuit is 0. leaving a node/closed surface is 0.

I i5

v+, 4+, 4. =0

L+i, +i,+i, +i;=0
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A real example for ODEs (just for information only)...

The transition dynamics of the aircraft at the bottom:

i = ZFux(®)— gsin(d) — qw+ LT, + 8,(2),

w = LFE,,(z)+ geos(8) +qu— LTy + LT +6.(t),
¢ = M)+ PTw+ £T1+ 8(1),

0 = q.

(1)

The aircraft...

Autonomous hybrid
UAV KH-Lion
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Quadrotor dynamics model

The ordinary differential equations of a

drone model...

/1}. = —qgt \

1 = go

. 1

w, — U1

71

P = Jyx u2
q = .]\7\1;(15
7 = ]Z_Zl 4
o =3
t =i UAV Calligraphy for Singapore Airshow 2014

=
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o If a differential equation only contains ordinary derivatives with respect to a

single independent variable, it is called an ordinary differential equation
(ODE).

@ Let y(z) be a function depending on a single variable z. Then an ODE is
typically of the form

F(z,y,v,...,y™) =0, (1.1)

d da”
where y = y(z),y' = %,...,y(") = =X,
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Classifications of ODE’s

o If the ODE (1.1) can be written in the form

an(m)y(n) .3 an—l(x)y(n—l) § Stk ¢ aO(x)y - g(-’l?), (1 3)

it is called a linear ODE. Otherwise, it is called a non-linear ODE.

o Let L[y] = an(z)y™ + an—1(x)y™~V + .. + ap(x)y. Then the ODE (1.3) is
called linear because

Llaryr + agye] = ar L{y1] + a2 L]yo]
for any constants a; and as.

@ If in addition that g(x) = 0 in (1.3), then the ODE is called homogeneous.
Otherwise, it is called non-homogeneous.
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Order of an ODE...

an(2)y™ + an—1(x)y" Y + - + ao(x)y = g(2),

@ In (1.3), the highest derivative of y is n, and we call n the order of the ODE.
(1.3) is called an n-th order ODE. For example,

y' 4+ y=2sinzx

iIs a second order ODE.

@ Ifa,(x),a,_1(x),...,a9(x) are constants in (1.3), then the ODE is called
constant coefficients linear differential equations.
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@ A solution of the ODE (1.1) over an interval I = («, ) is a function y(z)
defined on I such that

(a) vy and its derivatives y’, v, ..., y'™ existon I; and
Y Yy Yy

b) F(z,y,y,...,y'"™)=0forany z € I.

Example (1a)
@ The equation vy’ — zy = 1 — z? is a first order linear non-homogeneous ODE.

!'2 . .
@ y(x) =4eT + x is a solution over (—oc, o0) because

/ d ""_2 ﬁ ﬁ i Ly <
Yy —xy = d—(4e T 4x)—x(deT +x)=(4dreT +1)—(dzeT +2°) =1—2".
X
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Example (1b)

@ The equation vy — 3y’ + 2y = 0 is a second order linear homogeneous ODE
with constant coefficients.

@ For any values of constants ¢; and c», y(2) = ¢;€** + c2e” is a solution over
(—o0,00) of the ODE because
" / d ¢ 2x 4 ¢ 2x r 2x xIr
y —3y +2= d—(2qc + coe”) — 3(2c1€”" + cae™) + 2(cre”" + cae™)
- I3

= (4c1€%® + c9e%) — (6¢1€*T + 3cae®) + (2¢1€%F + 2cq9e%)
=

Example (1¢)

@ The equation ysiny’ + (y""’)? = 0 is a third order non-linear ODE.
@ Clearly, y(z) = 0 is a solution over (—oc, oc). It is called the trivial solution.
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Initial Value Problem

@ Consider a first order linear ODE

dy 2

@ Integrating on both sides of (1.4) with respect to = gives a family of solutions
of the ODE parameterized by a constant C' as follows:

3

y=/(1+x2)dw=w+%+0.

Thus the ODE (1.4) has infinitely many solutions and C' is called the
integration constant.

@ We can impose some conditions on the solution of an ODE at one or more
points on the interval under consideration. Conditions specified at a single
point are called initial conditions.
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@ Finding a solution of an ODE that also satisfies those initial conditions is
called an initial value problem (IVP). Under certain conditions, the IVP has
a unique solution.

Example (1f)

@ To solve the IVP of ODE (1.4) with the initial condition y(0) = 1, letting
y(0) =0+ % + C' =1 gives C' = 1. Hence, we obtain the unique solution of

the problem:
3

RS
y=x+— +1.
Y 3
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Forms of 1st Order ODEs

* First order differential equations are of the form
Yy = Q(z,y) (explicit form)
Q(x,y.y') =0 (implicit form)
P(x.y)der + Q(xr,y)dy =0 (differential form)

In principle, the three forms are somewhat equivalent’, but one should
revert to the explicit or differential forms as much as possible.

Solving such equations involves two main techniques

m Reduction to separable form
m Reduction to exact differential form
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Integrating Factor Method

@ Consider a general first order linear ODE

y' +p(z)y = q(z), (2.1)

where both p(z) and ¢(x) are continuous functions of z on some interval. For

example, the first order linear ODE (1.4), i.e., (v = %)

y' =1+2°,

is a special case of (2.1) where p(z) = 0. This ODE can be solved simply by
integrating both sides with respect to z.
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@ Another special case is where g(z) = 0, that is the homogeneous case. The
equation can be rewritten as follows:

d
?y + p(z)dx =0, (2.2)

assuming that y is nonzero on the zx interval of interest.

@ Integrating the equation (2.2) gives

In|y| = —/p(x)da:w,

where C'is an arbitrary constant. Thus

|y(:c)| _ e—fp(a:) dz+C _ eCe—fp(a:)da:

and, as a result,

y(z) = Ae~ S P(@) dz (2.3)

for some constant A.
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@ However, the general case is more complex. One of the methods that can
solve the general case is known as the integrating factor method and is
derived as follows.

» Integrating factor method
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@ First, multiply both sides of the ODE (2.1) by the

integrating factor = e/ P(¥) 42 (2.4)

to obtain , (:v)y =Q(:c). (2.5)

product rule
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>>>

@ Using the product rule and the Fundamental Theorem of Calculus, rewrite
the equation (2.5) as follows:

(efp(:c) d:r:y)l _ efp(:t:) dIQ(:I,‘).

@ Integrating both sides of the above equation with respect to z gives
el P()dzy / (efp(z) d-”’q(a;)) dzx + C,

where C'is an arbitrary constant.
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@ Thus the solution of the first order linear ODE (2.1)

y = e JP@)d [/ (pr(m)qu(m)) dx + C] : | (2.6)

@ Remark: Since both p(x) and ¢(x) are continuous, the integrations in (2.6)
exist.
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Example (2a) y=e JP@de [/ (ef*’(“’) dzq(a:)) dz + C']
@ Solve the first order linear ODE:

y +2y=0.
@ Since p(x) = 2, by (2.4), the integrating factor is
ol p(@)de _ f2dz _ 2z
@ So multiplying both sides of the ODE by the integrating factor gives
ey’ + 2e*Ty = 0.

@ Then
(e*"y)" = 0.

@ Hence, the general solution is

y = Ce %
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Example (2b)
@ Solve the first order linear ODE:

y=e JPE)dx [/ (ef p(x) dIQ(a:)) dx + C]

Yy + 3y ==x.

@ The integrating factor is e/ P(*) 4% = ¢J3dr — 3% Then

(C3sz)l — CB'E.’L‘.

@ Hence, using integration by parts, the general solution is

y=e " [/(CS‘T;E) dzr + C-']

Integration by part...
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% /a’d(CS‘T) afs C']

l (J,‘CBI = /631' d:r) + C-']
-3 .
0 -1 3ax ng |

fudv:uv—/vdu _z

NG
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General Solutions and Particular Solutions

y' + p(z)y = q(x),

@ The right-hand side of equation (2.6)

Yy = e~ J P(z) dz [/ (efp(z)d‘rq(:c)) dx + C] .

contains an arbitrary constant C' and is called the general solution.
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Yy = e~ J p(z)dz [/ (efp(:r:)d:cq(a:)) dx + C‘ (2.6)

@ If we replace the indefinite integral in (2.6) by a definite integral with lower
limit @ and upper limit 2, we obtain the following expression:

P g (G [ ] " (7O %g(¢)) e + C‘ . (2.7)

It can be seen that the difference between (2.6) and (2.7) is only a constant,
thus (2.7) is another form of the general solution of (2.1). If we substitute
(2.7) into (2.1), we will still lead to an identity. This is an alternative way to
show that (2.7) is another form of the general solution of (2.1).
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y — e S plE)de [ / (Ef:’ p(¢) dcq(g)) dé + c‘ . (2.7)

@ The constant C can be determined by requiring the solution to satisfy an
initial condition. For example, imposing y(a) = b on (2.7) shows C = b. Thus,
we have

y=e JaPOE [ / ’ (eff p‘C)qu(S)) d¢ + b] . (2.8)

We call (2.8) a particular solution of (2.1) passing through the point
(z,y) = (a,b). Itis also the unique solution of the initial value problem of
(2.1) with initial condition y(a) = b.
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Example (2C) y = e—fp(a:)d:c [/ (efp(:z:)da:q(x)) dx +C]
@ Solve the IVP for z > 0:

zy + 2y =422, y(1) =2
@ The equation can be rewritten as
2
y + = iz ¥ +p(z)y = q(2)

Thus, the integrating factor is e/ P(*)dz — ¢ Zdz _ 2Inlz| _ ;2

@ Using (2.6) gives the general solution as follows:

) 3 ) 4 R ) C
y=Xx (J(4x )dx+C)—x (Idx +C)—x (x +C)—x +?

@ Letting y(1) = 2 gives C' = 1. Hence, the solution for the IVP is

C 1
y(1)=12+1—2=1+C=2 = C=1 = y=x2+x—2
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Electric Circuits

@ One of the applications for ODEs is to Electrical Engineering.

@ An electric circuit is a network consisting of some circuit elements such as
resistors, inductors or capacitors.

VRV T
T T TR T e

LERLERT LRALIRT ERtRdenirne
3 Fr
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(a) Resistor: the voltage drop V' (t) across it, where t is the time, is proportional to
the current 2(¢) passing through it, i.e.,

V(t) = Ri(t). (3.1)

Here V (t) is measured in volts(V'), time is measured in seconds(s), (%) is
measured in amperes(A) and R is a constant called the resistance, measured in
ohms(€2). The equation (3.1) is called the Ohm’s law.

wt) = i(t) R T R
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(b) Inductor: the voltage drop V (¢) across it is proportional to the time rate of
change of the current passing through it, i.e.,

(3.2)

Here L is a constant called the inductance and is measured in henries(H).

Physically, most inductors are coils of wire, hence the electronic symbol of an
inductor looks like a coil.

di(t)
dt

+
v(t)T L ) =1L
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(c) Capacitor: the voltage drop across it is proportional to the relative charge
Q(t) on the capacitor, i.e.,
Q(t)

V(t) = (3.3)

Here C is a constant called the capacntance and is measured in farads(F').
The current flowing through a capacitor equals the time rate of change of the
relative charge on the capacitor, i.e.,

i(t) — dQ(t).

From equations (3.3) and (3.4), it follows that the desired voltage/current
relation for a capacitor is

(3.4)

i(1) \
+
v(t)/]\ —_ C i(t)y = C

~

dv(t)
dt

V(t) = é f i(t) dt. (3.5)
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RLC Series Circuits

@ Consider an RLC series circuit, which is an electric circuit consisting of a
resistor, an inductor and a capacitor, connected in series.

| G
N Rl(t)_ + dt -
MM —— +
+ e 7
oy O " C = % [i(ar
— l
< o —

@ From Kirchoff’s Voltage Law (KVL), which states that the algebraic sum of
the voltage drops around any closed loop of a circuit is zero, we have

O 1 [z
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V(t) — Ri(t) — Ldii(tt) _ % / i(t) dt = 0.

@ Differentiating the above equation with respect to ¢ gives

d?i di 1 dV
Lt B+ = o (3.6)

where V =V (t) and ¢ = i(¢). Hence, we obtain a second order linear ODE.

Gustav Kirchhoff
(1824-1887)
German Physicist
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RL Circuits

@ If we omit the capacitor from the RLC series circuit, the circuit becomes an

RL circuit.
] (=0
P O O——
1, |
VT = =R
—f'%’“ni"‘ﬂ'"“J
L

@ Assume i(0) = 0 and a constant voltage V, is applied when the switch is
closed, then equation (3.6) becomes

di
L— + Ri =V, 3.7
= + Ri 05 (3.7)

which is a first order linear ODE. y + p(x)y = q(x)
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@ Equation (3.7) can be solved by the integrating factor method. Now, the
integrating factor is el T — ¢ and equation (3.7) becomes

@ Thus, we have

ooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

- o— [ p(x) dx [/ (efp(l')dxq(a:)) dx + C] (2.6)
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¢ e Vi = t % ~
'ti(t):e_RT [/ (e%fo) dt-I—C" — T (eRT%-I-C),

- Vi
@ Since i(0) =0, then C = —?0. Hence, we obtain the solution of the RL

circuit, i.e.,

i(t) = —2 (1 — e‘%) . (3.8)

@ From the solution (3.8), we have

z’(t)—>?0ast—>oo.

@ Thus, we call the E

R
Vo _re . :
_Ee L term the transient part of the solution.

term in solution (3.8) the steady-state solution and the
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@ The steady-state solution is shown as below:
v (0
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RC Circuits

@ If we omit the inductor from the RLC series circuit, the circuit becomes an RC

circuit.
l t=0
- Q/Oﬁ
VT -+ + <
= "r = R
f=
- VC + ‘
Ry
C
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@ Assume i(0) = ig and a constant voltage V;, is applied when the switch is
closed, then equation (3.6) becomes

di 1
R—+ —i:=0 3.9

which is also a first order linear ODE.

@ Solving equation (3.9) yields the solution

i(t) = ige” RC (3.10)
y = e_fp(a:) dx [/ (efp(:c)d:cq(x)) dzx + C] (2.6)
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Separable Equations dx

@ Consider a special type of first order non-linear ODEs of the following form:

y' = f(z)g(y), (4.1)

where both f(z) and g(y) are continuous functions over some intervals of the
respective independent variables and g(y) # 0. Equation (4.1) is called a
separable equation because it can be rewritten in the differential form as
follows:

—— = f(z) dz. (4.2)

@ Integrating equation (4.2) gives

f % = f f(a)dz+-C. (4.3)

This is the general solution of the separable equation (4.1).
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Example (4a)
@ Solve the IVP for z > —1:

@ This equation is separable and can be rewritten in the form

dy
o —dzx.
Yy

: . . 1
@ Integrating on both sides gives /(—‘;j = — /da: + C.
J Y "

@ Thus, we have

1
——=—x4+C.
Y
@ Using the initial condition y(0) = 1 gives C' = —1. Hence, the solution is
T
Ty
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Example (4b)
@ Solve the IVP: 4
= . y(0) =1.
14+ 2e¥’ y( )

@ Separating the variables and integrating on both sides gives

Y

[a+2eyay= [an)ar+c

@ Thus, we have
y+2e¥ =222 + C.

@ Using the initial condition y(0) = 1 gives C' = 1 + 2e. Hence, the solution for
the IVP is
y+2e¥ =222 + 1+ 2e.

@ Remark: The solution in Example (4b) is called an implicit solution, i.e., the
solution cannot be written in the explicit form y = h(z) for some function h
using elementary functions.
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Example (4c¢)
@ Find the general solution of the first order ODE:

@ Separating the variables gives

y—1 1
——dy = /—da:+C.
./y(y—Q) J z

@ By partial fraction expansion,

u—1 1 1
Yy _ 9 n 5 ‘
yy—2) y y-—2
@ Thus, we have : a
—Inl “Inly—=2| =1nlx ]
2ln|y|+21n|y 2| =In|z|+ C.
Some manipulation gives the simplified form of the general solution (in

implicit form): ) &
y(y — 2) = Cz? for some constant C.
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Exact Equations
@ A differential equation of the form

dy _ _ M(z,y)
dx N(z,y)

can be put in the differential form

M(z,y)dz + N(z,y)dy = 0.

@ If there exists some function F'(x, y) such that

dF (z,y) = M (x,y)dxz + N(z,y) dy,

.e., there exists F'(z,y) such that

OF
dx
OF
& — -‘NT'J
Jy
then, (5.2) gives
dF (z,y) = 0.
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(5.4)

(5.5)
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@ Now, (5.5) can be integrated to give the general solution

F(z,y) =C,

where C' is an arbitrary constant.

(5.6)

@ If condition (5.3) is satisfied, then M (z,y) dx + N (z,y) dy is called an exact
differential, and (5.2) is called an exact differential equation. The general

solution of an exact differential equation is readily given, in implicit form, by

F(z,y) =C.

dF (z,y) = M(z,y)dz + N(z,y)dy
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Theorem (5.1 Test for Exactness)

Let M (z,y), N(z,v). dd‘y’ and Z¥. be continuous within a rectangle R in the z-y
plane. Then M(z,y)dxz + N (x,y)dy is an exact differential in R if and only if

01‘[ 84’7\‘?
= — 57
Ay dx 2:7)
everywhere in R.
2,

We illustrate this result through an example...
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Example (5a)

@ The first order ODE: siny dz + (x cosy — 2y) dy = 0 has M (z,y) = siny and
N(z,y) = xcosy — 2y. The condition

Is satisfied. Thus the ODE is an exact equation.
@ The next step is to solve the system

2
C‘)—F=M=siny

< dx
C.)—FzNza:cosy—Qy.
(. Oy

aF

@ Integrating the equation
being fixed gives

5= = siny with respect to z on both sides with y

Hie 21) = /sinyd.z,- = xsiny + u(y) for some function u(y).
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@ Differentiating the equation F'(z,y) = xsiny + u(y) with respect to y gives

OF .
— =xcosy+ u (y).
dy
@ Comparing with % = z cosy — 2y gives
rcosy — 2y =xcosy + u'(y).

Or, after simplification,

@ Integrating both sides with respect to y gives
u(y) = — /dey =+ C.

@ Finally, we have F(z,y) = zsiny + u(y) = xsiny — y> + C. Hence, the
general solution of the original ODE is

- 9 =
rsiny —y° =C.
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Homework Assignment No: 3

Due Date: 6:00pm, 31 October 2019
Please place your assignment to Assignment Box 3 outside PC Lab (ERB 218)
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Ordinary Differential Equations - 6...

|ODE 6-11: Second Order and High Order ODEs |

6 Linear Independence and Wronskian Determinants

7 Homogeneous Equations: General Theory

8 Homogeneous Equations: Constant Coefficients

9 Nonhomogeneous Equations: Method of Undetermined Coefficients

10 Euler-Cauchy Equation
11 Modeling: Free and Forced Oscillations
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Linear Independence

@ Let I be an interval of R. Consider the vector space V of all continuous
functions defined on 1, i.e.,

V={y(z)|y: I — R, y(z) is continuous},
where the vector addition and the scalar multiplication are defined as usual:
(v1 +v2)(z) = ya(z) + y2(z) forany y1,y2 € V,z € I

(cy)(z) =cy(z)foranyc e R,y € V,z € I.

; Y1
N )3 Y :
\ // Vis a collection
/ X of all these
¢ )Q/ \_//:B continuous
; Y2 ¥ functions...
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® Suppose y1(z),y2(z),...,yn(z) € V. They are said to be linearly
dependent (LD) on I if there exist scalars «; € R, not all zero, such that

a1y1(z) + asys(z) + -+ - + apyn(z) =0forany z € I.

Otherwise, y1(z), y2(x),. .., yn(x) are said to be linearly independent (LI)
on I.

@ If y1(z),y2(x),...,yn(x) are linearly dependent on I, then at least one of
them can be expressed as a linear combination of the others on 1.

For example, if ¢, # 0, then

y1<x>———y2<x>—---—“" (x)
1 al

@ Otherwise, if y1(z), y2(z), ...,y (z) are linearly independent on I, then all of
them cannot be expressed as a linear combination of the others on 1.
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Example (6a)

@ The functions v (z) = sin? 2 and ys(x) = —1 + cos? x are LD over R
because

2 2

y1(x) +yo(x) =sin“x — 1+ cos“x =0 forany x € R.

@ Alternatively, since yy(x) = —ya(x), y1(x) and yo () are LD over R.
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Example (6b)

@ Letw # 0 be a real constant. Show that the functions y,(x) = coswx and
yo(x) = sinwx are LI over R.

@ Suppose there exist real scalars a.as € R such that
apcoswr +assinwr =0foranyzreR..--- .. (%)
Differentiating () with respect to = gives
—qwsinwr + aswcoswr =0 foranyxr e R.---- - (k%)

By (x) and (xx), we have

COS WZT sin wx a;\ (0
—wsinwzr wcoswz/ \as 0/
COS W sin wx

—wSINWT W COSWT
solution ar; = ap = 0. Hence, y; () and y,(2z) must be LI over R.

Since = w # (0, the above system has the unique
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Wronskian Determinant

Let y1.vy2,...,y, € V and assume vy, 42, ...,y, are n — 1 times
differentiable on I. Differentiating both sides of the equation

l'_'lz'lyl(i‘-) =+ EEQyQ(I} T T &-n-'y-n-(i,’) =0

with respect to x for j times, where 7 =0,1..... n — 1, gives n equations
( a1y () + agya () + -+ + apyn(x) = 0
aryy(z) + agyy(x) + -+ + any; () = 0
\ . (6.2)

L ay" V(@) + aoyd" V(@) + -+ any () = 0.
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( a1y1(z) + agya(z) + -+ + apyn(x) = 0
aryy(r) + agyy(x) + - + any, () =0
< . (6.2)
\ &1yin_1)(;r) + ﬂ-'z;ifgn_l)(;r) + -+ L‘tny.ff_l)(;r) = 0.
219 BN N ©J IEEITRN 1 6 B e4
» S2(C) I 210 B A € A 2 0
W AT e T e,
AZ1C9 BN N €9 IENEEERN N 9 o
! ! .. ! a
» it | gx) % .(x) o .(x) #0 forsomex=x, = | . |=0
DS €9 B Sl 9 INRTEINS AR €9 a,
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@ Denote the determinant of the coefficients as:

y1(z) Y2 () Yn()
Y1 (w) yé(w) Yn ()
W(y13y2,---,yn)($) . ’
i )( ) :u““ () yn' ()
which is called the Wronskian determinant of 41,42, ..., ¥n.

ENGG 2420 - ODE ~ Page 62

(1776-1853)
Polish Mathematician

Jozef Maria Hoene-Wronski
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Theorem (6.1 Wronskian Condition for LI)

Let

VYis Vas s YV, el

and they are n—1 times differentiable on /. If the corresponding Wronskian

determinant is not identically zeros on ], i.e.,

nx o o e y,(x)

(x (x) - "(x
W, Yooy, (X)) = ylf ) yz,( ) N y",( ) # 0 for some x = x,,

W) PP e YIP(x)

then y,, y,,-:+, ¥, are linearly independent on I.
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ENGG 2420 - ODE ~ Page 64

Theorem (6.2 A Necessary and Sufficient Condition for LD)
Ifyi,yo, ..., Y, are solutions of an n-th order linear homogeneous ODE

y™ (z) + pr(a)y" (@) + - + pa(2)y(z) =0,

where the coefficients p;(x)’'s are continuous on an interval I, then

Wiy, v2,..., yn)(x) =0 on I is both necessary and sufficient for the linear
dependence of the set {y1, ... ., Yn} onl.
21 R 21C) B A €

"(x "(x "(x
yl() yz() . yn() =0 iff Vis Vystte»y, are LD.

W) W) e ()
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Example (7¢)

@ Show that {1,e",e™"} is a set of linearly independent solutions of the ODE
y"" — 4 =0 over R.

@ Letyi(z) = 1,y2(z) = €™ and y3(x) = e~ *. Then,

yi —y1=0-0=0,

1 / I T
Yo —Ys=¢€ —e =0,

and

vy —yy = —e % —(—e"%) =0.

Now, direct computation gives

1 e e 7%
W(y1,92,93)(xz) = |0 e* —e | =2#0.
3 &= g *

Hence, {1,e",e~"} is a set of linearly independent solutions.
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Ordinary Differential Equations - 7...

6 Linear Independence and Wronskian Determinants

/ Homogeneous Equations: General Theory

8 Homogeneous Equations: Constant Coefficients

9 Nonhomogeneous Equations: Method of Undetermined Coefficients
10 Euler-Cauchy Equation
11 Modeling: Free and Forced Oscillations
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Principle of Superposition

@ Consider an n-th order linear homogeneous ODE

v (2) + p1(2)y™ (@) + -+ - + pa(2)y(z) = 0. (7.1)
o If we write
L d + p1(z) ar + oo+ pu(z)
— T e n\ZL),
dx™ P1 dan—1 p ’

then £ is an n-th order linear differential operator, and

j"n Y@+ (0 a )+t p, (X))

L(y)=

=" (x)+p, (X)y(”_” (X)+---+ p, () y(x)

= Left-hand size of Equation (7.1)
We note £ is a notation (or defined operator) for the ease of presentation.
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Y™ (z) + pi(2)y D (z) + -+ - + pr(z)y(z) = 0. (7.1)

LICry1 + Caya + -+ + Cpyn| = C1Llyr] + CoLlya] +--- + CoLlyn]| | (7.2)

for any functions y1, yo, ..., Y, and any constants C,Cs, ..., C),.

i i
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Forn = 2, (7.2) can be verified as follows:

£(C,+Co) =S (G () + () + 1 () (G () + € ()

+p, (x)( Y (x)+Cy, (x))

ey +p (x)%clyl ()4 2 (H)Cy () +

2 C,y,(X)+ p, (x)i G, () + p, ()G, y, (x)

C L‘f W)+ p (x) 0+ P, (x)}

c, L‘f " (x>+p1<x) 0+ D), (x)}

=C L) +CL(y,)
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@ The Principle of Superposition states that if y;, v, ..., vy, are solutions of
ODE (7.1) on an interval /, then

y:CIyl +C2y2+"'+cnyn

is also a solution of that ODE on the same interval I for arbitrary constants
C1,Cs,...,C,.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

@ Reason: If y;,¥s,...,y, are solutions of the same ODE (7.1), then L[y;] =0
forj =1,2,...,n. It follows from (7.2) that

L[Ciy1 + Coya + - - - + Cryyn| = Ci1Lly1] + CaLlyz| + - - - + C,. Lly,)
= C1(0) + C3(0) + -+ Ca(0)
— 0.

soy = Cyiy1 + Coys + - - - + Cryn is also a solution.
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Theorem (7.1 General Solution of ODE (7.1))

Let the coefficients p;(x)’s of ODE (7.1) are continuous on an open interval I.
Then the n-th order linear homogeneous ODE (7.1) admits exactly n LI solutions.

Letyi,y2,...,y, be any n LI solutions on I, then for any solution y(x) of ODE
(7.1) on the interval I, there exist n constants C1,Cs,...,C, such that

y(z) = Cryi(z) + Coya(z) + - - - + Crn ().

Y™ (2) + pi(2)y D (z) + - + pr(z)y(z) = 0. (7.1)

All the solutions
to ODE (7.1)
¥ are linear
combination of
the solutions,

24. ........................... : yl’yz’ ,yn
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@ The set {y1,y2,..., Yn } Where y1,ya, . .., v, be any n LI solutions of ODE

(7.1) on [ forms a basis, and is called a fundamental set of solutions of
ODE (7.1).

@ The expression Ciy(x) + Coya(x) + -+ - + CLu,(x) is called a linear combination
of the fundamental set of solutions and is also called a general solution of
the n-th order linear homogeneous ODE (7.1) on the interval 1.

yx)=Cy(x)+ Cy,(x)+---+C,y,(x)

A particular solution of ODE (7.1) is any solution of (7.1) on the interval I.
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Example (7a)
@ Itis readily verified

yi(z) =1, ya(x)=¢€", y3(x)=e""
are 3 LI solutions of the ODE
y"'—y =0
and thus {y1.y2. y3} forms a fundamental set of solutions of the equation.

@ By Theorem 7.1, the general solution of the ODE is

y(x) = Chyi(x) + Caya(z) + C3ys(x)
— ("1 — C"QCI — C-'3C_I

where 'y, (', ('3 are arbitrary constants.
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Boundary Value Problem

@ In contrast with IVP, we can impose conditions at two points of a solution for

an ODE. Such conditions are called the boundary conditions. Normally the
two points are selected at both ends of the interval 1. The problem of solving

an ODE that satisfies some boundary conditions is called a boundary value
problem (BVP).

@ Unlike an IVP, which has a unique solution as indicated by Theorem 7.1, a
BVP may have no solution, a unique solution, or infinitely many solutions.
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Example (7b)

@ Consider an ODE
y'+y=0,

which can be readily verified that it admits a general solution
y(x) = Cicosx + Cysin z.

Three different sets of boundary conditions are given as follows:

@ Case 1: y(0) =2,y(m) = 1. Then
y0)=2=C1+0, y(r)=1=-C1+0,

which has no solution for C'; and C5, so the BVP has no solution for y(x).
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y(x) = Cicosx + Cysinx.

o Case 2: y(0) = 2,y(5) = 3. Then

y(0)=2=C; +0, y(g)=3=0+cg,

so (7 = 2,5 = 3, and the BVP has the unique solution
y(z) = 2cosx + 3sin .

@ Case 3: y(0) =2,y(m) = —2. Then
y(0)=2=C;+0, y(r)=-2=-C;+0,

so C7 = 2 and (s is arbitrary, so the BVP has infinitely many solutions
y(x) = 2cos x + Cy sin & parametrized by an arbitrary constant Cs.
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Ordinary Differential Equations - 8...

6 Linear Independence and Wronskian Determinants

7 Homogeneous Equations: General Theory

8 Homogeneous Equations: Constant Coefficients

9 Nonhomogeneous Equations: Method of Undetermined Coefficients
10 Euler-Cauchy Equation
11 Modeling: Free and Forced Oscillations
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Second Order ODEs: Constant Coefficients

@ A second order linear homogeneous equation with constant coefficients is
described by

y'(x) + ary'(x) + asylx) =0, (8.4)

where a; and a- are real constants.

We are looking for a fundamental set solutions {y,, y,} such that

(a) y;’(:.c) -+ aly}(m) + asy;j(z) =0, 7=1,2; and

V(. _ (@) v2(x)
O Wl v2)(@) = |7 (0 ()

» the general solution of ODE (8.4) is

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Characteristic Equation and General Solution
@ To obtain a fundamental set of solutions of the ODE
y'(z) + a1y’ (z) + agy(x) =0,
we seek a solution in the exponential function form
y(z) = €7,

where ) is some complex number to be determined.

@ Substituting (8.8) into (8.7) and using the property (8.2) gives

(A2 4+ a1\ + as)e™® = 0.

(8.7)

(8.8)

Since e** is not equal to zero on any interval I for any choices of A\, A must

be such that

A2+ ag )\ +as =0.

(8.9)

This equation and its left-hand side are called characteristic equation and

characteristic polynomial of (8.7), respectively.
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® Using quadratic formula, the roots of (8.9) are given by

—a1 \/a% — 4ao
5 .

\ = (8.10)

We then have three different cases for the roots in (8.10)...

» Case 1: Two distinct real roots A\; # A2 when a? — 4as > 0

» Case 2: Repeated roots A1 = A2 when a? —4as =10

» Case 3: Two complex conjugated roots when aj — 4a2 < 0

Al =p+iwand A2 = g — iw.
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» Case 1: Two distinct real roots \; # Ao when a$ — 4as > 0

y(z) = C1 eMT 4 Cgelzr,

(8.11)

(Optional) Reason for Case 1: When a? — 4as # 0, denote the two distinct

roots of (8.10) by A; and \». Then it can be verified that y;(z) = e** and
yo(x) = e*2* form a solution set of ODE (8.4) and

W(y1,y2)(z) =

yi1(r)  yo(x)

vi(x)  wya(x)
Eklm Ekgm

AeMT \geraT

(Ag — A\p)ePritAra)e £

Thus, the general solution of ODE (8.4) is given by, according to (8.6),

y(x) = CreM™ 4 Che?™.
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',,/
2
» Case 2: Repeated roots A\;1 = A2 when a? — 4as = 0:

y(z) = C1eM" + Caxe™'™, (8.12)

(Optional) Reason for Case 2: When af dao = 0, )\1 = Ag = =5+ Which is

constitute a fundamental set of solutlons of ODE (8.4). We need to find
another solution of ODE (8.4) which is LI of y¢(z) = eMT on the interval 7. In
fact, assuming vy, (x) = re?t® and substituting v () into the left-hand side of
ODE (8.4) gives

yh (x) +aryh(z) +agya(x) = (21 +a1)e™™ + (A +ar Ay +ag)ze™®, (8.14)
which is identically equal to zero since \; is a root of A% + ay A\ + as = 0 and
A1 = —5*. Thus, ya(x) = reM* js indeed a solution of ODE (8.4) and is
obviously LI of y1 () = e**. Thus, the general solution of ODE (8.4) for this
case Is

y(z) = CLeM* + Coze™
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» Case 3: Two complex roots When a? — 4az < 0. A\1 = g + iw and A2 = p — iw.

y(x) = (C1 coswz + Cy sinwzx)e”, (8.13)

where C'1 and Cs are arbitrary real constants. An advantage of this form of the
general solution is that the right-hand side is a real function.

@ (Optional) Reason for Case 3:

y1(z) = e*® = eWtWT = i (coswz 4 isinwe).

and

yo(x) = e?2® = eHTIWT = el (cos Wz — isinwe).

Thus, another fundamental set of solutions can be formed by

%(2) ; ¥a(x) — "% coswr and 2 () ;y2 ()
2

= e*T sinwzx.
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Solutions for Second Order Linear Homogeneous ODEEéi

@ Given a second order linear homogeneous ODE
y'(z) + a1¥' () + ay(z) = 0.
Then the characteristic equation is
AN t+ad+a=0

and the general solution is summarized in three different cases:

Case 1: distinct real roots where A\; # As:

y(z) = CreM* 4+ Crer2®,

Case 2: repeated roots where Ay = As:

y(z) = CreM* + Cozet=,

Case 3: complex roots where A = p + ww:

y(x) = (C} coswzx + Cs sinwz)eH*.
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Example (8a)
@ Solve the ODE:

y' —9y =0.

@ The characteristic polynomial is A\? — 9 which has two distinct real roots
A1. Ao = £3. Hence, the general solution is

y(z) = C1e°® + Che 7.

Example (8b) y(z) = CreM* + Coze™.
@ Solve the ODE:

y"+2y'+y=0.

@ The characteristic polynomial is A? + 2\ + 1 which has repeated roots
A1 = Ao = —1. Hence, the general solution is

y(x) = Cre™" + Coze™".
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il £
y(z) = (Cy coswz + Cy sin wx)e“f.wg

Example (8c)
@ Solve the IVP: ¢’ +4y' + Ty =0, y(0)=1, 2'(0)=0.

@ The characteristic polynomial is A2 + 4\ + 7 which has a pair of complex
roots A\j, Ao = —4i\/422—4(1)(7) — —2 4 1/3i. Then, the general solution is

y(z) = (C1 cos V3z + Ca sin V/3z)e 2.

@ Using the initial conditions y(0) = 1 and ’(0) = 0 gives

C; =1and v3Cy, —2C, =0,

which yields C; =1 and C5 = % Hence, the solution is

y(z) = (cos V3 + % sin \/§:c) e 22,
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Higher Order ODEs with Constant Coefficients

@ Consider an n-th order linear homogeneous equation with constant
coefficients, i.e.,

y(n)(m) + aly("_l)(:v) + i _|_ any(a;) — O, {81 5)

where a;’s are real constants.

@ If {y1,92,...,yn} is a fundamental set of solutions of ODE (9.15), then by the
Principle of Superposition, the general solution is

y(x) = Cry1(z) + Cayz(x) + - - + Cryn(), (8.16)

where C);’s are arbitrary constants.
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@ A fundamental set of solutions {y1, . ..., y,} of ODE (8.15) is found by
considering

}\?1 —|_ (11/\”_1 _|_ . e s _|_ Ay = U (817)

This equation and its left-hand side are called characteristic equation and
characteristic polynomial of (8.15), respectively.

@ Aroot \; of the characteristics equation (8.17) has multiplicity & if (A — )\j)k
divides the characteristic polynomial but (A — A;)**! does not. In other
words, if a root A; has multiplicity %, then

A" @A 4t g, = (A= A7)Fp(V)

for some polynomial function p(\) for which p(\) is not divisible by A — A;.
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A fundamental set of solutions of ODE (8.15) can be formed as

(a) If the roots A\q. Ao, .... AL ar:—;-"r.eogl.gnq.U]Hyy.gi.l_ly”cﬁ:s.t.inpt, then the following £
functions

ro, eMRT (8.18)

constitute & LI solutions of ODE (8.15).

(b) If Ay is a real root with multiplicity %, then the following % functions

_..’..“Ik—lﬂ}ulx (8.19)

constitute % LI solutions of ODE (8.15).
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conjugate A = i — iw, and the following 2% functions

Tk_l

(sinwx)eH”™, r(sinwx)e!”

iiiii

T

(coswz)el™ x(coswr)el®, . .. a (coswz)el ™,

k—l(

sinwx)et”

constitute 2/ LI solutions of ODE (8.15).
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Example (8d)

@ Solve the ODE:
yllll L 3yll + Qy s 0'

@ The characteristic polynomial is A* —3A\% + 2 = (A\? — 1)(\? — 2) whose roots
are \; =1, s = —1, A3 =+v2and A\, = —/2.

@ Hence, the general solution is

y(x) = Cre* + Coe™* + 038\/§I + C4e_‘/§$.
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Example (8e)

@ Solve the ODE:
T I
y o —y =0

@ The characteristic polynomial is A* — A2 = A?(\? — 1) whose roots are
}\1:)&2 :0,)\3: 1and/\4:—1.

@ Hence, the general solution is

y(x) = C1 + Cox + Cse® + Cye =,

ENGG 2420 - ODE ~ Page 92 Ben M. Chen, CUHK MAE



Example (8f)

® Solve the ODE:
ymr 4 Qy‘” +y=0.

@ The characteristic polynomial is A* + 2A% + 1 = (A* 4 1) whose roots are
)\1:)\2:iand)\3:)\4:—i.

@ Hence, the general solution is

y(x) = Cicosz + Cysinz + C3xcosz + Cyzsinz.

He L kT

(coswx)e!™, x(coswr)e coswr)etr,

LT .k—l(

(sinwz)el” r(sinwz)el*, ... 1 sin wx )et*
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Ordinary Differential Equations - 9...

6 Linear Independence and Wronskian Determinants

7 Homogeneous Equations: General Theory

8 Homogeneous Equations: Constant Coefficients

9 Nonhomogeneous Equations: Method of Undetermined Coefficients
10 Euler-Cauchy Equation
11 Modeling: Free and Forced Oscillations
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Nonhomogeneous ODEs

@ We now study 2"¢ order non-homogeneous linear ODEs. Let us consider the

simplest case where the ODE is of constant-coefficient type described as
folows: L. )

y"(z) + a1y (z) + agy(e) =if (x),; (9.1)

@ The corresponding homogeneous equation is

y'(z) + a1y () + asy(z) = 0. (9.2)
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@ Let y,(z) denote the general solution of (9.2) , i.e.,
yr = Cry1 + Cayo,

where {y;,ys} is a fundamental set of solutions of the homogeneous
equation. Then y; (z) is called the homogeneous solution of (9.1) .

v (2) + a1y () + agy(a) = f(=),

@ Lety,(x) be any solution of the non-homogeneous equation (9.1), i.e., v,

satisfies
yl(2) + ary)(z) + azyy(z) = f(2).

Then y,(x) is called a particular solution of (9.1).
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Example (9a)
@ Consider a nonhomogeneous linear ODE with constant coefficient
y" — 9y = 4 + 5sinh 3.

@ The associated homogeneous equation is " — 9y = 0 and thus the

corresponding characteristic equation is given by

A-9=0 = 4,=13
and the homogenous solution is given by

y,(x)= Cle3x + Cze_3x
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Example (9a) (cont.)

@ A particular solution of the ODE is y,(z) = 0 - = cosh
d (5 D
up Qyp = o Ecoah?z + G

ENGG 2420 -

-

é(.‘B sinh 3z ) +

4 + 5sinh 3z.

—(sinh 3z + 3z cosh 3z) + (

l\DI ¥

i sinh x = cosh x
dz

d .
— coshz = sinh x
dz
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3x because

4 5
(2)(3 sinh 31)) -9 (_6 + él cosh 3.1')

.15
4 — -5z (0511'31)

—
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Theorem (9.1 General Solution of Eq.(9.1))

If yn(x) and y,(x) are homogeneous and particular solutions of (9.1), respectively,
on an open interval I, then a general solution of (9.1) on I is

y(x) = yn(x) + yp(x). (9.3)

Proof.

/

+a2()’h+)’p)

= (y},z’ +a1y},z +a2yh)+(y; +a1y; +a2yp)
0+ /(%)
= f(x)

This implies that y(x) indeed a solution to the ODE in (9.1).

y”+a1y’+a2y:(yh +yp)”+al(yh +yp)
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e If f(z) is a linear combination of several functions f,..., fi, then,

Y () + a1y () + agy(x) = A fi + ... + Arfi (9.4)

Theorem (9.2 General Solution of Eq.(9.4))

Ify,, () is @a homogeneous solution of (9.4) on an open interval I, and
Up, (Z), - - -, Up, () are particular solutions of

y"(x) + a1y’ (x) + agy(x) = f1,

y'(x) + a1y’ (z) + asy(x) = fi

respectively, then a general solution of (9.4) on I, where Aq,...,. A are some real
numbers, is

y() = yn(x) + A1Yp, (T) + - - - + Aryp, (7). (9.5)

This result is a Superposition Principle.
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Example (9b)
@ ltis readily verified in Example (9a) that

un(z) = C1%® + Cpe=37

and i
Yp(T) = ~93 — 51 cosh 3x

are homogeneous and particular solutions of the ODE
y" — 9y = 4 + 5sinh 3z,
respectively.

1

This can be done by showing that y,, (x) = ) is a particular solution

to

y'=9y=f =1
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1 . : :
and y, (x)= gxcosh 3x is a particular solution to

y"'—9y = f, =sinh 3x

d vy, =9y, =(lcosh3x+lxsinh3xj —gxcosh3x
— sinhz = cosh z 6 2 2

dz 1 1 3 3
d , =—sinh3x+—sinh3x+—xcosh3x——xcosh3x
—— coshz = sinh 2 2 2 2 2
dz
=sinh3x = f,

@ Hence, by the Superposition Principle in Theorem 9.2, the general solution is

y(x)=y,(x)+4y, (x)+5y, (x) = Ce* +Ce™ —g+%xcosh3x
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Method of Undetermined Coefficients

@ Let f(z) be a smooth function defined on some interval I. Define a set F' of
functions as follows:

F = {f(z), f'(z), f"(z), fO(=),...}, (9.6)

that is, F' consists of f(x) and its successive derivatives. If F' contains only a

LI, and, for any integer k > m, f(*)(z) is a linear combination of
f9)(z),7=0,1,...,m — 1. We call

fO=z), j=0,1,...,m—1,

a basis of F' and m the dimension of F'.
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@ The method of undetermined coefficients can be used to find a particular
solution v, of EQ.(9.1) under the following two conditions:

(a) Eqg.(9.1) is of constant-coefficient type.

(b) f(x) will generate a family F', i.e., the set (9.6), with a finite number of LI terms.

@ Example (1):if f(z) = e#*, then

F = {e"", pet=, u?et, . . .}.

We see that the set {e#*} is a basis of F' with dimension 1 and thus f(z)
satisfies condition (b).

¥ () + a1y (z) + axy(z) = f(x) (9.1)
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e Example (2): if f(z) = z* (k is a non-negative integer), then

= {:L‘k, ka1 ... klz,k!.0.0,0,.. .}

We see that the set {z*,z*~1,... 2,1} is a basis of F with dimension
(k + 1) and thus f(z) satisfies condition (b).
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@ Example (3), if f(z) = coswz, then

2

F = {coswz, —wsinwz, —w” coswz, . ..}.

We see that {coswz,sinwz} is a basis of F' with dimension 2 and thus f(z)

satisfies condition (b).
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@ Example (4), if f(z) = 1, then

1 1 2
F—{;,—E,E,...}.

We see that the sequence contains an infinite number of LI terms

1 1 1 s

$,12,I3,...

Hence f(z) does not satisfy condition (b).
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@ Case 1 where f(x) = e"* where p is some real number and x is not a root of
the characteristic polynomial of (9.1):

y, = Ce. (9.7)

@ Case 2 where f(z) = z¥ where k. = 0.1, ... and 0 is not a root of the
characteristic polynomial of (9.1):

yp = Cpa® + Cp_q2" =t + . 4+ C, (9.8)

where C;'s are undetermined coefficients.

Recall the characteristic polynomial of (9.1) (actually should be (9.2))...

A+ai+a,=0
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@ Case 3 where f(x) = coswz or f(x) = sinwz where w is some positive
number and w is not a root of the characteristic polynomial of (9.1):

yp = C1 coswr + Cysinwr, (9.9)

where (1 and (5 are undetermined coefficients.
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@ For the previous three cases, the form of the particular solution y,(z) is a
linear combination of the basis of the set F' which is the family generated by
the individual f(z).

yp = Ce,

We note that y,(x) is a particular solution to the given ODE, i.e,,

y,(0)+ay,(x)+a,y,(x) = f(x)

The unknown constant coefficients can be determined through this equation.
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Choices for the Particular Solution

Types of f(x) Choices for y,

ehe yp = Ceh

;Ifk(k — 01 l . ) yp — C}krk L1 C:vk_lrk—l L e C‘.’O

COSWT

| § = ) o &
. e OS (W 0 S UM
i } yp = C1 coswzx + Cysinwa

where neither 1z, nor 0, nor iw, is a root of the characteristic polynomial of
(9.1) and C';’s are coefficients to be determined.

@ In case where f(x) is a linear combination of some functions, say,
flx) = Aie!* + Asa® + Az coswr + Ay sinwr,
we have to use the Superposition Principle in Theorem 9.2.
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Example (9c)

@ Solve the ODE:
y" + 4y = 8z2.

@ The characteristic polynomial is A\? + 4 which has two roots A\ = +2i. Thus
the homogeneous solution is

yn, = Acos2x + Bsin 2z,

where A and B are arbitrary constants.

@ Since 0 is not a root of the characteristic polynomial \? + 4, we can assume
Up = Cyx? + Cyx + (. Substituting it to the original ODE gives

(CF* +Cx+C,) +4(Cx* +Cx+C, ) =87
¥
2C5 + 4(Cox? + C1x + Cp) = 8z2.
Comparing the coefficients gives 4Cs = 8,4Cy = 0 and 2C5 + 4Cy = 0.
Therefore, C's = 2. Cy =0and Cy = —1.
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A particular solution is y, = 222 — 1. Hence, the general solution is
y(xr) =yn + 1y, = Acos2x + Bsin2r + 2702 — 1.

To verify that y(x) is indeed a solution to the given ODE, we check...

4

(Acos2x+Bsin2x—|—2x2—1) +4(Acos2x-|—Bsin2x—|—2x2—1)

= (—2Asin 2x+ 2B cos 2x + 4x) +4Acos 2x +4Bsin 2x +8x* — 4
=—44cos2x—4Bsin2x+4+4Acos2x+4Bsin2x+8x" —4

=8x”
Indeed, y(x) is a solution to the ODE,

V' +4y=8x"
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Example (9d)

@ Solve the ODE:

y"' — 3y’ — 4y = 2sinz.

@ The characteristic polynomial is A2 — 3\ — 4 which has two roots \; = 4 and
Ao = —1. Thus the homogeneous solution is

yp = Ae?® + Be .

@ Since i is not a root of the characteristic polynomial A\> — 3\ — 4, we can
assume y,, = C'; cosx + Cysinx. Substituting it to the original ODE gives

. " . / . .
(C cosx+C,sinx) —3(C cosx+C,sinx) —4(C, cosx+C,sinx)=2sinx
N
(=5C7 — 3C%) cosx + (3C7T —5HCs%)sinx = 2sinx.

Comparing coefficients gives —5C'1 — 3C'y = 0 and 3C'y — 5C'y = 2 which

- ~ __ 3 s T ;¢
yields 'y = = and Cy = —%.
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We thus obtain a particular solution

(x) = icosx—isinx
AR 17
and the general solution
4x —X 3 S :
y(x)=y,(x)+y,(x)=Ae" + Be +ﬁcosx—ﬁsmx

to the given ODE
y' =3y —4y=2sinx

Exercise: Verify it!
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Modified Form of the Particular Solution

@ Non-duplication condition means that none of the members of the basis of
F' is proportional to any member of the basis of the fundamental set of
solutions of the homogeneous equation (9.2).

@ Under this condition, the undetermined coefficients can be determined by
solving some linear algebraic equations. However, if this condition is violated,
then these linear algebraic equations do not have a solution as shown by the

next example.
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Example (9e)
@ Consider the ODE

(9.10)

14} / e
Yy —y =e".

The characteristic polynomial of ODE (9.10) is A?> — X\ which has two roots
A1 = 0 and Ao = 1 and thus a basis of the homogeneous solution is {1, e* }.

@ On the other hand, i« = 1 is a root of the characteristic polynomial. Also, the
basis of F' = {e*,e*, ...} is {e”} which duplicates the term ¢* in the basis of

the homogeneous solution.

o If we still let y, = C'e* and substitute y, = C'e* into ODE (9.10), we obtain
Ce" —(Ce" = e,

which yields 0 = ¢*, a contradiction. Therefore, this form of y,, cannot be a
particular solution of ODE (9.10).
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@ Nevertheless, even in this case, by modifying y,, we can still obtain a
particular solution of the non-homogeneous equation (9.10). In fact, let

yp = Cxe”
and substitute it into ODE (9.10), we obtain
C(2e" +ze®) — Cle" +xe™) = e,
which yields C' = 1. Hence, y,, = xe™ is a particular solution of the equation.

@ Remark: Notice that the function xz¢* i1s not proportional to any member of
the basis of the homogeneous solution.
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e From Example (9e), we see that even if y, = C'e” is not a particular solution,
we can still obtain a particular solution by modifying v,,. In what follows, we
will modify the expressions of the particular solutions for the previous three
cases where /1, 0, or iw is one of the roots of the characteristic polynomial of

the ODE.

@ Case 1 where f(x) = e** with 1« some real number and p is a root of the
characteristic polynomial of (9.2) of multiplicity m:

yp = C'z ek, (9.11)

Recall the characteristic polynomial of (9.2)...

A+ai+a,=0
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@ Case 2 where f(z) = 2¥ where k. = 0,1, ... and 0 is a root of the
characteristic polynomial of (9.2) of multiplicity m. Then,

Up = ™ (Craf + Cp_1z 1+ ...+ Cp), (9.12)

@ Case 3where f(x) = coswz or f(x) = sinwx where w is some positive
number and iw is a root of the characteristic polynomial of (9.2) of multiplicity
m. Then,

yp = 2™ (Cq coswx + Cysinwz), (9.13)

where (1 and (U5 are the undetermined coefficients.

Recall the characteristic polynomial of (9.2)...

A+ai+a,=0
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Example (9f)
@ Solve the ODE:

—T

y' =3y +2y=¢e"—e¢
@ The characteristic polynomial is A> — 3\ + 2 which has two roots \; = 1 and
Ao = 2. Thus the homogeneous solution is

yn = Ae® + Be®*.

@ Let f(x) = fi(x) + fo(x) where fi(x) = e* and fo(x) = —e~*. Then, by the
Superposition Principle,
Yp = Up, + Ypo s
where y,,, .7 = 1, 2, are particular solutions of v — 3y’ + 2y = fi(z),i = 1,2,
respectively.
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@ To obtain y,,, note that . = 1 is a simple root of the characteristic
polynomial, we can assume y,,, = Cyze”. Determining the unknown

yzl —3y;)1 +2y, = (Clxex )” —3(C1xex )’ +2(C1xex)
=C (¢ +xe') =3C, (¢ +xe") +2Cxe" = C,(2¢" +xe") =3Ce" ~ Cyxe’

=—Ce =fi(x)=¢’" = (C=-1 = y, =-xe

@ To obtain y,,, note that » = —1 is not a root of the characteristic polynomial,
we can assume y,,, = Cye™*. Determining the unknown coefficient 'y gives
Cy = —z. Thus

1 _,

Ypo = _EC_ .

@ Finally, a general solution of the original ODE is

y(;l?)

Yh + Yp, + Yp,

; D . R
Ae* 4+ Be“* — ze* — —e %,
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Ordinary Differential Equations - 10...

6 Linear Independence and Wronskian Determinants

7 Homogeneous Equations: General Theory

8 Homogeneous Equations: Constant Coefficients

9 Nonhomogeneous Equations: Method of Undetermined Coefficients

10 Euler-Cauchy Equation
11 Modeling: Free and Forced Oscillations
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Euler-Cauchy Equation
The following ODE is called Euler-Cauchy Equation:
x*y"+axy' +by=0
where a and b are constants. We try a solution
y=x"

Substituting this and its derivatives into the Euler-Cauchy Equation,

we obtain
x’m(m=Dx"" +axmx"" +bx" =0

= m(m-Dx" +amx" +bx" =0 = m(m-1)+am+b=0

l—a++(a—1)* —4b
2

= m +(a-)m+b=0 = m , =
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Case 1: If

Cl—atJ(a-1)’ —4b
2

ml,Z

has two distinct real roots, we obtain a general solution to the Euler-
Cauchy equation as

— m m,
y=c¢x"' +c,x
with ¢, and ¢, being free constants.

We check...

m m m m,

Xy +axy +by =x*(cx" +c, ™) +ax(cx™ +c,x"™) +b(cx™ +c,x

m— m

m,

P+ x’e,my (m, —Dx™ 7 +axemx™ ™ +axc,mx™ " +bex™ +be,x

=x'gm (m —1)x
:(01’”12 —cm, +ac,m, +bcl)x’"‘ +(02W122 —C,m, +ac,m, +bcz)x
o+ $ ) s+ +5)
:Cl'()'xml +Cl'0'.me:_O /
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Example 11.1: Solve the following Euler-Cauchy equation
x*y"=2.5x)"=2.0y=0

Solution: Fora =-2.5 and b = - 2.0, we obtain

Cl—at\(a-1—4b 142.5+(-2.5-1)* +8
2 2
1425445

m1,2

=-0.5,4

and thus the general solution to the ODE

05 4 G 4

Jx
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Case 2: If

Cl-a++(a—1)*—4b
2

ml,Z

has two repeated roots, it can be showed that a general solution to the
Euler-Cauchy equation is given as

Yy = (c1 +c,In x) xm4)2

Example 11.2: Solve the following Euler-Cauchy equation
x*y"=3xy'+4y =0

Solution: For a = -3 and b = 4, we obtain m,, =2 and thus the general
solution to the ODE

y=(¢ +¢,Inx)x’
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Case 3: If

Cl-a++(a—1)*—4b
- 2

m, ,

has two repeated roots m, = 4+ ivand m, = u—iv, it can be showed

that a general solution to the Euler-Cauchy equation is given as
y=x" [c1 cos(vInx)+c,sin(vin x)]
Example 11.3: Solve the following Euler-Cauchy equation
x*y"+7xy' +13y =0

Solution: For a =7 and b = 13, we obtain m,, =-3+2i and thus the
general solution to the ODE

y=x"[¢cos(2Inx)+c,sin(2Inx)]
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Ordinary Differential Equations - 11...

6 Linear Independence and Wronskian Determinants

7 Homogeneous Equations: General Theory

8 Homogeneous Equations: Constant Coefficients

9 Nonhomogeneous Equations: Method of Undetermined Coefficients
10 Euler-Cauchy Equation
11 Modeling: Free and Forced Oscillations
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Spring-mass-damper System

@ Spring-mass-damper system

max" + cx’ + kx = F(t), (11.1)

where ¢ > 0 is the damping coefficient, and k& > 0 is the spring stiffness.
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Free Oscillations

@ F(t) = 0. the motion equation is simplified as

mx" + cx’ + kx = 0. (11.2)

@ The characteristic equation

mA2 + e\ + k=0, (11.3)

whose roots are

—c+ 2 —4dmk
ANy — c+ /e mk. (11.4)

2m
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@ Case 1: Undamped harmonic oscillation ¢ = 0.

ma” + kx = 0. (11.5)

The two roots are Aq. Ao = +iw

W = “’% is called the natural frequency of the system.

The general solution of system (11.5) is

x(t) = Acoswt + Bsinwt. (11.6)

The frequency of the oscillation in Hertz and the period are

w 1 k 1
f= = —4\/— and T = —,
2r 2wV m f
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@ The general solution in another form

x(t) = Csin(wt + @), (11.7)

(' and ¢ are called the amplitude and the phase angle,
;A

tan = —.

B

— VA2 4+ B2 and ¢

x(7)

NN
4 \/ \ \/”

Fig. 11.2. an undamped harmonic oscillation:
2" +4x = 0,z(0) = 0,z'(0) = 2
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@ Case 2: Nonzero damping case when ¢ > 0.

Let coriticar = VAmk  critical damping.

j} consider three subcases depending on whether

—c+ 2 —Amk

2m
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(@) When ¢ < ceriticat, |:> underdamped free oscillati
The general solution is

x(t) = (Acosnt + Bsinnt)e™zm

ct

dm

where n = \/uﬁ — <2 The asymptotic behavior of the g

r(t) — 0ast — oo.

1

0.8 |-/

0.41-1-—-

0.2 -+

Magnitude

-0.2

-0.4

0.61---

0.8
-1
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(b) When ¢ = ceritical. I:> critically damped free oscillation

The general solution is

z(t) = (A + Bt)e™ 2m, (11.9)

Note also that the asymptotic behavior of the general solution is

r(t) -+ 0ast — oo.

1.4

Magnitude

Time (second)
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-
(c) When ¢ > ceriticat, I;> overdamped free oscillation @1
The general solution is

x(t) = AeMt + Bet2t, (11.10)

_ 2__ A
where A\, \y = —¢EVe —dmk

2m

the asymptotic behavior of the general solutionis x(t) — 0 as t — occ.

1

0.8 -3~

0.6

0.4

0.2

0

Magnitude

-0.2
0.4/

-0.6 H

0.8!

-1
Time (second)
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Forced Oscillations

max” + cx’ + kx = Fy cos Q. (11.11)

e Case 1: When ¢ = 0, i.e., there is no damping, equation (11.11) is reduced to

mx' 4+ kx = Fy cos . (11.12)

This is a second order linear non-homogeneous equation with constant
coefficients, which can be solved by the method of undetermined coefficients.
The associated homogeneous equation is

mz” + kx =0,
and thus the homogeneous solution is given by

rp = Acoswt + B sinwt,

where w = 1;%. Therefore, the general solution of equation (11.12) depends
on whether ) # w or ) = w.
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(a) When (2 # w, the general solution is

Fi
x(t) = Acoswt + Bsinwt + -~ O_ 07 cos (.
Suppose we impose the initial conditions that z:(0) = z/(0) = 0, then a
phenomenon called beat occurs. The solution is
Fo

x(t) = > _Qz)(C'OSQf—COSLuf). (11.13)

This is the sum of two periodic functions of different periods with the same
amplitude. x(7)

[

AA
» \1) zJJ;th( 14 @0
v

Fig. 11.6. an undamped forced oscillation (beat):
" +x=0.5c0s0.8¢t z(0) = 2'(0) = 0.
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(b) When (2 = w and suppose we impose the same initial conditions that
r(0) = 2'(0) = 0, then a phenomenon called resonance occurs. The

solution is

Note the oscillation becomes unbounded because

Lo

2mw

t sin wt.

(11.14)

|z(t)| is unbounded as t — ~c.

A

\

i

[
40

U

Fig. 11.7. an undamped forced oscillation (resonance):
" +x =0.5cost,z(0) = 2'(0) = 0.

ENGG 2420 - ODE ~ Page 140

Ben M. Chen, CUHK MAE



Homework Assignment No: 4

Due Date: 6:00pm, 14 November 2019
Please place your assignment to Assignment Box 3 outside PC Lab (ERB 218)
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Summary of Ordinary Differential Equations...

\
f General n-th order Ordinary Differential Equation:
F(x,y,y',---,y(")) =0
N We look for all possible solutions y(x) that satisfy this ODE. y
®
e . AU — N
Linear n-th order Ordinary Differential Equation:
a,()y" +a, y"V + ot ay(x)y = g(x)
S It is a homogenous ODE if g(x) = 0. Otherwise, it is non-homogenous. )
[
Solving the following 1st order ODE by integrating factor method:
Vep@y=qx) = yw=el D (Jp(x)dx?l(x)j e C}
\_ )

\4
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Summary of Ordinary Differential Equations (cont.)...

\ 4

-

Solution to separable 1st order ODE:

y=1@e0) = [s=[reaceC

)

-~

o

\Z
Solution to the 1st order ODE of exact differential form:
& M aa_F =M
Y __MxY) Lith 3F(x, y) such that ] & = F(x,y)=0
dx N(x,) or _ N
| Oy

~

)

ENGG 2420 - ODE ~ Page 143

\4

Ben M. Chen, CUHK MAE



Summary of Ordinary Differential Equations (cont.)...

\ 4

Vector space of all continuous functions defined on I...

V= {y(x) ‘ yv:I->R, y(x)is continous}

\4

Given y,(x), y,(x),---, ¥, (x) €V, they are said to be linearly dependent on |,

~

if there exist real scalars @, not all zero, such that

ay,(x)+a,(x) y,(x)+-+a, y (x)=0foranyx el

\ Otherwise, they are said to be linearly independent on 1. /
®

\4
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Summary of Ordinary Differential Equations (cont.)...

\ 4

/ We are looking for a set of linearly independent solutions for linear ODE, i.e., a set of\

Wi Yoo Y, )(X) =

-

»(x)
Y1 (x)

¥, (x)
y5(x)

) 1)

solutions with their Wronskian determinant being not identically zero

Y, (x)
Yo (x)

" (x)

# (0 for some x

/

\ 4

/

The general solution to the n-th order linear ODE,
an ('x)y(n) + an—ly(n_l) +eeet aO (X)y = O
can then be characterized by the linear combination of n linearly independent solutions

yx)=Cy,(x)+C, y,(x)+--+C, y,(x)
\

~

/
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Summary of Ordinary Differensial Equations (cont.)...

\ 4

General solution to the 2nd order linear homogenous ODE with constant coefficients,

Y'(xX)+a,y'(x)+a,y(x)=0

is depended on the roots of its characteristic polynomial equation:

K A +al+a,=0 /

\ 4

Case 1: distinct real roots where A\; # As:

y(z) = CreM 4 Corer2®.

Case 2: repeated roots where A\; = Aa:

y(z) = CreM* + Cozerr®.

Case 3: complex roots where A = p & w:

y(x) = (C} coswzx + C sinwzx)er.

A4
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Summary of Ordinary Differen}ial Equations (cont.)...

\ 4

General solution to the n-th order linear homogenous ODE with constant coefficients,

Y () +ay" N (x) e+ a,y(x) =0

is depended on the roots of its characteristic polynomial equation:

\ A" +a A"+ ta, =0

\ 4

ﬁ A, A, -+, A, are distinct roots, we have the following independent solutions to the ODEN

-

A A
e lx,e%x,...,e (o

If A, is a real root with multiplicity of k, the we have the following independent solutions

A A k-1 _A
e, xe, e x e

If 1, = u+iwis a complex root with multiplicity of %, the we have the independent solutions

(coswx)e™, (coswx)xe™, ---, (cos wx)x* e

\\ (sin wx)e™, (sinwx)xe™, -, (sinwx)x" e /
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Summary of Ordinary Differengial Equations (cont.)...

A "4

ﬁlution to the 2nd order linear non-homogenous ODE with constant coefficie@

V'(xX)+a,y'(x) + a,y(x) = f(x)

is given by
y(x)=y,(x)+y,(x)
with y,(x) being the general solution to its corresponding homogenous ODE

V'(x)+a,y' (x)+a,y(x) =0

and y,(x) being any particular solution to the ODE, i.e,

k V@) + 4y, () + 4y, (2) = £ (%) /

Types of f(x) Choices for y,, If neither z, nor 0,
EHT yp = Cet= nor iw, is a root of
, the characteristic

;1‘}‘1‘(;{ =3 1 1 I ) Yp = (._"k.l‘.k + C-'k__ll‘k_l + e CO
polynomial of the
COS W
sin wx

} Yp = C1coswr + Casinwr given ODE.
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Summary of Ordinary Differengial Equations (cont.)...

A "4

ﬁlution to the 2nd order linear non-homogenous ODE with constant coefficie@

V'(X)+a,y' (x) + a,y(x) = f (x)
is given by
y(x)=y,(x)+y,(x)
with y,(x) being the general solution to its corresponding homogenous ODE

V'(x)+a,y' (x)+a,y(x) =0

and y,(x) being any particular solution to the ODE, i.e,

k V@) + 4y, () + 4y, (2) = £ (%) /

Types of f(x) Choices for y, If 11,0r 0, orie, is a

eh® yp = Cax™el” root of the
Rk =0,1,...) yp = 2™ (Cra® + Cp_12* 1 + ... + C)) characteristic

COS WT polynomial with a
i) i L - R

R Yy, = ™ (C' coswx + Cysinw)
S Wi Jp . . .
multiplicity of m.
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Summary of Ordinary Differential Equations (cont.)...
[

\4

ﬂ}eneral solution to Euler-Cauchy Equation: \

x*y" +axy' +by =0

can be done by solving the following quadratic equation
m’ +(a-D)m+b=0
[f it has two distinct real roots,
y=cx" +c,x™

two repeated roots,
y=(c +¢,Inx) X

Two complex conjugated roots, m; = u+ivand m, = u—iv,
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